Solution non radiales multiples d'un problLme de dirichlet
| dc.contributor.author | Bekkouche, Noria | en_US |
| dc.date.accessioned | 2014-11-18T09:48:52Z | en_US |
| dc.date.available | 2014-11-18T09:48:52Z | en_US |
| dc.date.issued | 2014-11-18 | en_US |
| dc.description.abstract | Par la méthode variationnelle nous montrons l’existence et la multiplicitéde solutions non radiales pour le problème (I). On distinguera deux cas....We study the following elliptic problem : (I) ( ) ( ) ( ) ( ) ( ) , 0 u x g x u x f x x u x x −∆ = + ∈ Ω = ∈ ∂Ω Were Ω is the unit ball in n R ( ) 2 n ≥ , and ( ) 2 f L ∈ Ω and g is acontinuous, odd and sublinear function. By the variational method we obtain the existence of infinity non radial solution to (I).we distinguish two cases. | en_US |
| dc.identifier.uri | https://dspace.univ-tlemcen.dz/handle/112/6830 | en_US |
| dc.language.iso | fr | en_US |
| dc.subject | problème elliptique, minimisationavec contraintes, la condition de plais smale, théorème du col, solution périodique | en_US |
| dc.subject | problem elliptics, minimization with contraints, the palais smalecondition, mountain pass théorem, periodic solution. | en_US |
| dc.title | Solution non radiales multiples d'un problLme de dirichlet | en_US |
| dc.type | Thesis | en_US |