Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/2405
Titre: Automatic Classification of Heartbeats Using Wavelet Neural Network
Auteur(s): Benali, Radhwane
Bereksi Reguig, Fethi
Hadj Slimane, Zinedine
Mots-clés: ECG
Feature extraction
QRS
Classification
WNN
Wavelet
Cardiac arrhythmia
Date de publication: 2012
Editeur: University of Tlemcen
Résumé: The electrocardiogram (ECG) signal is widely employed as one of the most important tools in clinical practice in order to assess the cardiac status of patients. The classification of the ECG into different pathologic disease categories is a complex pattern recognition task. In this paper, we propose a method for ECG heartbeat pattern recognition using wavelet neural network (WNN). To achieve this objective, an algorithm for QRS detection is first implemented, then a WNN Classifier is developed. The experimental results obtained by testing the proposed approach on ECG data from the MIT-BIH arrhythmia database demonstrate the efficiency of such an approach when compared with other methods existing in the literature.
URI/URL: http://dspace.univ-tlemcen.dz/handle/112/2405
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Automatic-Classification-of-Heartbeats-Using-Wavelet-Neural-Network.pdf1,71 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.