Analysis of echocardiographic image sequences to study left ventricular performance

dc.contributor.authorBelfilali, Hafidaen_US
dc.date.accessioned2024-06-02T10:22:55Zen_US
dc.date.available2024-06-02T10:22:55Zen_US
dc.date.issued2023-09-25en_US
dc.description.abstractCardiovasculardiseasesarepathologiesthataffecttheheartandbloodvessels.According to theworldhealthorganization,theyaretheleadingcauseofmortalityworldwide. Early diagnosisofcardiacfunctiondisordersiscrucialinreducingthemortalityrate. The LeftVentricle(LV)isavitalcomponentofthecardiovascularsystemandplaysa significantroleinbloodcirculation.Severalclinicalparameterscanbeestimatedfrom the LVstructureduringcardiovascularexamstoensurereliablediagnoses,includingleft ventricularvolumesandejectionfraction. Variouscardiacimagingmodalitiesallowvisualizationoftheleftventricularcavity. Echocardiographyisthemostwidelyusedtechniquebycardiologistsinroutineclinical practice duetoitsmanyadvantages.Theprimarymethodforestimatingclinicalpa- rameters isLVsurfacesegmentationfrom2Dechocardiographicimagesequences.The accurate evaluationoftheLVchamber’sfunctionreliesonthequalityofthesegmentation results. However,LVmanualdelineationbycardiologistsisdifficult,time-consuming,and imprecise duetothelowqualityofechocardiographicimages.Therefore,thereisaneed to automaticallysegmenttheLVfromechocardiographicimagesequencestoovercome these challenges. In thisthesis,ourobjectiveistodevelopafullyautomaticsegmentationframework based ondeeplearningtechniquestoassessLVperformanceusingechocardiographicim- ages. Wetestedtheeffectivenessoftheproposedapproachesbycomparingtheobtained results withgroundtruthdataandexistingstate-of-the-artmethodsinthisfield.The results aresatisfactory,underliningthesignificantpotentialofautomatedtechniquesfor echocardiographicimageanalysistohelpcardiologistsintheirdailyclinicalpractice.en_US
dc.identifier.urihttps://dspace.univ-tlemcen.dz/handle/112/22631en_US
dc.language.isofren_US
dc.publisherUniversity of Tlemcenen_US
dc.subjectLeft ventricle;Echocardiography;Segmentation;Echocardiographicimage analysis; Deeplearning;U-Netarchitecture;Attentionmechanism;Transferlearningen_US
dc.titleAnalysis of echocardiographic image sequences to study left ventricular performanceen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Analysis_of_echocardiographic_image_sequences_to_study_left_ventricular_performance.pdf
Size:
12.06 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections