Dérivations fractionnaires discrètes et applications numériques.
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
06-06-2021
Abstract
This thesis focuses on the construction of discrete fractional operators as fractional powers of
sectorial operators. This approach requires the construction of resolvents and control of their norms
in various Banach spaces. This original approach in the discrete case, allowed us to find some
operators and to build a new one.
Following this, essential convergence results are proved.
We show the uniform convergence of the operator nabla h-sum to the Riemann-Liouville integral in
the spaces of the continuous functions and then in weighted continuous spaces.
Also, the strong convergence of fractional nabla operators to the fractional derivative operator in
Hölder spaces is proved.
As applications the resolution of some problems of fractional Cauchy is proposed.
Description
Keywords
fractional operator, fractional powers of sectorial operators, Riemann-Liouville integral, Riemann-Liouville fractional derivative, fractional rectangle rule, fractional trapezoidal formula, convergence., opérateurs fractionnaires, puissances fractionnaires d’opérateurs sectoriels, intégrale de Riemann-Liouville, dérivée fractionnaire de Riemann-Liouville, formule des rectangles fractionnaire, formule des trapèzes fractionnaire, convergence.
Citation
salle des thèses