The Use of Artificial Neural Network to Detect the Premature Ventricular Contraction (PVC) Beats

dc.contributor.authorChikh, Maen_US
dc.contributor.authorBelgacem, Nen_US
dc.contributor.authorChikh, Azen_US
dc.contributor.authorBereksi Reguig, Fen_US
dc.date.accessioned2012-05-23T15:00:54Zen_US
dc.date.available2012-05-23T15:00:54Zen_US
dc.date.issued2003-09-27en_US
dc.descriptionConférence Internationale sur les Systèmes de Télécommunication , d’Electronique Médicale et d’Automatique, CISTEMA’2003en_US
dc.description.abstractPremature ventricular contraction (PVC) is a cardiac arrhythmia that can result in sudden death. Understanding and treatment of this disorder would be improved if patterns of electrical activation could be accurately identified and studied during its occurrence. In this paper, we shall review three feature extractions algorithms of the electrocardiogram (ECG) signal, fourier transform, linear prediction coding (LPC) technique and principal component analysis (PCA) method, with aim of generating the most appropriate input vector for a neural classifier. The performance measures of the classifier rate, sensitivity and specificity of these algorithms will also be presented using as training and testing data sets from the MIT-BIH database.en_US
dc.identifier.urihttps://dspace.univ-tlemcen.dz/handle/112/839en_US
dc.language.isoenen_US
dc.publisherUniversity of Tlemcenen_US
dc.subjectECG signalen_US
dc.subjectlinear prediction codingen_US
dc.subjectprincipal component analysisen_US
dc.subjectFourier transformen_US
dc.subjectneural networksen_US
dc.subjectpremature ventricular contractionen_US
dc.subjectMIT-BIH arrhythmia databaseen_US
dc.titleThe Use of Artificial Neural Network to Detect the Premature Ventricular Contraction (PVC) Beatsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The-Use-of-Artificial-Neural-Network-to-Detect-the-Premature-Ventricular-Contraction-PVC-Beats.pdf
Size:
153.62 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: