Différents Concepts de Fermabilité des Opérateurs Linéaires sur un Espace de Hilbert. Stabilité et Complétion

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

University of Tlemcen

Abstract

Dans cette thèse on s’intéressé aux différents concepts de fermabilité des opérateurs linéaires. On introduit une notion nouvelle d’opérateurs linéaires sur les espaces de Hilbert et les espaces de Banach, appelés opérateurs presque fermables obtenus par des extensions presque fermées. Cette classe est stable par l’addition, la composition, l’inversion, la restriction, les limites et les intégrales, sur laquelle on introduit une topologie de Hausdorff localement convexe strictement plus forte que celle induite par la métrique du gap. On montre aussi que les problèmes de Cauchy abstraits sont en particulier rigoureusement formulés dans la classe des opérateurs presque fermables.

Description

Citation