Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/2405
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBenali, Radhwane-
dc.contributor.authorBereksi Reguig, Fethi-
dc.contributor.authorHadj Slimane, Zinedine-
dc.date.accessioned2013-06-18T12:49:59Z-
dc.date.available2013-06-18T12:49:59Z-
dc.date.issued2012-
dc.identifier.urihttp://dspace.univ-tlemcen.dz/handle/112/2405-
dc.description.abstractThe electrocardiogram (ECG) signal is widely employed as one of the most important tools in clinical practice in order to assess the cardiac status of patients. The classification of the ECG into different pathologic disease categories is a complex pattern recognition task. In this paper, we propose a method for ECG heartbeat pattern recognition using wavelet neural network (WNN). To achieve this objective, an algorithm for QRS detection is first implemented, then a WNN Classifier is developed. The experimental results obtained by testing the proposed approach on ECG data from the MIT-BIH arrhythmia database demonstrate the efficiency of such an approach when compared with other methods existing in the literature.en_US
dc.language.isoenen_US
dc.publisherUniversity of Tlemcenen_US
dc.subjectECGen_US
dc.subjectFeature extractionen_US
dc.subjectQRSen_US
dc.subjectClassificationen_US
dc.subjectWNNen_US
dc.subjectWaveleten_US
dc.subjectCardiac arrhythmiaen_US
dc.titleAutomatic Classification of Heartbeats Using Wavelet Neural Networken_US
dc.typeArticleen_US
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Automatic-Classification-of-Heartbeats-Using-Wavelet-Neural-Network.pdf1,71 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.