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Abstract The electrocardiogram (ECG) signal is widely
employed as one of the most important tools in clinical
practice in order to assess the cardiac status of patients. The
classification of the ECG into different pathologic disease
categories is a complex pattern recognition task. In this
paper, we propose a method for ECG heartbeat pattern
recognition using wavelet neural network (WNN). To
achieve this objective, an algorithm for QRS detection is
first implemented, then a WNN Classifier is developed. The
experimental results obtained by testing the proposed
approach on ECG data from the MIT-BIH arrhythmia
database demonstrate the efficiency of such an approach
when compared with other methods existing in the
literature.
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Introduction

The electrocardiogram signal is widely employed as one of
the most important tools in clinical practice in order to
assess the cardiac status of patients [1]. Automatic heartbeat
classification using the electrocardiogram signal (ECG) has

been a field of intensive research during the last years.
Some cardiac arrhythmias appear infrequently, and very
long ECG recording (Holter) is needed to capture them.
Analysis of such large amount of data is very time
consuming and, therefore, automatic processing systems
can be of great assistance to the clinician.

For this reason, this problem has attracted much concern
and numerous methods have been proposed by researchers
to recognize ECG automatically. Most of these methods are
developed in two steps: feature extraction and pattern
classification. The first step which is concerned with ECG
features extraction has been performed either in the time
domain to obtain morphologic features (such as width,
height and area of QRS complex, heart-rate variability
etc...) [2, 3], or in the frequency domain in order to find
changes in QRS-complex power spectra between normal
and arrhythmia waveforms [4, 5], more over in time-
frequency domain [6, 7] to exhibit simultaneously ECG
time and frequency features ; Spatial transformations [8, 9]
has often been used to extract non linear behavior in heart
rate variability. The second step: classification has been
developed by means of several techniques, such as the
Artificial Neural Network (ANN) that can be realized
through different architectures such as Kohonen Self
Organizing Map (KSOM) [10, 11], MultiLayer Perceptron
(MLP) [12, 13], and Probabilistic Neural Network (PNN)
[14].

In this paper, we propose an automated method for ECG
heartbeats classification. Five different heartbeats are consid-
ered: N (Normal), PVC (Premature ventricular contractions),
LBBB (Left bundle branch blocks) RBBB (Right bundle
branch blocks) and APC (Atrial premature contraction).

For the feature extraction step, we used an algorithm
developed, implemented and evaluated within our research
laboratory GBM laboratory (Génie Bio-Medical) at Tlemcen
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University [15]. This algorithm is based on the technique
introduced by So an Khan [16]. For the classification
step, a wavelet neural network (WNN) is developed.
This technique combines wavelet transform and neural
network [17].

The developed algorithms are implemented and
evaluated on MIT-BIH arrhythmia database. The obtained
results are compared with other algorithms existing in the
literature.

Method

In this work, the proposed procedure for the automatic
recognition of the normal and abnormal ECG beats is
illustrated in Fig. 1. It consists on the following steps:

& ECG signals collection
& ECG data pre-Processing.
& ECG Features Extraction.
& ECG classification by Wavelet Neural Network Classi-

fier (WNN).

ECG signals collection

An ECG signal represents the changes in electrical potential
during the heartbeat as recorded with non-invasive electro-
des on the limbs and chest. A typical ECG signal (Fig. 2)
consists of the P-wave, QRS complex and T-wave.

The P wave represents atrial depolarization, the QRS
complex, the ventricular depolarization, and the T wave the
ventricular repolarization.

The ECG signals used to evaluate the proposed method
are recordings taken from the MIT-BIH arrhythmia data-
base [18]. These ECG signals are sampled at a frequency of
360 Hz. Two or more cardiologists have made the diagnosis
for these various records and they have annotated each
cardiac cycle. These annotations will be exploited in our
proposed method respectively for the learning step of the
neural network and for the classification assessment step.

The study is focused on the classification of the five
predominant heartbeat classes in the MIT-BIH arrhythmia
database. These are illustrated in the Fig. 3 below and
represents respectively the:

➢ Normal beats (N).
➢ Premature ventricular contractions (PVC) type1 and

type 2.
➢ Left bundle branch blocks (LBBB).

➢ Right bundle branch blocks (RBBB).
➢ Atrial premature contraction (APC).

ECG data pre processing

The first step of signal pre processing is filtering the ECG
signal because as any other measured signal, ECG is also
contaminated with different frequency noises. It is well
known that frequency content of the ECG signal is between
0.05 hz and 100 hz as specified in [1], therefore a band pass
filter in this frequency range is implemented. This is used to
eliminate motion artifact, baseline wander. Also a 50 Hz
notch filter is used to eliminate power line interference.

ECG features extraction

The important step in building an efficient classifier system
is the generation of the diagnostic features, in the basis of
which the classifier will recognize the pattern.

For the QRS detection, we have used an algorithm
developed and implemented in our research laboratory
GBM at Tlemcen university by hadj slimane et al. [15], this
algorithm is based on the technique introduced by So an
Khan [16].

It is carried out in five steps after the bandpass filter

– diffirentiator
– First-order bachward difference
– non linear transform and center-clipping transformation
– moving window integrator

A brief description of these steps is given below.
In fact, the algorithm benefits from the steep slope of the

QRS complex for its detection. As a first step the ECG
slope is calculated approximately by the Eq. 1. It is shown
in Fig. 2.b.

slopeðnÞ ¼ �2x n� 2ð Þ � x n� 1ð Þ þ x nþ 1ð Þ
þ 2x nþ 2ð Þ ð1Þ

where, x (n) represents the amplitude of ECG data at
discrete time n.

The signal is approximated by the first-order backward
difference [Fig. 4(c)]. This transformation is defined by
Eq. 2

y1ðnÞ ¼ slopeðnÞ � slope n� 1ð Þ ð2Þ

where slope(n) is the differentiated signal.

collection 
ECG signal ECG data

pre processing 
Features

Extraction classifier
WNN Heartbeats

recognition

Fig. 1 Block diagram of the
proposed method
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Let y2(n) denotes the output from the nonlinear
transform (1), i.e.

y2ðnÞ ¼ y1ðnÞ»y1 n� 1ð Þ»y1 n� 2ð Þj j; if y1ðnÞ; y1 n� 1ð Þ et y1 n� 2ð Þ have the same sign
0 otherwise

�
ð3Þ

Then a center-clipping transformation to extract the
feature in y2(n) (Fig. 4.d) is applied. This transformation
is defined by

y3ðnÞ ¼ 0 y2ðnÞ < Ts
y2ðnÞ; y2ðnÞ > Ts

�
ð4Þ

where Ts is a threshold value. In general it is less than ten
percent of the highest peak in the first 2 s signal y3(n). In
order to produce a signal that includes information about
the slope and the width of the QRS complex, a moving
window integrator is used. It is calculated from

y4ðnÞ ¼ ð 1mÞðy3ðn� ðM � 1ÞÞ þ y3ðn� ðM � 2ÞÞ þ . . .

þ y3ðnÞ Þ
ð5Þ

where M is the number of samples in the width of the
integration window.

Figure 4.e illustrates the signal after the moving
averaging step and delayed by the total process time of
the detection algorithm. The number of samples M in the
moving window is important. Generally, the width of the
window should be approximately the same as the widest
possible QRS. Following this step, the signal is compared
with another threshold value Tq. In general, it is less than
ten percent of the highest peak in the first 2 s signal y4(n).
The resulting signal contains only the QRS complex, as
given by the following equation

QRSðnÞ ¼ ECGðnÞ; y4ðnÞ > Tq
0; y4ðnÞ < Tq

�
ð6Þ

where y4(n) is the output of the moving average.

Figure 4.f illustrates the result of the QRS complex
detection. The benefit of this algorithm lies in its simplicity
and its good accuracy to detect QRS complex. The
detection performance of the algorithm as stated by Hadj
Slimane et al. [15] is over 99.9% when MIT-BIH database
was used.

Once the QRS complexes are detected, different parameters
are measured. These are considered as ECG features which
will be used in the classification step. These features are:

▪ RRp : the distance between the current R-wave and
the previous R-wave.

▪ RRs : the distance between the current R-wave and
the following R-wave.

▪ RRs / RRp : the ratio between the distance RR
following the previous one.

▪ QRS : the duration of the QRS complex.
▪ R-Amp : R-wave amplitude

ECG beats classification using wavelet neural network

Presentation of the wavelet neural network

The idea of combining wavelets with neural networks has
led to development of adaptive wavelet neural networks
(WNN) [19].

The wavelet neural networks (WNN) have recently
emerged as a powerful new type of artificial neural
networks (ANN). They resemble radial basis function
(RBF) networks because of the localized support of their
wavelet basis functions.

In contrast to classical sigmoidal-based ANNs, wavelet
networks provide efficient network construction techniques,
faster training times, and multiresolution analysis capabilities
[17].

Wavelet neural networks (WNNs) were first proposed as
an alternative to classical feedforward ANNs for approxi-
mating nonlinear functions [17]. WNNs are feedforward
neural networks with one hidden layer, comprised normally
of wavelets as activation functions, and a linear output
layer. The output layer of the WNN represents the weighted
sum of the hidden layer units.

The structure of the wavelet neural network proposed in
this paper to identify the ECG beats is illustrated in Fig. 5.
With: netj ¼PN

k¼1 wjk�xk j ¼ 1; 2; . . .L

P wave 

R peak
RR

Interval

QRS Complex 

T wave 

Fig. 2 ECG of a healthy person
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The wavelet neural network structure model is given by

byðtÞ ¼XL

j¼1
wj=

PN
n¼1 wjnx tð Þ � b1j

aj

 !
� b2 ð7Þ

Where

Ψ(t) is the wavelet transfer function
wjn is the connection weight between the jth hidden

neuron with the nth input neuron
wj is the connection weight between the jth hidden

neuron with the output neuron
b1j is the translate parameter of the wavelet transform
aj is the scale parameter of the wavelet transform

b2 is the bias parameter in the output neurons
L is the number of hidden neurons
N is the number of input neurons

Constructing the wavelet network model needs to select
wavelet functions as less as possible from mother function
set. These are excitation function for the network node, and
need to do parameter estimation.

Wavelet neural network training algorithm

Besides the connection weight wjn between the hidden
layer with the input layer and the connection weight wj

between the output layers with the hidden layer, the scale

Fig. 4 QRS detection algorithm processing steps. a Output of bandpass filter. b Output of differentiator. c First-order backward difference. d The output
from the nonlinear transform and center-clipping transformation. e Results of the moving window integrator. f Results of the QRS complex detection

a bb c

d e f

Fig. 3 Typical cardiac arrhyth-
mias in time domain: a Normal
beat, b premature ventricular
contraction type 1, c premature
ventricular contraction type 2, d
Atrial premature beat, e right
bundle branch block beat and f
left bundle branch block beat
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parameters aj and the translation parameters b1j in the
adapted WNNs can be adjusted by the corresponding
learning algorithm.

The convergence of the algorithm is achieved by
minimizing the root mean square error (RSME) energy [17]
(known also as the cost function E and given by Eqs. 8 & 9)
between the estimated value byðtÞ and the real value y(t).

The minimization of the cost function E is achieved
through the optimization of the network parameters wjn, wj,
aj and b1j.

E ¼ 1

2

XD

t¼1
yðtÞ � byðtÞ½ �2 ð8Þ

E ¼ 1

2

XD

t¼1
eðtÞ½ �2 ð9Þ

Where D is the number of training samples,byðtÞ is the estimated output which is calculated by model
in of training samples t, and y(t) is the real value of training
samples t.

A learning algorithm modifies the wavelet network
parameters, that is, the scale and translation coefficients of
every wavelet neuron, as well as the weights of the linear
combination (network input and network output).

The minimization is performed by iterative gradient-
based methods.

Table 1 MIT-BIH arrhythmia database records included in our dataset

Heart beats Records Patient, Age Nbr. of beats Total number of beats

Normal (N) MIT-119 Female, 51 1543 8860
MIT-200 Male, 64 1743

MIT-209 Male, 62 2620

MIT-212 Female, 32 923

MIT-221 Male, 83 2031

Premature ventricular contraction (PVC) MIT-119 Female, 51 444 2750
MIT-200 Male, 64 823

MIT-214 Male, 53 256

MIT-221 Male, 83 396

MIT-233 Male, 57 831

Left Bundle Branch block (LBBB) MIT-109 Female, 64 2492 6610
MIT-111 Female, 47 2115

MIT-214 Male, 53 2003

Right Bundle Branch block (RBBB) MIT-118 Male, 69 2163 7170
MIT-124 Male, 77 1531

MIT-212 Female, 32 1825

MIT-231 Female, 72 1254

MIT-232 Female, 76 397

Atrial Premature Contraction (APC) MIT-118 Male, 69 96 1890
MIT-200 Male, 64 30

MIT-209 Male, 62 383

MIT-232 Female, 76 1381

Fig. 5 Wavelet neural network
structure (WNN)
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The partial derivative of the cost function with respect to
network’s parameters (wjn, wj, aj, and b1j) are:

@E

@wj
¼ �

XD

i¼1
eðtÞ:Ψ tð Þ ð10Þ

@E

@wjn
¼ �

XD

i¼1
eðtÞ:wj:

@Ψ tð Þ
@wjn

ð11Þ

@E

@b1j
¼ �

XD

i¼1
eðtÞ:wj:

@Ψ tð Þ
@b1j

ð12Þ

@E
@aj

¼ �PD
i¼1 eðtÞ:wj:

@Ψ tð Þ
@aj

with : t ¼ x�b1j
aj

ð13Þ

The incremental changes of each coefficient are simply
the negative of their gradients.

Δw ¼ �hw:
@E

@w
ð14Þ

Δa ¼ �ha:
@E

@a
ð15Þ

Δb ¼ �hb:
@E

@b
ð16Þ

The choice of η (learning rate) is empirical
If η is too small the number of iteration can be very high

If η is too large the progression of the algorithm may
oscillate around a minimum without converging.

Thus each coefficient w, a and b of the network is
updated in accordance with the rule

w nþ 1ð Þ ¼ wðnÞ þΔw ð17Þ

a nþ 1ð Þ ¼ aðnÞ þ Δa ð18Þ

b nþ 1ð Þ ¼ bðnÞ þ Δb ð19Þ

Implementation of the WNN heartbeats classifier
and analysis

As stated before, the proposed method is used to classify
five different categories of ECG heartbeats, the normal (N)
and four pathological diseases. These are: the left bundle
branch block beat (LBBB), the right bundle branch block
beat (RBBB), the premature ventricular contraction (PVC)
and the atrial premature contraction (APC). All the heart-
beats used are collected from MIT-BIH arrhythmia data-
base. A collection of 14 ECG records were selected
provides a large set of normal and pathological heartbeats.

Table 1 illustrates the data distribution and the number of
records used for the training and the evaluation of the WNN
classifier.

For each class, 50% of the available heartbeats were
used for training and the remaining 50% for testing the
performance of the WNN heartbeats classifier (see Table 2).

Analysis

The developed wavelet neural network (WNN) has been
studied with different mother wavelets, Gaussian, Mexican
Hat, Morlet and Meyer, in order to select the most
appropriate for ECG beats recognition. This analysis was
carried out according to the two steps in manipulating a
neural network: the training step and the testing step. In

Table 2 Distribution of the ECG beats in Training and Testing
Dataset

Heart beats Training dataset (50%) Testing Dataset (50%)

N 4430 4430

PVC 1375 1375

LBBB 3305 3305

RBBB 3585 3585

APC 945 945

Total 13640 13640

Table 3 Effect of wavelet type on the performance of WNN

WNN Training error Testing error

WNN-Gaussian 0.052 0.210

WNN-Mexican Hat 0.028 0.136

WNN-morlet 0.023 0.094

WNN-Meyer 0.030 0.131
-4 -2 0 2 4

-1

-0.5

0

0.5

1

Fig. 6 Morlet wavelet
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fact, the appropriate wavelet is that which allowed the
minimum values of respectively training and testing error.

The different tests carried out, as it is illustrated in
Table 3 below, show that the WNN with Morlet mother
wavelet provides minimum values of training and testing
error leading therefore to better estimation of ECG beats
(minimum value of testing error) recognition.

The Morlet wavelet is then used in our WNN. The Fig. 6
below illustrates the shape of this wavelet which is given by
Eq. 20.

Ψ tð Þ ¼ cos 1:75 tð Þ:e� t2

2 ð20Þ
The wavelet function is especially sensitive to scale

coefficient and translation coefficient, therefore the deter-
mination of appropriate number of hidden layers is one of

the most critical tasks in neural network design. Unlike the
input and output layers, one starts with no prior knowledge
as to the number of hidden layers. A network with too few
hidden nodes would be incapable of differentiating between
complex patterns leading to only a linear estimate of the
actual trend. In contrast, if the network has too many
hidden nodes, it will follow the noise in the data due to
over-parameterization, leading to poor generalization for
untrained data. With increasing number of hidden layers,
training becomes excessively time-consuming. The most
popular approach to finding the optimal number of hidden
layers is by trial and error [20, 21]. In this study one hidden
layer having ten nodes were found to give the best result.

