Analysis of echocardiographic image sequences to study left ventricular performance
| dc.contributor.author | Belfilali, Hafida | en_US |
| dc.date.accessioned | 2024-06-02T10:22:55Z | en_US |
| dc.date.available | 2024-06-02T10:22:55Z | en_US |
| dc.date.issued | 2023-09-25 | en_US |
| dc.description.abstract | Cardiovasculardiseasesarepathologiesthataffecttheheartandbloodvessels.According to theworldhealthorganization,theyaretheleadingcauseofmortalityworldwide. Early diagnosisofcardiacfunctiondisordersiscrucialinreducingthemortalityrate. The LeftVentricle(LV)isavitalcomponentofthecardiovascularsystemandplaysa significantroleinbloodcirculation.Severalclinicalparameterscanbeestimatedfrom the LVstructureduringcardiovascularexamstoensurereliablediagnoses,includingleft ventricularvolumesandejectionfraction. Variouscardiacimagingmodalitiesallowvisualizationoftheleftventricularcavity. Echocardiographyisthemostwidelyusedtechniquebycardiologistsinroutineclinical practice duetoitsmanyadvantages.Theprimarymethodforestimatingclinicalpa- rameters isLVsurfacesegmentationfrom2Dechocardiographicimagesequences.The accurate evaluationoftheLVchamber’sfunctionreliesonthequalityofthesegmentation results. However,LVmanualdelineationbycardiologistsisdifficult,time-consuming,and imprecise duetothelowqualityofechocardiographicimages.Therefore,thereisaneed to automaticallysegmenttheLVfromechocardiographicimagesequencestoovercome these challenges. In thisthesis,ourobjectiveistodevelopafullyautomaticsegmentationframework based ondeeplearningtechniquestoassessLVperformanceusingechocardiographicim- ages. Wetestedtheeffectivenessoftheproposedapproachesbycomparingtheobtained results withgroundtruthdataandexistingstate-of-the-artmethodsinthisfield.The results aresatisfactory,underliningthesignificantpotentialofautomatedtechniquesfor echocardiographicimageanalysistohelpcardiologistsintheirdailyclinicalpractice. | en_US |
| dc.identifier.uri | https://dspace.univ-tlemcen.dz/handle/112/22631 | en_US |
| dc.language.iso | fr | en_US |
| dc.publisher | University of Tlemcen | en_US |
| dc.subject | Left ventricle;Echocardiography;Segmentation;Echocardiographicimage analysis; Deeplearning;U-Netarchitecture;Attentionmechanism;Transferlearning | en_US |
| dc.title | Analysis of echocardiographic image sequences to study left ventricular performance | en_US |
| dc.type | Thesis | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Analysis_of_echocardiographic_image_sequences_to_study_left_ventricular_performance.pdf
- Size:
- 12.06 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: