Veuillez utiliser cette adresse pour citer ce document :
http://dspace1.univ-tlemcen.dz/handle/112/10630
Titre: | Étude des techniques d’apprentissage semi- supervisé par regroupement |
Auteur(s): | Lakhdari, Salsabil Saidi, Amaria |
Mots-clés: | Apprentissage automatique. Apprentissage semi-supervisé. Apprentissage semisupervisé par regroupement. Cop-kmeans. SKMS Semi-supervised kernel Mean- Shift clustering . SKLR le regroupement semi supervisé avec contraintes de distances relatives.Contraintes. Must-link. Cannot-link |
Date de publication: | 11-sep-2017 |
Résumé: | Dans un monde guidé par les données, l’apprentissage automatique est un outil essentiel pour aider les utilisateurs à appréhender la structure de ces données. Dans ce domaine il existe de nombreuses techniques d’apprentissage, l’apprentissage semi-supervisé reste le plus utilisé dans le cadre applicatif et réel, et cela en raison de son principe qui trouve ses racines dans les problèmes d’apprentissage en présence d’un petit nombre de données labellisées. Dans ce projet de fin d’étude nous nous intéressons à la catégorie d’approche d’apprentissage semi-supervisé par contraintes. Pour ce faire, nous réalisons une étude comparative de trois techniques d’apprentissage semi- supervisé par regroupement qui sont : cop-kmeans, Semi-supervised kernel Mean Shift clustering et le regroupement semi supervisé avec contraintes de distances relatives. Nous discutons et analysons en outre l’influence des contraintes par paires (must-link et cannotlink) sur les performances de clustering en effectuant des expérimentations avec différents pourcentages d’exemples marqués. Nous menons une étude sur 6 ensembles de données médicales. Les résultats expérimentaux indiquent que la méthode Semi-supervised kernel Mean Shift clustering peut généralement surpasser d’autres méthodes semi-supervisées. L’étude expérimentale montre que l’utilisation des contraintes peut améliorer les performances en particulier lorsque le nombre d’exemples étiquetés disponibles est insuffisant pour former un modèle de clustering. Des travaux futurs pourront concerner des systèmes d’aide au diagnostique ou segmentation ciblée et une annotation automatique de structures dans les images biomédicales |
URI/URL: | http://dspace.univ-tlemcen.dz/handle/112/10630 |
Collection(s) : | Master en Génie Biomedical |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Ms.EBM.Lakhdari+Saidi.pdf | 705,45 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.