Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/1741
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorKHELASSI, Abdeldjalil-
dc.contributor.authorCHICK, Mohamed Amine-
dc.date.accessioned2013-04-14T12:28:56Z-
dc.date.available2013-04-14T12:28:56Z-
dc.date.issued2012-09-
dc.identifier.issn2008-5842-
dc.identifier.urihttp://dspace.univ-tlemcen.dz/handle/112/1741-
dc.descriptionELECTRONIC PHYSICIAN,Vol.4,No.3,sept 2012,pp. 565-571.en_US
dc.description.abstractThis paper presents a new automated diagnostic system to classification of electrocardiogram (ECG) cardiac beats. We have developed an intensive-knowledge case based reasoning classifier which uses a distributed case base enriched by partial domain knowledge (rules). An original similarity measures is proposed by combining the sigmoid similarity function with the fuzzy sets to ameliorate the system accuracy in the detection of cardiac arrhythmias. The experiments presented in this work concern the detection of Premature Ventricular Contraction PVC, normal and abnormal cardiac beats from a pattern extracted from the Electronic medical records collected and published by Beth Israel Hospital (MIT-BIH). The achieved results demonstrate the efficiency and the performance of the developed system.en_US
dc.language.isoenen_US
dc.subjectClassificationen_US
dc.subjectIntensive-knowledge case based reasoningen_US
dc.subjectFuzzy setsen_US
dc.subjectsimilarity measuresen_US
dc.subjectCardiac arrhythmia diagnosisen_US
dc.titleFuzzy knowledge-intensive case based classification for the detection of abnormal cardiac beatsen_US
dc.typeArticleen_US
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Fuzzy-knowledge-intensive-case-based-classification-for-the-detection-of-abnormal-cardiac-beats.pdf753,48 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.