Veuillez utiliser cette adresse pour citer ce document : http://dspace1.univ-tlemcen.dz/handle/112/1751
Titre: Microscopic image segmentation based on pixel classification and dimensionality reduction
Auteur(s): BENAZZOUZ, Mourtada
BAGHLI, Ismahan
CHICH, MA.
Mots-clés: segmentation
color spaces
dimensionality reduction
support vector machine
microscopic images
Date de publication: fév-2013
Résumé: Pathological image analysis plays a significant role in effective disease diagnostics. In this article, a tool for diagnosis assistance by automatic segmentation of bone marrow images is introduced. The aim of our segmentation is to demarcate cell's component: nucleus, cytoplasm, red cells, and background. Different color spaces were used to extract color's features to profit of their complementarity. We introduce several dimensionality reduction techniques. These techniques are exemplified on a support vector machine pixel-based bone marrow image segmentation problem in which it is shown that it may give significant improvement in segmentation accuracy and time consuming.
Description: International Journal of Imaging Systems and Technology,Volume 23, Issue 1, pages 22–28, March 2013.
URI/URL: http://dspace.univ-tlemcen.dz/handle/112/1751
Collection(s) :Articles internationaux

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Microscopic-image-segmentation-based-on-pixel-classification-and-dimensionality-reduction.pdf118,5 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.