Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/839
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorChikh, MA-
dc.contributor.authorBelgacem, N-
dc.contributor.authorChikh, AZ-
dc.contributor.authorBereksi Reguig, F-
dc.date.accessioned2012-05-23T15:00:54Z-
dc.date.available2012-05-23T15:00:54Z-
dc.date.issued2003-09-27-
dc.identifier.urihttp://dspace.univ-tlemcen.dz/handle/112/839-
dc.descriptionConférence Internationale sur les Systèmes de Télécommunication , d’Electronique Médicale et d’Automatique, CISTEMA’2003-
dc.description.abstractPremature ventricular contraction (PVC) is a cardiac arrhythmia that can result in sudden death. Understanding and treatment of this disorder would be improved if patterns of electrical activation could be accurately identified and studied during its occurrence. In this paper, we shall review three feature extractions algorithms of the electrocardiogram (ECG) signal, fourier transform, linear prediction coding (LPC) technique and principal component analysis (PCA) method, with aim of generating the most appropriate input vector for a neural classifier. The performance measures of the classifier rate, sensitivity and specificity of these algorithms will also be presented using as training and testing data sets from the MIT-BIH database.en_US
dc.language.isoenen_US
dc.publisherUniversity of Tlemcenen_US
dc.subjectECG signalen_US
dc.subjectlinear prediction codingen_US
dc.subjectprincipal component analysisen_US
dc.subjectFourier transformen_US
dc.subjectneural networksen_US
dc.subjectpremature ventricular contractionen_US
dc.subjectMIT-BIH arrhythmia databaseen_US
dc.titleThe Use of Artificial Neural Network to Detect the Premature Ventricular Contraction (PVC) Beatsen_US
dc.typeArticleen_US
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
The-Use-of-Artificial-Neural-Network-to-Detect-the-Premature-Ventricular-Contraction-PVC-Beats.pdf153,62 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.