Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/1900
Titre: Linearization of vector fields and embedding of diffeomorphisms in flows via Nash–Moser theorem
Auteur(s): Benalili, Mohammed
Mots-clés: Exponential map
Category of tame Fréchet manifolds
Nash–Moser function inverse theorem
Date de publication: jan-2011
Editeur: University of Tlemcen
Résumé: In the first part of this paper we give suitable spectral properties of the adjoint operators induced by appropriate perturbations of some hyperbolic linear vector fields. These properties are useful to prove general facts based on the Nash–Moser inverse function theorem. In the second part of this work we study circumstances where a global linearization of a vector field X in a real numerical space is feasible and where some diffeomorphisms which are close to exp(X) can be embedded in a flow.
Description: Journal of Geometry and Physics, ISSN : 0393-0440, DOI : 10.1016/j.geomphys.2010.08.009, Issue : 1, Volume : 61, pp. 62–76, January 2011.
URI/URL: http://dspace.univ-tlemcen.dz/handle/112/1900
ISSN: 0393-0440
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Linearization-of-vector-fields-and-embedding-of-diffeomorphisms.pdf43,92 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.