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I. Introduction 

I.1 Context 

Be it for the developed or the less developed countries in the world, the continued increase 
of the aging population is a serious problem. In 2020, the number of older adults aged 60 and 
over is supposed to reach 1 billion, and perhaps 2 billion by 2050 (Bloom et al., 2010). One in 
ten older people generally lives alone all over the world. Some of them suffer from physical 
(e.g. reduced mobility) or cognitive diseases (e.g. dementia, Alzheimer) which reduce their 
ability to live independently and sometimes keep them in risk situations (e.g. forgetting the 
stove on). Because there is a lack of infrastructures designed to manage the elderly 
population, a rising of healthcare costs and a shortage of nursing staff assistance, recent Smart 
Homes (SHs) research has focused on maintaining them at home by developing assisted living 
technologies which help them in the completion of their Activities of Daily Living (ADL). In 
this context, Human Activity Recognition (HAR) aims to recognize the ADLs of occupants at 
home.  

SH technology aims to support people to have a better quality of life and to ensure elderly 
to live comfortably and independently (Demiris et al., 2004). The SH technology is 
considered as a way to reduce living and care costs and to improve the quality of life for 
people with care needs. It has been applied for many purposes (Miskelly, 2001) like energy 
saving, security and safety, fall detection, light management, smoke and fire detection etc. 
using various solutions such as video monitoring, alarms, smart planners and calendars, 
reminders, etc. Equipped with sensors, actuators and eventually cameras to collect different 
types of data about the home and the occupants, SHs can enable automatic systems or 
caregivers to control the environment on behalf the occupants, predict their actions and track 
their health condition. 

A SH system incorporates different components structured in layered architecture as 
illustrated in figure 1. Each layer of the system has its own function and comes with its own 
challenges to be dealt with. The home is first equipped with sensors designed to perceive the 
state of both the environment and the occupant while he/she goes to perform his/her ADLs. 
The Data is collected as the physical layer by these sensors and transmitted through the 
communication layer to the processing unit in the reasoning layer. The communication layer 
plays the role of connecting all of the components such as sensors, actuators, gateway and 
storage hardware and consists of the different communication technologies such as : Low 
Powered Wireless (LPW) networks, Power Line Communication (PLC),  Personal Computer 
Networking Protocols (PCNP) and Universal Mobile Telecommunications System (UMTS).  
In the reasoning layer (i.e. the "smart part" of a SH system) data potentially undergoes a pre-
processing step for cleaning, the main step is, however, analysis which encompasses: HAR,  
behavior patterns discovery, detecting abnormal behavior, etc. The outcome of the analysis, 
allows to assess the physical and cognitive capabilities of the occupant, in order to, alerts or 
warnings the stakeholders (i.e. caregivers, occupant's relatives) though the interface layer. 
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This system architecture allows to determine the type of services and assistance required for 
the occupant over time and consequently to enhance their well being and independent living.  

 

Figure 1: The layered architecture of an SH 

So far research related to HAR has devoted a particular attention to the issue of monitoring 
of a single occupant in a SH assuming that in general elderly individuals live alone (Khan et 
al., 2012) (Hu et al., 2009) (Riboni et al., 2011) (Kasteren et al., 2008) (Kasteren et al., 2010) 
(Kasteren et al., 2011) (Sarkar et al., 2010) (Nait Aicha et al., 2013) (Gu et al., 2009a). 
However, the monitoring process is continuous and sometimes scenarios in which multiple 
people are simultaneously present within the home may take place even though the house is 
usually inhabited by a single occupant (e.g. receive visits from family members or 
professional health care givers).The SH solution for maintaining older people at home should 
not only focus on recognizing ADLs of single inhabitants. Extending HAR systems to 
multiple occupants referred to as multi-occupancy is necessary and should contribute to the 
facilitation of the deployment of these systems in real-world environments. 

Multi-occupancy has not been studied much so far, because the field is still young and 
because many outstanding challenges in single occupancy remain unresolved, such as the 
recognition of complex activities (Liu et al., 2015, p. 2) and interleaved activities (Meditskos 
et al., 2015). Several recent papers highlight the challenges encountered in this field as shown 
in (Amiribesheli et al., 2015) and (Ni et al., 2015). In a recent work, Amiribesheli et al. 
(Amiribesheli et al., 2015)  discuss the challenges related to data processing (i.e. maintaining 
the security, privacy and reliability of an activity data) and  to activity recognition modeling 
(i.e. recognizing interleaved and concurrent activities, imbalanced data, online activity 
learning, applicability and adaptability of the activity model, scalability of the activity model). 

 

-Machine learning algorithms, ontology, .. 

-Data storage and representation 

Wireless/Wired sensor networks: LPW, 
PLC, PCNP, UMTS 

Caregivers and occupants interfaces 

Assistive technologies 

Occupants, environment and sensors Physical Layer 

Communication Layer  

Reasoning Layer 

Interface Layer 
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Ni et al. (Ni et al., 2015) discuss eight challenges to solve before improving the quality of life 
in a SH for an elderly. Clearly, HAR in a multi-occupant environment only represents one of 
the challenges to face among many others relevant to HAR in a single occupant environment. 
Recently an increasing interest has been witnessed acknowledging the prominence of multi-
occupancy as a research area in the context of SHs and activity recognition. 

Different types of sensors have been used for multi-occupant activity recognition in SHs, 
but most of the work has considered video cameras and computer vision techniques to 
develop HAR systems (Nguyen et al., 2006) (McCowan et al., 2005) (Du et al., 2006) 
(Natarajan and Nevatia, 2007) (Du et al., 2007). The use of camera is, however, not suitable 
due to privacy concerns and vision based studies are out of the scope of this thesis. Recently, 
many studies have been interested in the use of pervasive sensors to recognize multi-occupant 
ADLs. In this context, we clearly distinguish two main types of developments:(i) those based 
on wearable sensors such as accelerometer, gyroscope, etc (Wang et al., 2009) (Wang et al., 
2011) and (ii) those based on infrastructure sensors, such as motion, reed switches, etc (Hsu et 
al., 2010) (Chiang et al., 2010) (Cook et al., 2010) (Singla et al., 2010) (Prossegger and 
Bouchachia, 2014) (Alemdar et al., 2013). A lot of studies have been conducted using 
wearable sensors, where the identification of the person triggering the sensor individuals is 
straightforward. The disadvantage of wearable sensors is that they cause inconvenience and 
are impractical for situations in which individuals are opposed to wear the sensors, forget to 
wear them like elderly people with cognitive impairment. Moreover, pervasive infrastructure 
sensors offer the advantage of being non obtrusive to people as they are seamlessly placed in 
the environment. They could be either wall-mounted (e.g. motion sensors placed on the 
ceiling) or placed on objects (e.g. reed switches placed on doors). Using these non-intrusive 
sensors allows the occupants to live as normally as possible and not feel restrained by the 
technology that surrounds them while they perform their ADLs at home. In this thesis, we 
focus only on the latter technology. 

The remainder of this chapter is organized as follows. Section I.2 describes the types of 
activities of daily living. Section I.3 highlights the problem of multi-occupancy focusing on 
two aspects: data association and interaction. Section I.4 presents our research focus and 
questions. Section I.5 gives an overview on the different chapters of the thesis. 

I.2 Activities of Daily Living 

Activity recognition is the process of automatically identifying human actions from the 
data captured by various types of sensors. It is relevant to many real-world applications such 
as surveillance, assisted living, and healthcare. Modeling simple activities has been the focus 
of most of the activity recognition research, while complex activities have only recently 
started to attract attention from the ambient intelligence and pervasive computing 
communities (Kim et al., 2010) (Liu et al., 2015, p. 2). Complex activities are common and 
can be performed by either single persons or by a group of people. We can therefore 
distinguish different types of activities: 
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 Complex activity consists of many sub-activities as fine-grained activities. For 
instance, the activity “cooking soup” could be modeled as a sequence of sub-
activities: measure water, pour water into a pot, add content of the bag, cook, and 
serve in a bowl. 

 Simple activity is usually an atomic activity which cannot consist of simpler 
activities, for instance, pour water. 

Moreover we can distinguish two types of ADLs:  

 Basic ADLs refer to self-care tasks (e.g. eating, moving, dressing, bathing and 
showering, grooming and toilet hygiene) (Roley et al., 2008);  

 Instrumental ADLs are not essential for basic living, but  they let an individual 
live independently in a community (e.g. doing housework, meeting with people, 
doing shopping, taking medicine, using of technology, using transportation) 
(Bookman et al., 2007). 

Most of the state-of-the-art research has investigated monitoring and assisting people in 
single-occupancy living spaces. Nevertheless, living spaces are usually inhabited by more 
than a single person; hence, designing solutions for handling multi-occupancy is of prominent 
importance. In fact, recently, multi-occupancy research has gained more attention.  However, 
the pace of research is slow and many outstanding problems are still ahead. The reason for 
this is that there have been numerous other challenges with single-occupancy to deal with 
before tackling multi-occupancy.  

The research work published on multi-occupancy is mainly related to activity modeling 
and data association. The challenge is to find suitable models to address the problem of data 
association, to build activity recognizers that capture the various interactions between 
occupants. Data association is about the identification of the occupants, by whom each sensor 
is triggered. That is about mapping sensed data to the occupant who actually caused the 
generation of the data. In activity modeling, we distinguish between 5 types of activities:  

(1) Sequential activities where each activity is performed after another in a sequential 
fashion without  any interleaving (e.g. make a phone call, washing hands and then 
cooking).  

(2) Interleaving activities where a single occupant switches between many activities (e.g. 
switching between chopping vegetables and stirring soup in the kitchen) as shown in 
figure 2. 
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Figure 2: Interleaved activities (a single occupant) 

 
(3) Concurrent activities where a single occupant carries out more than one activity at a 

time (e.g. talking on phone call, while cooking). 
(4) Parallel activities where many occupants perform many activities at the same time 

(e.g. one occupant is watching (Television) TV in the living room, while the other is 
cooking in the kitchen). 

(5) Cooperative activities where many occupants work together in a cooperative manner 
such that each occupant performs certain actions of the same activity, either together 
(e.g. two persons moving a table by holding it by the ends) or in parallel (e.g. one 
person is chopping vegetables, while the other is boiling broth to make soup) as shown 
in figure 3. 
 

 
Figure 3: Cooperative activities (two occupants: P1 and P2) 

 
While the first three activity types are concerned with a single person (also termed as 

individual activities), but done in the presence of multiple occupants, the latter two are 
relevant for multi-occupancy. Obviously, the complexity of ADLs increases as the number of 
occupants in the living environment increases and the activities tend to be cooperative (e.g. 
watching TV or play a board game). Also the cooperative activities tend to be generally 
instrumental.  

The existing state-of-the-art literature on multi-occupant SHs indicates that these types of 
activities are not yet fully addressed. Much of the studies is done on simple scenarios like: 
elementary activities (Wilson and Atkeson, 2005) (e.g. whether a person moves or not) and 
sequential activities (Cook et al., 2010) (Singla et al., 2010), although, parallel individual and 
cooperative activities are the most frequent in nature. Almost, no work has addressed all types 
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of activities. A more mature research in this area has been conducted by the computer vision 
community using normal cameras (Nguyen et al., 2006) (McCowan et al., 2005) (Du et al., 
2006) (Natarajan and Nevatia, 2007) (Du et al., 2007). Vision-based studies are nevertheless 
out of the scope of this thesis. 

I.3 Multi-occupancy problem 

The challenge of multi-occupant SHs is to design a computational model to deal with the 
problem of data association (i.e. the identification of the occupant) and to efficiently capture 
the interactions between the occupants. 

I.3.1 Data Association 

In a SH environment shared by multiple occupants, the identification of the occupant is 
crucial. Recognizing who triggered the sensors' events allows efficient and accurate tracking 
the occupants' activities. The problem of data association consists of mapping the sensed data 
to the occupant causing its generation. Failing to do so, that data will not be useful and could 
even endanger the life of occupants in telehealth/telecare context, if important actions are to 
be taken based on the assessment of such activity data. The data association problem is 
encountered either when using non-intrusive sensors which cannot directly identify occupants 
in a SH (Crandall and Cook, 2008a) (Crandall and Cook, 2008b) (Crandall and Cook, 2010) 
(Hsu et al., 2010) (Wilson and Atkeson, 2005) (Cook et al., 2010) (Alemdar et al., 2013) 
(Chen and Tong, 2014) or when using unlabeled data (Alemdar et al., 2013). All the studies in 
the literature show that data association is a fundamental problem when modeling activities in 
a multiple-occupant environment (Hsu et al., 2010). 

I.3.2 Cooperative activities (interaction) 

The main difference between a single-occupant environment which is characterized by 
individual activities and a multi-occupant environment is the interaction between individuals 
to complete cooperative activities. Cooperative activities are usually inter-dependent 
activities. For example, a occupant cannot do "toileting" because the bathroom is busy. 
Instead, he decides to do "dressing" (Hsu et al., 2010). Clearly "dressing" takes place because 
"toileting" did not happen. But, "dressing" does not always occur when the bathroom is busy. 
Hence, these two activities are unrelated in the general case. Collective activities that involve 
many persons are usual in the daily life, such as watching TV, eating, gardening, etc.  

People perform certain activities collectively because such activities require cooperation. 
In terms of interaction, we can distinguish two distinctive types of interdependence (Smith 
and Mackie, 1999): social interdependence and task interdependence. A task is socially 
interdependent if people rely on one another for its full completion, like playing monopoly. It 
would be more enjoyable to play monopoly in a group than alone. A task is interdependent if 
more than one person is required to accomplish the activity like moving a table into another 
room of the house requires at least two persons.  



CHAPTER I                                                                                                              Introduction 
 
 

7 
  

Studies report that old people tend to isolate themselves (Anon, 2014) which may lead to 
dementia (Fratiglioni et al., 2000) or simply to cause damages to their health (Cornwell and 
Waite, 2009). Recently, researchers have relied on wearable devices to study social behavior 
(Wang et al., 2009) (Wang et al., 2011) (Gu et al., 2009b) (Gross, 2007) (Olguin et al., 2009) 
(Eagle, 2008) (T. Choudhury, 2004) in the context of multi-occupant activity recognition. 
However, they have recognized the need to use non-intrusive sensors to monitor occupants' 
behavior and develop real-world applications for older adults. 

I.4 Research Focus and Questions 

In the last section we presented the most important issues encountered in a multi-occupant 
activity recognition that is the data association problem and modeling interaction. These 
issues also represent the major differences between single occupant activity recognition and 
multi-occupant activity recognition. In our thesis, we consider the data association problem to 
be solved and only focus on recognizing complex multi-occupant activities.  

Recent developments in pervasive sensing technology make it possible to easily equip 
existing homes with low cost  miniaturized sensor networks. Healthcare professionals 
emphasize that the activities must be monitored (Katz, 1983). Real world situations exhibit 
the need for SH systems to consider  the coexistence of multiple occupants at home. What is 
missing are the pattern recognition methods to recognize multi-occupant activities 
automatically from sensor data. In this thesis, we answer the following questions with respect 
to that issue: 

While there have been several review papers published over the recent years devoted to 
activity recognition and to smart environments in general (Acampora et al., 2013) (Chan et 
al., 2009) (Sadri, 2011) (Amiribesheli et al., 2015), does there exist a devoted survey to the 
area of multi-occupant activity recognition? there is no survey paper on multi-occupancy that 
draws the picture of the current advances in this area, hence, the importance of our survey 
paper (Benmansour et al., 2015). We provide full coverage of techniques, methods, and open 
issues related to multi-occupancy.  

On which types of activities must we focus while performing multi-occupant activity 
recognition? Occupants can either perform the actions independently in parallel (e.g. one 
occupant is chopping vegetables while the other is boiling broth to make soup) or work 
together in a cooperative manner to accomplish an activity, such that each occupant performs 
certain actions of that activity (e.g. two occupants moving a table). In a multi-occupant 
activity recognition system, the recognition of cooperative activities and parallel individual 
activities is equally important. Some studies addressed the problem of multi-occupant activity 
recognition using non-intrusive sensors and few of them modeled cooperative activities 
(Alemdar et al., 2013) (Chen and Tong, 2014) (Chiang et al., 2010). 

Which pattern recognition method is appropriate for modeling multi-occupant activities? 
Diverse computational models have been applied in the context of single occupant activity 
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recognition ranging from probabilistic models to standard data mining and machine learning 
models like neural networks, decision trees, ontologies, etc. In the case of multi-occupancy, 
however, no such diversity of models exists. Almost all of the proposed models are essentially 
probabilistic based on graphical models. Our approaches are based on probabilistic graphical 
models as they are robust to the noise in activity data (i.e. sensor readings are usually noisy) 
and the uncertainty while performing activities (i.e. activities are typically performed in a 
nondeterministic fashion).  

Which temporal probabilistic model is able to accurately recognize multi-occupant 
activities from sensor network data? Several probabilistic models have been applied in the 
context of single-occupant activity recognition. We distinguish two classes of probabilistic 
models that is generative and discriminative probabilistic models. Kasteren et al. (Kasteren et 
al., 2008) compared Hidden Markov Model (HMM) and Conditional Random Field (CRF), 
their study reports that generative models are more appropriate than discriminative models for 
imbalanced datasets. For example, in their "Ubicomp dataset”, we can encounter more events 
related to the activity “going to  bed” than those related to the activity “toileting”.  Since the 
same problem arises in multi-occupant activity datasets, our approaches investigate the use of 
generative models such as HMMs and variants of this model.  

In (Chiang et al., 2010), Coupled Hidden Markov Model (CHMM) was applied. In (Chen 
and Tong, 2014) both HMM and CRF were applied and compared. In (Alemdar et al., 2013) 
HMM was used to model with multi-occupant activities. Our approach investigates this 
direction further. The goal is to accurately recognize both parallel and cooperative activities 
from non-intrusive sensors. We do not focus on only one of the two types of activities as done 
in the literature related to multi-occupant activity recognition, but on both types. Specifically, 
this work makes the following contributions: 

  
 We  propose a variant of the combined label approach based on HMM applied in 

(Chen and Tong, 2014) (Alemdar et al., 2013), we call it Hidden Markov Model-
based combined label (CL-HMM). In addition to the use of combined labels for the 
pair of activities labels (i.e. Occupant 1 activity label and Occupant 2 activity 
label), our approach also suggests the use of combined labels for the pair of 
observations (i.e. the observation of Occupant 1 and the observation of Occupant 
2).  

 We also propose a linked version of HMMs called Linked Hidden Markov Model 
(LHMM) to model multi-occupant activities and describe the corresponding 
version of the Viterbi algorithm. To the best of our knowledge this model has never 
been applied for pervasive multi-occupant HAR. A baseline model that consists of 
parallel Hidden Markov Models (PHMMs) for the occupants is developed, where 
each occupant is modeled as one separate HMM. This model does not explicitly 
represent any inter-occupant interaction. 
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 We compare the performance of all of the proposed models, CL-HMM, LHMM 
and PHMM against the state-of-the-art model CHMM used in (Chiang et al., 2010). 

I.5 Structure of the Thesis 

This thesis is composed of four chapters. Chapter II gives an overview of pervasive multi-
occupant activity recognition systems in the literature. Specifically, Section II.2 discusses 
sensor technology used in recent research related to pervasive multi-occupant activity 
recognition. Section II.3 presents a sample of publicly available datasets. Section II.4 presents 
the computational models used for modeling multi-occupant activities. Section II.5 presents 
some of the issues encountered in multi-occupancy such as identification and interaction. 
Section II.6 provides examples of international research groups in the pervasive computing 
area for both single-occupant and multi-occupant settings.  

Chapter III presents our proposed approaches for multi-occupant activity recognition. 
Section III.2 describes the conventional HMM as all multi-occupant models applied in this 
chapter represent a variation of the latter model. In Section III.3 we present the details of the 
proposed models for Multi-occupant activity recognition that is the CL-HMM and the 
LHMM. We give the definition as well as details about parameter estimation and inference 
algorithms in Section III.3.1 and Section III.3.2 respectively for the two models. Section III.4 
discusses our experiments. In Section III.4.1 we give a description of the experimental dataset 
as well as the pre-processing associated with. Section III.4.2 describes baseline models  
PHMM and CHMM against which our proposed models are compared. Two main 
experiments are studied in Section III.4.3 and Section III.4.4. In the first we present the results 
of the individual occupants using all models; while in the second experiment joint results after 
preprocessing are discussed. Special attention is given to the performance of the models on 
cooperative and parallel activities. Section III.5 discusses the comparison of our proposed 
models against existing studies which relied on the same dataset (i.e. "Multiresident ADLs" of 
Center for Advanced Studies in Adaptive Systems (CASAS)).  

Finally, Chapter IV concludes the thesis. Specifically, we draw our conclusions and 
propose future works in Section IV.1 and Section IV.2 respectively. Section IV.3 goes 
through a sample of open questions in the area of multi-occupant activity recognition. 

I.6 Publications 

The work presented in this thesis has been published in the following papers: 

 Conference paper: Asma Benmansour, Abdelhamid Bouchachia, Mohammed 
Feham, "Human activity recognition in pervasive single resident smart homes: State 
of art", 12 th International Symposium on Programming and Systems (ISPS), April 
2015. 
DOI: 10.1109/ISPS.2015.7244997 
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URL: 
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7244997&url=http%3A%2F%
2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D7244997 
  

 Article-1-: Mohsen Amiribesheli, Asma Benmansour, Abdelhamid Bouchachia, "A 
review of smart homes in healthcare", Journal of Ambient Intelligence and 
Humanized Computing, Volume 6, Issue 4, Pages: 495-517, August 2015.  
DOI:10.1007/s12652-015-0270-2 
URL: http://link.springer.com/article/10.1007%2Fs12652-015-0270-2 
 

 Article-2-:  Asma Benmansour, Abdelhamid Bouchachia, Mohammed  Feham, 
"Multioccupant Activity Recognition in Pervasive Smart Home Environments", ACM 
Computing Surveys (CSUR), ISSN: 0360-0300, Volume 48, Issue 3, Pages: 34:1-
34:36, December 2015. 
DOI: 10.1145/2835372 
URL: http://dl.acm.org/citation.cfm?id=2835372 
 

 Article-3-: Asma Benmansour, Abdelhamid Bouchachia, Mohammed Feham, 
"Modeling Interaction in Multi-Resident Activities", Neurocomputing-journal-
Elseiver, ISSN: 0925-2312, EISSN:  1872-8286. Manuscript number: NEUCOM-D-
15-01722R2 
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II. Multi-Occupant Activity Recognition: Related Work 

II.1 Introduction 

In this chapter, we focus on state of the art studies relying on pervasive sensors. Pervasive 
sensors are used to collect data related to the human physiology, the human activity as well as 
the environment. Such data is processed in order to extract cues and patterns about various 
aspects such as the occupant’s profile, health status of the occupant, the living environment 
and the occupant-environment interaction. Because of the very complex nature of human 
activities, the task of recognition in a pervasive context is very difficult, especially when 
pervasive data generated by sensors is noisy. Multi-occupancy comes with specific scientific 
and technological challenges (Chen and Tong, 2014) related to occupant identification 
(Crandall and Cook, 2008a) (Crandall and Cook, 2008b) (Crandall and Cook, 2010) (Hsu et 
al., 2010) (Wilson and Atkeson, 2005) (Cook et al., 2010) (Alemdar et al., 2013) (Chen and 
Tong, 2014), activity tracking (Prossegger and Bouchachia, 2014) (Crandall and Cook, 2009), 
behavior patterns of occupants (Gu et al., 2009b), and conflict management (Hsu and Wang, 
2008). 

The remainder of this chapter is organized as follows. Section  II.2 discusses sensor 
technology used in recent research related to pervasive multi-occupant activity recognition. 
Section II.3 presents publicly available multi-occupancy datasets and outlines main features 
of these ones such as type of sensors used to register the data, activities concerned and type of 
annotation applied. Section II.4 presents the computational models used by state-of-the-art 
studies for modeling multi-occupant activities. Section II.5 presents main issues encountered 
in multi-occupancy such as occupant identification, interaction and scalability of activity 
models. Section II.6 provides examples of international research groups in the pervasive 
computing area for both single-occupant and multi-occupant activity recognition. 

II.2 Sensing for Multi-Occupancy Activity Recognition 

An SH system consists of two types of components: hardware components and software 
ones. The former integrates sensors and associated equipments like controllers and gateway 
equipments into a single network. Sensors are devices for detecting changes in the 
environment including the occupants. There is a large variety of sensors used to monitor SHs 
and the occupants. Sensors are used to collect various types of data related to: activities of the 
occupants, states of the objects and states of the environment (Orwat et al., 2008). In 
particular sensors capture the following data (Ding et al., 2011) (Ye et al., 2012): 

 Strain and pressure 
 Position, direction, distance and motion 
 Light, radiation, temperature and humidity 
 Type of material (e.g. solid, liquid and gas) 
 Sound 
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 Image and video 
 State of the object (e.g. present, absent) 
 Physiological measurements (e.g. blood sugar, blood pressure) 
 

Sensors can be classified according to different characteristics such as the type of data they 
produce that is discrete state sensors (e.g. Passive Infrared sensors (PIR) which produce 
binary values) and continuous state sensors (e.g. temperature sensors). They can also be 
categorized according to their mobility for example the location of infrastructure sensors and 
cameras is defined in advance, hence they are definitely  maintained in the same place (e.g. 
PIRs and cameras are placed on the ceiling)  of the environment in contrast to wearable 
sensors which usually move according to the occupant who carry them.  

In terms of sensor deployment and selection, table 1 presents different types of sensors 
used for multiple-occupant activity recognition. We can clearly distinguish three major 
classes of approaches, the first one rely on the use of wearable sensors (Wang et al., 2009) 
(Wang et al., 2011) (Gu et al., 2009b) (e.g. Radio Frequency Identification (RFID)), the 
second one is  based on infrastructure sensors (e.g. PIRs) while the third one lies between the 
use of wearable sensors (i.e. embedded sensors in each occupant's Smartphone) and the use of 
infrastructure sensors (i.e. motion sensors) (Roy et al., 2013) (Roy et al., 2016). In the 
following we give a short definition as well as some examples of both wearable and 
infrastructure sensors, we also highlight the advantages and disadvantages while using each 
sensor class: 
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Table 1: Summary of selected studies 

                                                
 

1“-“ means that the authors didn't perform activity recognition, only data association was considered 
2 CV stands for “cross validation” 
3 O stands for “occupant”,  O1 indicates Occupant1 

Ref Dataset Sensors Data 
association 

Activities 
covered1 

Approach Test & 
validation 2 

Evaluation 
metric3 

Results 

(Crandall 
and Cook, 
2008a) 

CASAS Student lab  Motion, Light, 
Door switch 

yes - NB Hold-out 
method 

-Accuracy  
-False positive  

- 92%  
- 7%  

(Crandall 
and Cook, 
2008b) 

Same as (Crandall and 
Cook, 2008a) 

Same as  
(Crandall and 
Cook, 2008a) 

yes - NB and HMM  Same as in 
(Crandall 
and Cook, 
2008a) 

- Accuracy  
- False positive  

- NB: same as in (Crandall and 
Cook, 2008a). 
-HMM: 84%; NB: 76%  

(Crandall 
and Cook, 
2010) 

CASAS B&B and TwoR Motion, Door, 
Cabinet, Water 
flow, Power, 
light, power   

yes -  NB and 
HMM on 
datasets B&B 
and TwoR 

3-fold CV - Accuracy rate 
- Average lag  
- Error rate 

-NB:93.3% (B&B),89.3% 
(TwoR)  
-HMM: 94% (B&B) 
 90.2% (TwoR) 

(Hsu et al., 
2010) 

CASAS Multiresident 
ADLs 

Motion, Item 
sensors, 
Cabinet, 
Water, Burner, 
Phone,  
Temperature  

yes 
 
 

Sequential 2 CRFs (data 
association, 
activity 
recognition)  

Leave-one-
out CV 

Average accuracy 50%  (for raw representation of 
data= best representation) 

no Sequential 
Parallel 

CRF with 
decomposition 
inference  

59%  (O1), 64% (O2) 

(Wilson and 
Atkeson, 
2005) 

Simulated data Motion, 
Contact 
switches, 
Pressure mat, 
Beam   

yes - HMMs (one 
HMM for 
each 
occupant) 

One day of 
data 
 
 
 
 
 

Time slice 
accuracy 

-Off-line learning: 100% (1O) 
to 82% for 4Os 
-On-line learning: 100% (1O) 
to 67% (4 Os) 
-Combined learning: 100% (1 
O) to 74% (4Os) 

Real-world data RFID, Motion, -85.3% for 1O 
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Contact  -82.1% for 2Os 
-86.4% for 3Os 

(Chiang et 
al., 2010) 

Same as (Hsu et al., 
2010) 

Same as (Hsu 
et al., 2010) 

no Sequential 
Parallel 
Cooperative 

- PHMM 
- CHMM 
- DBNs 
extended  

Leave-one-
out CV 

- Accuracy (O1)  
- Accuracy (O2) 
- Joint accuracy  

-78.85%, 81.62%, 84.72%  
-75.92%, 84.03% and 86.44%  
-61.78%, 74.9%, 78.28%  

(Cook et al., 
2010) 

Same as (Hsu et al., 
2010) 

Same as (Hsu 
et al., 2010) 

yes Sequential - Bayesian 
update 
- HMMs (1 
for data 
association, 1 
HMM for 
recognition) 

3-fold CV -Average 
accuracy 
-Average 
precision 
-Average recall  
-Average f-score  

- HMM: 90%, Bayes: 57%  
- HMM: 93% 
- HMM: 96% 
- HMM: 94% 

(Singla et 
al., 2010) 

Same as (Hsu et al., 
2010) 

Same as (Hsu 
et al., 2010) 

no Sequential 1 HMM for all 
activities of 
both 
occupants  

3-fold CV Average accuracy 60.60%   

Sequential  
Parallel 

1 HMM for 
each occupant 

73.15% 

 
(Alemdar et 
al., 2013) 

 

ARAS Photocell, 
Infrared 
receiver, 
Force, 
Proximity, 
Sonar 
distance, 
Temp., 
Contact, 
Pressure mat 

yes Sequential 
Parallel 
Interleaved 
Cooperative 

1  HMM 
(combined 
label for 
multi-
occupant 
activities) 

Leave-one-
out CV 

Average accuracy - 61.5% (House A) 
- 76.2% (House B) 

(Wang et 
al., 2009) 

Real-world Data Audio 
recorder, 
iMote2 with 
ITS400, RFID 

no Sequential  
Parallel 
Interleaved 
Cooperative 

CHMM 10-fold CV -Time slice 
overall accuracy  
-Time slice 
single-occupant 

-82.22% (O1) and 88.71% 
(O2). 
-74.79% and 85.11. 
-96.91% and 95.91%. 
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wristband 
reader 

 
 
 

ADLs 
-Time slice 
multi-occupant 
ADLs  

(Wang et 
al., 2011) 

Same as (Wang et al., 
2009) 

Same as 
(Wang et al., 
2009) 

no Sequential 
Parallel  
Interleaved 
Cooperative 

CHMM  
 

10-fold CV Same as in 
(Wang et al., 
2009) 

Same results  as in (Wang et 
al., 2009) 

FCRF -86.7% and 86.37% 
-85.75% and 82.56% 
-87.02% and 88.84% 

(Gu et al., 
2009b) 

Same as (Wang et al., 
2009) 

Same as 
(Wang et al., 
2009) 

no Sequential 
Parallel  
Interleaved 
Cooperative 

EPs (EPs for 
single user 
ADLs and EPs 
for multi-
occupant 
ADLs) 

10-fold CV -Time slice 
single-occupant 
ADLs 
-Time slice 
multi-occupant 
ADLs 

-86.69% (O1) and 85.57% (O2) 
-95.06% (O1) and 95.71% (O2) 

(Lin and Fu, 
2007) 

Real-world data Motion, 
Thermometers, 
Humidity, 
light sensors, 
Smoke, 
RFIDs, 
Cameras 

no Sequential 
Parallel  
Interleaved 
Cooperative 
 

Three-layer 
model 
 Ontology + 
DBNs +  BN 

Leave-one-
out CV 

- Accuracy rate 
 
 

-88.89%  
 
 

(Chen and 
Tong, 2014) 

 

Same as (Hsu et al., 
2010) 

Same as (Hsu 
et al., 2010) 

yes Sequential 
Parallel 
Cooperative  

HMM and 
CRF on multi-
occupant 
activity 
recognition 

3-fold CV Average accuracy  
 
 

-HMM: 75,77%, CRF: 75,38% 
(recognition) 
-HMM: 84,19%, CRF: 82,88% 
(data association) 

Same models 
but in the 
context of 
multi-label 
classification 
measurement  

Hold-out 
method  

-Average 
accuracy 
-Average error 
rate 
-Average 
precision 

-HMM:97.40%, CRF:97.25%  
-HMM:2.6%, CRF:2.75%  
-HMM:80.03%, CRF:80.05%  
-HMM:81.92%, CRF:79.91%  
-HMM:40.48%, CRF:39.99%   
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-Average recall 
-Average f score 

(Prossegger 
and 
Bouchachia, 
2014) 

ARAS Same as 
(Alemdar et 
al., 2013) 

 

no Sequential 
Parallel 

Incremental 
decision trees 
(E-ID5R) 

-Not 
mentioned 

- Accuracy rate 
 

-40% for House A 
-82% for House B 

(Tunca et 
al., 2014) 

ARAS Same as 
(Alemdar et 
al., 2013) 

 

yes Sequential 
Parallel 
Cooperative 

1 HMM, 1 
MLP,  1 
TDNN 1 KNN 
and 1 DT, 
(combined 
label for 
multi-
occupant 
activities) 

Leave-one-
out CV 

-Accuracy 
rate/Average f 
score (both 
metrics' results 
are given for 
each model 
respectively) 

-House A 
Occupant 1: 67.5/ 67.4, 72, 
72.3/ 71.8, 78.3/ 77.4, 68.3/ 
67.1 and 72/ 71.8 
Occupant 2: 56.8/ 58.9, 56.4/ 
51.9,  65.3/ 60.7, 58.8/ 45.7 and 
58.4/ 53.4 
-House B 
Occupant 1: 81.3/ 83.3, 82.4 / 
78.9, 87.0/ 85.3, 83.1/ 76.7 and 
85.3/ 83.6 
Occupant 2:  84.6/ 84.2, 81.7/ 
79.5, 87.2/ 83.3, 79.2/ 73.9 and 
87.4/ 81.8 
 

(Afrin Emi 
and 
Stankovic, 
2015) 

-ARAS 
 

-Same as 
(Alemdar et 
al., 2013) 

yes Sequential 
Parallel 

Active 
learning + 
Domain 
knowledge 
about 
activities 

-Not 
mentioned 

-Average 
accuracy  

-87% for House A and 95.3% 
for House B. 

- twor.2009 and 
two.summer.2009 of 
CASAS 

- Motion, 
door, light, 
item, water 
flow, burner 
and motion, 
door, light, 

-97.34% and 98.15% 
respectively. 
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4 http://ailab.wsu.edu/casas/datasets/puck.zip 

item, 
temperature, 
electricity 
respectively 

(Roy et al., 
2013)(Roy 
et al., 2016) 

PUCK dataset4  -Embedded 
sensors in each 
occupant's 
Smartphone 
(i.e. 
gyroscope, 
accelerometer) 
-Motion  
-Object  

no Sequential 
Parallel 
Cooperative 

Layered 
approach 
(individual 
HMM to infer 
location of 
each 
occupant+ 
CHMM to 
infer multi-
occupant 
activities) 

10-fold CV - Accuracy rate 
 

-85% 
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II.2.1 Wearable sensors 

Wearable sensors refer to a kind of sensors that the occupants wear on the body 
or in their clothes. These sensors  are either stored compactly in a single device 
that occupants can carry with them (e.g. embedded sensors in a Smartphone as 
shown in figure 4)  (Roy et al., 2013) (Roy et al., 2016) or  distributed over the 
body (Wang et al., 2009) (Wang et al., 2011) (Gu et al., 2009b). Figure 5 shows 
the wearable sensor platform (a) presented in (Wang et al., 2009) (Wang et al., 
2011). In these studies sensors' layout allows specific measurements as voice 
interaction among occupants (i.e. audio recorder on each occupant's shoulder (b)), 
temperature, humidity, light and movement of hands (i.e. extracted from an 
iMote2 with`ITS400 (c) placed on each occupant's forearm), touched  object by 
each occupant's hand (i.e. by the use of an RFID reader on each occupant's hand 
(d) and RFID tags on objects) and occupant's location at time.  

Generally, researchers working on multi-occupancy problems tend to use 
wearable sensors to reduce the problem complexity as these types of sensors can 
address the data association problem. However, it is often the case that SH 
systems ignore ergonomic requirements. The data obtained from wearable sensors 
mainly provides information about the posture and movement of a person. This 
data is typically used to recognize types of movement, such as running or, walking 
and sitting (Roy et al., 2013) (Roy et al., 2016). 

Although these sensors offer the possibility of capturing fine-grained 
observations they cause inconvenience and are not appropriate for SHs requiring 
privacy and comfort. Furthermore, this type of sensors may limit the body 
movements of an occupant and is inappropriate for people, especially for elderly 
people, not willing to wear them, tend to forget to wear them, or let the device’s 
power source die. 
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Figure 4: Example of embedded sensors in a Smartphone 

 

Figure 5: Example of a wearable sensor platform 

II.2.2 Infrastructure sensors 

Pervasive infrastructure sensors are connected though a wireless sensor 
network which consists of a collection of small network nodes as shown in 
(Alemdar et al., 2013) (Cook et al., 2009). Each node communicates wirelessly 
with the other nodes in the network. In a SH, a large variety of infrastructure  
sensors can be incorporated in the network nodes such as Contact Switches 
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Sensors (CSS) on doors, cupboards, item sensors on objects,  light switch sensors, 
temperature sensors, burner sensor, water flow sensors, phone sensor, pressure 
mats to measure sitting on a couch or lying in bed, mercury contacts for the 
movement of objects such as drawers and PIR sensors to detect motion in a 
specific area. Figure 6 shows an example of infrastructure sensors  deployed in a 
kitchen (red dots represent PIRs, yellow star indicate a water flow sensor, orange 
triangles indicate burner sensors and blue rectangles state for CSS). Given the 
variety of sensor types and activities, selecting the most suitable set of sensors in 
the deployment is an important task as shown in (Tunca et al., 2014). In this 
context, researchers face challenges while selecting the correct type and the 
required number of sensors targeted to the recognition of specific ADLs in order 
to have a consistent activity data (Tunca et al., 2014). The latter problem  is 
closely related to the sensor characteristics and the occupant preferences (Tunca et 
al., 2014). Deploying embedding sensors on a multitude of daily living objects 
(e.g. microwave, drawers..), on the walls and on the ceilings is very challenging 
due to operational costs and battery life issues. Moreover, an increase in the 
number of sensors beyond the designated requirements could affect daily 
activities and consequently, intrude into the occupant’ daily lives (Tunca et al., 
2014). 

 

Figure 6: Example of infrastructure sensors deployment in a kitchen  

The use of this type of sensors implies designing specific solutions for data 
association as shown in (Crandall and Cook, 2008a) (Crandall and Cook, 2008b) 
(Crandall and Cook, 2010) (Hsu et al., 2010) (Wilson and Atkeson, 2005) (Cook 
et al., 2010) (Alemdar et al., 2013) (Chen and Tong, 2014). For instance, Wilson 
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and Atkeson (Wilson and Atkeson, 2005) used infrastructure and non-intrusive 
sensors to monitor the occupants at home. They studied the effect of sensor 
settings on the accuracy of occupant identification. Three types of configurations 
were defined: normal, extra and fewer configurations. The normal configuration 
contains one motion detector, one contact switch and one pressure mat for each 
room. The extra configuration contains three motion detectors, three contact 
switches, and three pressure mats per room. The fewer configurations contain only 
one motion detector per room. They found that the extra configuration achieves 
better accuracy regardless of the number of occupants. In contrast, with the fewer 
configurations, sensor observations do not provide enough information to the 
model to clearly identify the individuals and the model can be confused for a long 
period of time before it becomes able to distinguish between occupants. 

Lu et al. (Lu et al., 2008) classify sensors into seamless and seamed ones 
following ergonomic criteria. They suggest taking advantage of many seamless 
sensors in the living space. In fact, by decreasing the number of seamed sensors, 
behavior of people will be not much impacted. The authors also claim that 
developing a passive solution secures a clean design that separates technology 
from the smart space and consequently makes the space as natural as possible.  

II.3 Datasets for Multi-Occupant Activity Recognition 

Usually HAR systems are developed and evaluated using datasets. Publicly 
available datasets are important for the research community to create standardized 
test beds which could be used for evaluating the performance of activity 
recognition algorithms and for comparison purposes. Among the benchmark 
datasets that are freely available, there exist many  single-occupant ones used in 
(Riboni et al., 2011) (Sarkar et al., 2010) (Kasteren et al., 2008) (Kasteren et al., 
2010) (Kasteren et al., 2011).  

However, there is a real need for datasets collected from houses with multiple 
occupants. The CASAS group has collected several multi-occupant activity 
datasets: "twor.2009"5, "twor.summer.2009"6, "twor.2010"7, "tulum"8, "tulum2"9, 

                                                
5http://ailab.wsu.edu/casas/datasets/twor.2009.zip 
6http://ailab.wsu.edu/casas/datasets/twor.summer.2009.zip 
7http://ailab.wsu.edu/casas/datasets/twor.2010.zip 
8http://ailab.wsu.edu/casas/datasets/tulum.zip 
9http://ailab.wsu.edu/casas/datasets/tulum2.zip 
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"cairo"10 and "Multiresident ADLs"11. Likewise, the (Activity Recognition with 
Ambient Sensing) ARAS12 group has collected a multi-occupant dataset, named 
ARAS, which includes two datasets, House A and House B. To the best of our 
knowledge, these datasets are the only ones publicly available recorded from 
multiple occupants using pervasive sensors. 

Table 2 summarizes the characteristics of the multi-occupant datasets which 
will be described further in the following sections. 

Table 2: Characteristics of ARAS and CASAS Multi-Occupant Datasets 

Dataset 
# of 

occupan
ts 

Duration # of 
Sensors 

# of 
ADL 

# of  
sensor 
events 

Enviro
nment 

Scrip
ted  

Annotat
ion 

medium 
House A 

of 
ARAS 

1 pair 
1 month 

(continuou
s) 

20 27 
2 592 
000 

Real 
house No GUI 

House B 
of 

ARAS 
1 pair 

1 month 
(continuou

s) 
30 27 2 592 

000 
Real 

house 
No GUI 

"Multir
esident 
ADLs" 

26 pairs 
Spread 
over 

2months 
37 15 17 258 Lab. Yes diaries 

"twor.2
009" 

1 pair 
Continuou
s period of 
2 months 

71 9 137 789 Lab. No diaries 

"twor.s
ummer.
2009" 

1 pair 
Continuou
s period of 
2 months 

86 8 772 544 Lab. No diaries 

"twor. 
2010" 

1 pair 
2009-2010 
academic 

year 
87 13 

2 804 
813 Lab. No diaries 

"tulum" 1 pair 

4 months 
(Several 
days are 
missing) 

20 9 486 912 Lab. No diaries 

"tulum2
" 

1 pair 
2009-2010 
academic 

year 
36 15 

1 085 
902 Lab. No diaries 

                                                
10http://ailab.wsu.edu/casas/datasets/cairo.zip 
11http://ailab.wsu.edu/casas/datasetdlmr.zip 
12http://www.cmpe.boun.edu.tr/aras/ 
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"cairo" 
1 pair +1 

pet 

Continuou
s period of 
2 months 

32 11 726 534 Lab. No diaries 

II.3.1 CASAS multi-occupant datasets 

Multi-occupant datasets of CASAS were collected in the Washington State 
University (WSU) smart apartment test bed. Multi-occupant activities were 
obtained using clinical questionnaires (Reisberg et al., 2001). Activities were 
annotated by recording the start and end time of the activities via a handwritten 
diary. We can distinguish two types of datasets:(i) unscripted activity datasets like 
"twor.2009", "twor.summer.2009", "twor.2010", "tulum", "tulum2", and "cairo" 
and (ii) scripted activity dataset like "Multiresident ADLs". Activities considered 
in the unscripted multi-occupant datasets and the scripted multi-occupant one are 
listed in table 3 and table 4 respectively. 

Table 3: Activities of the Unscripted CASAS Multi-occupant Datasets 

"twor.2009" "twor.sum
mer.2009" 

"twor.2010" "tulum" "tulum2" "cairo" 

-Clean 
-Meal 
preparation 
-Bed to toilet 
-Personal 
hygiene 
-Sleep 
-Work 
-Study 
-Wash 
bathtub 
-Watch TV 

-Bed to 
toilet 
-Cleaning 
-Cooking 
-Grooming 
-Shower 
-Sleep 
-Wake up 
-Work. 

-Bathing 
-Bed to toilet 
-Eating 
-Enter home 
-Housekeeping 
-Leave home 
-Meal 
preparation 
-Personal 
hygiene 
-Sleep 
-Not sleeping in 
bed 
-Wandering in 
room 
-Watch TV 
-Work 

-Cook 
breakfast 
-Cook lunch 
-Enter home 
-Group 
meeting 
-Leave home 
-Eat 
breakfast 
-Snack 
-Wash 
dishes 
-Watch TV 

-Bathing 
-Bed to toilet 
-Eating 
-Enter home 
-Leave home 
-Meal preparation 
-Personal hygiene 
-Sleeping in bed 
-Wash dishes 
-Watch TV 
-Work bedroom 1 
-Work bedroom 2 
-Work living room 
-Work table 
-Yoga 
 

-Bed to 
toilet 
-Breakfast 
-Sleep 
-Wake 
-Work in 
office 
-Dinner 
-Laundry 
-Leave 
home 
-Lunch 
-Night 
wandering 
-Take 
medicine 
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Table 4: Activities covered by the scripted "Multiresident ADLs" of CASAS  

 

Individual Cooperative 
-Filling medication 
dispenser 
-Hanging up clothes 
-Reading magazine 
-Sweeping floor 
-Setting the table 
-Watering plants 
-Preparing dinner 

-Moving furniture 
-Playing checkers 
-Paying bills 
-Gathering and packing 
-picnic food 

 

The WSU  smart apartment test bed is equipped with many types of sensors:  
motion sensors, door sensors, temperature sensors, light switch sensors, water 
flow sensors, burner sensor, phone sensor, and item sensors.  A summary of the 
type and the number of sensors used for recording each CASAS dataset is shown 
in table 5.  

Table 5: Sensors used in CASAS multi-occupant datasets  

 "Multiresident 
ADLs" 

"twor. 
2009" 

"twor. 
summer. 

2009" 

"twor. 
2010" "tulum" "tulum2" "cairo" 

Motion 
sensors 27 51 51 51 18 31 27 

Door 
sensors 8 9 15 15    

Light 
sensors  7 10 11    

Item sensors 2 1 4 4    

Temperature 
sensors   5 5 2 5 5 

Electricity 
sensors   1 1    

Water flow 
sensors  2      

Burner 
sensors  1      
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In the following, we give some details of the scripted and unscripted datasets: 

II.3.1.1 Unscripted Multi-occupant datasets  

To the best of our knowledge, "twor.2009", "twor.summer.2009", "twor.2010", 
"tulum", "tulum2" and "cairo" have not been much used in multi-occupant activity 
recognition research. Each of these datasets was collected through a pair of 
occupants who performed unscripted activities. Specifically, "tulum","tulum2" 
represent activity data of a married couple, where as the "cairo" dataset consists of 
three types of data: the activity data of a volunteer adult couple, the motion data 
related to their dog and the data related to their children who come sometimes to 
visit. All these datasets account for intra-subject variability.  

Although, these datasets stemmed from a laboratory on a voluntary basis, they 
were recorded continuously in time. The recording time for "twor.2009", 
"twor.summer.2009", and "cairo" was approximately 2 months, for "tulum" 4 
months and for both"twor.2010" and"tulum2" approximately one year. Multi-
occupant activities in these datasets are described by records of the form (Date, 
Time, SensorID, Value). Each activity is delimited by specific markers: 
(OccupantID_ActivityName Begin) and (OccupantID_ActivityName End).  

Regarding the annotation of all unscripted datasets the OccupantID performing 
the activity is missing in the annotation of many activities. For example 
considering the "two.2009" dataset, the annotation is complete for the activities 
bed to toilet, personal hygiene, sleep and work while in the annotation of the 
remaining ones the OccupantID performing the activity is not specified (e.g. clean 
begin). Moreover, among all the activities registered in the different datasets, 
some are performed in parallel by the occupants (e.g. considering  "two.2009" 
dataset both Occupant 1 and Occupant 2 are sleeping/working or while  occupant1 
is sleeping, Occupant 2 start performing his/her personal hygiene) while the others 
are performed in a sequential manner by the occupants and are consecutively 
represented in the dataset. 

II.3.1.2 Scripted Multi-occupant dataset  

"Multiresident ADLs" collection has been used in many studies (Hsu et al., 
2010) (Chiang et al., 2010) (Cook et al., 2010) (Singla et al., 2010) (Chen and 
Tong, 2014). It was generated in a laboratory setting and therefore it does not 
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fully reflect on real-world scenarios. " Multiresident ADLs" was collected through 
26 pairs of volunteers who performed scripted activities. Such activities are pre-
determined and were repeatedly performed. This collection accounts for inter-
subject variability, yet it is not sufficient for explaining real-world situations. This 
dataset was not recorded continuously in the time, and instead it was spread over 
two months. Multi-occupant activities in "Multiresident ADLs" come in the 
format of (Date, Time, SensorID, Value, OccupantID, TaskID). A full description 
of this dataset can be found in (Singla et al., 2010). 

II.3.2 ARAS collection 

ARAS data was collected from two pairs of occupants performing a large 
variety of activities (Alemdar et al., 2013). The first pair consists of two males 
while the second is a couple. This collection of two-home dataset offers a better 
opportunity to study and compare activity recognition algorithms more 
realistically. ARAS data accounts for intra-subject variability and do not account 
for the inter-subject one. It reflects on the natural behavior of the occupants during 
2 months. An important feature of ARAS data is that it contains a large variety of 
human activities and a large number of activity occurrences. Activities and 
sensors considered by ARAS are presented in table 6 and table 7 respectively. 
Annotation of the activities was achieved by the occupants themselves using a 
simple graphical user interface (GUI). Several instances of GUI applications were 
placed in the most convenient places in the houses. This way of doing is more 
accurate than using a diary.  

Table 6: Activities simulated by ARAS  

House A & House B 

-Other 
-Going Out 
-Preparing Breakfast 
-Having Breakfast 
-Preparing Lunch 
-Having Lunch 
-Preparing Dinner 
-Having Dinner 
-Washing Dishes 
-Having Snack 

-Having Shower 
-Toileting 
-Napping 
-Using Internet 
-Reading Book 
-Shaving 
-Brushing Teeth 
-Talking on the phone 
-Listening to Music 
-Cleaning 
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-Sleeping 
-Watching TV 
-Studying 
 

-Having Conversation 
-Having Guest 
-Changing Clothes 
-Laundry 

 

Table 7: Sensor infrastructure used by ARAS 

House A House B 

1 
1 
 
1 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Wardrobe photocell 
Convertible Couch photocell 
( Occupant 2's bed)  
TV infrared receiver 
Couch force sensors 
Chair proximity sensors 
Fridge photocell 
Kitchen Drawer photocell 
Wardrobe photocell 
Bathroom Cabinet photocell 
House DCS13 
Bathroom DCS 
Shower Cabinet DCS 
Hall sonar distance 
Kitchen sonar distance 
Tap proximity sensor 
Water Closet proximity sensor 
Kitchen temperature sensor 
Bed force sensor 

2 
1 
2 
1 
1 
3 
11 
2 
2 
1 
1 
1 
1 
1 
 

Kitchen cupboards CSs 
House DCS 
Wardrobe DCSs 
Shower Cabinet DCS 
Tap distance sensor 
Chair force sensors 
Fridge  photocell 
Kitchen Drawer photocell 
Couch pressure mat 
Bed pressure mat 
Armchair pressure mat 
Bathroom Door sonar distance 
Kitchen sonar distance 
Closet sonar distance 
 

 

ARAS collection offers the advantage of being ready to use. Each day of 
recordings consists of a 22 x 86400 matrix which is stored in a file. In all, the 
collection consists of 30 files for each dataset. The first 20 columns are the sensor 
binary values, fired/not fired; column 21 and 22 contain the activity labels for 
Occupant 1 and Occupant 2 respectively. Using a constant time intervals to 
discretize the data allows representing the sensors readings in time slices. This 
representation leads to a better discrimination between activities as reported by the 
studies in (Kasteren et al., 2008) (Kasteren et al., 2010) (Kasteren et al., 2011) on 

                                                
13 DCS stands for Door Contact Sensor 
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other datasets. For instance,  in (Kasteren et al., 2010) two experiments were run. 
In the first experiment different lengths of the time slice were tested including (i.e. 
1s, 10s, 30s, 60s, 300s and 600s) finding that short time slices produced better 
recognition results. 30s and 60s produced the best results. In the second 
experiment, Naive Bayes (NB), HMM, Hidden-Semi Markov Model (HSMM) 
and CRF models were compared using a number of feature representations which 
consisted of raw, change point and last representation. The change point 
representation produced the best results. It was found that the recognition 
performance of the activity model is strongly influenced by the time slice length 
and the feature representation.  

II.4 Computational Models for Multi-Occupancy Activity 

Recognition 

As mentioned earlier, a large variety of  computational models was 
investigated in the context of single-occupancy ADLs ranging from probabilistic 
models to standard data mining and machine learning models like neural 
networks, decision trees, ontologies, etc. In the case of multi-occupancy, however, 
no such diversity of models exists. Almost all of the proposed models are 
essentially probabilistic based on graphical models. This conclusion can easily be 
observed in table 1 above which illustrates also a summary of a set of 
representative research studies covering the sensors used, the type of activities 
covered, the models used, and the evaluation metrics as well the results obtained. 

In the following sections we first describe the mainly applied classes of models 
in the context of multi-occupancy that is probabilistic models,  and association 
rule mining: 

II.4.1 Probabilistic Models 

As sensor readings are usually noisy and activities are typically performed in a 
nondeterministic fashion, probabilistic learning-based methods are frequently 
used in activity recognition to model sensor readings.   

Probabilistic models are advantageous for problems such as activity 
recognition, because they allow us to deal with the noise and uncertainty in a 
principled manner. We present in the following, probabilistic models applied by 



CHAPTER II                        Multi-Occupant Activity Recognition: Related Work 
 
 

30 
  

state-of-the-art studies in multi-occupancy. They can be categorized into 
generative and discriminative models. 

II.4.1.1 Generative Models 

Generative models define the joint probability distribution and can be used to 
generate (sample) data from such distribution or to perform inference given a 
novel sequence of observations (Kasteren, 2011). We focus here only on models 
that have been applied in the context of multi-occupancy. Some of the generative 
models used by related work studies on multi-occupant HAR are graphical models 
such as NB,  Dynamic Bayesian Network (DBN), HMM and variants such as 
PHMM and CHMM.  

Graphical models are the most popular computational models used in activity 
recognition in general. As their names indicate, graphical models are probabilistic 
models having the structure of graphs that represent conditional dependence 
between nodes which are random variables.  

Graphical models are defined as probability distributions that factorize 
according to a graph (Sutton and McCallum, 2006). The goal is to infer a 
matching sequence of hidden states that maximizes the probability of the activities 
given some sensor readings. In  standard graphical model representation, square 
nodes represent discrete variables, circle nodes represent continuous variables. 
Observed nodes are shown as shaded nodes while the hidden nodes are blank. 

In the following we only present NB and DBN. HMM and variants (i.e. 
PHMM and CHMM) are described in Chapter III. 

a. Naive Bayes (NB) 

The NB model can be considered as one of the most simplistic probabilistic 
models. It is a restricted version of the Bayesian network (BN). In fact, the NB 
model assumes all data points (e.g. the events of sensors in the case of activity 
recognition) are independently and identically distributed. The class nodes have 
no parents and the attribute nodes are not connected. Moreover, NB does not take 
into account any temporal relations between data points. The joint probability of 
observations and labels can be factorized as:  
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First, we note: 

ܺ௞:௟   = (ܺ௞, … , ௟ܺ)   ݂ݎ݋  ݇ ≤ ݈ 

And 

(ܺ௞:௟ = (௞:௟ݔ  ≡ (ܺ௞ = ,௞ݔ … , ௟ܺ = ݇ ݎ݋݂   (௟ݔ ≤ ݈ 

And to simplify the ratings we will write: 

       P(X,Y)= ܲ(ܺଵ:௧ = ଵ:௧ݔ , ଵܻ:௧ = (ଵ:௧ݕ =
 ∏ ܲ(ܺ௧ୀݔ௧|்

௧ୀଵ ௧ܻୀݕ௧)ܲ( ௧ܻୀݕ௧) 

=  ෑ |௧ݔ)ܲ
்

௧ୀଵ

 (௧ݕ)ܲ(௧ݕ
(II.1) 

 

where ܲ( ௧ܻ = (௧ݕ =  .for t=1…T,  is a prior probability over activities ,(௧ݕ)ܲ
To compute the conditional probability of labeled data (X,Y) in a straightforward 
way, we assume independence between input features given the input labels. The 
probability can then be written as follows: 

 
ܲ൫ܺ௧

௜ = ௧ݔ
௜ห ௧ܻ = ௧൯ݕ = ෑ ௧ݔ)ܲ

௜ (௧ݕ|
ே

௜ୀଵ

 
 

(II.2) 

In our setting, the set X represents the sensor data. X = (X1, X2,...,Xt)  where Xi 

is a vector of length N for i=1,....,t. Y represents the set of activities as shown in 
figure 7. N is the total number of sensors. The activity yt is independent of 
previous activities ݕଵ:௧ିଵ. 

 

Figure 7: A NB representation  

Activity recognition can be considered as a classification problem where 
activities as regarded as classes (Van Laerhoven et al., 2003) (Liao and Ji, 2009). 
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NB and in general conventional BNs are not suitable for modeling temporal 
processes because directed arcs of the network do not give any information about 
the time. In order to overcome this limitation, DBNs was proposed as an upgrade 
of BNs. 

b. Dynamic Bayesian Network (DBN) 

DBNs are designed to deal with temporal processes (time series). A DBN 
results from extending BN by sequencing interlinked time-sliced instances of the 
BN as shown in figure 8 (Where N is the total number of sensors, yt is dependent 
of the activity at yt-1 and each activity is represented by all sensor values at time). 
When DBN is applied to activity modeling, the observables, Xt , correspond to the 
sensor readings, while the unobservable variables, Yt , correspond to the activities. 
A state at a specific time ݐ depends on the previous states.  

 

Figure 8: A DBN representation 

Formally, a DBN (Sanghai et al., 2005) is defined as a pair of BNs (B1,B→), 
where B1 is prior which defines the initial distribution p(Z1) and B→ is a 2-time-
slice BN defining the transition distribution p(Zt|Zt-1) via a directed acyclic graph: 

 
ܲ(ܼ௧|ܼ௧ିଵ) = ෑ ܲ(ܼ௧

௜|ܲܽݏݐ݊݁ݎ(ܼ௧
௜

ே

௜ୀଵ

)) 
 

(II.3) 

 
ܲ(ܼ௧) = ෑ ෑ ܲ(ܼ௧

௜|ܲܽݏݐ݊݁ݎ൫ܼ௧
௜൯)

ே

௜ୀଵ

்

௧ୀଵ

 
 

(II.4) 

Zi
t is a node at time slice t, it can be a hidden node, an observation node, or a 

control node (optional), while Parents(Zi
t) are parent nodes of Zi

t and can be at 
either time slice t or t-1.  
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II.4.1.2  Discriminative Models 

In contrast to generative models where we attempt to model the joint 
probability distribution of paired observations and activity sequences P(Y,X), in 
discriminative we rather attempt to directly model the conditional probabilities of 
the activities given the sequence of observations P(Y|X). Moreover, generative 
models assume that the observations are independent which is not always 
satisfied.  

In the following we will present some of the discriminative models used in 
multi-occupant activity recognition. Note that CRF and Factorial Conditional 
Random Field (FCRF) represent graphical models hence the same notation holds 
for their graphical representation: 

a. Decision Trees (DTs) 

A Decision Tree (DT) is used to model the relation between input data and the 
corresponding output. A DT can be used for either classification if the output is 
discrete indicating class labels or regression if the output is continuous. A 
classification tree consists of nodes that represent features and branches that 
represent the values of the features. The leaf nodes represent the class labels. 
When a DT is applied for activity recognition the leaf nodes represent the 
activities while the features represent the set of sensors as shown in figure 9. 

 

Figure 9: Example of a decision tree. Leaf nodes represent activities 

DTs are built through an induction process using a training dataset. Many 
induction algorithms have been devised such as TDIDT/ID3, C4.5 and CART, 
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MARS and CHAID. Some algorithms like C4.5 and CART execute two phases: 
growing and pruning of the tree, while others only grow the tree (Maimon and 
Rokach, 2005). 

DTs have been widely used to  recognize activities in a single-occupant setting 
as shown in (Isoda et al., 2004) (Ravi et al., 2005). In both studies,  C4.5 was used 
to generate a DT for classifying occupant's activities. Specifically, in (Isoda et al., 
2004), the activity data  was collected from pressure sensors on the floor for 
locating the occupant and RFID tags on the objects (e.g. gas hobs, cupboard). The 
evaluation of the classifier on kitchen activities achieved an accuracy of 90-100% 
depending on the size of the learning data used. The activities considered in (Ravi 
et al., 2005) were: standing, walking, running, climbing up stairs, climbing down 
stairs, sit ups, vacuuming and brushing teeth. The results showed that C4.5 
achieved 97.29% when trained and tested on data from the same user over many 
days. An accuracy of 98.53% was achieved when C4.5 was trained and tested on 
data stemming from many users and over many days and 77.95% when trained 
and tested on data stemming from the same day. 

DTs were not much investigated in multi-occupant activity recognition. To best 
of our knowledge (Prossegger and Bouchachia, 2014) (Tunca et al., 2014) 
represent the only studies which applied DTs to model ADLs in a multi-occupant 
context. In (Prossegger and Bouchachia, 2014), an extension of ID5R called E-
ID5R induces a DT incrementally to accommodate new instances and new 
activities as they become available over time. Their E-ID5R extends the leaf 
nodes to represent single or multiple activities (i.e. parallel activities are 
recognized). To evaluate the proposed algorithms, the ARAS dataset which is a 
real world multi-occupant dataset stemming from two houses was used. E-ID5R 
performs differently on activities of both houses: for house A whose data is quite 
challenging, the classification rate was model (40%), while for house B the rate 
approached 82%.  

To recognize parallel activities that is both the activity performed by the 
Occupant 1 and the activity performed by the Occupant 2 at time, (Tunca et al., 
2014) applied a combined activity label based DT approach (see details in II.5.5).  
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b. Artificial Neural Network (ANN) and variants  

Artificial Neural Network (ANN) is a computing model made up of a number 
of simple, highly interconnected processing elements, which process information 
by their dynamic state response to external inputs (Caudill, 1987). The 
fundamental processing elements of an ANN are artificial neurons (or nodes) 
which are interconnected by weighted links forming layers as shown in figure 10. 
Typically in an ANN there is one input layer that varies depending on the 
complexity of the problem at hand (Murata et al., 1994).  Neurons transform the 
weighted input into output using an activation function which can take different 
forms (linear and non-linear). The process by which the weights are adjusted is 
called learning. A number of non-linear ANNs are known to perform as function 
approximators. There are various parameters that define the architecture of a 
neural network: the connection type (e.g. feed-forward networks, recurrent neural 
networks etc.), and activation functions (e.g. sigmoidal, hyperbolic tangent, etc.). 
Because of these shaping parameters, there are different types of ANNs (e.g. 
Multi-Layer Perceptron (MLP), Echo State Network (ESN), Radial basis function 
network (RBFN), Bolzmann machine, etc.). 

 

Figure 10: Architecture of a 3-layer feed forward network 

ANNs can be applied to a number of SH problems such as activity 
classification, control of appliances, novelty and anomaly recognition and 
prediction of activities. In relation to health monitoring in SH, ANNs were used to 
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diagnose and monitor chronic diseases as well to built medical decision support 
systems (Khan et al., 2001) (Lisboa and Taktak, 2006) (Er et al., 2010). Although 
ANNs have been widely used in single-occupant HAR, only variants of this model 
have been used in multi-occupant HAR (i.e. MLP and Time-Delay Neural 
Network (TDNN)) as shown below: 

MLP  is a feed forward ANN model that maps sets of input data onto a set of 
appropriate outputs. In HAR the set of inputs consists of sensory data while the 
outputs represent the activities. An MLP consists of multiple layers of nodes in 
a directed graph, with each layer fully connected to the next one. Except for the 
input nodes, each node is a neuron (or processing element) with a 
nonlinear activation function. The two main activation functions used in current 
applications are both sigmoid, and are described by: 

 
(௜ݒ)ݕ =  (௜ݒ) ℎ݊ܽݐ

 

(II.5) 

 
(௜ݒ)ݕ = (1 + ݁ି௩೔)ିଵ 

 

(II.6) 

In which the former function is a hyperbolic tangent   which ranges from -1 to 
1, and the latter, the logistic function, is similar in shape but ranges from 0 to 1. 
Here yi  is the output of the ith node (neuron) and vi is the weighted sum of the 
input synapses.   

TDNN  is an ANN architecture whose primary purpose is to work on sequential 
data (i.e. capable of considering the sequential nature of a time series) . The 
TDNN units recognize features independent of time-shift (i.e. sequence position) 
and usually form part of a larger pattern recognition system. Converting sensory 
data into a stream of classified activity labels for HAR.  An input signal is 
augmented with delayed copies as other inputs, the neural network is time-shift 
invariant since it has no internal state.  

 MLP and TDNN were applied to recognize multi-occupant ADLs in (Tunca et 
al., 2014).  Their performances were also compared to other classifiers that is DT, 
KNN and HMM. These models were applied on ARAS datasets. Experiments' 
results reported that HMM and TDNN, which are sequential methods, perform 
better than the other three classifiers for House A. For House B, HMM provides 
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fairly good results, in recognizing most of the activities, while the other classifiers 
confuse some key activities.  

c. Conditional Random Field (CRF) 

The linear-chain CRF model is one of the most popular discriminative model 
for dealing with sequential data. It is more flexible compared to HMM, because it 
does not assume any independence among the observation sequences. Like HMM, 
CRF is applied to determine the most likely sequence of states given the sequence 
of observations.  

As shown in figure 11, a linear-chain CRF is an undirected acyclic graph where 
the hidden sate yt depends only on the previous state yt-1 and the observation xt 
depends only on the hidden state yt.  

 

Figure 11: The linear-chain CRF model 

The conditional probability distribution is defined as a multiplication of feature 
functions exponents:  

 
ܲ(ܻ|ܺ) =

1
ܼ(ܺ)
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(II.7) 

Here T is the number of observations and K is the number of feature functions 
used to approximate the probability distribution, and λk (k=1…K) are learning 
weights associated with the feature functions  ௞݂ ,௧ݕ) ,௧ିଵݕ  ௧) which are estimatedݔ
by training. The expression ߣ௞ ௞݂(ݕ௧ , ,௧ିଵݕ  ,௧) is known as the energy functionݔ
while the exponential of the energy function is known as the  potential function 
(Bishop, 2006).The quantity Z(X) is a normalization term so that the probability 
distribution adds up to 1 resulting in a proper conditional probability as follows: 
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(II.8) 

Figure 12 shows how CRF is applied for activity recognition in the context of 
"adlnormal" activity data of CASAS. Activities are represented as hidden states 
and the sensor readings correspond to the observables.  

 

Figure 12: Representation of a global linear-chain CRF  

d. Factorial Conditional Random Field (FCRF) 

FCRF combines many linear chain CRFs (called chains) by linking not only 
the hidden states of each chain to input, but also linking the hidden states of the 
chains to result in co-temporal connections (Sutton et al., 2007). The co-temporal 
connections allow an efficient representation of the interactions between the 
chains.  

 

Figure 13: Representation of FCRF consisting of two CRF chains 
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The application of FCRF for modeling multi-occupant activities is straight 
forward. We can think of using one chain for each occupant, where the hidden 
states of the chains representing the activities are co-temporally connected to 
model the interaction (Wang et al., 2011). Figure 13 illustrates an FCRF model as 
a combination of two chains, each representing an occupant. The two sequences 
{y1t-1, y1t, y1t+1}, {y2t-1,y2t ,y2t+1} are the activities at time t-1, t, t+1 of Occupant 
1 and Occupant 2 respectively. The corresponding sequence of observations {xt-

1,xt, xt+1} represent sensor readings at the time steps t-1, t, t+1. FCRF is given by 
the following posterior probability:  

 ܲ(ܻ|ܺ) = 

1
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where A is the set of activities and Y and X indicate the set of hidden and 
observable state sequences. That is, Y={Y1, Y2,…,YT} where Yt={y1t, y2t,…,yAt} and 
Y it represents the state of the ith activity at time t. The observable state sequence 
X is defined in a similar way. Z(X) is a normalization factor obtained over X. 

Given an observation sequence X, to find the most likely sequence of activities 
states, the Maximum-A-Priori (MAP) algorithm is applied once the marginal 
probability of all node pairs is computed. Actually there exist many inference 
algorithms like the forward-backward algorithm, loopy belief propagation, mean 
field free energy, and junction tree (Wang et al., 2011) (Sutton et al., 2007). 

II.4.2   Emerging Patterns (EPs) 

Association rule mining is about finding interesting relations between features 
in data. Such relations are rules whose right-hand-side and left-hand-side are 
frequent itemsets (i.e. set of features). Itemsets can also be used to distinguish 
between datasets and in such case they are called Emerging Patterns (EPs). Thus, 
EPs can be considered as itemsets with support that changes significantly between 
datasets. 
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In the context of activity recognition, EPs are applied to model the activities 
using the discriminating features. An EP of an activity is the set of features which 
are the most discriminating for that activity. The set of EPs of an activity form the 
corresponding activity model. The set of features of an activity is selected as EP if 
the frequency count of such features changes from that activity’s instances to the 
rest of other activities’ instances. 

A data instance refers to all observations that are part of an activity during a 
continuous period of time. The support of an itemset V, in a dataset X, is given as: 

 
ܵ௑(ܸ) = (ܸ)௑ߪ |ܺ|⁄  

 

(II.10) 

where ௑  is the number of instances in X that include V. |X| is the total number 
of instances in X. Using the notion of support, we can compute the growth 
measure to identify EPs as follows. Given two activities A and B, the Growth Rate 
(GR) of an itemset V from A to B, denoted as GR(V,A,B), is given as follows: 
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An itemset V is EP of an activity B if and only if its GR exceeds a given 
threshold  (i.e. GR(V,A,B)>), that is the change from A to B is significant. 

EPs are thoroughly discussed in (Gu et al., 2009a). An example presented 
therein assumes the activity “cleaning a dining table” and the following itemset 
“object@cleanser, object@plate, object@wash_cloth, and location@kitchen” is 
an EP. The authors in (Gu et al., 2009a) (Gu et al., 2009b) apply an efficient 
algorithm described in (Li et al., 2007) to discover EPs from sequential activity 
data. Such EPs are used to construct the activity model in a single occupant 
setting. Using the epSICAR algorithm described in (Gu et al., 2009a), not only 
sequential activities but also concurrent and interleaved activities can be 
identified. Going a step further, the authors of (Gu et al., 2009b) apply EPs in a 
multi-occupant setting by mining EPs for each activity and for each occupant. 



CHAPTER II                        Multi-Occupant Activity Recognition: Related Work 
 
 

41 
  

II.5 Facets of Multi-Occupant Activity Recognition 

As shown in table 1, some studies have focused on solving the data association 
problem (Crandall and Cook, 2008a) (Crandall and Cook, 2008b) (Crandall and 
Cook, 2010) (Hsu et al., 2010) (Wilson and Atkeson, 2005) (Cook et al., 2010) 
(Alemdar et al., 2013) (Chen and Tong, 2014). Some other studies have 
considered that the data association problem had been already resolved and 
consequently focused on modeling the activities (Hsu et al., 2010) (Cook et al., 
2010) (Chiang et al., 2010) (Singla et al., 2010) (Wang et al., 2009) (Wang et al., 
2011) (Gu et al., 2009b) (Lin and Fu, 2007). As the two issues of data association 
and activity recognition tend to be treated separately, we will discuss in Section 
II.5.1 the data pre-processing approaches designed for the two problems 
separately. Section II.5.2  presents the studies dealing with data association. For 
activity recognition, two methodologies will be discussed. According to the first 
methodology, activity recognition models for occupants are independent ignoring 
the interactions between the occupants (Section II.5.3). In the second 
methodology, the models take the interaction into account (Section II.5.4). Section 
II.5.5 discusses the application of knowledge-based approaches for multi-
occupant activity recognition. Scalability of all the studies is discussed in Section 
II.5.6. Limitations of the different approaches are summarized in Section II.5.7 
Evaluation metrics for assessing the performance of algorithms for both problems 
are discussed in Section II.5.8 respectively. 

II.5.1 Pre-processing methods 

All multi-occupant approaches presented in this chapter are data-driven 
approaches which rely on data to construct the activity model. As a result, these 
approaches may be sensible to the representation of the activity data. This later is 
often incomplete, inconsistent, and prone to errors. Hence, generally it is pre-
processed with the intention of making the activity recognition problem easier to 
solve so that: (1) data meets the computational model applied for developing the 
activity recognition algorithms and (2) efficient use of the raw data is guaranteed 
through a new representation.  

Data pre-processing is an important step in the data mining process. It can 
consist of several tasks such as cleaning, transformation, normalization, feature 
extraction and selection. For instance, feature extraction are used in (Crandall and 
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Cook, 2008a) (Crandall and Cook, 2008b) to generate new features from the raw 
data. In particular, the date and the time information stamps are used to extract 
different features like “hour of day”, “part of day”, “day of week”, “hour of day” 
which are applied to handle the problem of data association. The studies in 
(Crandall and Cook, 2008a) (Crandall and Cook, 2008b) discuss the impact of the 
best temporal feature in capturing the differences in behavior between individuals 
showing that “hour-of-day” enhances significantly the classifier performance in 
occupant identification. They also show that depending on the facets of the dataset 
(e.g. the habits of occupants, type of environment, student laboratory or real 
home), different kinds of features can lead to different classification results. For 
example, hour-of-the-day is the most discriminating feature, because the dataset 
was collected from a student laboratory. Furthermore, in comparing the 
performance of NB and HMM for data association, the studies conclude that 
feature extraction is not valuable for all types of classifiers and in this case, it is 
valuable for NB but not for HMM. As a result, in (Crandall and Cook, 2010), the 
authors applied HMM but without feature extraction to deal with data association. 

To check the effect of pre-processing, Hsu et al. (Hsu et al., 2010) investigate 
three configurations: raw data, environment data and room-level data. The raw 
data is obtained by removing the date and time from the observations and is 
represented using the sensor ID combined with its reading value. The environment 
data consist of all data captured in the house. For the room-level data, a pre-
processing method is applied to represent each room by a feature. However, the 
environment data does not help in discriminating the occupants. This later is “on” 
if and only if one of the motion sensors in the room is “on”. This feature also does 
not help in discriminating between the occupants either. The experiments show 
that the raw data allows obtaining the best recognition results compared to the 
other two datasets. 

In terms of pre-processing methods for activity recognition models, Chiang et 
al. (Chiang et al., 2010) apply three data pre-processing methods to obtain raw 
feature, loc-obj feature and loc-obj with locoff feature vectors. The three types of 
vector are represented as a tuple (event, interaction), where "event" in raw data is 
an integer indicating a sensor and its state. "Event" in loc-obj and loc-obj with 
locoff indicates whether it was captured by object sensors (e.g. item and cabinet 
sensors) or by location sensors (e.g. motion sensors). "Interaction" is only used in 
loc-obj with locoff to indicate whether the occupants where in the same room or 
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not. The results show that better results are obtained with raw features which is 
consistent with the previous work in (Hsu et al., 2010). The low performance in 
the two pre-processing methods may be attributed to only the issue of representing 
a location sensor by the corresponding index of the room. The model confuses in 
the case of many activities sharing the same room. Adding all historical data of 
triggering of the events would better discriminate between activities as reported 
by the raw feature vector. 

On the other hand, Chen and Tong (Chen and Tong, 2014) use the same dataset 
as in (Hsu et al., 2010) (Chiang et al., 2010), but pre-process it in a different way. 
An observation is represented as a binary vector whose length corresponds to the 
number of sensors. At time t, a position in the vector  is set to 1 if the ith sensor 
changed state. However such a representation ignores the date and time as 
features. 

The authors in (Wang et al., 2009) (Wang et al., 2011) (Gu et al., 2009b) 
investigated a dataset obtained by means of wearable sensors (e.g. 3-axis 
acceleration, audio, location, and tagged objects). New features are extracted from 
the raw data like the mean, variance, energy, frequency-domain entropy, 
correlation, location name, and object name. Likewise, in (Lin and Fu, 2007) the 
light and motion data serve to derive new features like bright, dim, dark, no light, 
triggered and non-triggered. 

However, some authors like in (Wang et al., 2009) (Wang et al., 2011) (Gu et 
al., 2009b) (Lin and Fu, 2007) do not compare their pre-processing methods 
against raw representation to show the effectiveness. 

II.5.2 Data Association 

To avoid the problem of data association in multi-occupant activity 
recognition, some studies relied on wearable sensors (Wang et al., 2009) (Wang et 
al., 2011) (Gu et al., 2009b). Because of the inconvenience of the wearable 
sensors in some situations, the use of infrastructure sensors has also been 
investigated. The challenge there is that infrastructure sensors cannot directly 
identify individuals. In the following, we will discuss the computational 
approaches used in the context of data association. 
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Crandall and Cook (Crandall and Cook, 2008a) apply NB on raw data for data 
association, but obtain low performance. In fact, NB tends to assign activities to 
the occupant who produced most of the sensor events in the training data, 
presumably due to imbalance of the training data. But after adding some feature 
like the temporal feature “hour-of-the-day”, NB shows better discrimination 
between the occupants. In another study by the same authors (Crandall and Cook, 
2008b), HMM is found to outperform NB when using only raw data. Feature 
extraction is valuable for NB, but does not affect HMM. In a third study by these 
authors (Crandall and Cook, 2010), the results show that both algorithms perform 
well on other real-world datasets B&B and TwoR using the same experimental 
setting described in (Crandall and Cook, 2010) with a slightly better performance 
for HMM.  

To investigate the correlation between data association and activity 
recognition, CRF is applied in (Hsu et al., 2010). As expected, the quality of data 
association impacts activity recognition if both are integrated in one system. In 
this study a two-layer cascade is proposed. Each layer consists of a CRF model. 
The first layer is designed for data association such that the CRF’s hidden states 
represented the occupants, while the observables correspond to the sensor events 
and activity labels. The second CRF in the second layer is dedicated to activity 
recognition. Thus, the hidden states in the CRF correspond to the activities, while 
the observables are sensor reading and occupant labels resulting from the previous 
layer. Likewise, Cook et al. (Cook et al., 2010) construct one HMM model to 
recognize the occupants followed by another HMM to recognize the activities. 
The disadvantage of these cascades is that the recognition accuracy depends on 
the performance of the data associator.  

On the other hand, Wilson and Atkeson (Wilson and Atkeson, 2005) propose 
one motion model for each occupant using a particle filter based approach in order 
to identify the optimal  assignment of sensors to the occupants. They study the 
impact of varying both the number of occupants and the number of particle filters 
to accurately identify an occupant on simulated data. The number of occupants 
varies between 1 and 5 and the number of particle filters varies between 1 and 20 
(Wilson and Atkeson, 2005). An insignificant improvement of accuracy is 
observed after 20 particle filters. Also, more particles are usually required to 
recognize multiple occupants. Moreover, the accuracy decreases as the number of 
occupants increases. 
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II.5.3  Independent Models for Occupants 

Many studies  address the problem of multi-occupant activity recognition but 
they neither model interaction among occupants (Hsu et al., 2010) (Wilson and 
Atkeson, 2005) (Cook et al., 2010) (Singla et al., 2010), nor do they consider real 
situations where occupants perform separate, interleaved, parallel, or cooperative 
activities (Cook et al., 2010) (Singla et al., 2010). Often interaction is modeled 
only in a non-complex setting. The authors in (Hsu et al., 2010) (Wilson and 
Atkeson, 2005) (Singla et al., 2010) (Lin and Fu, 2007) claimed that multi-
occupant activities can be better recognized if individual models for the occupants 
are learned. In the following we will discuss the approaches used to create 
independent models for occupants. 

Specifically some studies (Wilson and Atkeson, 2005) (Singla et al., 2010) 
show that motion models can be useful for disambiguation of activities, because 
people usually tend to follow regular habits. One HMM is used to model each 
occupant. Likewise, one CRF per occupant is proposed in (Hsu et al., 2010). In 
this latter study, the accuracy reported is greater than the accuracy in (Singla et al., 
2010) using the same benchmark. This seems to confirm that CRF performs better 
than HMM in handling complex situations. The modeling of activities separately 
is good when there is less collaboration among the occupants. Thus, if the data 
contains cooperative activities, the accuracy will be low.  

In (Lin and Fu, 2007) separated models for occupants are applied using a 
layered Bayes network-based architecture which models the interaction between 
the occupants. Each layer in the model received the results from the previous 
layer. In the first layer, the input consists of the sensor readings along with the 
location data related to each occupant. In the second layer, one DBN for each 
occupant is used to model the activities. In the third layer a BN is used to model 
the interaction between the occupants.  

Kasteren et al.(Kasteren et al., 2011) investigate the use of Hierarchical Hidden 
Markov Model (HHMM) in a single occupancy setting showing higher accuracy 
compared to HMM and HSMM. Furthermore, Nguyen et al.(Nguyen et al., 2006) 
apply this model in a multi-occupant setting by constructing a separate HHMM 
for each occupant and reported a high accuracy of the model when tested on a 
video data. 



CHAPTER II                        Multi-Occupant Activity Recognition: Related Work 
 
 

46 
  

To the best of our knowledge, hierarchical models have not yet been 
investigated for multi-occupant activity recognition in the context of pervasive 
sensing. It would be interesting to apply HHMMs for multi-occupancy to check 
their ability to infer high level behavior and to deal with parallel and cooperative 
activities.  

II.5.4 Interaction Modeling 

In contrast to the pervasive setting, much work on interaction modeling has 
been done in computer  vision (McCowan et al., 2005) (Du et al., 2006) (Du et al., 
2007) (Natarajan and Nevatia, 2007). In the following, we summarize the 
approaches discussed in the literature. 

Recently, a number of studies on  modeling occupant’s interaction in pervasive  
environment have been conducted (Chiang et al., 2010) (Alemdar et al., 2013) 
(Wang et al., 2009) (Wang et al., 2011) (Gu et al., 2009b) (Lin and Fu, 2007) 
(Chen and Tong, 2014). Existing approaches include both supervised (Chiang et 
al., 2010) (Alemdar et al., 2013) (Wang et al., 2009) (Wang et al., 2011) (Lin and 
Fu, 2007) (Chen and Tong, 2014) and unsupervised approaches (Gu et al., 2009b). 
In supervised approaches, we can enumerate HMM (Alemdar et al., 2013) (Chen 
and Tong, 2014),  CHMM (Chiang et al., 2010) (Wang et al., 2009 ) (Wang et al., 
2011),  PHMM (Chiang et al., 2010), BN (Lin and Fu, 2007) and FCRF (Wang et 
al., 2011).  

Chiang et al. (Chiang et al., 2010) investigate close-proximity interaction using 
an interaction feature, that is, a binary feature which is set to 1 if the two 
occupants are in the same region of the environment and to 0 otherwise. The study 
shows that the presence of occupants in the same room does not imply that the 
occupants are involved simultaneously in cooperative activities. Although the 
contribution of this interaction feature is not significant, the model is more 
accurate than without it. Using the same dataset as (Chiang et al., 2010), Cook et 
al. (Cook et al., 2010) investigate the detection of close-proximity interaction 
using a Bayesian approach. It is found that the number of events generated during 
interaction is more important compared to the number of interactions detected. 
More interestingly, it is found that the physical proximity does not imply 
interaction.  
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In (Gu et al., 2009b), the authors apply EPs which describe important changes 
from once activity to the other. A confidence measure is proposed to determine if 
the occupants had interacted. EPs are mined for individual activities and for 
cooperative activities. However, EPs tend to recognize the activities as 
cooperative activities even when they are not. 

To study the effect of interaction modeling on the efficiency of multi-occupant 
activity recognition, Wang et al. (Wang et al., 2009) used CHMM to recognize 
multi-occupant activities. The same authors applied later CHMM along with 
FCRF in (Wang et al., 2011). In particular, they proposed one HMM is 
constructed for each occupant to form CHMM. Hidden states in each HMM 
represent the set of activities performed by the occupant. Likewise, one CRF is 
constructed for each occupant in the FCRF. However, co-temporal dependencies 
between activities of occupants are represented differently in CHMM and FCRF. 
Considering, these co-temporal dependencies in CHMM, each activity in HMM 
does not depends on only the previous activity at time t-1 of the same HMM, but 
also on the previous activities at time t-1 from the other HMMs. In FCRF, 
activities of all CRFs corresponding to the occupants are joined at each time step 
and the same observation sequence is fed to all CRFs. In this study, it was found 
CHMM performs better than FCRF in the case of cooperative activities (e.g. the 
accuracy of CHMM on the cooperative activity “watching TV” is 100%, while 
that of FCRF is 70.5%). Considering the same context, Chiang et al. (Chiang et 
al., 2010) compare the performance of three models: PHMM, CHMM and 
CHMM extended with auxiliary nodes. The results show that the extended 
CHMM performs the best, while CHMM outperform PHMM. Finally, as the 
models in (Wang et al., 2009) (Wang et al., 2011) (Gu et al., 2009b) use the same 
dataset, comparing their recognition performance show that the EPs approach 
performs the best for activity recognition in terms of accuracy, scalability and 
robustness. 

Two interesting studies lies between the use of wearable sensors (i.e. a 
Smartphone for each occupant) and the use of infrastructure sensors (i.e. motion 
sensors) to recognize parallel activities in a multi-occupant environment (Roy et 
al., 2013) (Roy et al., 2016). Authors in these studies applied a layered approach 
where each layer in the model received the results from the previous layer. They 
first extracted from each occupant's Smartphone accelerometer data  the 
corresponding postures (e.g. walking, sitting..) over time. Then, an HMM is 
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constructed for each occupant in the environment. In each occupant's HMM the 
observation at time represent both the posture of the occupant and motion sensor 
data generated at time in the environment while the hidden states are the 
corresponding  locations (e.g. kitchen, bathroom..) of the occupant. Finally, they 
applied a CHMM to recognize complex activities of all occupants. The 
observation at time for an occupant's HMM in the CHMM represent both the 
posture (i.e. inferred in the first layer) and the location (i.e. inferred in the second 
layer) of that occupant while the hidden state represent the activity.  Their 
experiments' results applied on the activity data of five occupants showed an 
accuracy of 70% in the inference of occupant's room level location which leads to 
an activity recognition accuracy improvement of 30% in comparison to CHMM 
based Smartphone solutions (i.e. observations in the CHMM represent only 
Smartphone data).  Note although their model is able to recognize interaction 
between occupant (thanks to the use of CHMM in the third layer), their 
experiment data does not include cooperative activities and only complex parallel 
ADLs were recognized. 

In (Natarajan and Nevatia, 2007) Coupled Hidden Semi-Markov Model 
(CHSMM) and CHMM are used to model multi-occupant activities using  a 
dataset related to simultaneous hand gesture obtained by camera  in the context of 
sign language. CHSMM outperforms CHMM by a difference of 20-30% accuracy 
rate. Considering multi-occupancy, transfer learning can be applied by 
substituting the two hands by two occupants and test the ability of the model to 
deal with parallel and cooperative activities in a pervasive setting.  

II.5.5 Knowledge-driven vs Data-driven Approaches 

We point out that all work presented above is data-driven using mainly 
probabilistic algorithms to build activity models. Knowledge-driven approaches, 
on the other hand, use ontology and symbolic representation (i.e. logic) to specify 
the semantic relations of activities as in the ontology snapshot approach used in 
(Riboni et al., 2011). Although, data-driven techniques exploit temporal 
information which is a very important aspect in activity recognition, the 
knowledge-driven techniques have been proven to be effective in single-occupant 
activity recognition (Riboni et al., 2011). When extended with simple forms of 
temporal reasoning, knowledge-based methods are comparable to the state-of-the-
art techniques based on HMMs (Riboni et al., 2011).  
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Interestingly enough and to the best of our knowledge, ontology modeling has 
not yet been fully investigated in the context of multi-occupant activity 
recognition. An exception to this is the work described in (Lin and Fu, 2007) 
(already mentioned in Section II.5.3) where a combination of data-driven and 
knowledge-driven methods is proposed resulting in a layered approach. In the first 
layer, an ontology is used to interpret raw data from sensors by exploiting 
knowledge about the occupants and their relationships. In the second layer a DBN 
is applied to learn single-occupant preferences and in the third layer a BN is used 
to learn multi-occupant preferences.  

This study however focuses on learning user preferences, not on recognizing 
the activities. Its merit lies in the fact that it provides a unified framework for 
recognizing both individual preferences and cooperative preferences. Considering 
multi-occupancy such a layered model can be applied by substituting the 
preferences by the activities and test the ability of the model to deal with parallel 
and cooperative activities in the pervasive setting.  

Another interesting study was presented in (Alemdar et al., 2013) (Chen and 
Tong, 2014) (Tunca et al., 2014) where knowledge-driven and data-driven 
approaches for multi-occupant activity recognition are combined. The same 
approach was applied in the three studies but using different models and different 
datasets. In fact the authors of that studies exploited some simple knowledge of 
multi-occupant activities by defining “combined labels”. Specifically, each 
observation in the dataset is represented by a label pair (activity label of Occupant 
1, activity label of Occupant 2).  The pair is then converted into a scalar to result 
in a combined label which represents the two activities of the two occupants. 
Using the dataset, all possible combinations are collected. After mapping each 
pair of multi-occupant activities labels in the training dataset to their combined 
label, an HMM is applied to construct the activity model in (Alemdar et al., 2013).  

In (Chen and Tong, 2014), HMM and CRF were applied to construct the 
activity model. In both HMM and CRF models, hidden states represent the 
combined labels and the observations represent the sensor readings. The authors 
apply a two-stage method in the inference step. In the first stage of the method, 
CRF and HMM are applied to infer the combined label state. In the second stage, 
the combined label states are inversely mapped onto the corresponding occupants’ 
activity labels. The results show that this approach increases the average accuracy 
by approximately 10% in comparison with the approaches described in (Hsu et al., 
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2010) (Singla et al., 2010) using the same dataset. The results are slightly better 
for HMM in comparison with CRF.  

Tunca et al. (Tunca et al., 2014), applied the same approach as  in (Alemdar et 
al., 2013) (Chen and Tong, 2014). They compared five different classifiers 
namely, K-Nearest Neighbor (KNN), DT, HMM, MLP and TDNN. The number 
of activities for each occupant is 27 which would conduct to 272 possible 
combinations of occupants' activities (i.e. combined labels). In order to reduce the 
number of combined labels the authors  grouped similar activities into more 
general activities (e.g. the activities Preparing a meal and washing dishes were 
grouped to the "KIT" activity and  Having a meal or snack were grouped to 
"EAT" activity) which leads to having 7 activities instead of 27 activities for each 
occupant. Results suggest that TDNN and HMM performed slightly better than 
the other classifiers. To the best of our knowledge the approach used by the 
authors in (Alemdar et al., 2013) (Chen and Tong, 2014) (Tunca et al., 2014) is 
the only one which allowed to solve both data association and activity recognition 
at the same time. 

Afrin Emi and Stankovic (Afrin Emi and Stankovic, 2015) present an activity 
recognition platform based active learning techniques and knowledge-driven 
about activities called SARRIMA. The latter extends AALO (Hoque and 
Stankovic, 2012) by considering the coexistence of multiple occupant at home and 
operates based on domain knowledge about activities (e.g.  locations, objects 
involved, most likely time of the day) and specific assumptions on these ones (e.g. 
preparing dinner is usually performed in the kitchen). SARRIMA solves both the 
data association problem by the use of the person identification module and the 
activity recognition problem (i.e. parallel and sequential ones) by the use of the 
ADL recognition module. These modules can operate independently and 
separately of each other when only one of the latter problems is posed. They can 
also exchange information in order to identify a person and to check the choice of 
a recognized ADL. This approach detects about 97% of activity instances. 
Regarding the data association accuracy, the authors concluded that the latter is 
very dependent to the similarity of occupants' behavior  and to the type of  passive 
sensors installed. 
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II.5.6 Applicability, Adaptability and Scalability of Multi-

Occupancy Models 

The applicability and the adaptability of all models used in the context of 
multi-occupancy have not yet been investigated. Existing multi-occupant activity 
recognition systems are trained on private datasets (Wilson and Atkeson, 2005) 
(Wang et al., 2009) (Wang et al., 2011) (Gu et al., 2009b) (Lin and Fu, 2007) or 
on publicly available datasets (Prossegger and Bouchachia, 2014) (Crandall and 
Cook, 2008a) (Crandall and Cook, 2008b) (Hsu et al., 2010) (Chiang et al., 2010) 
(Cook et al., 2010) (Singla et al., 2010) (Alemdar et al., 2013) (Chen and Tong, 
2014). Thus, the models are closely adjusted to the living space and the person, to 
the training data and to the types of activities monitored in the home. Then, such 
recognition models would only be applicable to that environment be it a single-
occupant setting or multi-occupant setting. 

To overcome the above limitations, Sarkar et al. (Sarkar et al., 2010) suggest 
the use of an alternative source of activity data that is a web data. Although their 
approach would work for almost any environment, the web data is clean and 
therefore cannot be used for real-world systems. The proposed activity model is 
developed for a single occupant setting and thus the authors only discuss its 
scalability in terms of adding new activities. However, dealing with scalability in 
multi-occupancy setting should not only consider new activities, but also new 
occupants. Clearly, the scalability of the models in terms of the number of 
occupants is the most important issue.  

Referring to the scalability of data association algorithms, all studies in the 
literature have considered only a two-occupant situation (Crandall and Cook, 
2008a) (Crandall and Cook, 2008b) (Crandall and Cook, 2010) (Hsu et al., 2010) 
(Cook et al., 2010), except (Wilson and Atkeson, 2005). In fact, the authors in 
(Wilson and Atkeson, 2005) study the impact of varying the number of occupants 
from 1 to 5 on simulated data and from 1 to 3 on real-world data using HMM. It is 
found that there is no difference in accuracy when varying the number of 
occupants on real-world data set in comparison with simulated data. This is a 
good sign that the model can be applied in real-world environments. However, the 
accuracy drops, because the complexity, that depends on the number of occupants, 
increases (Wilson and Atkeson, 2005).  On simulated data, an accuracy of 100% 
is obtained for one occupant and only 67% for 4 occupants. 
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To the best of our knowledge, the scalability of activity recognition algorithms 
has never been considered. Nevertheless, as the authors in (Gu et al., 2009b) point 
out, EP-based models are scalable to additional occupants. Adding a new 
occupant would only imply mining the set of EPs for each activity monitored in 
the environment for this occupant. The scalability of the model presented in 
(Alemdar et al., 2013) (Chen and Tong, 2014) seems to be feasible too. In fact, the 
authors use a combined label to represent the two activities of two occupants at 
the same time. Adding another occupant implies combining three labels and 
hence, implies only increasing the number of label combinations. Chiang et al. 
(Chiang et al., 2010) noted that the scalability of the activity model would be 
more difficult to achieve and that training and inference will be computationally 
highly demanding,  especially for CHMM and FCRF. In a nutshell the scalability 
problem is a challenging research avenue that is about the general issue of 
learning more generalized multi-occupant activity models. 

II.5.7 Limitations of multi-occupant activity recognition 

systems 

As we mentioned earlier, a number of studies on multi-occupant activity 
recognition have been carried out using the pervasive computing technology. 
Some of them investigate activity recognition ignoring data association. In this 
context, the studies in second approach of (Hsu et al., 2010) and second approach 
of (Singla et al., 2010) applied an individual model for each occupant (see Section 
II.5.3 for additional details). The advantage of this approach lies in the fact that it 
is easily scalable to new occupants. It only requires learning a new chain for the 
new occupant. Furthermore, this approach is suitable in case occupants follow 
their regular routines and do not much interact with each other. Thus, in case of 
more interactions taking place between occupants, this approach may not be 
suitable. 

CHMM and FCRF used in (Chiang et al., 2010) (Wang et al., 2009) (Wang et 
al., 2011) and (Wang et al., 2011) respectively offer the advantage of modeling 
both parallel and cooperative activities. In contrast to CHMM, FCRF does not 
require using a data association variable in order to construct the activity model, 
since all occupant's activities at time t depend on all occupants' data. Another, 
major limitation of these models lies in their scalability to new occupants in the 
setting. In contrast, to the independent models for occupants, adding a new 
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occupant in the environment imply to relearn the model again on all occupants' 
sensory data that is, both old occupant' sensory data and new occupant's sensory 
data. 

Studies in the first approach of (Hsu et al., 2010) and (Cook et al., 2010) 
(Alemdar et al., 2013) (Chen and Tong, 2014) present the advantage of solving 
both data association and multi-occupant activity recognition. However, the 
methodology differs from (Hsu et al., 2010) (Cook et al., 2010) (see Section 
II.5.2) to (Alemdar et al., 2013)(Chen and Tong, 2014) (see Section II.5.5). The 
solution suggested in (Cook et al., 2010) requires solving the data association 
problem before activity recognition. The disadvantage of this approach is that the 
misclassification of the occupant by the data associator strongly impacts the 
recognition of the activity. Moreover, adding a new occupant in the environment 
implies retraining both the data association model (adding a hidden state 
representing the new occupant) and the activity recognition model (adding the 
hidden states corresponding to the activities of the new occupant). 

Furthermore, the activity recognizer in the first approach of (Hsu et al., 2010)    
(Cook et al., 2010) and the first approach of (Singla et al., 2010) consists of a 
single-chain CRF and a single-chain HMM respectively.  In the inference step, 
one activity label is inferred representing either the activity label of Occupant 1 or 
Occupant 2. Tracking the activity of each occupant requires recognizing the 
activities of all occupants at each time step. Using a single chain HMM or CRF in 
which the hidden states represent the activities of all occupants is not suitable for 
activity recognition.  

A similar approach presented in (Alemdar et al., 2013) (Chen and Tong, 2014) 
(see Section II.5.5)  also use a single chain HMM and a single chain CRF, but the 
hidden states refer to combinations of activity labels that are obtained by 
aggregating pairs of activities from the occupants. In the inference step, the 
combined label is converted back into the individual activity labels. By doing so, 
conventional graphical models, like HMM and CRF, can be applied to multi-
occupancy. This approach, presents the advantage of solving both data association 
and recognizing both parallel and cooperative activities simultaneously. 
Moreover, although the concept is applicable regardless of the number of 
occupants, the process needs to be repeated again on all occupants' data if new 
occupants are added. 
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Comparing HMM and CRF, Kasteren et al. (Kasteren et al., 2008) reports that 
HMM is more appropriate than CRF for imbalanced activity data which contains 
dominant  activities. In the “Ubicomp dataset” described in (Kasteren et al., 
2008), we can encounter more events related to the activity “going to  bed” than 
those related to the activity “toileting”.   

II.5.8 Evaluation Issues 

To evaluate the performance of computational models for both data association 
and activity recognition models, the evaluation method should describe how the 
data is to be used, how training is to be carried out, and how validation and testing 
are to be conducted. The performance metrics, used for evaluating the model, are 
very important in the validation of any model. Selecting the adequate metrics 
strongly depends on the specific problem (e.g. classification, regression) at hand. 
In the following, we will display the different criteria used in the literature 
references mentioned in this chapter to assess the performance of multi-occupant 
activity recognizers. 
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where l is the total number of classes/activities and N is the total number of 
time slices when sensory data is discretized using a constant length. E is the total 
number of sensor events. [a = b] is a binary indicator having the value 1 if true 
and 0 otherwise. tpi  is the number of true positives (instances from the ith class 
that are correctly recognized being from the ith class), tni is the number of 
instances recognized as not part of class i and indeed they are not (true negatives), 
fpi  is the number of instances that are incorrectly recognized as part of the ith class 
(false positives) and fni is the number of instances recognized as part of the ith 
class, while they are not (false negatives). The quantities tpi, tni, fpi and fni for 
each class are computed from the confusion matrix.  

In the context of data association, classes are the occupants, whereas in activity 
recognition classes represent the activities. Authors in (Crandall and Cook, 2008a) 
(Crandall and Cook, 2008b) study  the impact of adding new features (hour of 
day, day of week, part of day, part of week) to the data and used NB and HMM in 
order to deal with data association. Two measures are used: the accuracy rate 
(equation II.12) and the false positive rate (equation II.13). They compute each of 
the two metrics for each feature type to select the feature which reports the best 
results and to evaluate the effect of features on the efficiency of occupant 
identification.  For instance, in a two-occupant home, a person would spend much 
more time at home than the other one and hence, the probability that an event 
would be generated by a person will be attributed to the person that caused most 
of the events resulting a high false positive rate. A good occupant classification 
would result in high accuracy and low false positive rate.  
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When  comparing NB and HMM for occupant identification, the authors in 
(Crandall and Cook, 2010) use the average lag to assess the performance of their 
HMM model. The average lag is defined as the average number of events after a 
transition in sensor data before HMM correctly classifies the occupant. An 
average lag of 1 indicates that HMM improperly classified one event in each 
transition from one occupant to the other one in activity data before correctly 
recognizing the occupant causing the events. The authors also use the error rate 
(equation II.14) which represents the ratio of errors made when classifying a 
number of instances. Wilson and Atkeson  (Wilson and Atkeson, 2005) use time-
slice accuracy (equation II.15) to evaluate the effectiveness of their HMM based 
occupant identification problem. Time slice accuracy is the ratio of correctly 
classified time slices when data is discretized using a time length. On the other 
hand for evaluating activity recognition, the authors in (Chiang et al., 2010) 
compute the accuracy for each occupant separately. They also compute the joint 
accuracy which is counted when the activity recognized for both Occupant 1 and 
Occupant 2 are correct.  

Existing  datasets in activity recognition such as  ARAS (Alemdar et al., 2013) 
and CASAS" Multiresident ADLs" (Singla et al., 2010) are imbalanced which 
means that some classes have more instances in the dataset than do other classes. 
Hence, because of the class imbalance the correct classification of each class is 
equally important for activity recognition; many studies in the field tend to apply 
the average accuracy measure (equation II.17). As a result, the authors in (Hsu et 
al., 2010) (Cook et al., 2010) (Singla et al., 2010) (Alemdar et al., 2013) (Chen 
and Tong, 2014) (Afrin Emi and Stankovic, 2015) use the average accuracy to 
assess the performance of their activity models. In  (Cook et al., 2010) (Chen and 
Tong, 2014) (Tunca et al., 2014) many measures are applied: the average 
accuracy, the average precision (equation II.18), the average recall (equation 
II.19), and the average f-score (equation II.20). In addition to these metrics  the 
average error rate (equation II.21) was used in (Chen and Tong, 2014). Although 
Tunca et al. (Tunca et al., 2014) computed many measures: , the average 
precision (equation II.18), the average recall (equation II.19), the average f-score 
(equation II.20) and the accuracy rate they only reported the two latter metrics' 
results for each occupant and for each house of the ARAS dataset. 

While many metrics are usually used to assess multi-occupant activity 
recognition models some studies only applied the accuracy rate as shown in (Lin 
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and Fu, 2007) (Prossegger and Bouchachia, 2014) (Roy et al., 2013) and (Roy et 
al., 2016). 

II.6 International Research Groups 

Several research groups have equipped experimental living spaces with 
pervasive sensors for HAR research like GeorgiaTech Aware Home Research 
Initiative (AHRI)14, Intel research laboratory at Seattle15, Domotics and Mobile 
computing Research (DOMUS)16at Sherbrooke University (Canada) and the Place 
Lab at Massachusetts Institute of Technology (MIT)17.   

However, only few research groups have been working on multi-occupant 
activity recognition. The NTU Wisdom Family (Attentive Home)18 targets the 
family environment as shown in recent work (Hsu et al., 2010) (Chiang et al., 
2010); whereas others (Lin and Fu, 2007)  looked at the problem of multi-user 
preference modeling. Members of the Institute of Computer Software (ICS) at 
Nanjing University worked on multi-occupant activity recognition from wearable 
sensors (Wang et al., 2009) (Wang et al., 2011) (Gu et al., 2009b).  

The ARAS group project mainly focuses on the physical layer and 
communication layer of an SH system to collect multi-occupant activity data for 
HAR. They published the details of a multi-occupant dataset (see Section II.3.2), 
which includes a variety of pervasive sensors as well as a variety of activities 
(Alemdar et al., 2013). Later, the ARAS group project,  presented in (Tunca et al., 
2014) the details of the field study they conducted in (Alemdar et al., 2013) with 
the intention of contributing on the acceptance and commercialization of wireless 
sensor network based ambient assisted living systems compatible for homes with 
multiple occupants. They focus on the details of the system architecture, including 
the challenges of sensor selection, deployment (i.e. given the variety of sensor 
types and activities and considering the main issues which are privacy, 
unobtrusiveness and robustness, how to select  the most suitable set of sensors in 
the deployment), networking and data collection. They also summarized their 

                                                
14http://www.awarehome.gatech.edu/drupal/ 
15http://www.intel.com/research/network/seattle_human_activity_recognition.htm 
16http://www.domus.usherbrooke.ca/ 
17http://web.mit.edu/cron/group/house_n/placelab.html 
18http://www.attentivehome.org/index.html 
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experiences while meeting these challenges to guide future studies in the 
deployment of similar systems. 

The CASAS group treats environments as intelligent agents, where the status 
of the occupants and their physical surroundings are perceived using sensors and 
the environment is acted upon using controllers in a way that improves the 
comfort, safety, and/or productivity of the occupants. This research group seems 
to be a driving force in the area of HAR, be it for a single-occupant (Cook et al., 
2013) or a multi-occupant setting (Cook et al., 2010) (Singla et al., 2010). Their 
main areas of study are: activity learning, discovery, recognition and prediction, 
gerontology, multiple occupant profiling, automated clinical diagnoses, energy-
efficient home automation, activity-aware intervention, identification of trends 
and anomalies in SH sensor data. One of their major contributions in this area is 
making around 24 datasets for use in their own research and also made publicly 
available, creating a collaborate approach and improving technology evolution. 

II.7 Conclusion 

So far research related to multi-occupant SHs has devoted significant attention 
to the application of graphical probabilistic algorithms to model and recognize 
activities. This chapter emphasizes the importance of the various technology 
aspects to fully realize the multi-occupancy paradigm. While there has been much 
effort invested on the single occupancy paradigm, multi-occupancy has started 
recently to be the central focus of many studies. Clearly, there were and are still 
many outstanding scientific questions related to single occupancy to be dealt with 
before dealing with those specific to multi-occupancy. 

In this chapter, we pointed out the major issues pertaining to activity 
recognition in the context of multi-occupancy taking data association and 
interaction into account. We discussed in detail the state-of-art computational 
models used for modeling collaborative activities, the existing benchmark datasets 
and the evaluation metrics. 
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III. Proposed approaches for Multi-occupant 
Activity Recognition 

III.1 Introduction 

This chapter investigates the problem of  HAR in a multi-occupant setting. In 
this context parallel activities and cooperative activities are considered. The goal 
is to accurately recognize both types of activities from non-intrusive sensors. We 
do not focus on only one of the two types of activities as done in the literature 
related to multi-occupant activity recognition, but on both types.  

To deal with multi-occupant activities we investigate different approaches 
based on HMMs. Specifically, we propose an HMM-based method, called CL-
HMM, where we combine occupants' activities labels as well as occupants' 
observation labels at time to generate the corresponding sequence of activities as 
well as the corresponding sequence of observations on which a conventional 
HMM is applied. We also propose a LHMM in which activities of all occupants 
are linked at each time step. We compare these two models to baseline models 
which are CHMM and PHMM.  

This chapter is organized as follows. Because our proposed approaches are 
based on HMM,  we first give details the latter model in Section III.2. Section 
III.3, describes the proposed graphical models CL-HMM and LHMM. Section 
III.4, discusses the experiments conducted while evaluating the proposed models. 
Details about the experimental dataset (i.e. "Multiresident ADLs" of CASAS) as 
well as the pre-processing applied on are given in Section III.4.1. Description of 
baseline models which are PHMM and CHMM is given in Section III.4.2. Results 
of experiment 1 and experiment 2 are discussed in Section III.4.3 and Section 
III.4.4 respectively. Section III.5 compares our models against existing studies 
which relied on the same dataset. Section III.6, concludes the chapter. 

III.2 Markov Models 

A Markov Model (MM) is a simplification of a DBN that models the temporal 
aspect of processes as shown in figure 14.  
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Figure 14: Representation of a Markov Model 

The first order Markov assumption was proposed to simplify the dependence 
relationship between consecutive states. It stipulates that the present state at time t 
depends only on the previous one, that is: 
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Thus, the future state depends only on the current state, not on past states 
(Sutton and McCallum, 2006); that is, yt depends only on yt-1. 

A specific case of MMs is called the Markov Chain (MC) and corresponds to 
the case where the states are all observable. A MC is a sequence of random 
variables X1, X2, X3, …,Xt with the Markov property. Formally: 

 

ܲ(ܺ௧ାଵ = ଵܺ|ݔ = ,ଵݔ ܺଶ = ,ଶݔ … , ܺ௧ = (௧ݔ = ܲ(ܺ௧ାଵ = ௧ܺ|ݔ =  (௧ݔ

 

 
(III.2) 

The possible values of Xi form a countable set S called the state space of the 
chain. 

MCs are not popular in human activity modeling since we cannot always 
directly recognize the activities from sensory data. In general, only simple 
activities can be modeled using MCs (Kim et al., 2010). Interestingly, MCs were 
applied in (Crandall and Cook, 2008b) to model the data association problem  in 
order to identify the occupants.  

III.2.1 Hidden Markov Model (HMM) 

The most popular generative temporal probabilistic model is the HMM. In 
contrast to MC, HMM consists of hidden and observable states. The data (x1, x2,..., 
xT), is therefore assumed to be generated by a temporal process whose states are 
hidden, (y1, y2,..., yT) as shown in figure 15. 
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Figure 15:  Representation of HMM 

HMM relies on two assumptions: which are the 1st order Markov assumption 
in relation to the independence of hidden states and the conditional independence 
of observation parameters stipulating that: 
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The observable state at time t, xt depends only on the current hidden state yt. 
That is, the probability of observing xt while being at yt is independent of all other 
observable and hidden variables (Sutton and McCallum, 2006). 

The joint probability P(y) of the observations and hidden states can be 
factorized as follows: 
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where P(yt|yt-1) and P(xt|yt) indicate the probability of transition between the 
two consecutive hidden states yt-1 and yt and the probability of observing xt at state 
yt respectively (Sutton and McCallum, 2006). Given the sequence of observables, 
the maximum of the joint probability corresponds to the highly probable sequence 
of hidden states.  

In the context of activity recognition, similar modeling is adopted like with the 
previous computational models. That is, the hidden states are the activities and 
observations are the sensed data as shown in figure 16 (i.e. representation of an 
HMM in the context of adlnormal activity data).  Both activities (i.e. hidden 
states) and sensors' readings (i.e. observable states) are represented using 
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rectangles as they are discrete. The links between the hidden states are labeled 
with the transition probabilities and those between the hidden states and the 
observables are labeled with the emission probabilities.  

 

Figure 16: Representation of HMM in HAR 

Usually when activities are sequential, it is possible to separate activity data 
and then create one HMM for each activity. However, if the activities are 
interleaved, this way of modeling is not suitable because of the interlacement of 
the activities will be disregarded. In addition, finding the optimum number of 
hidden states for each HMM corresponding to an activity is another issue. 
Creating an HMM for each activity would lead to have the same sensor model for 
each activity, but the number of hidden states for each activity is unknown. In 
fact, the authors in (Khan et al., 2012) used the accuracy to find the optimum 
number of hidden states and suggested to use techniques applied for Hierarchical 
Dirichlet Process-Hidden Markov Model (HDP-HMM) (Hu et al., 2009) and 
Infinite Hidden Markov Models (IHMMs) (Pruteanu-Malinici and Carin, 2008).  

In some cases, even when the complex activity is decomposed, its sub-
activities also form complex activities which are not directly observable (hidden). 
For instance, the activity "Prepare a dinner" can be decomposed into the activity 
"prepare a drink" and the activity "cook" and each of them also includes sub-
activities. Then individually trained HMMs on the activities can be combined to 
build a global HMM. Thus, hierarchical graphical models (e.g. HHMM or 
Abstract Hidden Markov Model (AHMM)) look more suitable in this case. 
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III.3 Proposed Models for Multi-Occupant Activity 

Recognition 

In the following both CL-HMM and LHMM  are described. Without loss of 
generality, we assume that we have two occupants living in the same home. Let N 
and M be the number of activities performed by Occupant 1 and Occupant 2 
respectively and let Q be the number of sensors present in the living space and 
trigged by the two occupants. The description presented below can be easily 
generalized to any number of occupants and is based on the following 
assumptions: 

 The data association variables are given (i.e. we know who 
triggered which sensor). 

 In each occupant's HMM of the LHMM, the hidden states 
represents the activities performed by the occupant while 
observable states correspond to the sensor events generated by the 
occupant. 

 We are dealing with discrete data for both the activities and the 
sensory data. 

 We have the ground truth activity corresponding to each occupant's 
observation in the dataset, we therefore apply a supervised learning 
which means that parameter estimation is achieved by frequency 
counting of occurrences of states, transitions and observations 
(Rabiner, 1989). 

 The Viterbi algorithm is applied only in the test step to infer the 
sequence of hidden states (i.e. the activities) that best explains a 
new sequence of observations (i.e. sensor events).  

 
We describe in the following parameter estimation as well as the Viterbi 

algorithm for each of the two models. 
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III.3.1 HMM-based Combined Label (CL-HMM) 

a. Definition 

Each occupant has own sequence of sensor events that the activities. Thus, 
each occupant has an observation at each time step as part of an activity. In an 
environment including k occupants, this would result into a vector of length k for 
the observations and a vector of length k for activity labels at each time step. The 
CL-HMM primarily consists of converting and combining the activities (L1j, L2j, 
L3j,…,Lkj) and the corresponding data (o1j, o2j, ..okj) of individual occupants into a 
single observation (o) and a single combined activity label (L). Once this pre-
processing step is completed, the learning process can start. 

b. Setup 

Instead of considering that each occupant's activities A1 and A2 have their 
corresponding observations O1 and O2, in a two-occupant environment, we 
suppose that each pair of activities at each time step generates a pair of 
observations. That is, the pair of activities (at

1, at
2) generates the pair of 

observations (ot
1, ot

2)  at time t. The CL-HMM approach can be divided into five 
main steps: 

(1) Define the sets CLA and CLO of combined label of activity pairs and 
combined label of observation pairs respectively. If we consider all 
activities of the two occupants that can appear in parallel, the number of 
resulting combined labels is N×M. However, some activities cannot occur 
in parallel in real world situations. For instance, Occupant 1 cannot take a 
shower if the bathroom is occupied by the Occupant 2; thus the number of 
combinations can be reduced. Using the experimental data, we extract non 
redundant pairs of activity labels and attribute to each pair a scalar 
resulting then into the set of combined labels for activities CLA. For 
instance, CLA consists of = {1, 2, 3, 4} as the set of combined labels for 
activities pairs (1,2), (2,1), (1,3), (3,4).The same process is applied to 
extract non redundant pairs of observation labels from the data. This will 
result in Q×Q possible values for the CLO set. However, due to the fact 
that some sensors do not occur in parallel in real-world situations (e.g. the 
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phone sensor cannot be trigged by both occupants at the same time), the 
cardinality of CLO will be smaller than Q×Q. 
 

(2) Using the CLA set, we then convert each pair of multi-occupant activities 
labels (a1, a2)(1:T)  (i.e. {(a1

(1), a2
(1)), (a1

(2), a2
(2)),..., (a1

(T), a2
(T))})  into 

combined activities a(1:T)
C as shown in figure 17 (blank squares indicate the 

hidden states, the shaded squares indicate the observed states). Likewise, 
using the CLO set we convert each pair of multi-occupant observations 
labels (o1, o2)(1:T) into combined observations o(1:T)

C respectively. 
 

 
 

Figure 17: Topology of CL-HMM  

 
(3) Estimate the HMM parameters - An HMM is then applied on the data 

resulting from the previous step to build an activity model. In this HMM, 
hidden states represent the combined activity label a(1:T)

C, while the 
observed states represent the combined observations of both occupants 
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o(1:T)
C. The HMM consists of the initial state vector, the transition matrix 

and the observation matrix as follow: 
 

(݅)஼ߨ = ܲ(ܽଵ
஼ = ݅) 

 

 (III.5) 

 
ܳ௜௝

஼ = ܲ(ܽ௧
஼ = ݆|ܽ௧ିଵ

஼ = ݅) 
 

(III.6) 

 
௧ܤ

஼(݅) = ௧݋)ܲ
஼|ܽ௧

஼ = ݅) 
 

(III.7) 

where i=1... N×M,  and BC
t(i) is an (N×M)  by (QxQ) matrix  

As mentioned earlier, parameter estimation is simply achieved by 
frequency counting of occurrences of initial states, transitions and 
observations (Rabiner, 1989). For example, πC(1) represents the number of 
training sequences in which the combined label state (1) appears at the 
beginning divided by the total number of training sequences. Likewise, for 
the transitions, Q31

C represents the number of transitions from the 
combined activity label 3 to the combined activity label 1 divided by the 
number of outgoing transitions from the combined activity label 3. Similar 
frequency count for the observations can be done for example BC(2) is a 
vector indicating the observation probability of all the combined 
observations (1...Q2) from the combined activity label 2. To count the 
probability of a specific observation from the combined activity label 2 
that is  P(ot

C=1|at
C=2), we compute  the number of occurrence of 

combined activity labels 2 in which the combined observation label 1 
appears divided by the occurrence frequency of the combined label 2. 
 

(4) Inference for the HMM - Given an observation sequence OC we need to 
find a state sequence AC which maximizes P(AC|OC). The Viterbi 
algorithm for HMM (Rabiner, 1989) (see appendix A) outputs the best 
state sequence AC which represents the best state sequence of the 
combined activities. This results in a computational complexity of 
O(T2N2M2) where T is the total number of events of the dataset. 
Considering, R occupants each having a number of corresponding 
activities Ni for i=1...R, the computational complexity would be 
O(TR∏i=1

R Ni
2). 
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(5) Extract each occupant activity sequence A1 and A2 - The obtained 

combined activity label, AC, from the previous step is then converted back 
into the original individual activities of the two occupants A1 and A2. 

III.3.2 Linked HMM (LHMM) 

a. Definition 

LHMM was introduced for the first time in (Brand, 1997). The latter represents 
a combination of multiple HMMs, where each HMM consists of a set of hidden 
states and a set of observed states. It is called LHMM because there are direct 
edges from hidden states of an HMM to the hidden states of the other HMMs. 

When a LHMM is applied to HAR, an HMM is constructed for each occupant 
in the environment. For instance, in a two-occupant setting, {A1, O1} and {A2, 
O2} represent the sequence of activities and sensor events from Occupant 1 and 
Occupant 2 respectively. In each HMM chain, hidden states represent the 
activities of the corresponding occupant, whereas the observations represent 
sensor events. That is, Ai={a(1:T)

i} (i=1,2) are the hidden states and Oi={o(1:T)
i}  

are the corresponding observations for Occupant i. The pair of HMMs is 
combined to obtain LHMM (see figure 18, blank squares indicate the hidden 
states, the shaded squares indicate the observed states). When two occupants in a 
SH perform cooperative activities, the activity of one occupant at time t can affect 
not only the activity at time t+1 in the same model, at

n to at+1
n, but also the activity 

of the other occupant, at
n to at

m. 
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Figure 18: Topology of LHMM  

Since both HMMs are not independent, the posterior of the activity sequences 
given all the observations can be expressed as: 

 
ܲ൫ܣ(ଵ), ,หܱ(ଵ)(ଶ)ܣ ܱ(ଶ)൯ =

ܲ൫ܱ(ଵ), ܱ(ଶ)หܣ(ଵ), ,(ଵ)ܣ൯ ܲ൫(ଶ)ܣ ൯(ଶ)ܣ
ܲ(ܱ(ଵ), ܱ(ଶ))  

 

  

 

∝ ܲ൫ܱ(ଵ), ܱ(ଶ)หܣ(ଵ), ,(ଵ)ܣ൯ ܲ൫(ଶ)ܣ  ൯(ଶ)ܣ

 

 

(III.8) 

According to the condition of independence given in the structure (figure 18), 
we can factorize P(O1, O2| A1, A2) and P(A1, A2) as follow: 

 
ܲ൫ܱ(ଵ), ܱ(ଶ)หܣ(ଵ), ൯(ଶ)ܣ

= ܲ ቀ݋ଵ
(ଵ), ଵ݋

(ଶ)ቚܽଵ
(ଵ), ܽଵ

(ଶ) ቁ … ܲ ቀ்݋
(ଵ), ்݋

(ଶ)ቚ்ܽ
(ଵ), ்ܽ

(ଶ) ቁ 

 

 

(III.9)  

where: 
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 ܲ ቀ݋ଵ
(ଵ), ଵ݋

(ଶ)ቚܽଵ
(ଵ), ܽଵ

(ଶ)ቁ … ܲ ቀ்݋
(ଵ), ்݋

(ଶ)ቚ்ܽ
(ଵ), ்ܽ

(ଶ)ቁ

= ෑ ௧݋)ܲ
(ଵ)

்

௧ୀଵ

ቚܽ௧
(ଵ) � , ܽ௧

(ଶ))ܲ(݋௧
(ଶ) ቚܽ௧

(ଵ) � , ܽ௧
(ଶ)) 

 

 

 

(III.10)  

and 

 

ܲ൫ܣ(ଵ), ൯(ଶ)ܣ = ܲ(ܽଵ
(ଵ), ܽଵ

(ଶ)) ෑ ܲ(ܽ௧
(ଵ), ܽ௧

(ଶ)
்

௧ୀଶ

ቚܽ௧ିଵ
(ଵ) , ܽ௧ିଵ

(ଶ) �) 

 

 

(III.11)  

P(at
(1), at

(2)) is a hidden state pair at time t as a combination of the hidden states 
of the chains A1 and A2 . P(at

(1), at
(2)| at-1

(1), at-1
(2)) is the transition probability of 

the hidden state pairs, P(ot
(1)|at

(1), at(2)) is the observation probability of o(1:T)
1 

from all possible hidden state pairs and P(ot
(2)|at

(1), at
(2)) is the observation 

probability of o(1:T)
2 from all possible hidden state pairs.  

