Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/1771
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMICHEL, Philippe-
dc.contributor.authorTOUAOULA, Tarik Mohamed-
dc.date.accessioned2013-04-16T09:36:13Z-
dc.date.available2013-04-16T09:36:13Z-
dc.date.issued2013-02-
dc.identifier.urihttp://dspace.univ-tlemcen.dz/handle/112/1771-
dc.descriptionMathematical Methods in the Applied Sciences, DOI : 10.1002/mma.2591,Issue : 3, Volume :36, pp. 323–335, February 2013.-
dc.description.abstractIn this paper, we consider nonlinear age-structured equation with diffusion under nonlocal boundary condition and non-negative initial data. More precisely, we prove that under some assumptions on the nonlinear term in a model of McKendrickVon Foerster with diffusion in age, solutions exist and converge (long-time convergence) towards a stationary solution. In the first part, we use classical analysis tools to prove the existence, uniqueness, and the positivity of the solution. In the second part, using comparison principle, we prove the convergence of this solution towards the stationary solution. Copyright (c) 2012 John Wiley & Sons, Ltd.en_US
dc.language.isoenen_US
dc.subjectMcKendrick–Von Foerster model-
dc.subjectiterative method-
dc.subjectasymptotic analysis-
dc.titleAsymptotic behavior for a class of the renewal nonlinear equation with diffusionen_US
dc.typeArticleen_US
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Asymptotic-behavior-for-a-class-of-the-renewal-nonlinear-equation-with-diffusion.pdf22,84 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.