La modélisation moléculaire [1] est un outil complémentaire à l'expérimentation de plus, elle donne des grandeurs qui sont au-delà des possibilités expérimentales et ceci dans des conditions parfaitement contrôlées de pureté, de pression, de température, etc.

Ce travail consiste à étudier la solvatation (explicite et implicite) de deux monosaccharides [2], par modélisation moléculaire.

Les molécules choisies sont représentées ci-dessus :

Figure 1 : structure du β -D-mannose

Figure 2 : structure du β -D-glucose

Figure 3 : structure du β -D-mannose

Pour le mannose et le glucose on considère l'angle dièdre ω [O-C₆₋C₅₋O].

Nous avons optimisé les structures par la mécanique moléculaire à fin d'obtenir des structures de départ présentant une géométrie et une conformation probablement les plus stables afin de les étudier par la dynamique moléculaire [6.8]

I. première partie :

Les calculs sont exécutés sans solvant à l'aide du logiciel HyperChem [3].

HyperChem rassemble dans une même interface un ensemble d'outils dédiés à la modélisation moléculaire, il permet de faire réellement de la modélisation: il possède des méthodes de calculs (mécanique moléculaire, semi-empirique, *ab initio*, QSAR et recherche conformationnelle).

L'optimisation du mannose et du glucose par mécanique moléculaire se fait en utilisant le champ de force Amber et Polak-Ribiere comme algorithme (conjugate gradient)

Molécules	β-D-mannose	β-D-glucose
Energy (Kcal/mol)	6.16	5.22
bond	0.18	0.16
angle	1.06	0.73
dihedral	4.59	3.66
vdw	1.14	1.15
H-bond	-0.81	-0.48
electrostatic	0	0

Tableau 1 : (Résultats obtenus après optimisation)

*Partie de chauffage : prend 10ps

Heat time :10	Starting temperature: 0
Run time :0.001	Simulation temperature: 300k
Cool time: 0	
Step size :0.001	Temperature step:10

Tableau 2 : Résultats obtenus par dynamique moléculaire : des molécules isolées(sans solvant) -Hyperchem

Molécules	β-D -mannose	β-D-glucose
Energie (Kcal/mol)	47,91	45,85

*Partie de La dynamique moléculaire

Heat time: 0	
Run time :500	Simulation temperature:300k
Cool time: 0	
Step size :0.001	

Tableau 3 : Résultats obtenus par dynamique moléculaire : des molécules isolées (sans solvant)- Hyperchem

Molécules	β-D mannose	β-D-glucose
Energie (Kcal/mol)	6.78	5,70

On a utilisé le programme ORIGIN6.0 [4] pour dessiner les cartes d'énergie.

Origin est un logiciel de traitement et d'analyse de données scientifiques pour environnement Microsoft Windows développé par OriginLab.

Il permet notamment de tracer des graphes 2D et 3D et possède des fonctions d'analyse de pics. Il est aussi capable d'importer des fichiers de divers formats tels que Excel, ASCII, Mathematica ou SigmaPlot, et d'exporter les graphes sous format JPEG, GIF, Tiff etc.

• β-D-mannose isolé (le tableau 9 en annexe l'énergie en fonction de temps et ω)

Figure3 : Energie en fonction du temps

Figure 4 : Conformation la plus stable de β -D-mannose

Figure 5: Variation d'énergie en fonction du ω

• β-D-glucose isolé (le tableau 10 en annexe l'énergie en fonction de temps et ω)

Figure 6 : variation d'énergie en fonction temps

Figure7 : Conformation la plus stable de β -D-glucose

Figure 8 : Variation d'énergie en fonction de ω

La majorité des réactions chimiques et biologiques ont lieu en solution, et les effets dus au solvant peuvent être très importants. [5]

On peut les prendre en compte :

- soit de manière explicite en plaçant des molécules de solvant autour de la molécule
- soit de manière implicite, c'est-à-dire indirecte.

-Les solvants explicites :

Dans ce cas on génère une cage de solvatation autour de la molécule. C'est-à-dire que l'on ajoute « tout simplement » et de manière aléatoire un nombre de molécules de solvant correspondant à la densité du solvant. On (le logiciel) crée une boîte ou une sphère d'une dimension définie autour de la molécule que l'on remplit de molécules d'eau, cette étape faite dans logiciel hypechem

• On met le β -D- mannose dans une boite pleine de 216 molécules d'eau.

Figure 9 : Structure β -D-mannose (en bleu) dans le solvant

• On met le β -D- glucose dans une boite pleine de 216 molécules d'eau.

Figure 10 : structure β -D-glucose(en bleu) dans le solvant

L'optimisation de géométrie peut être effectuée en mécanique moléculaire (MM), L'optimisation du β -D-mannose et β -D-glucose par mécanique moléculaire en utilisant le champ de force Amber et comme algorithme Polak-Ribiere (conjugate gradient).

Molécule	β-D-mannose	β-D-glucose
Energy (Kcal/mol)	-3180.35	-3224.37
Bond	25.95	28.85
Angle	26.22	24.82
Dihedral	4.972	4.69
Vdw	66.46	45.87
H-bond	-3.71	-5.50
Electrostatic	-3300.24	-3323.1

 Tableau 4 : (résultats obtenus après optimisation)

*Patrie de chauffage : 10ps

Heat time :10	Starting temperature: 0
Run time :0.001	Simulation temperature:300
Cool time: 0	
Step size :0.001	Temperature step:10

Tableau 5 : Résultats obtenus par dynamique moléculaire : en présence demolécules d'eaux - Hyperchem

Molécule	β-D-mannose	β-D-glucose
Energie (kcal/mol)	-2206.81	-2280.32

*Partie de la dynamique moléculaire

Heat time: 0	
Run time :500	Simulation temperature:300
Cool time: 0	
Step size :0.001	

 Tableau 6 : Résultats obtenus par dynamique moléculaire : en présence des molécules d'eaux-Hyperchem

Molécule	D-mannose	D-glucose
Energie (kcal/mol)	-3000.129	-2966.454

• β -D-mannose dans l'eau(le tableau 11 en annexe l'énergie en fonction de temps et ω)

Figure12: variation d'énergie en fonction du temps

Figure 11 : conformation la plus stable de β -D- mannose dans le solvant

Figure 13: Variation d'énergie en fonction d'angle ω

• β-D-Glucose dans l'eau(le tableau 12 en annexe l'énergie et ω en fonction de temps)

Figure 14 : Conformation la plus stable de β -D- glucose dans le solvant

figure15 : Variation d'énergie en fonction du temps

Figure 16 : Variation d'énergie en fonction d'angle ω

Dans la partie de solvatation explicite, en utilise Hyperchem, d'après les résultats obtenus, on remarque que l'énergie de β -D- glucose sans solvant est faible par rapport à l'énergie trouvé de β -D-mannose sans solvant.

E (kcal/mol) = 5.70 (β -D- glucose)

E (kcal/mol) = 6.78 (β -D-mannose)

Donc la structure de β -D- glucose est plus stable que la structure de β -D-mannose.

On remarque que la conformation la plus stable se trouve dans l'intervalle de ω (55,75) pour le β -D-mannose, et ω (50,65) pour β -D- glucose. [9]

Dans le cas où on utilise les deux molécules avec solvant, on remarque le contraire c'est-à-dire que l'énergie de β -D-mannose est faible par rapport à l'énergie trouvé pour β -D- glucose.

E (kcal/mol) =-2966.45 (β -D- glucose)

E (kcal/mol) = -3000.13 (β -D-mannose)

Donc la structure de β -D-mannose est plus stable que la structure de β -D- glucose.

On remarque que la conformation la plus stable se trouve dans l'intervalle de ω (50,75) pour le β -D-mannose, et ω (-70,-55) pour β -D- glucose.

La remarque la plus importante c'est que : il ya une grande différence entre les énergies des deux molécules isolés (sans solvant), et avec solvant c'est-à-dire, on à une diminution d'énergie dans le cas où on met les deux molécules dans le solvant. Donc le rôle de solvant c'est de stabiliser la structure des deux molécules cela du aux interactions avec solvant.

Molécules	Sans solvant	Avec solvant
β-D-mannose	E = 6.78 kcal/mol	E = -3000.13 kcal/mol
β-D- glucose	E = 5,70 kcal/mol	E = -2966.45 kcal/mol

II. deuxième partie :

On fait l'optimisation des molécules avec logiciel Gaussian [7].

Gaussian défini l'interface graphique. On peut graphiquement interpréter :

-structures moléculaires optimisées.

-orbitales moléculaire.

-La densité électronique.

-Les surfaces peuvent aussi être vues comme des contours.

-Charges atomiques et moments de dipôle.

-Animation des modes normaux correspondant à fréquences vibrationnelles

-IR, Raman, NMR, VCD et d'autres spectres.

-Informations stéréo chimiques moléculaires.

