Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/1463
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorChikhaoui, Abdelhak-
dc.contributor.authorBenouaz, Tayeb-
dc.contributor.authorLassouani, Fatiha-
dc.date.accessioned2013-02-24T14:31:23Z-
dc.date.available2013-02-24T14:31:23Z-
dc.date.issued2012-03-
dc.identifier.issn1694-0814-
dc.identifier.urihttp://dspace.univ-tlemcen.dz/handle/112/1463-
dc.description.abstractIn this paper, we propose an study that combines classical linearization method with the Routh Herwitz criterion theory of complex nonlinear systems to compute local stability boundaries and visualize such bifurcation surfaces of nonlinear dynamical systems as function of parameters set (Analytical Search for Bifurcation Surfaces in Parameter Space). Therefore, we proposed a numerical method for the bifurcation analyses , Our goal is to applied the optimal derivative (based on the minimization in the least-square sense) as introduced by O.Arino and T. Benouaz. In order to gain some progress with this procedure in the term of bifurcation analysis (detection of the local bifurcation in the neighborhood of the bifurcation parameters with respect to an initial condition) . This application enables us to compare the results obtained with those found by the classical linearization (Fréchet derivative (jaccobian matrix) in the equilibriums points)en_US
dc.language.isoenen_US
dc.subjectNonlinear ordinary differential equationen_US
dc.subjectoptimal derivativeen_US
dc.subjectClassical linearization (Freshet derivative in the equilibrium point)en_US
dc.subjectasymptotic stabilityen_US
dc.subjectbifurcation analysisen_US
dc.titleNumerical Approach for Local Bifurcation Analysis of Nonlinear Physical Systemen_US
dc.typeArticleen_US
Collection(s) :Articles nationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Numerical-Approach-for-Local-Bifurcation-Analysis-of-Nonlinear.pdf639,33 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.