Dissertation submitted to the Department of Mathematics as a partial fulfillment of the requirements for the degree of Master in partial differential equations
| dc.contributor.author | Seddar, Hadjer | en_US |
| dc.date.accessioned | 2024-12-17T09:31:10Z | en_US |
| dc.date.available | 2024-12-17T09:31:10Z | en_US |
| dc.date.issued | 2024-06-19 | en_US |
| dc.description.abstract | Ce mémoire traite des questions d'existence et de multiplicité de solutions pour des problèmes de Dirichlet quasi-linéaires associés à des opérateurs Laplaciens. L'approche utilisée est variationnelle, basée sur l'application du théorème des trois points critiques. In this thesis, we study the existence and multiplicity of solutions for quasilinear Dirichlet problems associated to Laplacian operators. We use variational approach, based on Three critical point theorem. | en_US |
| dc.description.sponsorship | In this thesis, we study the existence and multiplicity of solutions for quasilinear Dirichlet problems associated to Laplacian operators. We use variational approach, based on Three critical point theorem. | en_US |
| dc.identifier.uri | https://dspace.univ-tlemcen.dz/handle/112/23898 | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | University of Tlemcen | en_US |
| dc.relation.ispartofseries | 0017 Master Maths; | en_US |
| dc.subject | Problème de Dirichlet quasi-linéaire, existence et multiplicité de solutions, méthode variationnelle, Théorème des trois points critiques. | en_US |
| dc.title | Dissertation submitted to the Department of Mathematics as a partial fulfillment of the requirements for the degree of Master in partial differential equations | en_US |
| dc.type | Thesis | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Existence_and_multiplicity_of_solutions_for_elliptics_systems.pdf
- Size:
- 504.26 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: