Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-tlemcen.dz/handle/112/13259
Titre: Existence de solutions de type ondes progressives pour un modèle structuré en âge et en espace.
Auteur(s): BOUZOUINA, Chaima
Mots-clés: Solutions de type ondes progressives, sous et sur solutions, méthode de glissement de Berestycki, monotonie des ondes progressives, équation KPP, équation structurée en âge et en espace.
Travelling wave solutions, sub and super solutions, sliding method of Berestycki, monotonicity of the travelling waves, KPP equation, age and space structured equation.
Date de publication: 1-jui-2018
Editeur: 18-10-2018
Référence bibliographique: salles des thèses
Résumé: Ce travail concerne l’étude d’existence des solutions de type ondes progressives pour un modèle épidémique simple (SI). Ce modèle est composé d’une équation scalaire dépendante de l’âge et avec une structure spatiale. On a aussi des propriétés qualitatives des ondes progressives : la décroissance exponentielle et la monotonie par rapport à la direction de la propagation de l’onde progressive de type "front". On utilisera souvent le principe de comparaison : — pour la construction des sous et sur solutions convenables. — pour obtenir les propriétés qualitative de l’onde progressive en utilisant la méthode de glissement.
URI/URL: http://dspace.univ-tlemcen.dz/handle/112/13259
Collection(s) :Master Math

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Existence-de-solutions-de-type-ondes-progressives-pour-un-modele-structure-en-age-et-en-espace..pdf649,57 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.