L'optimisation moléculaire des molécules : en utilisant Hartree-Fock, la base STO-3G

Molécules	β-D-mannose	β-D-Glucose
Energies (kcal/mol)	-674.47	-674.47

Tableau 7 : (résultats d'optimisation moléculaire des molécules)

Figure 17 : Conformation la plus stable de β -D-Mannose

Figure 18 : Conformation la plus stable de β -D-Glucose

-Les solvants implicites :

Les calculs effectués avec un solvant explicite sont longs, particulièrement dans le cas des calculs de mécanique quantique.

Une alternative consiste à prendre les effets du solvant sur la molécule comme une perturbation.

Le solvant est un ensemble de molécules plus ou moins polaires, possédant un constant diélectrique.

Un tel milieu est caractérisé par sa permittivité ou constante diélectrique ε .

est caractéristique de la réponse du milieu à un champ électrique. Plus le milieu est polaire, plus la permittivité est grande.

Dans cette approche, le soluté est placé dans une cavité entourée de molécules de solvant -eaux- considérées comme un continuum diélectrique. [5]

En utilisant la méthode de Hatree-Fock, la base STO-3G et solvatation dans l'eau avec constant diélectrique $\epsilon_{eau} = 80$

Figure 19 : Conformation la plus stable de β -D-Mannose dans le solvant

Figure20 : Conformation la plus stable de β -D-Glucose dans le solvant

Tableau 8 : (énergie des molécules dans le solvant)

Molécules	β-D-mannose	β-D-glucose
Énergies (kcal/mol)	-674.46	-674.44

Dans le cas de solvatation implicite en utilisant le Guassian : Hartree- Fock, base minimale STO-3G, on remarque que l'énergie des deux molécules : β -D-Mannose, et β -D-Glucose sans solvant, sont de même ordre.

E=-674.47 Kcal/mol (β-D-Mannose)

E=-674.47Kcal/mol (β-D-Glucose)

Pour le calcul avec Gaussian on a obtenu la même énergie pour les deux molécules étudiées (avec ou sans solvant), le Gaussian ne tient pas compte de la stéréochimie il considère le β -D-glucose et le β -D-mannose la même molécule

E (β -D-mannose) =-674.46 kcal/mol;

 $E (\beta$ -D-glucose) =-674.44 kcal/mol

Par contre Hyperchem tient compte de la stéréochimie c'est pour cela on a trouvé des énergies différentes pour le β -D-mannose et le β -D-glucose.

A lumière des résultats obtenus dans notre travail relative à la compréhension de la solvatation des biomolécules, dans notre les carbohydrates retenus pour cette étude (β -D-mannose, β -D-glucose), il ressort que le modèle explicite présenté un certain nombre d'avantages par rapport au modèle implicite .ceci s'explique que la prise en considération de cette approche de description de la solvatation de la stéréochimie de ces structures qui a notre sens parait importante.

Le modèle implicite se résume à la description d'une géométrie simple ,on à l'abstraction de la configuration.

Tableau 9 : (β-D-mannose isolé)

Time (ps)	Oméga(°)	Epot(kcal/mol)
499.976	164.9013	6.781528
499.977	164.7752	6.712324
499.978	164.6359	6.750947
499.979	164.501	6.846574
499.98	164.3854	6.865917
499.981	164.2972	6.804589
499.982	164.236	6.794188
499.983	164.1948	6.886899
499.984	164.1635	6.967793
499.985	164.1335	6.935254

164.0999	6.852096
164.063	6.830518
164.0271	6.857086
163.9984	6.842984
163.983	6.789525
163.9857	6.776856
164.009	6.810637
164.0533	6.811133
164.1168	6.766937
164.1952	6.770822
164.2817	6.855546
164.3675	6.912132
164.4432	6.853569
164.501	6.764441
164.5378	6.777194
	$\begin{array}{c} 164.0999\\ 164.063\\ 164.0271\\ 163.9984\\ 163.983\\ 163.9857\\ 164.009\\ 164.0533\\ 164.1168\\ 164.1952\\ 164.2817\\ 164.2817\\ 164.3675\\ 164.4432\\ 164.501\\ 164.5378\end{array}$

Tableau 10 : (β-D-glucose isolé)