We proceed like in the case of CL-HMM, we combine and convert the pair of 
activities corresponding to Occupant1 and Occupant 2 into a single combined 
activity label (L) to obtain the sequence AC. To do that, we define the CLA set 
(see step one in section III.3.1 (setup) ) and use it to convert each pair of multi-
occupant activities labels (a1, a2)(1:T) into combined activities a(1:T)

 C
. 

b. Parameter estimation 

Considering the pair of activities (at
(1), at

(2)) as one activity at
(C) (see equations 

(III.8)-(III.11)), the parameters of our LHMM are: 

 
(݅)஼ߨ = ܲ(ܽଵ

஼ = ݅) 
 

(III.12)  

 
ܳ௜௝

஼ = ܲ൫ܽ௧
஼ = ݆หܽ௧ିଵ

஼ = ݅൯ 
 

(III.13) 

௧ܤ 
ଵ(݅) = ௧݋)ܲ

ଵหܽ௧
஼ = ݅)              (III.14) 
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௧ܤ

ଶ(݅) = ௧݋)ܲ
ଶหܽ௧

஼ = ݅) 
 

(III.15) 

where i=1...N×M and both Bt
1(i) and Bt

2(i) are N×M by Q matrix. πC(i) is the 
initial state vector of the combined activity label sequence AC, Qij

C  is the 
transition matrix of AC. Bt

1(i) and Bt
2(i) are the probability of observing O1= 

o(1:T)
1, O2= o(1:T)

2 from AC respectively. Like with CL-HMM, all parameters of  
LHMM are easily computed using frequency counting of occurrences of initial 
state vector, transitions and observations (Rabiner, 1989). It does not differ from 
CL-HMM to LHMM when computing the initial state vector and the transition 
matrix of the single combined activity label sequence AC. 

The main difference between our LHMM and our CL-HMM lies in the 
conditional independencies of the observations O1 and O2 over the single 
combined activity label AC. Because, in CL-HMM, O1 and O2 are converted too 
into a single combined observation label OC, they are considered to be relatively 
dependent over the single combined activity label sequence AC.O1, O2 in LHMM 
are conditionally independent over AC. 

c. Inference 

LHMMs inference is formulated as follows. Given an observation sequence 
O={O1, O2}, we need to find a state sequence AC which maximizes p(AC| O1, 
O2).We apply the Viterbi algorithm for HMM (Rabiner, 1989). The latter outputs 
the best state sequence AC which represents the best state sequence of the 
combined activities. According to equation III.10, the sequences of observations 
O1, O2  are conditionally independent over the single combined activity label AC,  
that is, P(O1, O2|AC)= P(O1|AC)×P(O2|AC)(i.e. Bt

C(i)= Bt
1(i)× Bt

2(i)). The 
description of the Viterbi is shown in the following: 

Let δt(i) be the maximal probability of state sequences of the length t that end 
in state i and produce the t first observations for the given model. 
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(݅)௧ߜ = 

ݔܽ݉ ቄܲ(൫ܽଵ
஼൯ … , ൫ܽ௧ିଵ

஼ ൯; ቀ݋ଵ
(ଵ), ଵ݋

(ଶ)ቁ , … , ቀ݋௧
(ଵ), ௧݋

(ଶ)ቁ ห(ܽ௧
஼) = ݅)�ቅ 

 

 

(III.16)  

The matrix ψ is used to retrieve the optimal hidden states  at the backtracking 
step. 

 Initialization 
(݅)ଵߜ  = ଵܤ(݅)஼ߨ

ଵ(݅)ܤଵ
ଶ(݅)  

(III.17) 
 ߰ଵ(݅)=0  

(III.18) 
 Recursion 

(݆)௧ߜ  = ௧ିଵ(݅)ܳ௜௝ߜ௜൛ݔܽ݉
஼ ൟܤ௧

ଵ(݆)ܤ௧
ଶ(݆)  

(III.19) 
 ߰௧(݆) = ௧ିଵ(݅)ܳ௜௝ߜ௜൛ݔܽ݉݃ݎܽ

஼ ൟ  
(III.20) 

 Termination 
 

ܲ∗ =  {(݅)்ߜ}௜ݔܽ݉
 
 

(III.21) 
 

൛்ܽ
஼ൟ =  {(݅)்ߜ}௜ݔܽ݉݃ݎܽ

 
 

(III.22) 
 Path backtracking 

 
{ܽ௧

஼ } = ߰௧ାଵ(ܽ௧ାଵ
஼ ), ݐ = ܶ − 1, ܶ − 2, … ,1 

 
 

(III.23) 
where P* is the maximum likelihood of δT(i) at time T and aT

C is the most 
probable combined label for the activities at time T. The obtained combined 
activity label, AC, from the previous step is then converted back into the original 
individual activities of the two occupants A1 and A2.  

This Viterbi algorithm results in a computational complexity of O(TN2M2) 
where T is the total number of events in the dataset. Considering, R occupants 
each having a number of corresponding activities Ni for i=1...R, the computational 
complexity would be O(T∏i=1

R Ni
2). 



CHAPTER III       Proposed Approaches for Multi-Occupant Activity Recognition                                                                         
 
 

73 
  

III.4 Experiments 

In the following we will describe the dataset as well as the preprocessing 
associated with before introducing two models PHMM and CHMM against which 
our models CL-HMM and LHMM are compared. Two main experiments are 
studied. In the first we present the results of the individual occupants using all 
models; while in the second experiment joint results after preprocessing are 
discussed. Special attention is given to the performance of the models on 
cooperative and parallel activities.   

III.4.1 Experimental dataset description 

To evaluate the models proposed in this study we use a publically available 
multi-occupant dataset which is the CASAS "Multi-occupant ADLs" dataset19 
(Singla et al., 2010). This dataset was collected through 26 volunteer pairs 
performing 15 scripted activities defined as follow: 

(1) Fill medication dispenser in the kitchen using items obtained from the 
cabinet.  Return items to the cabinet when done. (Occupant 1) 

(2) Hang up clothes in the hallway closet.  The clothes are laid out on the 
couch in the living room. (Occupant 2) 

(3) Move the couch and coffee table to the other side of the living room. 
(Occupant 2) Request help from Occupant 1 (Occupant 1 will stop 
dispenser activity to help and finish dispenser activity when done with this 
activity) 

(4) Sit on the couch and read a magazine. (Occupant 2) 
(5) Water plants located around the apartment.  Use the watering can 

located in the hallway closet. Return the watering can to the closet when       
finished. (Occupant 1) 

(6) Sweep the kitchen floor using the broom and dust pan located in the 
kitchen closet. Return the tools to the closet when  finished. (Occupant 2) 

(7) Play a game of checkers for a maximum of five minutes. (Occupant 1 and 
Occupant 2) 

(8) Set out ingredients for dinner in the kitchen. (Occupant 1) 
(9) Set dining room table for dinner. (Occupant 2) 
(10) Read a magazine on the living room couch. (Occupant 1) 

                                                
19 http://ailab.wsu.edu/casas/datasetdlmr.zip  
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(11) Simulate paying an electric bill.  Retrieve a check, a pen, and an 
envelope from the cupboard underneath the television in the living room.  
Use the telephone book in the dining room to look up a number for a 
utility company to confirm the amount on the bill. Occupant 2  Request 
help from Occupant 1 to find number for utility company (Occupant 1 will 
stop current activity to help and finish activity when done helping). 

(12) Gather food for a picnic from the kitchen cupboard and pack them in 
a picnic basket. (Occupant 1) 

(13) Retrieve dishes from a kitchen cabinet. (Occupant 2)  Request help from 
Occupant 1 to identify cabinet in which the dishes are located. (Occupant 
1will stop current activity to help and finish activity when done helping) 

(14) Pack supplies in the picnic basket. (Occupant 2) 
(15) Pack food in the picnic basket and bring the basket to the front door 

of the apartment. (Occupant 1) 
 

Note that the activities 3, 7, 11 and 13 are cooperative, while the 11 remaining 
ones are parallel individual ones.  

In all, the dataset contains 17 232 events described by (Date, Time, SensorID, 
Value, OccupantID, ActivityID). If an event is trigged by the two occupants, it is 
then represented by (Date, Time, SensorID, Value, OccupantID, ActivityID, 
OccupantID, ActivityID).  

Activities were manually annotated by recording their start and end time. 
Although, the SH (i.e. Kyoto testbed) includes a variety of sensor types (i.e. 
motion sensors, item sensors, burner sensor, water sensors, light controllers, 
phone sensor), only 27 motion sensors (i.e. from M01 ...M26 and M51), 2 item 
sensors (i.e. I04 and I06) and 8 door sensors (i.e. D07 and from D09 ..D15) were 
used to collect this dataset as shown by red rectangles in figure 19 (remaining 
sensors were not involved in the registration of this dataset). All these sensors 
produce binary values: ON/OFF for motion sensors, PRESENT/ABSENT for item 
sensors, OPEN/CLOSE for the cabinet sensor. The motion sensors provide the 
real-time location of the occupants. In their absence, the location of the person 
corresponds to the location of the last object used.  
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Figure 19: Floor plan of Kyoto of WSU CASAS 

Because this dataset stemmed from a laboratory experiment on a voluntary 
basis, the recording of the activities is not continuous in time and is spread over 
two months. However, it is a very good benchmark for the community and was 
used in most of the studies in the context of multi-occupant HAR (Chen and Tong, 
2014) (Chiang et al., 2010) (Cook et al., 2010) (Hsu et al., 2010) (Singla et al., 
2010). Additional details on the dataset are given in (Singla et al., 2010). 

III.4.1.1 Multi-occupant activity data sequences segmentation 

In order to accurately learn the activity model parameters, we need to produce 
sequences from the raw data. The design of the training sequences does not affect 
much observations and transitions estimation, in contrast to initial state 
estimations. The initial states do get a better estimate when accurate activity data 
segmentation is applied. The design of sequences strongly depends on the type of 
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activities monitored in the environment. Generally, studies consider each day of 
registration as a sequence when activity data reflects the natural human behavior 
of occupants as in (Kasteren et al., 2008). But in the case of CASAS 
"Multiresident ADLs", many days represent activity data of a single pair of 
volunteers, while others represent activity data of two pairs of volunteers as 
shown in table 8. Segmenting activity data on a daily basis would result into a lot 
less samples for initial and transition estimates. Therefore, each file serves to 
build one sequence. We run leave-one-out cross-validation on our 26 sequences of 
activity data. 

Table 8: Summary of dates and number of event for volunteer files 

Volunteer ID date # of events 
1 10 NOV 2008 674 
2 11 NOV 2008 788 
3 11 NOV 2008 826 
4 12 NOV 2008 765 
5 12 NOV 2008 810 
6 15 NOV 2008 699 
7 17 NOV 2008 576 
8 17 NOV 2008 757 
9 18 NOV 2008 390 (missing) 
10 18 NOV 2008 693 
11 19 NOV 2008 623 
12 19 NOV 2008 572 
13 20 NOV 2008 616 
14 21 NOV 2008 623 
15 21 NOV 2008 612 
16 2 DEC 2008 549 
17 3 DEC 2008 650 
18 3 DEC 2008 715 
19 4 DEC 2008 630 
20 5 DEC 2008 558 
21 5 DEC 2008 500 
22 8 DEC 2008 620 
23 9 DEC 2008 683 
24 9 DEC 2008 661 
25 10 DEC 2008 778 
26 10 DEC 2008 866 

III.4.1.2 Multi-occupant activity data Pre-processing 

In order to compare the performance of our multi-occupant models against 
other models like CHMM,  we followed the same data pre-processing procedure 



CHAPTER III       Proposed Approaches for Multi-Occupant Activity Recognition                                                                         
 
 

77 
  

applied in (Chiang et al., 2010). As mentioned earlier, annotation of sensor events 
and activities in "Multiresident ADLs" comes in the format of (Date, Time, 
SensorID, Value, OccupantID, ActivityID). The pre-processing procedure aims to 
represent at each time step the sensor event, its corresponding value as well as the 
given activity label for each occupant (i.e. Date, Time, Occupant 1 <SensorID, 
Value, Activity label>, Occupant2 <SensorID, Value, Activity label>). Then, we 
first separate the events according to their occupant IDs and generate the sequence 
of activities performed by each occupant using the following procedure, the latter 
is applied on each of the 26 sequences: 

At the beginning of the sequence, a null activity as well as a null observation 
are assigned to each occupant (i.e. at time t Occupant 1 (null, null, null), Occupant2 ( 
null, null, null)). Each time a sensor event is generated by Occupant 1 his/her 
observation value and his/her activity value are updated to the new ones and both 
observation and activity values of Occupant 2 remain unchanged (e.g. at time t+1 
the sensor M19 with the value ON is generated by the Occupant 1, the given 
activity label is 1 this would correspond to Occupant 1 (M19, ON, 1), Occupant2 ( 
null, null, null)). The same procedure is applied when a sensor event is generated 
by Occupant 2 (e.g. at time t+2 the sensor M23 with value  ON is generated by the 
Occupant 2, the given activity label is 4, this would correspond to Occupant 1 
(M19, ON, 1), Occupant2 ( M23, ON, 4)). In case a sensor event is trigged by both 
occupants, observations of both occupants as well as their activity labels are 
updated to the new ones (e.g. at time t+3 the sensor M19 with the value OFF is 
generated by Occupant 1 and Occupant 2 with the activity labels 5 and 6 
respectively, that would correspond to Occupant 1 (M19, OFF, 5), Occupant2 ( M19, 
OFF, 6)). Table 9 shows a sample of data after applying the above pre-processing 
procedure. 

Table 9: Sample of first sequence activity data (i.e. p01.txt) before and after 
pre-processing procedure 

Se
ns

or
 ID

 

V
al

ue
 

O
cc

up
an

t 
ID

 

A
ct

iv
ity

 
ID

 

Occupant 1 Occupant 2 

Sensor 
ID 

Value Activity 
Label 

Sensor 
ID 

Value Activity 
Label 

    NULL NULL NULL NULL NULL NULL 

M22 ON 2 2 NULL NULL NULL M22 ON 2 
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M19 ON 1 1 M19 ON 1 M22 ON 2 

M23 ON 2 2 M19 ON 1 M23 ON 2 

M18 ON 1 1 M18 ON 1 M23 ON 2 

M01 ON 2 2 M18 ON 1 M01 ON 2 

The data contains 16 activities for each occupant, 15 known activities and one 
void (Null) activity that represents unknown activities. In all, there are 37 
different binary sensors in the dataset resulting in 75 observation values for each 
occupant including the null value. 

III.4.2 Comparison against PHMM and CHMM 

To further illustrate the performance of our two HMM-based approaches, CL-
HMM and LHMM, we will consider comparing them against PHMM and 
CHMM. The models PHMM and CHMM rely on the assumptions we made about 
the CL-HMM and the LHMM. 

III.4.2.1 Parallel HMM (PHMM) 

a. Definition 

A PHMM consists of a set of independent HMMs. In other terms, PHMMs are 
standard HMMs that are used in parallel under the assumption that the 
corresponding individual processes being modeled evolve independently from one 
another with independent output. That is, this kind of model combines HMMs 
without considering any relationship between them.  Therefore, when applied for 
activity recognition in a k-occupant environment (Chiang et al., 2010), PHMM 
will consist of k independent HMMs, one for each occupant, where the hidden 
states correspond to the activities and the observations correspond to the sensor 
values. While the application of PHMMs is easy and straightforward, their 
capabilities are limited in the context of multi-occupant activity recognition due to 
the lack of interaction between HMMs and data independence between the 
models. This is the main reason why PHMM have been mainly used for modeling 
parallel activities rather than modeling the interaction. 
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Figure 20 (blank squares indicate the hidden states, the shaded squares indicate 
the observed states) shows a PHMM obtained by modeling each occupant as a 
separate HMM  that is {A1, O1}and {A2, O2} for Occupant 1 and  Occupant 2  
respectively.  

 

Figure 20: Topology of PHMM  

b. Parameter estimation 

There are many existing algorithms for training HMMs such as Baum-Welch. 
Since we have the activity label for each occupant sensor event in the dataset for 
both Occupant 1 and Occupant 2 (supervised learning), parameters estimation is 
straightforward and would be simply achieved by frequency counting of 
occurrences of initial states, transitions and observations for each occupant chain, 
resulting then into an initial state vector, a transition matrix and an observation 
matrix for each occupant's chain. The parameters of a PHMM are defined below: 

 
(݅)ோߨ = ܲ(ܽଵ

ோ = ݅) 
 

(III.24)  

 
ܳ௜௝
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(III.26) 

where R={1,2}, R  is the occupant index, i=1...N in case R=1 (i.e. N is the 
number of activities performed by Occupant1 while i=1...M in case R=2 (i.e. M is 
the number of activities performed by Occupant 2). 

c. Inference 

Since the two HMMs in the PHMM are independent, the posterior of activities 
given the observation is just the multiplication of the two HMMs, which is: 

 ܲ൫ܣ(ଵ), หܱ(ଵ)(ଶ)ܣ �, ܱ(ଶ)൯

= ෑ (ோ|ܱோܣ)ܲ = ෑ
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(III.27)  
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(III.28) 

In PHMM, the inference for one chain is independent of the other chain. 
Specifically, given an observation sequence O1 and the already learned parameters 
of the HMM corresponding to Occupant1 that is (π1(i), Qij

1, Bt
1(i)), we need to 

find a state sequence A1 which maximizes P(A1|O1). Thus, the conventional 
Viterbi algorithm for HMMs (see appendix A) (Rabiner, 1989) is applied on the 
observation sequence O1 in order to compute the most probable state sequence A1. 
Similarly, for inference on Occupant 2 chain, the Viterbi algorithm is applied on 
O2 to compute the most probable state sequence A2. The computational 
complexity of the algorithm is then O(TN2+TM2), where T is the total number of 
sensor events in the dataset (i.e. length of the entire dataset). Considering R 
occupants, each having a number of corresponding activities Ni, i=1...R, the 
computational complexity would be  O(∑i=1

RT Ni
2). 
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III.4.2.2 Coupled HMM (CHMM) 

a. Definition 

CHMM, on the other hand, is a combination of HMMs that interact with each 
other (see figure 21). In each HMM, there is a directed edge from each hidden 
state at time t to the hidden state at time t+1. In addition, there are direct edges 
from each hidden state at time t of an HMM to all hidden states of the other 
HMMs at time t+1 to indicate the interaction between the occupants when 
performing cooperative activities. 

 

Figure 21: Topology of CHMM  

b. Parameter estimation 

CHMM parameters are obtained by frequency counting of occurrences of 
initial states, transitions and observations for each occupant chain, resulting then 
into an initial state vector, a transition matrix and an observation matrix for each 
occupant's chain. The only difference between the parameters of a PHMM and the 
ones of a CHMM lies in the transition matrices corresponding to Occupant 1 chain 
and Occupant 2 chain as shown below: 

 ܳ௜|௝,௞
ோ = ܲ(ܽ௧

ோ = ݅หܽ௧ିଵ
ଵ = ݆, ܽ௧ିଵ

ଶ = ݇)  
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(III.29) 

Qi|j,k
1 is an N×M by N matrix and Qi|j,k

2  is N×M by M matrix. 

