Veuillez utiliser cette adresse pour citer ce document :
http://dspace1.univ-tlemcen.dz/handle/112/1785
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | ABDELLAOUI, Boumediene | - |
dc.contributor.author | DALL' AGLIO, Andrea | - |
dc.contributor.author | PERAL, Ireneo | - |
dc.contributor.author | SEGURA DE LEON, Sergio | - |
dc.date.accessioned | 2013-04-18T08:41:19Z | - |
dc.date.available | 2013-04-18T08:41:19Z | - |
dc.date.issued | 2011-11 | - |
dc.identifier.issn | 1536-1365 | - |
dc.identifier.uri | http://dspace.univ-tlemcen.dz/handle/112/1785 | - |
dc.description | ADVANCED NONLINEAR STUDIES, ISSN : 1536-1365, Issue : 4, Volume : 11, pp. 733-780, NOV 2011. | en_US |
dc.description.abstract | In the present article we study global existence for a nonlinear parabolic equation having a reaction term and a Radon measure datum:{(phi(v))(t) - Delta V-p = f(x, t)(1 + phi(v)) + mu in Omega x (0, + infinity),v(x, t) = 0 on partial derivative Omega x (0, + infinity),v(x, 0) = v(0)(x) in Omega,where 1 < p < N, Omega is a bounded open subset of (N >= 2), Delta(p)u = div(vertical bar Delta u vertical bar(p-2)del u)) is the so called p-Laplacian operator, phi(s) =[(1 + vertical bar s vertical bar/p-1)(p-1)-1] sign s., phi(v(0)) is an element of L-1(Omega), mu is a P-I finite Radon measure and f is an element of L-infinity(Omega x(0, T)) for every T > 0. Then we apply this existence result to show wild nonuniqueness for a connected nonlinear parabolic problem having a gradient term with natural growth. | en_US |
dc.language.iso | en | en_US |
dc.title | GLOBAL EXISTENCE FOR NONLINEAR PARABOLIC PROBLEMS WITH MEASURE DATA.APPLICATIONS TO NON-UNIQUENESS FOR PARABOLIC PROBLEMS WITH CRITICAL GRADIENT TERMS | en_US |
dc.type | Article | en_US |
Collection(s) : | Articles internationaux |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
GLOBAL-EXISTENCE-FOR-NONLINEAR-PARABOLIC-PROBLEMS-WITH-MEASURE-DATA.pdf | 57,08 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.