Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/1741
Titre: Fuzzy knowledge-intensive case based classification for the detection of abnormal cardiac beats
Auteur(s): KHELASSI, Abdeldjalil
CHICK, Mohamed Amine
Mots-clés: Classification
Intensive-knowledge case based reasoning
Fuzzy sets
similarity measures
Cardiac arrhythmia diagnosis
Date de publication: sep-2012
Résumé: This paper presents a new automated diagnostic system to classification of electrocardiogram (ECG) cardiac beats. We have developed an intensive-knowledge case based reasoning classifier which uses a distributed case base enriched by partial domain knowledge (rules). An original similarity measures is proposed by combining the sigmoid similarity function with the fuzzy sets to ameliorate the system accuracy in the detection of cardiac arrhythmias. The experiments presented in this work concern the detection of Premature Ventricular Contraction PVC, normal and abnormal cardiac beats from a pattern extracted from the Electronic medical records collected and published by Beth Israel Hospital (MIT-BIH). The achieved results demonstrate the efficiency and the performance of the developed system.
Description: ELECTRONIC PHYSICIAN,Vol.4,No.3,sept 2012,pp. 565-571.
URI/URL: http://dspace.univ-tlemcen.dz/handle/112/1741
ISSN: 2008-5842
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Fuzzy-knowledge-intensive-case-based-classification-for-the-detection-of-abnormal-cardiac-beats.pdf753,48 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.