La détection des anomalies dans la consommation d’électricité en utilisant des méthodes de détection des outliers

Abstract

Le but de ce projet est d’utiliser des méthodes de détection des anomalies dans les séries temporelles pour identifier les défaillances électriques et l’énergie gaspillée dans les bâtiments résidentiels. Dans ce contexte, nous avons utilisées trois méthodes issues de l’apprentissage non supervisé pour la détection des anomalies dans la consommation d’électricité dans les bâtiments. Ces méthodes sont : Isolation Forest, One-Class SVM et K-Means. Les résultats obtenus ont montré que chaque méthode estime une telle donnée comme anomalie ou non et que la méthode basée sur One-Class SVM a montré ses performances comparativement aux autres

Description

Citation

Collections