Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/1833
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorCHIKH, Mohamed Amine-
dc.contributor.authorSAIDI, Meryem-
dc.contributor.authorSETTOUTI, Nesma-
dc.date.accessioned2013-04-24T10:40:16Z-
dc.date.available2013-04-24T10:40:16Z-
dc.date.issued2012-10-
dc.identifier.urihttp://dspace.univ-tlemcen.dz/handle/112/1833-
dc.description.abstractThe use of expert systems and artificial intelligence techniques in disease diagnosis has been increasing gradually. Artificial Immune Recognition System (AIRS) is one of the methods used in medical classification problems. AIRS2 is a more efficient version of the AIRS algorithm. In this paper, we used a modified AIRS2 called MAIRS2 where we replace the K- nearest neighbors algorithm with the fuzzy K-nearest neighbors to improve the diagnostic accuracy of diabetes diseases. The diabetes disease dataset used in our work is retrieved from UCI machine learning repository. The performances of the AIRS2 and MAIRS2 are evaluated regarding classification accuracy, sensitivity and specificity values. The highest classification accuracy obtained when applying the AIRS2 and MAIRS2 using 10-fold cross-validation was, respectively 82.69% and 89.10%.en_US
dc.language.isoenen_US
dc.subjectPima Indians diabetes data seten_US
dc.subjectDiagnosisen_US
dc.subjectAIRS2en_US
dc.subjectFuzzy k- nearest neighborsen_US
dc.titleDiagnosis of Diabetes Diseases Using an Artificial Immune Recognition System2 (AIRS2) with Fuzzy K-nearest Neighboren_US
dc.typeWorking Paperen_US
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Diagnosis-of-Diabetes-Diseases-Using-an-Artificial-Immune-System2-AIRS2.pdf721,96 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.