Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/21574
Titre: Estimation dans un processus de diffusion non linéaire à retards et tests.
Auteur(s): KORSO FECIANE, Malika
Mots-clés: parametric estimation, nonlinear diffusion process, maximum likelihood estimator, asymptotic efficiency. hypotheses testing, goodness-of-fit test
estimation paramétrique, processus de type diffusion non linéaire, estimateur du maximum de vraisemblance, efficacité asymptotique. tests d’hypothèses, tests d’ajustement.
Date de publication: 15-déc-2010
Editeur: 24-01-2024
Référence bibliographique: salle des thèses
Collection/Numéro: son.for.p.;
Résumé: In this thesis we handle problems of unidimensional and multidimensional prametric estimation of delays as well as as some hypothesis testing problems on delay parameters for nonlinear diffusion processes. We rely on the observation of a nonlinear diffusion process of continuous time, with a small diffusion coefficient and assume satisfied some regularity conditions on the trend coefficient which, otherwise, remains nondifferentiable with respect to unknown parameters. We show then that the maximum likelihood estimator of delays parameters is consistent, asymptotically normal and uniformly LAM (locally asymptotically minimax) when the diffusion coefficient tends to 0. We mainly use the techniques of the parametric estimation methods theory in asymptotic statistics due to I. Ibragimov, R. Has’ minskii, Y. Kutoyants and others, as well as the LAM bound on the risks of estimators in a more general framework which is due to J. Hajek and L. Cam. We discuss, on the other hand, the qualities of some tests of simple and composite hypothesis. It is shown that the limit distributions of these statistics are independent of the basic hypothesis, which simplifies the calculation of the threshold. We also demonstrate that these tests are consistent by studying the behavior of statistics that define them under the alternatives. To handle the basic composite hypothesis we need to know the asymptotic behavior of statistic estimators of unknown parameters. The use of the maximum likelihood estimator brings us back to build the Cramer-von Mises corresponding test and study its limit distribution.
URI/URL: http://dspace1.univ-tlemcen.dz/handle/112/21574
Collection(s) :Doctorat Classique en Mathématique

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Estimation-dans-un-processus-de-diffusion-non-linéaire-a-retards-et-tests..pdfCD712,07 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.