Time (ps)	Oméga(°)	Epot(kcal/mol)
497.6	-63.86887	5.574139
497.7	-62.80872	5.68397
497.8	-60.55571	5.613789
497.9	-59.90983	5.608759
498	-58.60655	5.755851
498.1	-58.3859	5.64465
498.2	-58.36414	5.603488
498.3	-57.80336	5.665291
498.4	-57.71356	5.796277
498.5	-56.55401	5.800328
498.6	-55.91158	5.829026
498.7	-54.85631	5.814206
498.8	-54.99639	5.905171
498.9	-55.50838	5.817262
499	-54.92714	5.745117
499.1	-55.36133	5.756728
499.2	-58.41192	5.661149
499.3	-61.04089	5.559415
499.4	-63.03707	5.648058
499.5	-67.0994	5.675669
499.6	-68.25097	5.72158
499.7	-66.23827	5.688939
499.8	-68.32123	5.62583
499.9	-69.44376	5.730545
500	-66.52129	5.704204

Time (ps)	Oméga(°)	Epot(kcal/mol)
499.974	62.2943	-3009.399
499.975	62.54854	-3006.384
499.976	62.77812	-3008.644
499.977	62.95778	-3006.742
499.978	63.05416	-2995.167
499.979	63.03015	-2987.871
499.98	62.85611	-2998.079
499.981	62.52454	-3015.515
499.982	62.06102	-3020.637
499.983	61.52577	-3012.849
499.984	61.00349	-3007.199
499.985	60.58288	-3008.959
499.986	60.33065	-3010.313
499.987	60.26988	-3009.25
499.988	60.37365	-3012.449
499.989	60.57657	-3019.162
499.99	60.79949	-3018.183
499.991	60.97812	-3005.195
499.992	61.08608	-2991.641
499.993	61.14428	-2989.957
499.994	61.21226	-2998.088
499.995	61.36431	-3005.047
499.996	61.65986	-3005.55
499.997	62.1196	-3002.838
499.998	62.71642	-3000.437
499.999	63.38392	-2999.05
500	64.03821	-3000.219

Tableau 11 : (β -D-mannose dans l'eau)

Tableau 12 : (β -D-glucose dans l'eau)

Time (ps)	Oméga(°)	Epot(kcal/mol)
497.4	44.8787	-2984.344
497.5	50.48093	-2980.726
497.6	64.12064	-2949.84
497.7	67.72849	-2949.06
497.8	51.10001	-2966.029
497.9	62.28129	-2958.068
498	44.39172	-2981.113
498.1	63.5061	-2948.38
498.2	78.27823	-2953.077
498.3	28.84545	-2945.892
498.4	68.94353	-2944.391

498.5	86.66294	-2931.435
498.6	49.11974	-2958.508
498.7	69.32531	-2972.17
498.8	82.16922	-2965.019
498.9	59.99649	-2976.637
499	63.85603	-2939.234
499.1	58.90716	-2976.137
499.2	53.28719	-2965.244
499.3	66.61316	-2977.648
499.4	66.16885	-2968.819
499.5	38.04688	-2968.595
499.6	43.40732	-2975.292
499.7	64.02135	-2984.496
499.8	53.80341	-2979.644
499.9	49.5058	-2957.566
500	61.12149	-2966.454

Référence :

[1] H.Dugas, Principes de base en modélisation moléculaire, Aspects théoriques et pratique, Librairie de l'université de Montréal, Chapitre 3.**1996**

[2] Ashwell, G., and Morell, A.G. The role of surface carbohydrates in the hepaticrecognition and transport of circulating glycoproteins. Adv. Enzymol., 41, 99, 1974.

[3] Daan Frenkel, Berend Smit Understanding Molecular Simulation: From Algorithms to Applications, ISBN 0-12-267370-0,**1996**

[4] Drug Discovery & Development magazine: Vol. 11, No. 2, February, pp. 30-32 ,2008

[5] Solvatation (Yizhak Marcus. Ion solvatation, Ed. J. Wiley & sons limited.), 1985.

[6]A.Imberty and S.Perez Structure, Conformation, and Dynamics of Bioactive Oligosaccharides: Theoretical Approches and Exprerimental Validations, Chem.Rev, 100, 2927_2945.2005

[7] Computational Chemistry, David Young, Wiley-Interscience, Appendix A.A.2.4 pg 336, Gaussian; 2001

[8] P.A.Michael,Introduction to molecular Dynamics Simulation ,published in computational soft matter :from synthetic polymers to Proteins, lecture notes Norbert attig ,kurt binder Helmut Grubmuller ,kurt kremer (Eds) ,john von Neumann institute for computing, julich, nic series ,vol.23,ISBN 3-00-012641-4,1-28.2004

[9] Article, Conformational analysis and dynamics of mannobiosides and mannotriosides using Monte Carlo/stochastic dynamics simulations; Anna Bernardi; 14novembre **2003**