Veuillez utiliser cette adresse pour citer ce document :
http://dspace1.univ-tlemcen.dz/handle/112/1751
Titre: | Microscopic image segmentation based on pixel classification and dimensionality reduction |
Auteur(s): | BENAZZOUZ, Mourtada BAGHLI, Ismahan CHICH, MA. |
Mots-clés: | segmentation color spaces dimensionality reduction support vector machine microscopic images |
Date de publication: | fév-2013 |
Résumé: | Pathological image analysis plays a significant role in effective disease diagnostics. In this article, a tool for diagnosis assistance by automatic segmentation of bone marrow images is introduced. The aim of our segmentation is to demarcate cell's component: nucleus, cytoplasm, red cells, and background. Different color spaces were used to extract color's features to profit of their complementarity. We introduce several dimensionality reduction techniques. These techniques are exemplified on a support vector machine pixel-based bone marrow image segmentation problem in which it is shown that it may give significant improvement in segmentation accuracy and time consuming. |
Description: | International Journal of Imaging Systems and Technology,Volume 23, Issue 1, pages 22–28, March 2013. |
URI/URL: | http://dspace.univ-tlemcen.dz/handle/112/1751 |
Collection(s) : | Articles internationaux |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Microscopic-image-segmentation-based-on-pixel-classification-and-dimensionality-reduction.pdf | 118,5 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.