In fact, the trial method consists on implementing the
network and changing the number of hidden nodes.

For each number of hidden nodes implemented, the
training and testing error are measured. The considered
number of hidden nodes is that which the training error and
testing error are minimal as it is resumed in Table 4.

Initialization of the WNN parameters

The classification performance of the adaptive wavelet
neural network (WNN) depends on the initialisation value
of the network parameter to a certain degree [22].

WNN parameters need to be initialized properly during
training for better convergence. A random initialization of
all the parameters to small values is not desirable.

In the case of the neural networks with dorsal functions,
the initialization of the network parameters is usually done
randomly in such a way that the potential of each hidden
neuron is small enough that the outputs of neurons located
in the linear part of the sigmoid. The wavelet functions are
rapidly decreasing, a random initialization of the translate
and the scale parameters would be very inefficient. Indeed,
if the translate parameters are initialized outside the area
containing the examples, or if the scale parameters are

Number of hidden nodes 5 8 10 15 20

Training error 0.028 0.023 0.019 0.019 0.019

Testing error 0.115 0.094 0.086 0.089 0.089

Table 4 Effect of number of
hidden nodes on the perfor-
mance of WNN

Preparation of the training and test data sets

Initialization of network parameters & fixe the
maximum number of iteration

Choice of the type and the number of wavelet
(hidden layer)

Observe training data and compute the network output

Compute the cost function

Modify the network parameters

Increase no. of iteration by1

Store trained value of parameters

Are there more
training sets?

No

Yes

Maximum iterations
reached?

Yes

No

End

Start

Fig. 7 Flowchart of the Wavelet Network Algorithm

Table 5 Confusion matrix of experiment

Confusion matrix N PVC RBBB LBBB APC

N 4396 3 0 2 29

PVC 0 1362 1 2 10

RBBB 6 8 3529 42 0

LBBB 7 5 37 3256 0

APC 12 2 0 0 931
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chosen too small, the output of the wavelet is practically
zero, as well as its derivative.

The learning algorithm of the network parameters is
based on a gradient technique; a particular attention should
be paid to the phase of initialization of the network
parameters.

Based on the work of Oussar [23], we propose a simple
initialization procedure. It consists on considering the area
where the training samples are distributed. It is carried out
as follow:

b1j, the translate parameter of the wavelet transform is
initialized on the center of the interval of the training
example [23],

If [a, β] is the interval containing the input data (training
example), the initial value of b1j is choosen as:

b1j ¼ a þ b
2

ð21Þ

The scale parameter aj is chosen so that the variations of
the wavelet stretch over the whole interval [a, β]. This
condition is satisfied by the following choice [23]:

aj ¼ 0:2 a þ bð Þ ð22Þ
The initialization of the other parameters (weight

connection) is less significant than in the process of the

conduction of learning algorithm; they are initialized
randomly between 0 and 1.

The whole procedure of the wavelet network is illustrat-
ed in the flowchart given in Fig. 7 below.

Result

The results of classification are resumed in Table 5 as a
confusion matrix.

Each row of the matrix represents the instances in a
predicted class, while each column represents the instances
in an actual class. One benefit of a confusion matrix is that
it is easy to see if the system is confusing two classes.

It is clearly seen that most wrongly classified normal
beats are those classified as APC (29 beats). Whereas for
the APC beats, most misclassified beats (12 beats) are
classified as normal.

Similarly, the number of LBBB beats that are classified
as RBBB beats and number of RBBB beats that are
classified as LBBB beats are 37 and 42, respectively.

This is because of the morphological similarities
between the Normal and APC patterns and between the
LBBB and RBBB classes.

This highlights the importance of the five features that
we have used in heartbeats characterization. These features
improve the discriminating ability of the classifier, espe-
cially in discriminating morphologically similar heartbeat
patterns (i.e. Normal and APC beats or LBBB and RBBB).

Small values of misclassified beats between PVC and
respectively Normal (0 beat), RBBB (1 beat) or LBBB
beats (2 beats) focuses on the morphological dissimilarities
between the PVC beats and the other patterns.

Note that there is no APC beats that are classified as
LBBB or RBBB, and there is no LBBB or RBBB beats that
are classified as APC beats. This is because of the
morphological dissimilarities between the APC and LBBB
or RBBB patterns.

Table 6 Classification results of different categories

Evaluate Terms Type of beats Number of correctly
classified beats/ Total
number of testing beats

Value (%)

Specificity N 4396/4430 99.23

Sensitivity PVC 1362/1375 99.05

RBBB 3529/3585 98.43

LBBB 3256/3305 98.51

APC 931/945 98.51

Accuracy (%) all 13474/13640 98.78

Table 7 Comparative results of the ECG beat classification

Author. & Ref. Method Description Accuracy (%)

Proposed WNN Wavelet neural network 98.78

Wen et al. [24] SOCMAC Self-Organizing Cerebellar Model Articulation Controller Network 98.21

Vargas et al. [25] MLP Principal Component Analysis (PCA) with Multi Layer Perceptron (MLP) 94.09

Minami et al. [26] MLP Fourier transform (FT) with Multi Layer Perceptron (MLP) 98

Lagerholm et al. [27] SOM Hermite functions and self organizing maps 98.49

Delgado et al. [28] MART Multichannel Adaptive Resonance Theory Neural Network 96.6

Linh et al. [29] FCM+MLP Fuzzy C-Mean with Multi Layer Perceptron (MLP) 93.5

Güler et al. [30] MLP+MLP Tow Multi Layer Perceptron (MLP) 96.94

Übeyli [31] LE-ANFIS Lyapunov Exponent with Adaptive Neuro Fuzzy Inference Network 96.39

Osowski [32] HFNN Hybrid Fuzzy Neural Network 96.06

890 J Med Syst (2012) 36:883–892



Evaluation

The results of classification can be also evaluated through
well known performance parameters find in the literature.
These are: Accuracy, Specificity and the Sensitivity for each
type of pathology (PVC, RBBB, LBBB and APC). They
are defined respectively as:

Accuracy ¼ Number of total correct classified beats

Number of total beats

Specificity ¼ Number of correct classifiedNormal beats

Number of total Normal beats

Sensitivity ¼ Number of correct classified pathological beats

Number of total pathological beats

The results of the evaluation of the adaptive wavelet
neural network (WNN) in terms of Accuracy, Sensitivity
and Specificity are summarized in Table 6

Table 5 shows that the proposed method presents a high
classification ability. The discrimination between the cardiac
rhythms is very high for all classes. The method achieves
overall accuracy of 98.78%. The results achieved by the
proposed method are also compared with different neural
networks found in the literature such as: Self-Organizing
Cerebellar Model Articulation Controller Network (SOC-
MAC) [24], Multi Layer Perceptron MLP [25, 26], Self
Organization Map (SOM) [27], Multichannel Adaptive
Resonance Theory Neural Network (MART) [28], combined
neural network for ECG beat classification [29, 30], Adaptive
neuro fuzzy inference network with lyapunov exponent LE-
ANFIS [31] and Hybrid Fuzzy Neural Network (FNN) [32].

A summary of the results obtained for arrhythmic beat
classification by the proposed method and the other
methods is shown in Table 7.

It should be noted that in those works, though the ECG
data all came from the MIT/BIH database, different number
of clusters/classes, different recordings, different amount of
data, and different signal conditioning methods and
different feature extraction techniques are used. All these
factors could affect the ECG beat classification result.

It is obvious from Table 7 that the results of the WNN-
based classifier are relatively better than that the other
neural network in terms of its correct classification
percentage (Accuracy) of the ECG beats.

These results demonstrates that the proposed method has
the potential for solving the problem of ECG beats
recognition and can be considered as a powerful tool for
the cardiac arrhythmias classification.

Conclusion

This paper describes the details of development of a method
for automatic classification of cardiac arrhythmia.

Our method includes two modules: feature extraction
module and classifier.

In the feature extraction module we have extracted
morphological features as the effective features for differen-
tiating various types of ECG beats. Then, for the classification
stage the wavelet neural network (WNN) is implemented and
evaluated in ECG beats recognition of five different classes of
ECG signals. The WNN is based on the combination of the
wavelet theory with the neural networks.

The obtained result shows that the proposed method
performs relatively better than some other neural network
proposed in the literature.

It can therefore be considered as an effective tool for
cardiac arrhythmias classification with high accuracy of
over 98.78%.

These results are very promising and encourage us to
extend this study to other biomedical as well as non-
biomedical applications.
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The ventricular premature contractions (VPC) are cardiac arrhythmias that are widely
encountered in the cardiologic field. They can be detected using the electrocardiogram
(ECG) signal parameters. A novel method for detecting VPC from the ECG signal is
proposed using a new algorithm (Slope) combined with a fuzzy-neural network (FNN).

To achieve this objective, an algorithm for QRS detection is first implemented, and
then a neuro-fuzzy classifier is developed. Its performances are evaluated by computing
the percentages of sensitivity (SE), specificity (SP), and correct classification (CC). This
classifier allows extraction of rules (knowledge base) to clarify the obtained results. We
use the medical database (MIT-BIH) to validate our results.

Keywords: ECG QRS detection; neuro-fuzzy; fuzzy logic; VPC; explicit classification;
MIT-BIH database.

1. Introduction

The electrocardiogram (ECG) records the electrical activities of the heart. The nor-
mal ECG is constituted by successive waveforms: P, QRS complex, and T wave.
Where the P wave represents atrial depolarization, the QRS complex, the ventric-
ular depolarization, and the T wave the ventricular repolarization. Thus, ECG is
an important noninvasive clinical tool for the diagnosis of heart diseases. Indeed,
the presence of a cardiac disease introduces the modification of P, QRS, or T wave
shapes, sizes, and duration. Recently, the computer-assisted ECG analysis is widely
used to recognize cardiac pathologies.

Therefore, several methods and techniques have been developed for the detec-
tion of the cardiac abnormalities and different approaches from pattern recogniz-
ing, machine learning, and expert systems have been used in intelligent diagnostic
systems.

∗,†Corresponding authors.
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The cardiac arrhythmia signifies a disorder of cardiac rhythm that can be calcu-
lated from the successive localization of R peaks. Consequently, the QRS complex
seems to be the most important component in cardiac arrhythmia recognition.
Thus, the detection of R peaks represents the second steps in most of ECG analysis
algorithms. The first step is generally related to the noise filtering. Many researches
are devoted to the complex QRS identification. Ruha et al. had developed a QRS
detection algorithm based on optimized filtering and an amplitude comparison to an
adaptive threshold.1 The thresholding decision is also used. The wavelet transfor-
mation is also adopted in some QRS detection algorithms.2,3 Besides the previous
methods, the mathematical morphology operators are used for the QRS complex
detection.4

The neural network is also a useful method for QRS detection. However, when
it is used for ECG classification, the results of the neural network method are
considered as noninterpretive results.

On the contrary, the fuzzy-neural network (FNN) allows the interpretation of
the obtained results. In this paper, a FNN is used to recognize ventricular premature
contraction (VPC). For that, an algorithm is first developed used to detect the QRS
complex.

Then, the input parameters for the FNN are calculated. The evaluation of
the implemented model is carried out on the universal MIT-BIH database.5 The
obtained results are compared with some algorithms existing in the literature.

2. Method

In this work, the proposed procedure is illustrated in Fig. 1 for the automatic
recognition of the normal and abnormal ECG beats. It consists of the following
steps:

• ECG data pre-processing,
• feature extraction, and
• neuro-fuzzy classifier.

2.1. ECG signal collection

The ECG signals used in this work are recordings collected between 1975 and 1979
by the laboratory of BIH arrhythmia (Beth Israel Hospital) in Boston in the United

ECG data 
pre-
processing

Feature
extraction

ECG signal
collection

ECG beats
recognition

Neuro-fuzzy 
classifier

Fig. 1. Block diagram of the proposed method.
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States, which is known as the MIT-BIH database.5 The ECG signals are sampled at
a frequency of 360Hz. Two or more cardiologists have made the diagnosis for these
various records and they have annotated each cardiac cycle. These annotations will
be useful for learning and assessment of the classification.

2.2. ECG data pre-processing

The first step of signal pre-processing is filtering the ECG signal; because, like
other measured signals, ECG is also contaminated with high frequency noise. The
unwanted noise of the heart biopotential signal must be removed. ECG signals are
filtered using a bandpass filter between 0.05Hz and 100Hz to eliminate the motion
artifact, baseline wander and 50Hz notch filter to eliminate power-line noise.

2.3. ECG features extraction

The important step in building an efficient classifier system is the generation of
the diagnostic features, based on which the classifier will recognize the pattern.
The benefit of the proposed algorithm lies in its simplicity and its good accuracy to
detect QRS complex. The QRS complex detection algorithm is based on a developed
“modified So and Chan” algorithm.6

The algorithm benefits from the steep slope of the QRS complex for its detection.
As a first step, the ECG slope is calculated approximately as:

slope (i) = 2x(i + 2) + x(i + 1) − x(i − 1) − 2x(i − 2), (1)

where, x(n) represents the amplitude of ECG data at discrete time n.
Then, the adaptive threshold is defined as follows:

slope thresh =
thresh param

16
∗ max i, (2)

where

thresh param = 2, 4, 8, or 16. (3)

The parameter max i is update by:

max i =
first max i − max i

filter param
+ max i, (4)

where

first max i = height of R point − height of QRS onset. (5)

The QRS complex detection is done by comparing the ECG slope values with the
adaptive thresholds. Indeed, the Q onset “Q on” is located when two successive
values of the above slope exceed an adaptive threshold. For more accuracy, we have
defined Q on wave as the first deflection just before the Q wave as it is illustrated
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Fig. 2. ECG of a health person.

in Fig. 2. To achieve this accuracy, a first derivative of the ECG slope is calculated
as follows:

min slope (i) = |slope (i) − slope (i + 1)|. (6)

The Q on is considered as the point for which the amount “min slope” takes its
minimum. If no deflection is detected, the Q on is considered as Q wave itself.

After the detection of the Q on point, the R peak is located. It is taken as the
maximum point within a determined window after the Q wave.

To detect the j point, the detection of S wave is needed. The first zero crossing
after the R peak is detected. The S wave is localized as the minimum after the
first zero crossing. Then, the j point is taken as the first deflection after the S
wave. Indeed, the j point is taken as the first point that satisfies the following
relations:

slope (i) > 0 and slope (i + 1) < 0. (7)

2.4. ECG beats classification using a neuro-fuzzy classifier

In this work, we classify the VPC by a neuro-fuzzy approach using the adaptive
neuro-fuzzy inference system (ANFIS). Both neural networks and fuzzy logic are
universal estimators. They can approximate any function to any prescribed accu-
racy, provided that sufficient hidden neurons and fuzzy rules are available.

Neural networks have been the subject of biomedical research interest during
the past decade.7–10 But, this technique is considered as a black box because it
cannot justify its results. However, fuzzy set theory plays an important role in
dealing with uncertainty like making decisions in medical applications.11,12 The
fuzzy inference systems (FIS) can interpret their results through their knowledge
base (basic rules).13 Recent results show that the fusion procedure of these two
approaches (neuronal and fuzzy approaches) seems to be very effective for the pat-
tern recognition.
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2.4.1. Presentation of the neuro-fuzzy approach

Neuro-fuzzy systems are fuzzy systems that use neural networks theory in order to
determine their properties (fuzzy sets and fuzzy rules) by processing data samples.
Neuro-fuzzy systems harness the power of the two paradigms: fuzzy logic and neural
networks, by utilizing the mathematical properties of neural networks in tuning rule-
based fuzzy systems that approximate the way human beings process information.7

Successful implementation of neuro-fuzzy systems have been introduced by several
authors, for example, Buckley and Hayashi, Nauck and Kruse, and Belal et al.14−16

In this work, we present the ANFIS approach that is a neuro-fuzzy hybrid
method proposed by Jang.17,18 It is the most widely used of neuro-fuzzy techniques
to solve problems of classification and pattern recognition.

2.4.1.1. ANFIS structures

The ANFIS is a FIS based on the model of Takagi-Sugeno17 and uses five layers.
For reasons of representation, we will consider a system with two inputs and one
output and also consider a model of the first order using two rules:

If x1 is A1 and x2 is B1, then y1 = f1 (x1, x2)= a1x1 + b1x2 + c1.
If x1 is A2 and x2 is B2, then y2 = f2 (x1, x2)= a2x1 + b2x2 + c2.

The ANFIS architecture that allows representing the basic rules is carried out by an
adaptive network that contains fixed nodes (circular) and adaptive nodes (square)
as illustrated in Fig. 3.

Each node square or circular applies a function on its input signals and for a
given layer, nodes have the same type of function. The output Ok

i of a node i of
the k layer (called node (i, k)) depends on the signals from the layer k − 1 and
parameters of the node (i, k).

Ok
i = f(Ok−1

1 · · · Ok−1
nk−1

, a, b, c, . . .). (8)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

x1  x2

1w 1v
11fv

x1

y

x2 2w
2v

22fv
x1    x2

A1

A2

B1

B2

N

NΠ

Π

Σ

Fig. 3. ANFIS architecture.
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nk−1 is the number of nodes in the (k− 1) layer, and a, b, and c are the parameters
of the (i, k) node. It should be noted that a circular node has no parameters.

Layer 1.

Nodes of this layer are all adaptive nodes. This layer performs fuzzification of the
inputs; it determines the membership of each input:

O1
i = µAi(x), (9)

where x is input of i node, Ai is linguistic variable, and O1
i is the degree of mem-

bership of x to Ai.
The parameters of a node in this layer are those of the corresponding member-

ship function, these are the premise parameters.

Layer 2.

The nodes of this layer are fixed nodes. They receive the output signals from the
previous layer and send their product output

wi = µAi(x1) · µBi(x2) i = 1, 2 (10)

where wi is the degree of truth of the rule i.

Layer 3.

Each neuron in this layer calculates the normalized degree of truth of the fuzzy
rule.

vi =
wi

w1 + w2
. (11)

The result out of each node represents the contribution of this rule on the final
result.

Layer 4.

The nodes in this layer are adaptive and perform the consequent of the rules. The
output of a node i is given by:

O4
i = vi · fi = vi(aix1 + bix2 + ci) i = 1, 2. (12)

The parameters in this layer (ai, bi, ci) are to be determined and are referred to as
the consequent parameters.

Layer 5.

This layer consists of a single neuron circular that makes the sum of signals from
the previous layer to give the final output of the network:

O5
1 = y =

∑

i

vi · fi. (13)

The generalization of the system to a system with multiple inputs does not pose
any problem. The number of nodes in the first layer is always equal to the total
number of defined linguistic terms.
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2.4.1.2. ANFIS learnings

There are several learning algorithms for a neuro-fuzzy model.19 Jang proposed
a learning method called “hybrid algorithm.” This algorithm combining the least
square method and the gradient descent method is adopted to solve this problem.
The hybrid algorithm is composed of a forward pass and a backward pass. The least
square method (forward pass) is used to optimize the consequent parameters with
the premise parameters fixed. Once the optimal consequent parameters are found,
the backward pass starts immediately. The gradient descent method (backward
pass) is used to adjust optimally the premise parameters corresponding to the fuzzy
sets in the input domain. The output of the ANFIS is calculated by employing the
consequent parameters found in the forward pass. The output error is used to adapt
the premise parameters by means of a standard back propagation algorithm. It has
been proven that this hybrid algorithm is highly efficient in training the ANFIS.17,18

3. Result

In this work, we try to detect the VPC. The choice of descriptive parameters that
are the input vector is dictated by the nature of the pathology targeted,20,21 and
the result of previous step (features extraction).

For describing the heartbeat, we have chosen:

• RRp: the distance between the current R-wave and the previous R-wave.
• RRs: the distance between the current R-wave and the following R-wave.
• RRs/RRp: the ratio between the distance RR following the previous one.
• QRS: the duration of the QRS complex.

The database built is used for learning and testing the classifier. Patients selected
to build the database are patients who have diseases targeted (VPC). They are
presented in Table 1.

From the ECG data present in Table 1, we choose randomly 1000 beats for each
of the two classes (normal and VPC) (2000 beats to form the learning base). From
the learning database, we generate an initial FIS of Sugeno type zero order (Fig. 4)

Table 1. Number of beats for each record.

Records N VPC

100 2225 1
116 2175 108
200 1726 815
201 1325 176
209 1850 1
210 2100 181
223 1986 449
233 1029 813
234 1700 3

Total 16116 2548
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Anfis
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Fig. 4. Initial neuro-fuzzy model.

with the initial choices includes (based on the knowledge of the physician):

1. Membership function type: “gbell.”17

2. Number of membership function for each variable.

— RRp: two functions,
— RRs/RRp: three functions,
— QRS: two functions.

3. Manual initialization of modal points, based on knowledge of the expert
(physician).

At the end of the learning, parameters of the initial membership functions
(Fig. 5(a)) will be modified as shown on Fig. 5(b).
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Fig. 5. (a) Initial membership functions and (b) final membership functions (after learning).
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Fig. 5. (Continued)

3.1. Evaluation of the performance

The performance of the neural classifiers was evaluated by computing the per-
centages of sensitivity (SE), specificity (SP), and correct classification (CC); the
respective definitions are as follows:

• Sensitivity (SE %): [SE = 100×TP/(TP+FN)] is the fraction of real events that
are correctly detected among all real events.

• Specificity (SP %): [SP = 100×TN/(TN+ FP)] is the fraction of nonevents that
has been correctly rejected.

• Correct classification (CC %): [CC = 100 × (TP + TN)/(TN + TP + FN + FP)]
is the classification rate.

In these formulas, TP is the number of true positives, TN is the number of true
negatives, FN is the number of false negatives, and FP is the number of false
positives.

Since we are interested in estimating the performance of the classifier based on
the recognition of VPC beats, TP, FP, TN, and FN are defined appropriately as
shown below:

• TP: classifies VPC as VPC,
• FP: classifies normal as VPC,
• TN: classifies normal as normal, and
• FN: classifies VPC or normal.
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Table 2. Performances of the neuro-fuzzy classifier (%).

Records SP (%) SE (%) CC (%)

100 99.45 97.86 100.00
116 99.87 98.16 99.95
200 99.89 99.54 99.86
201 95.59 97.80 94.64
209 99.50 89.88 100.00
210 95.91 93.25 97.79
223 99.15 99.14 99.15
233 99.43 96.49 99.52
234 99.75 99.23 100.00

Average 98.48 98.23 98.71

Table 3. Summary of the results obtained the proposed and other methods.

Interpretation
Authors SP (%) SE (%) Method description of result

Our method 98.48 98.23 Neuro-fuzzy approach Yes

Wieben22 — 85.30 Filter bank features and decision tree
classifier

No

Moreas23 99.76 90.74 Real-time QRS delineation and
application of Mahalanobis distance
classifier

No

Christov24 99.70 98.50 Estimation of morphology features with
neural networks classifier

No

De Chazal25 98.80 77.70 Estimation of morphology and RR
interval features with linear
discrimination classifier

No

Tsipouras26 — 96.43 Expert system based on fuzzy logic Yes

Exarchos27 — 96.00 Expert system based on fuzzy logic Yes

The results of the evaluation of the neuro-fuzzy classifier in terms of CC, SE, and
SP are summarized in Table 2.

A summary of the results obtained for arrhythmic beat classification by the
proposed method and other methods is shown in Table 3.

By comparing our results with those of literature, we find that we have not
achieved the best results in term of classification (the results of Christov et al.24

are the bests), but our technique allows the extraction of rules (knowledge base)
to clarify the results obtained (this characteristic is absent for the other methods
except the work of Tsipouri et al.,26,27 which have a rate of classification much
worse than the others methods).

Our neuro-fuzzy classifier allows automatically the generation of a knowl-
edge base (48 rules) to justify the classification. This database is considered as
an advantage for this classifier compared to other technique. In fact, it allows
the interpretability of the results after the classification. Our method generates



September 29, 2010 20:5 WSPC/S0219-5194/170-JMMB
S021951941000354X

Cardiac Arrhythmia Diagnosis Using a Neuro-Fuzzy Approach 427

automatically a knowledge base (12 rules) to justify the classification. The rule
base generated by the neuro-fuzzy classifier is:

1. If (RRP is small) and (RRS/RRP is small) and (QRS is small), then (class
is N).

2. If (RRP is small) and (RRS/RRP is small) and (QRS is great), then (class is
VPC).

3. If (RRP is small) and (RRS/RRP is medium) and (QRS is small), then (class
is N).

4. If (RRP is small) and (RRS/RRP is medium) and (QRS is great), then (class
is VPC).

5. If (RRP is small) and (RRS/RRP is great) and (QRS is small), then (class is
VPC).

6. If (RRP is small) and (RRS/RRP is great) and (QRS is great), then (class is
VPC).

7. If (RRP is average) and (RRS/RRP is small) and (QRS is small), then (class
is N).

8. If (RRP is average) and (RRS/RRP is small) and (QRS is great), then (class
is VPC).

9. If (RRP is average) and (RRS/RRP is medium) and (QRS is small), then (class
is N).

10. If (RRP is average) and (RRS/RRP is medium) and (QRS is great), then (class
is VPC).

11. If (RRP is average) and (RRS/RRP is great) and (QRS is small), then (class
is N).

12. If (RRP is average) and (RRS/RRP is great) and (QRS is great), then (class
is VPC).

The generated rules are very close to the reasoning of the human expert
(cardiologist).

4. Conclusion

This paper presents a system that is based on the application of a hybrid approach
called neuro-fuzzy, which combines neural networks with fuzzy logic for reliable
heartbeat classification based on the ECG waveform. This approach generates very
good results with an average CC rate of 98.71%, in addition to the justification
of decisions taken in the neuro-fuzzy classifier using its rule base (12 rules). These
rules are very consistent and closer to the cardiologist reasoning.

The results obtained are very promising and encourage us to extend this study
to other types of cardiac arrhythmias. Such neuro-fuzzy classifier can be easily
hardware implemented (real-time response) and used in intensive care units.
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ABSTRACT 
The premature ventricular contraction (PVC) and the premature atrial contraction (PAC) are cardiac 
arrhythmias which are widely encountered in the cardiologic field. They can be detected using the 
electrocardiogram signal parameters. We use in this work a Neuro-fuzzy approach to identify these 
abnormal beats. To achieve this objective we have developed a Neuro-Fuzzy Classifier (NFCL), its 
performances were evaluated by computing the percentages of sensitivity (Se), specificity (Sp) and correct 
classification (CC). This classifier allows extraction of rules (knowledge base) to clarify the results 
obtained. We use the medical database (MIT-BIH) to validate our results. 

Keywords : ECG, neuro-fuzzy, fuzzy logic, PVC, PAC, explicit classification, MIT-BIH data base. 

 

1. INTRODUCTION 
 

The Holter exam which is widely used in 
cardiology is a tool of recording electrocardiogram 
(ECG) of long duration. It facilitates the diagnosis of 
cardiac arrhythmias.  
Due to large number of patients in intensive care 
units and the need for continuous observation of 
such condition, several methods and techniques for 
automated ECG beats recognition have been 
developed in the past ten years to look for solutions 
to this problem ([1] [2] [3]). 

The electrocardiogram ECG is a physiological 
signal that represents the mechanical heart 
(contraction and relaxation). Figure (1) shows an 
ECG pattern for healthy subjects.  
 

 
Fig1: ECG of a health person 

 

We can see different waves in an ECG signal: 

 P wave: is the contraction of the atria. 

 QRS Complex: equivalent to a contraction of 
the ventricles. 

 T wave: is the relaxation of ventricles. 

The PVC and PAC premature beats are appearing 
with Normal beats (N) on the ECG signal (Figure 2 
and 3) 

 
Fig.2 The premature ventricular contraction (PVC) 

 

 
Fig.3 The premature atrial contraction (PAC). 

 
Both neural networks and fuzzy logic are 

universal estimators. They can approximate any 
function to any prescribed accuracy, provided that 
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sufficient hidden neurons and fuzzy rules are 
available.  

Neural networks have been the subject of 
biomedical research interest during the past decade 
([4] [2] [3] [1]). But this technique is considered as a 
black box because it can’t justify its results. 
However, fuzzy set theory plays an important role in 
dealing with uncertainly like making decisions in 
medical applications ([5] [6]). The fuzzy inference 
systems can interpret their results through their 
knowledge base (basic rules) [7]. 

Recent results show that the fusion procedure of 
these two approaches (neuronal and fuzzy approach) 
seems to be very effective for the pattern 
recognition. 

 
2. PRESENTATION OF THE NEURO-FUZZY 
APPROCH  
 

Neuro-fuzzy systems are fuzzy systems which use 
neural networks theory in order to determine their 
properties (fuzzy sets and fuzzy rules) by processing 
data samples. Neuro-fuzzy systems harness the 
power of the two paradigms: fuzzy logic and neural 
networks, by utilizing the mathematical properties of 
neural networks in tuning rule-based fuzzy systems 
that approximate the way man processes information 
[1]. 

Successful implementation of neuro-fzzy systems 
have been introduced by several authors, as ([10] [8] 
[9]). 

In this work we present the ANFIS approach 
(adaptive neuro fuzzy inference system) which is a 
neuro-fuzzy hybrid method proposed by Jang [12] 
[11], and it is the most widely used of neuro-fuzzy 
techniques and the best one to solve problems of 
classification and Pattern Recognition. 

2.1. ANFIS structure’s  

The ANFIS is a fuzzy inference system based on 
the model of Takagi-Sugeno [11] and uses five 
layers.  
For reasons of representation, we will consider a 
system with two inputs and one output and also 
consider a model of the 1st order using two rules:  

If x1 is A1 and x2 is B1 then y1=f1(x1,x2) = a1x1 + b1x2 
+ c1. 

If x1 is A2 and x2 is B2 then y2=f2(x1,x2) = a2x1 + b2x2 
+ c2. 

The ANFIS architecture that allows representing 
the basic rules is carried out by an adaptive network 

that contains fixed nodes (circular) and adaptive 
nodes (square) as illustrated in figure.4. 
 
  Layer 1       Layer 2   Layer 3 Layer 4 Layer 5
       
            x1  x2 
        1w        1v     11fv  
             
  x1           
            
                  y 
            
           
   
 
  x2      2w      2v      22fv  
            x1    x2  
          

  A1

 A2

П

  B1

 B2

П 

N 

N 

Σ

Fig.4. ANFIS Architecture 

 
Each node square or circular applies a function on 

its input signals and for a given layer nodes have the 
same type of function. The output k

iO  of a node i of 
the k layer (called node (i, k)) depends on the signals 
from the layer k-1 and parameters of the node (i, k). 

( ),...,,,... 11
1 1

cbaOOfO k
n

kk
i k

−−
−

=
 (1) 
nk-1 is the number of nodes in the (k-1)layer, and a, b, 
c are the parameters of the (i,k) node. 

It should be noted that a circular node has no 
parameters. 

Layer 1: 
Nodes of this layer are all adaptive nodes. This layer 
performs fuzzification of the inputs; it determines 
the membership of each input: 

( )xO Aii μ=1     (2) 
x input of i node,  
Ai : linguistic variable & Oi

1 : degree of 
membership of x to Ai. 
The parameters of a node in this layer are those of 
the corresponding membership function, these are 
the premise parameters. 
Layer2: 
The nodes of this layer are fixed nodes. They 
receive the output signals from the previous layer 
and send their product output 

( ) ( )21 . xxw BiAii μμ=        2,1=i  (3)
  
wi The degree of truth of the rule i. 
Layer 3: 
Each neuron in this layer calculates the normalized 
degree of truth of the fuzzy rule. 
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21 ww
w

v i
i +
=                  (4)

  
The result out of each node represents the 
contribution of this rule on the final result. 
Layer 4: 
The nodes in this layer are adaptive and perform 
the consequent of the rules. The output of a node i 
is given by:    

( )iiiiiii cxbxavfvO ++== 21
4 .   2,1=i            

(5) 
The parameters in this layer ( iii cba ,, ) are to be 

determined and are referred to as the consequent 
parameters. 
Layer 5: 
This layer consists of a single neuron circular 
makes the sum of signals from the previous layer to 
give the final output of the network: 

∑==
i

ii fvyO .5
1                         

(6) 
The generalization of the system to a system with 
multiple inputs does not pose any problem. The 
number of nodes in the first layer is always equal to 
the total number of linguistic terms defined. 

2.2. ANFIS learning’s: 
There are several learning algorithms for a neuro-

fuzzy model [13]. Jang proposed a learning method 
called ''hybrid algorithm''. This algorithm combining 
the least squares method and the gradient descent 
method is adopted to solve this problem. The hybrid 
algorithm is composed of a forward pass and a 
backward pass. The least squares method (forward 
pass) is used to optimize the consequent parameters 
with the premise parameters fixed. Once the optimal 
consequent parameters are found, the backward pass 
starts immediately. The gradient descent method 
(backward pass) is used to adjust optimally the 
premise parameters corresponding to the fuzzy sets 
in the input domain. The output of the ANFIS is 
calculated by employing the consequent parameters 
found in the forward pass. The output error is used to 
adapt the premise parameters by means of a standard 
back propagation algorithm. It has been proven that 
this hybrid algorithm is highly efficient in training 
the ANFIS [12] [11]. 

 

 

 

3. RESULT AND DISCUSSION 
In this work, we classify the cardiac arrhythmias 

by a neuro-fuzzy approach using ANFIS. 

The ECG signals used in this work are recordings 
collected between 1975 and 1979 by the laboratory 
of BIH arrhythmia (Beth Israel Hospital) in Boston 
in the United States, which is known as the MIT-
BIH data base [14]. The ECG signals are sampled at 
a frequency of 360 Hz. Two or more cardiologists 
have made the diagnosis for these various records 
and they have annotated each cardiac cycle. These 
annotations will be useful for learning and 
assessment of the classification. 

The choice of target diseases is dictated by the 
nature of work itself. Indeed, a review Holter is 
requested by a cardiologist to detect sporadic events 
that not appears on the ECG 12 D (12 leads) and 
especially transient arrhythmias (PVC, PAC). 

PVC: The premature ventricular contraction  

 PAC: The premature atrial contraction 

The choice of descriptive parameters which are 
the input vector is dictated by the nature of the 
pathology targeted [16] [15].  

For describing the heartbeat, we have chosen:  

 RRp : the distance between the current R-
wave and the previous R-wave (see Figure 8). 

 RRs : the distance between the current R-
wave and the following R-wave (see Figure 
8). 

 RRs / RRp : the ratio between the distance 
RR following the previous one (see Figure 8).  

 QRS : the duration of the QRS complex (see 
Figure 8) 

The parameters used were calculated using an 
algorithm developed and implemented in the LISI 
laboratory at the University of Rennes 1. This 
algorithm is based on the technique introduced by 
Pan J. and Tompkins W.J [17].  

The database built is used for learning and testing 
the classifier. Patients selected to build the database 
are patients who have diseases targeted (PVC, PAC) 
and are presented in the following table (Tab.1): 
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Table.1 Number of beats for each record 
 

records N PVC PAC 

100 2225 1 30 
116 2175 108 1 
200 1726 815 30 
201 1325 176 122 
209 1850 1 380 
210 2100 181 19 
223 1986 449 73 
233 1029 813 7 
234 1700 3 43 
Nombre total  16116 2548 705 

 
 

Given the large number of normal beats compared 
to other types of beats, and to avoid specialization.  
We choose 500 beats for each of 3 classes (normal, 
PAC and PVC) (1500 total to form the learning 
base).  
From this database, we generate an initial fuzzy 
inference system (FIS) of Sugeno type zero order 
(see figure.5) with the initial choices includes: 

1. Membership function type : "Trapezoidal"  
2. Number of membership function for each 

variable.  
-RRp: 2 functions   
-RRs/RRp: 3 functions   
- QRS: 2 functions  

3. Manual initialization of modal points, based 
on knowledge of the expert (doctor). 
 
 
 

 
Fig.5. initial neuro-fuzzy model 

     
 
At the end of the learning, parameters of the 

initial membership functions  (figure.6) will be 
modified as shown on figure.7. 

 
 

 
Fig.6. : initial membership functions 

 
 

 
Fig.7: final membership functions (after learning) 

 
 
4. RESULTS ANALYSIS  
 
The performance of the neural classifiers was 
evaluated by computing the percentages of 
sensitivity (SE), specificity (SP) and correct 
classification (CC), the respective definitions are as 
follows: 
• Sensitivity (Se %): [Se = 100×TP/(TP+FN)] is the 
fraction of real events that are correctly detected 
among all real events. 
• Specificity (Sp %): [Sp = 100×TN/(TN+FP)] is 
the fraction of nonevents that has been correctly 
rejected. 
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• Correct classification (CC %):   
[CC=100×(TP+TN)/(TN+TP+FN+FP)] is the 
classification rate. 
In these formulas TP was the number of true 
positives, TN was the number of true negatives, FN 
was the number of false negatives, and FP was the 
number of false positives. 
Since we are interested in estimating the 
performance of the classifier based on the 
recognition of PVC beats and PAC beats, the true 
positives (TP), false positives (FP), true negatives 
(TN), and false negatives (FN) are defined 
appropriately as shown below: 
− TP: classifies PVC as PVC ( or PAC as PAC) 
− FP: classifies normal as PVC or PAC; 
− TN: classifies normal as normal; 
− FN: classifies PVC or PAC as normal. 
 
Note that  
Se1 (%): is the sensitivity for detecting PVC beats. 
Se2 (%): is the sensitivity for detecting PAC beats. 
 
The results of the evaluation of the neuro-fuzzy 
classifier in terms of correct classification, 
sensitivity and specificity are summarized in table 
2  
 
 
Table .2. Performances of the neuro-fuzzy classifier (%). 

 
records 

Sp 

(%) 

Se1 

(%) 

Se2 

(%) 

CC 

(%) 

100 96,15  100,00  95,75  97,30 
116 95,26  96,74  100,00  97,33 
200 89,36  97,62  93,33  93,44 
201 93,25  96,82  95,40  95,16 
209 97,23  100,00  95,09  97,44 
210 97,01  97,31  96,27  96,86 
223 95,11  96,48  97,15  96,25 
233 94,59  96,29  90,71  93,86 
234 92,75  100,00  93,87  95,54 
Average (%) 94,52  97,92  95,29  95,91

 
 
The average correct classification is 95.91%. 
We notice from the results obtained in the table 2 
that the neuro-fuzzy classifier NFCL gave 
satisfactory results (95.91%) and very similar to 
neural classifier cited in the literature [Chi’05] 
[Cha’04]. 
However, the results obtained by our classifier 
NFCL are explicit and interpretable, which is not 
the case for neural classifiers (black box type). 

Our method generates automatically a knowledge 
base (12 rules) to justify the classification. 
 
The rule base generated by the NFCL is :  
1. If (RRP is small) and (RRS / RRP is small) and 
(QRS is small) then (class C1)  
2. If (RRP is small) and (RRS / RRP is small) and 
(QRS is great) then (class is C2)  
3. If (RRP is small) and (RRS / RRP is average) 
and (QRS is small) then (class C3)  
  4. If (RRP is small) and (RRS / RRP is average) 
and (QRS is great) then (class is C4)  
5. If (RRP is small) and (RRS / RRP is high) and 
(QRS is small) then (class is C5)  
6. If (RRP is small) and (RRS / RRP is high) and 
(QRS is great) then (class is C6)  
7. If (RRP is average) and (RRS / RRP is small) 
and (QRS is small) then (class is C7)  
8. If (RRP is average) and (RRS / RRP is small) 
and (QRS is great) then (class is C8)  
9. If (RRP is average) and (RRS / RRP is average) 
and (QRS is small) then (class is C9)  
10. If (RRP is average) and (RRS / RRP is average) 
and (QRS is great) then (class is C10)  
11. If (RRP is average) and (RRS / RRP is high) 
and (QRS is small) then (class is C11)  
12. If (RRP is average) and (RRS / RRP is high) 
and (QRS is great) then (class is C12) 
 
 
To clarify our work, we take for example the 260th 
beat of recording 100  

 Fig.8 The 260 cycle of record 100, « PAC* » 
 
 
Characterizing beat 
RRp = 0.53 sec 
RRs/RRp    = 1.61  
QRS = 0.053 sec 
 
RRp:   48.18 % small  
            23.52 % average 
RRs/RRp   :    0   % small 
          0   % average 
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QRS:         50.34 % small 
        0     % great 
The real output is 1.99 ≈ 2 (Class 
PAC). 
The rules that contribute to this output are shown in 
the figure below: 

 
Fig.9. Contribution des règles 

 
 
Rule 11 : active 5.83 % 
11. If (RRp is average) and (RRs / RRp is great) 
and (QRS is small) then (class is C11) 
Rule 5 : active  94.17 % 
5. If (RRp is small) and (RRs / RRp is great) and 
(QRS is small) then (class is C5) 
With        
 C5 = 1.87  

C11 = 0.12 
The actual output is the sum of two outputs active:   
S = C11+ C5 = 1.997 ≈ 2 (class PAC)  
The rule “5” has more weight in the final decision, 
and it is very close to the reasoning of the human 
expert (cardiologist).  
For any beat, we find the most activated rules,  
which contribute and justify the final decision 
taken by the neuro-fuzzy classifier NFCL. 
 

5. CONCLUSION  

This work presents a knowledge extraction and 
classification of cardiac arrhythmias (PVC, PAC) 
using a hybrid approach called neuro-fuzzy that 
combines neural networks with fuzzy logic. 
 This approach has given very good results with an 
average correct classification rate of 95.91%, in 
addition to the justification of decisions taken in 
the NFCL classifier using its rule base (12 rules). 
These rules are very consistent and closer to the 
cardiologist reasoning.  
These obtained results are very promising and 
encourage us to extend this study to other types of 
cardiac arrhythmias. Such neuro-fuzzy classifier 
can be easily hardware implemented (real time 
response) and used in intensive care units. 
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ABSTRACT 

In this paper, a new algorithm for ECG waves segmentation is 
described. The algorithm is based on the wavelet transform for 
the complex QRS delineation and a surface indicator for the 
detection of the T-end waves.  
The described algorithm was evaluated using ECG signals from 
the universal database MIT BIH.  A sensitivity of 99.35% and a 
positive predictivity of 99.05% are reached. Those obtained 
results show the good performances of this new algorithm. 

Key words: ECG delineation, wavelet transform, surface 
indicator 

1. INTRODUCTION 
 

The ECG signal is a graphical representation of the heart activity. 
Indeed, the ECG signal is formed by a succession of waveforms 
designed P, QRS, T (figure1). Each wave reflects a part of the 
electrical heart activity. The importance of the ECG signal in the 
clinical practice is related to the duration and the forms of those 
waves. In fact, the duration and the forms of ECG waves can be 
extremely used as clinical indicators marking the presence of 
cardiac pathologies. 

The manual ECG waves delineation seems a difficult and 
annoying task especially for the analysis of the long recordings 
as in Holters and ambulatory cases. If a detailed analysis of 12-
leads ECG is needed, the manual ECG waves detection is more 
irritating. In addition, the automatic analysis of the ECG signal 
seems indispensable due to large number of patients in intensive 
care units and the need for continuous observation. 
Consequently, the applicability and appeal of automatic 
measurements are most evident in the analysis of large data sets. 
Indeed, automatic ECG delineation makes motivation of recent 
researches [1-3]. 
 In almost cases, the complex QRS detection is the first step of 
those algorithms. In fact, the complex QRS is the most 
significant complex in the ECG signal components. 
In reality, this complex is used either to calculate cardiac 
frequency or the delineation of the others waves as P and T 
waves. Therefore, many approaches are adopted are to detect the 
complex QRS. In [4], the high energy of the QRS complex is 
used to its delineation. Other algorithms are based on the steep 
slope of the QRS complex [5]. More approaches and principles 

such neural network [6], Markov model [7] and morphological 
transforms are used in the detection algorithms. 
The T and P waves can be also used a biomarker of cardiac 
pathologies. However, few algorithms are devoted to those two 
waves segmentation [9-10]. In fact, the detection of those waves 
is very difficult due to their weak amplitudes and their 
morphology variety.  
In this article, a new algorithm is described and discussed. The 
developed algorithm is dedicated to the complex QRS and t-end 
localization. 
The algorithm is based essentially on wavelet transform for the 
localization of the complex QRS and a surface indicator for T-
end wave delineation. 
The algorithm principles will be described in the next section. 
 

 
            Figure 1.�Clinical ECG signal features [11].��
(1) P wave, (2) QRS complex; (3) T wave; (4) PR interval; 
(5) QRS interval; (6) QT interval; (7) ST interval; (8) PR 
segment; (9) ST segment; (10) R-R interval (or beat); (11) 
cardiac cycle (including P wave, QRS complex, and T wave). 
 

2. MATERIEL AND METHODS 

2.1. Wavelet transform 

Recently, the wavelet transform appears as a very helpful tool in 
the ECG delineation algorithms [1-3] [12-14]. 
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(a) 

 
(b) 

 
(c) 

Figure 2. ECG signal decomposition: (a) ECG signal, (b) approximations, (c) details 

Mathematically, the wavelet transform consist to explore signal 
by a special function called “mother wavelet”. The two 
operations dilatation/contraction and translation will be applied 
on the mother wavelet to generate a set of functions called 
“wavelets family”. This issue functions have a same form as the 
mother wavelet but they differ in their frequency band length. 
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The projection of the signal on the wavelets family generates a 
number of coefficients defined by: 

dt
a
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Those coefficients describe the correlation between signal and 
the wavelet family. 
When, the scale parameters a and the translation parameters b are 
continue ,the wavelet transform is intended to be continue and it 
is called “continue wavelet transform”. On contrary, when the 
original signal must be reconstructed from the coefficients, a 
discretization of 
 Those two parameters must be done. The wavelet is called 
the discrete wavelets transform. 
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In fact, each signal is formed by low frequencies called 
“approximations” and high frequencies named “details”. 
The wavelet transform allows a separation of details and 
approximations using a pair of quadratic filters. The 
approximation issue from the decomposition at level (n-1) will be 
applied to the pair of filters to give, in its turn, approximation and 
detail. The decomposition the level n will be applied to the 
approximation. Indeed, the pair of filters will only applied on the 
approximations. 
Figure 2 illustrates the ECG signal decomposition using discrete 
wavelet transform. 

 
2.2. Algorithm description 

 
The proposed algorithm is constituted by to parts. The first step 
is dedicated to the complex QRS detection while the second part 
is devoted the T-end localization.  Figure 3 represents the 
diagram of the developed algorithm. 

2.2.1 R peaks detection 
First, the decomposition of the ECG signal to eight levels is done 
using the DB4 mother wavelet. The choice of the mother wavelet 
is related to the fact that there is great correlation between Db4 
and QRS complex.  Generally, The QRS complexes are 
concentrated at the fourth details D3, D4, D5 and D6. Those 
detail are added together to obtain a filtered ECG signal where 
the complexes QRS are properly seen.  Then, the obtained signal 
is squared. This operation permits to amplify the QRS peak. The 
amplified signal is compared again an adaptive threshold and 
consequently the R peaks are detected.  

2.2.2 the Q wave detection 
The Q wave localization is done using the derivative method. 
The derivative method is based on a differentiator filter. When it 
is applied to the ECG signal, this method permits to calculate the 
steep slope of the electrocardiogram signal. In the proposed 
algorithm, steep slopes are calculated using “Chan and Khan” 
formula [14].  2. 2.  
The Q wave is detected when two successive slopes exceed an 
adaptive threshold. 
 
2.2.3 S wave localization 
The S wave is detected as the minimum of the ECG signal after 
the R peak within a fixed window.  The length of the window is 
determined experimentally. 
 
2.2.4 T-end delineation 
The algorithm proposes two steps to the T-end delineation. The 
first step consists of QRS complexes elimination.  In the second 
step, the T-end is detected using the same principles described by 
Zhang et al in [15]. This principle consists to calculate an 
indicator related to the surface covered by the T wave and 
delimited in a special manner. The surface indicator is calculated 
using integration which is accomplished by a sliding window w. 
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Zhang et al demonstrated that the surface indicator takes its 
maximum when the time t coincides with the T-end. Indeed, 
looking for T-end is done by searching the instant t maximizes 
the surface indicator A (figure 4). 

 
3 RESULT AND DISCUSSION 

 
The universal MIT- BIH database is used to evaluate to the 
proposed algorithm. The used database contains 48 records with 
30 minutes duration for each record [16]. The two parameters; 
sensitivity (Se) and the positive predictivity (P+); are calculated 
to evaluate the performances of the developed algorithm [17]. 
The obtained results are compared with those obtained by  [1], 
[18] and [19]. 
The results comparison is illustrated in table 1. 

 Total 
beats 
number  

Sensitivity 
Se (%) 

Positive 
predictability 
+P (%) 

 Wavelet 
methods 
[18] 

5100 99.18 98.00 

P-spectrum 
methods 
[19] 

---------- 94.32 97.66 

Developed  
algorithm 

5100 99.35 99.05 

 
Table1. Algorithm evaluation results 

The average sensitivity Se and the average positive predictivity 
P+ are 99.18% and 99.05 %, respectively.  As the table 2 shows, 
those results are better that the results obtained by [18] and [19]. 
In fact, the use of the wavelet transform permits either the good 
separation of the ECG waves from the noises or the separation of 
the different ECG components. Besides, the elimination of the 
QRS complexes facilities the localization of the T-end wave. In 
M Vitek et al algorithm [1], the wavelet transform is also adopted 
to detect the QRS complex. Their algorithm is evaluated using 
CSE database.  The M. Vitek et al algorithm is 99.13% for 
Franks leads.  Consequently, our algorithm sensitively is greater 
that their algorithm. In addition, the surface indicator is simple to 
implement and its shows good performances hen it is applied to 
detect the T-end instants. 

4 CONCLUSION 

The described algorithm shows good performances. In fact, the 
wavelet transform is used to detect the QRS complexes whereas 
the surface indicator is applied to delineate the T-end wave. 
When using wavelet transform, the noise and QRS complexes are 
separated. This is allows good localization of those complexes. 
Surface indicator seems simple to implement and gives good 
results.  
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Figure 3. Algorithm Description 

(b) (a) 
Figure 4.  T-end localization principle  
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