Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/19211
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBENDIMERAD, Abderrahmen-
dc.date.accessioned2022-10-12T09:18:39Z-
dc.date.available2022-10-12T09:18:39Z-
dc.date.issued2022-09-22-
dc.identifier.urihttp://dspace.univ-tlemcen.dz/handle/112/19211-
dc.description.abstractLe signal électrocardiogramme (ECG) représente l’activité électrique du coeur. Dans notre travail, nous allons présenter une nouvelle architecture d’ECG portable sans fil. L'estimation de la respiration dérivée de l'ECG (EDR) est également développée. Deux formes d’apnée du sommeil dont identifiée : l’apnée du sommeil obstructive (OSA) et l’apnée du sommeil centrale (CSA). La transformée en ondelette continue (CWT) et le réseau neuronal convolutionnel (CNN) sont utilisées pour la detection de l’apnée du sommeil basé sur des signaux ECG à une seul derivation. Les architectures CNN, GoogLeNet et SqueezeNet sont utilises pour classifier l’ECG en deux catégories: apnée et normal. Un système d’identification biométrique basé sur les paramètres du signal ECG est développé. L’avantage de la méthode proposée est d’extraire les informations à partir d’un seul signal en utilisant le CWT et le CNN. Le CNN accepte les images RVB (red, green, blue). Ainsi, il est nécessaire dans un premier temps de convertir les données ECG en images en utilisant la transformée en ondelettes continue (CWT). Un résultat de 97,75 % de performance a été obtenu dans la détection de l'identification biométrique individuelle.en_US
dc.language.isofren_US
dc.subjectElectrocardiogram (ECG), Apnée du sommeil, Transformée en ondelette continue (CWT), deep learning, réseau neuronal convolutionel (CNN), Biométrie, Téléédecine.en_US
dc.titleRéalisation d’un système de surveillance cardiaque et respiratoire à distanceen_US
dc.typeThesisen_US
Collection(s) :Doctorat en GBM

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Doc.Gbm.Bendimerad.pdf4,42 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.