Intrusion detection system using machine learning techniques

dc.contributor.authorKorti, Sidi Mohamed Mortadaen_US
dc.contributor.authorMediani, Mehdi Noureddineen_US
dc.date.accessioned2022-10-02T09:54:00Zen_US
dc.date.available2022-10-02T09:54:00Zen_US
dc.date.issued2022-06-29en_US
dc.description.abstractAvec l’important d´eveloppement des technologies de l’information et de la communication et particuli`erement Internet, le monde a connu durant la derni`ere d´ecennie un mouvement d’innovations sans pr´ec´edent. Malheureusement ces avanc´ees furent accompagn´ees par la progression des cybers attaques, la protection de ces r´eseaux de communication apparait comme le prochain d´efi des futures d´ecennies. En tant que premier rempart, les syst`emes de d´etection d’intrusion ont fait l’objet de nombreuses recherches et jouent un rˆole crucial dans la s´ecurit´e des r´eseaux. Ce m´emoire pr´esente les travaux men´es dans le cadre du domaine de la d´etection d’anomalies dans les r´eseaux avec le but de d´evelopper un mod`ele capable de d´etecter et de classifier un large ´eventail d’attaques tout en s’adaptant `a un sc´enario de menace en constante ´evolution. L’approche propos´ee a ´et´e test´ee sur la base de donn´ees publique CIC-IDS2017. La base de donn´ees sera d’abord pr´etrait´ee et normalis´ee, puis appliqu´ee `a divers algorithmes d’apprentissage automatique de classification pour cr´eer des mod`eles et comparer leurs performances `a l’aide de diff´erentes mesures d’´evaluation telles que (Accuracy, Precision, Recall, F1-score, etc.). Les r´esultats exp´erimentaux ont montr´e que les performances des algorithmes d’apprentissage automatique utilis´es ont atteint un score de pr´ecision relativement ´elev´e : Random Forest 97.02%, Decision Tree 96.74%, K-Nearest Neighbors 96.24%, MLP 87.57% et SVM 81.12%.en_US
dc.identifier.urihttps://dspace.univ-tlemcen.dz/handle/112/19097en_US
dc.language.isofren_US
dc.subjectCybers´ecurit´e, Cyber-attaques, Syst`eme de d´etection d’intrusion (IDS), L’apprentissage profond, L’apprentissage automatique, D´etection d’anomalies dans les r´eseaux, CIC-IDS2017.en_US
dc.titleIntrusion detection system using machine learning techniquesen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MsTel.Korti+Mediani.pdf
Size:
3.79 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: