Sur une ´equation elliptique semi-lin´eaire avec potentiel singulier
| dc.contributor.author | Djedid, Kaouther | en_US |
| dc.date.accessioned | 2025-04-30T10:49:19Z | en_US |
| dc.date.available | 2025-04-30T10:49:19Z | en_US |
| dc.date.issued | 2022-10-27 | en_US |
| dc.description.abstract | Dans ce mémoire, nous avons traité l’existence et la non-existence de solution non triviale d’un problème de Schrödinguer avec présence d’un potentiel : −div |x| −2γ∇u − λ |x| 2( u γ+1) = u p + dans Ω. Où Ω peut être un domaine borné ou un domaine bien particulier comme la boule. On a étudié l’existence et la non-existence de solution suivant la valeur de λ où λ ≤ ΛN,γ = N − 2( 2 γ + 1) 2 est la meilleure constante de l’inégalité de Hardy-Sobolev. | en_US |
| dc.identifier.uri | https://dspace.univ-tlemcen.dz/handle/112/25091 | en_US |
| dc.language.iso | fr | en_US |
| dc.publisher | University of tlemcen254 | en_US |
| dc.relation.ispartofseries | 254 Master Maths; | en_US |
| dc.subject | Inégalité de Hardy-Sobolev, Solution Radiale, Equation de Schrödinguer. | en_US |
| dc.title | Sur une ´equation elliptique semi-lin´eaire avec potentiel singulier | en_US |
| dc.type | Thesis | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Sur_une__equation_elliptique_semi_lin_eaire_avec_potentiel_singulier.pdf
- Size:
- 523.31 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: