GLOBAL EXISTENCE FOR NONLINEAR PARABOLIC PROBLEMS WITH MEASURE DATA.APPLICATIONS TO NON-UNIQUENESS FOR PARABOLIC PROBLEMS WITH CRITICAL GRADIENT TERMS
| dc.contributor.author | Abdellaoui, Boumediene | en_US |
| dc.contributor.author | Dall' Aglio, Andrea | en_US |
| dc.contributor.author | Peral, Ireneo | en_US |
| dc.contributor.author | Segura De Leon, Sergio | en_US |
| dc.date.accessioned | 2013-04-18T08:41:19Z | en_US |
| dc.date.available | 2013-04-18T08:41:19Z | en_US |
| dc.date.issued | 2011-11 | en_US |
| dc.description | ADVANCED NONLINEAR STUDIES, ISSN : 1536-1365, Issue : 4, Volume : 11, pp. 733-780, NOV 2011. | en_US |
| dc.description.abstract | In the present article we study global existence for a nonlinear parabolic equation having a reaction term and a Radon measure datum:{(phi(v))(t) - Delta V-p = f(x, t)(1 + phi(v)) + mu in Omega x (0, + infinity),v(x, t) = 0 on partial derivative Omega x (0, + infinity),v(x, 0) = v(0)(x) in Omega,where 1 < p < N, Omega is a bounded open subset of (N >= 2), Delta(p)u = div(vertical bar Delta u vertical bar(p-2)del u)) is the so called p-Laplacian operator, phi(s) =[(1 + vertical bar s vertical bar/p-1)(p-1)-1] sign s., phi(v(0)) is an element of L-1(Omega), mu is a P-I finite Radon measure and f is an element of L-infinity(Omega x(0, T)) for every T > 0. Then we apply this existence result to show wild nonuniqueness for a connected nonlinear parabolic problem having a gradient term with natural growth. | en_US |
| dc.identifier.issn | 1536-1365 | en_US |
| dc.identifier.uri | https://dspace.univ-tlemcen.dz/handle/112/1785 | en_US |
| dc.language.iso | en | en_US |
| dc.title | GLOBAL EXISTENCE FOR NONLINEAR PARABOLIC PROBLEMS WITH MEASURE DATA.APPLICATIONS TO NON-UNIQUENESS FOR PARABOLIC PROBLEMS WITH CRITICAL GRADIENT TERMS | en_US |
| dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- GLOBAL-EXISTENCE-FOR-NONLINEAR-PARABOLIC-PROBLEMS-WITH-MEASURE-DATA.pdf
- Size:
- 57.08 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: