Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/1755
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorSekkal, M-
dc.contributor.authorChikh, MA-
dc.contributor.authorSettouti, N-
dc.date.accessioned2013-04-15T08:28:34Z-
dc.date.available2013-04-15T08:28:34Z-
dc.date.issued2011-07-
dc.identifier.issn1464-522X-
dc.identifier.urihttp://dspace.univ-tlemcen.dz/handle/112/1755-
dc.descriptionJournal of medical engineering & technology, (JMET), Jul 2011; Vol 35 N°5 pp:215-23. DOI : 10.3109/03091902.2011.574778.en_US
dc.description.abstractThis study investigates the effectiveness of a genetic algorithm (GA) evolved neural network (NN) classifier and its application to the classification of premature ventricular contraction (PVC) beats. As there is no standard procedure to determine the network structure for complicated cases, generally the design of the NN would be dependent on the user's experience. To prevent this problem, we propose a neural classifier that uses a GA for the determination of optimal connections between neurons for better recognition. The MIT-BIH arrhythmia database is employed to evaluate its accuracy. First, the topology of the NN was determined using the trial and error method. Second, the genetic operators were carefully designed to optimize the neural network structure. Performance and accuracy of the two techniques are presented and compared.en_US
dc.language.isoenen_US
dc.publisherUniversity of Tlemcenen_US
dc.titleEvolving neural networks using a genetic algorithm for heartbeat classificationen_US
dc.typeArticleen_US
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Evolving-neural-networks-using-a-genetic-algorithm-for-heart-beat-classification.pdf128,99 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.