This means that the process doesn't differ for computing the initial state vector 
and the observation matrix of each occupant chain. However, in addition to 
estimating inner-chain transition probabilities P(at

(1)|at-1
(1)) and P(at

(2)|at-1
(2)) in 

transition matrices of the individual chains, CHMM requires to estimate the inter-
chain transition probabilities P(at

(1)|at-1
(2)) and P(at

(2)|at-1
(1)) which represent the 

incoming transitions from Occupant 2 chain to Occupant 1 chain and incoming 
transitions from Occupant 1 chain to Occupant 2 chain respectively. These are 
used to estimate the likelihoods P(at

(1)|at-1
(1), at-1

(2)) and P(at
(2)|at-1

(1), at-1
(2)) for 

Occupant 1 chain and Occupant 2 chain respectively. For instance, Q3|1,4
1 

represents the number of outgoing transitions from the pair of activities (1,4) and 
arriving in activity 3 in Occupant 1 chain divided by the total number of outgoing 
transitions from the pair of activities (1,4) to Occupant1's chain. 

c. Inference 

Since the two HMMs are no longer independent in a CHMM, the posterior of 
the activity sequences given all the observation becomes: 

 
ܲ൫ܣ(ଵ), หܱ(ଵ)(ଶ)ܣ �, ܱ(ଶ)൯ =

ܲ൫ܱ(ଵ), ܱ(ଶ)หܣ(ଵ) �, ,(ଵ)ܣ)൯ܲ(ଶ)ܣ ((ଶ)ܣ
ܲ(ܱ(ଵ), ܱ(ଶ))

∝ ܲ൫ܱ(ଵ), ܱ(ଶ)หܣ(ଵ) �, ,(ଵ)ܣ)൯ܲ(ଶ)ܣ  ((ଶ)ܣ

 

 

(III.30) 

Given the condition independence in the graphical structure of figure 21, we 
can factorize ܲ൫ܱ(ଵ), ܱ(ଶ)หܣ(ଵ) �, ,(ଵ)ܣ൯ and ܲ൫(ଶ)ܣ  :൯ as follows(ଶ)ܣ
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And 
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(III.32) 

In contrast, inference in CHMM is not independent from Occupant 1 chain to 
Occupant 2 chain. The inputs of the Viterbi algorithm (Nefian et al., 2002) consist 
of observations of both occupants O={O1, O2} and the algorithm outputs the best 
state sequence A={A1, A2} which maximizes P(A|O). Details of the Viterbi 
algorithm are given in appendix B and its computational complexity is about 
O(TN2M2), where T is the total number of sensor events in the dataset (i.e. length 
of the entire dataset). Considering R occupants, each having a number of 
corresponding activities Ni, i=1...R, the computational complexity would be 
O(T∏i=1

RNi
2).

 

III.4.3 Experiment 1: Results by individual occupants 

a. Description 

In this experiment results are computed for each occupant separately without 
any interference. That is the misclassification of the activity by Occupant 1 
doesn't impact the correct classification of Occupant 2 and vice versa. In PHMM, 
CHMM a pair of labels is inferred representing Occupant 1 activity label and 
Occupant 2 activity label while in CL-HMM and LHMM a combined activity 
label is inferred. We convert the inferred combined activity label for the two latter 
models into the corresponding inferred Occupant 1 activity label and inferred 
Occupant 2 activity label. As the activities come with their true labels, each 
inferred occupant activity label is compared to its corresponding true label. We 
therefore compile for each occupant a confusion matrix and compute the overall 
accuracy, precision, recall and F-measure which are given as follows: 

 
ݕܿܽݎݑܿܿܣ_݈݈ܽݎ݁ݒܱ = ෍ ௜ൗܰ݌ݐ

஼

௜ୀଵ
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(III.36) 

where N is the total number of events, C is the number activities, tpi is the 
number of true positive, fni is the number of false negative, fpi is the number of 
false positive  for activity i. 

These measures are chosen because they are the most popular ones (see Section 
II.5.8). The overall accuracy is defined as the percentage of correctly classified 
events. We compute the precision, recall and f-measure according to the definition 
given in (Kasteren et al., 2010). That is, we compute the precision and recall for 
each class (i.e. activity) separately and take the average over all classes. Precision 
is defined as the percentage of inferred activity labels which was correctly 
classified. Recall is defined as the percentage of true activity labels which was 
correctly classified. The f-measure is a combination of the two latter metrics. The 
recall is equivalent to the average accuracy (i.e. the average percentage of 
correctly classified events per activity). Most HAR datasets are imbalanced which 
means that some classes (i.e. activities) appear much more frequently than other 
classes. Considering the experimental dataset that is "Multiresident ADL of 
CASAS", figure 22 clearly demonstrates the imbalance in the percentage of sensor 
events between all activities (e.g. the percentage of sensor events differs greatly 
from one activity to another one: about 6% for the activity 1, 8% for the activity 2, 
2% for the activity 5, 9% for the activity 6 and 16% for the activity 13).  

If dominant classes yield a good recognition performance, the overall accuracy 
would be high even if all other classes are not well recognized, but, recall will be 
low. Because all activities are equally important, precision, recall and f-measure 
seem a better choice in order to demonstrate the HAR performance on each of the 
different activities.  
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Figure 22: Sensor events' percentage for each activity of "Multiresident 
ADLs"  

 We separated the overall accuracy reported by each occupant for parallel 
individual activities and cooperative activities as done in (Wang et al., 2009) 
(Wang et al., 2011) (Gu et al., 2009b). For each occupant, cooperative activity 
labels are 3, 7, 11 and 13. The remaining activities are parallel ones. An occupant 
is supposed to perform a cooperative activity at time when its corresponding 
activity label is included in {3, 7, 11, 13}, even if the other occupant performs an 
individual activity in parallel. For each occupant, we extract  cooperative activities 
accuracy which represents the overall accuracy over the activities 3, 7, 11 and 13   
and  parallel individual  activities accuracy which represents the overall accuracy 
on the remaining ones {1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16}. Cooperative 
activities accuracy for both occupants is then obtained by computing the average 
of these one over the two occupants.  Likewise for parallel individual activities 
accuracy for both occupants, after computing this latter for each occupant, we 
give the average of them over both occupants. These ones provide more insight on 
the ability of each model to deal with the two types of activities. 

Please note that the code used in this study was implemented in MATLAB. 
The parameter estimation of all the models is computed by frequency counting of 
occurrences of initial state vector, transition of hidden states and observations. 
Some part of the code is obtained from (Kasteren et al., 2010). We also used the 
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Viterbi decoder of the HMM toolbox of Kevin Murphy20 for our PHMM, CL-
HMM, and LHMM.  

b.  Results 

Results, shown in Table 10, are given for each of the proposed models, CL-
HMM and LHMM, as well as for the state-of-the-art models used for multi-
occupant HAR namely PHMM and CHMM. We cycle over all the 26 training 
sequences using the leave-one-out cross validation and report the average 
performance measure for each evaluation metric. 

Table 10 shows that each model produces similar results for the overall 
accuracy and recall which means that each model recognized all the activities with 
an equal performance (i.e. the recognition rate does not vary greatly from one 
activity to another one).In fact, using all of the metrics, it is easy to see in table 10 
that LHMM outperforms all of the other models, while CL-HMM looks more 
accurate than CHMM and PHMM. The least accurate recognizer is PHMM, which 
is expected to a large extent. In particular, in comparison with CHMM, LHMM 
improves the overall accuracy, precision, recall and f-measure by roughly 5%, 
4.5%, 5% and 5% respectively; whereas CL-HMM does by about 3%, 3%, 5% 
and 4% respectively. Moreover, when looking at the accuracies separated for 
parallel individual occupant activities and cooperative activities, it is clear that 
CHMM improves the recognition of parallel individual activities by 2.5% in 
comparison to PHMM. On the other hand, compared to CHMM, LHMM and CL-
HMM improve the accuracy by approximately 7% and 6% respectively.  

For cooperative activities, the experiments show that CHMM outperforms 
PHMM with a difference of 7%, while LHMM improves the recognition of 
cooperative activities by approximately 4% in comparison with the CHMM. 
However, CL-HMM seems to be the best with an improvement of 20.65%, 14% 
and 9.5% in comparison to PHMM, CHMM and LHMM. Moreover, for 
cooperative activities the breakdown by occupants show that the performance 
difference is about 30% from Occupant 2 to Occupant 1 for PHMM, CHMM and 
LHMM. CL-HMM performs similarly for both occupants (92.76% for Occupant 1 
and 91.22% for Occupant2). 

                                                
20http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html 
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Table 10: Results breakdown by occupant 

                                                
21R1 indicates Occupant 1 and R2 indicates Occupant 2 

Results 
 
Approach 

Overall over 
all activities 

Separated for Individual and Cooperative activities 
Precision Recall F-measure Individual 

activities (1) 
Cooperative 
activities (2) 

Average on 
1&2 

PH
M

M
 

R121 84.98 ± 9.9 87.08 ± 9.07 53.27 ± 47.12 72.39 ± 23.19 86.26 ± 9.66 84.87 ± 7.98 85.42 ± 8.23 
R2 83.16 ± 8.34 79.19 ± 12.26 85.55 ± 12.73 82.37 ± 8.11 85.56 ± 7.81 83.54 ± 7.97 84.46 ± 7.56 

Average 
on R1 
&R2 

84.07 ± 7.09 83.13 ± 8.17 71.68 ± 24.04 77.4 ± 12.33 85.91 ± 6.85 84.2 ± 5.98 85 ± 6.06 

C
H

M
M

 R1 87.85 ± 9.15 89.29 ± 8.61 60.76 ± 44.82 77.05 ± 22.37 89.55 ± 8.54 87.62 ± 8.25 88.48 ± 7.96 
R2 88.37 ± 7.1 82.13 ± 10.82 92.26 ± 8.31 87.2 ± 7.39 88.52 ± 6.23 87.21 ± 7.98 87.75 ± 6.63 

Average 
on R1 
&R2 

88.11 ± 7.48 85.71 ± 8 78.53 ± 23.09 82.12 ± 12.86 89.03 ± 6.21 87.41 ± 6.82 88.17 ± 6.22 

C
L

-H
M

M
 R1 91.33 ± 8.15 91.11 ± 8.41 92.76 ± 21.87 91.78 ± 11.68 92.25 ± 6.99 92.54 ± 6.59 92.38 ± 6.71 

R2 91.61 ± 7.87 92.37 ± 6.64 91.22 ± 11.07 91.8 ± 6.96 91.12 ± 7.43 91.7 ± 7.99 91.35 ± 7.5 
Average 

on R1 
&R2 

91.47 ± 7.5 91.74 ± 6.07 92.33 ± 11.24 91.91 ± 7.3 91.68 ± 6.1 92.12 ± 6.42 91.89 ± 6.17 

L
H

M
M

 R1 92.36 ± 8.48 93.86 ± 7.89 65.19 ± 43.57 81.4 ± 21.32 93.25 ± 7.46 91.93 ± 7.56 92.48 ± 6.98 
R2 94.17 ± 5.05 90.8 ± 7.52 96.42 ± 5.48 93.61 ± 5.12 93.9 ± 5.44 93.43 ± 6.4 93.61 ± 5.63 

Average 
on R1 
&R2 

93.27 ± 6.21 92.33 ± 6.95 82.77 ± 21.3 87.53 ± 11.22 93.58 ± 5.41 92.68 ± 6.18 93.1 ± 5.62 
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III.4.4 Experiment 2: Joint results for both occupants 

a. Description 

In this second experiment, we are interested to measure the recognition 
performance of the pair of activities by both occupants. The pair of activity labels 
is assumed to be correctly classified when both Occupant 1 activity and Occupant 
2 activity are correctly classified, that is when the combined activity label is 
correctly classified. As a result, the misclassification of individual activities of 
both occupants impacts the overall classification outcome. In the inference step of 
CL-HMM and the LHMM, both models infer a combined activity label. PHMM 
and CHMM, on the other hand, infer individual activity labels which are then 
combined to form pairs of combined labels. In order to run this experiment, we 
first define the true label of the combined label for each pair of activities against 
which the inferred combined label is compared to compute the evaluation 
measures: overall accuracy, precision, recall and f-measure. The overall accuracy 
is equivalent to the joint accuracy measure computed in (Chiang et al., 2010).  

We also separate the overall accuracy results for parallel individual activities 
and cooperative activities. Note that occupants are considered to perform parallel 
unrelated activities if Occupant 1 activity and Occupant 2 activity are different 
(e.g. Occupant1 activity label=1 and Occupant 2 activity label=2). In contrast, 
occupants perform cooperative activities when the activity labels are the same. 
Among all cooperative activities defined in the dataset which are 3, 7, 11, 13, only 
activity 13 appears for both occupants at the same time in the training data. The 
activities 3, 7 and 11 appear with other parallel individual activities. 

b. Results 

Table 11 shows the results obtained by all models using leave-one-out cross 
validation. Clearly the outcome of accuracy, precision, recall and f-measure 
indicate that the proposed LHMM outperforms the rest of the models. In 
particular, the overall accuracy results indicate that CL-HMM performs much 
better than PHMM and CHMM; while results related to precision, recall and   



CHAPTER III                                                                         Proposed Approaches for Multi-Occupant Activity Recognition                                                                         
 
 
 

89 
  

Table 11: Joint Accuracy results for occupants 

 

A
pp

ro
ac

h 
 

 
R

es
ul

ts
 

Overall 
accuracy 

Overall accuracy separated for individual and 
cooperative activities 

Precision Recall F-measure 
Individual (1) Cooperative(2) 

Average on 
1& 2 

PH
M

M
 

72.8 ± 11.13 74.79 ± 10.59 40.23 ± 46.22 59.55 ± 22.63 65.95 ± 9.94 71.89 ± 11.26 68.64 ± 10 

C
H

M
M

 

81.65 ± 10.27 82.81 ± 10 60.72 ± 44.76 73.21 ± 22.08 73.77 ± 10.88 77.6 ± 10.74 75.5 ± 10.4 

C
L

-H
M

M
 

86.04 ± 10.84 85.57 ± 11.23 88.03 ± 28.77 86.78 ± 17.02 72.26 ± 11.01 76.75 ± 9.38 74.32 ± 9.81 

L
H

M
M

 

88.23 ± 10.23 89.46 ± 9.58 65.21 ± 43.56 79.06 ± 21.63 81.46 ± 10.27 79.43 ± 10.35 80.3 ± 9.84 
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f-measure show that CL-HMM and CHMM perform similarly. Note also that although 
PHMM is known to report good results in the case of individual activities performed in 
parallel, results of overall recognition accuracy of individual activities show that PHMM is 
outperformed by CL-HMM, LHMM and CHMM by approximately 10.78%, 14.67% and 
8.02% respectively. LHMM performs the best in the case of individual activities producing 
3.89% and 6.65% better than CL-HMM and CHMM respectively.  

For cooperative activities, PHMM achieves a very low performance and is less accurate 
than CHMM with a difference of 20.5% which is consistent with our expectations. The 
difference in performance between LHMM and CHMM, which is 4.49%, is much smaller 
than that between CL-HMM and CHMM (i.e. 27.31%). 

This illustrates that CL-HMM is the best model for recognizing cooperative activities 
followed by LHMM. 

III.5 Comparison against existing studies on "Multiresident ADLs" 

dataset of CASAS 

Several studies used the same dataset (Hsu et al., 2010) (Cook et al., 2010) (Singla et al., 
2010) (Chen and Tong, 2014) (Chiang et al., 2010). The common metrics used by these 
studies are the average accuracy (i.e. recall) and the overall accuracy. Hence, our decision to 
these measures for evaluating the various models. 

(Cook et al., 2010) developed an integrated system for data association and activity 
recognition based on CRF and HMM respectively. This study reported an average accuracy of 
50.67% and 90% respectively. While (Singla et al., 2010) reported an average accuracy of 
60.60%  using HMMs. Nevertheless, these studies do not consider cooperative and parallel 
activities. 

(Hsu et al., 2010) reported an average accuracy of 64.16% for their independent CRFs for 
occupants. (Singla et al., 2010) reported an average accuracy of 73.15% for their independent 
HMMs for occupants (i.e. PHMM). The average accuracy of our PHMM is higher by 11% 
which is may be due to data pre-processing. Note that the authors did not provide details 
about the pre-processing of the activity data. Moreover, three-fold cross validation was used; 
while in our case leave-one-out cross validation was applied. Nevertheless, these approaches 
only recognize parallel activities. 

The only studies that considered both parallel individual and cooperative activities are 
(Chen and Tong, 2014) and (Chiang et al., 2010). The authors in (Chen and Tong, 2014) 
applied a combined label approach on the pair of activity using HMM and CRF. They 
reported an average accuracy (i.e. computed from the average accuracy of Occupant 1 and 
average accuracy of Occupant 2) of 75.77% and 75.38% respectively. Although, the 
performance of our CL-HMM seems to be better than theirs, we do not have the same 
experimental setting.  
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In (Chiang et al., 2010), a leave-one-out cross validation was applied producing an 
accuracy of 77.38%, 82.82% and 85.58% and a joint accuracy of  61.78%, 74.78% and 
78.26% for their PHMM, CHMM and CHMM with the interaction feature respectively. On 
the contrast, our PHMM and CHMM produce an overall accuracy of 84.07% and 88.11% and 
overall joint accuracy (First column in table 11) of 72.8% and 81.65% respectively. However, 
this comparison is subjective because the authors in (Chiang et al., 2010) did not provide 
details about the way they computed the accuracy. Note we used the same pre-processing as 
theirs.  

III.6 Conclusion 

In this chapter we proposed two HMM-based models, Combined-label HMM and Linked 
HMM to investigate the problem of multi-occupant activity recognition. These two models 
were compared against the state-of-the-art baseline methods which are Parallel HMM and 
Coupled HMM. Our first experiment shows that the proposed models outperform the baseline 
models for both cases of parallel individual activities and cooperative activities. In particular, 
CL-HMM not only significantly improves the recognition accuracy of cooperative activities 
but also performs equivalently in recognizing the individual activities of Occupant 1 and 
Occupant 2. That is, the recognition rate of the activities does not vary from Occupant 1 to 
Occupant 2 in contrast to the other models.  This is an important aspect in a multi-occupant 
setting as the recognition of the activities from one occupant to another one is equally 
important.  

Our second experiment shows another important aspect of multiple-occupant monitoring 
which is about the correct inference of the activities of all occupants at any time. CL-HMM 
performed the best in the case of cooperative activities; while LHMM performed the best in 
the case of parallel individual activities. This is to say that the proposed models are not only 
valuable for dealing with cooperative activities but also for individual parallel ones. 
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IV. General Conclusion 

IV.1 Conclusion  

Home automation or SH is a home, that is equipped with electronic devices (i.e. sensors, 
controllers). It enables occupants to control home appliances  remotely or automatically (e.g. 
an occupant can use a Smartphone to arm the home security system, adjust the temperature, 
control lighting). 

Recent advances in networking and electronic technologies such as miniaturization and 
low cost nature of infrastructure sensors (i.e. non intrusive sensors ) lead to an acceptance of 
SHs systems and as a result conducted to a rapid emergence of these ones.   

Because of the continued increase of the aging population, the lack of nursing homes and 
health care professionals designed to manage them, one of the main motivation of SHs  is the 
monitoring of older adults wellbeing in order to maintain them at home (i.e. independent 
living) for longer durations. One of the important services that can be offered by such a 
system is remotely assessing the physical and cognitive capabilities of the people by 
monitoring their ADLs, such as sleeping, cooking, eating and going out. In this context HAR 
aims to recognize the sequence of ADLs performed by the occupants at home. The 
completion of these ADLs represent an indicator of occupant's health status and is used to 
characterize human behaviors. Moreover, the continuous monitoring of activities allows to 
detect  anomalies in order to intervene quickly with the required assistance. 

HAR in single occupant context has been widely invested and a diversity of HAR models 
exist ranging from probabilistic graphical models (e.g. HMM and CRF), conventional 
statistical machine learning techniques (e.g. DTs, ANNs) to ontology modeling, in contrast to 
multi-occupant HAR. 

The nature of human activities are usually more complex in a multi-occupant environment 
in comparison with a single occupant environment. While single occupant environments 
imply designing a model to recognize sequential, interleaved and concurrent ADLs, multi-
occupant environments must also manage and recognize parallel and cooperative activities. 
Details and main concepts about SHs, ADLs and multi-occupant problems as well as our 
research focus are discussed in Chapter I. 

We focus in this thesis on HAR from infrastructure sensor readings in multi-occupant 
environment. The latter problem poses two main challenges: (i) data association that is 
identifying the occupant responsible for a sensor triggering at each time step (ii) recognizing 
multi-occupant activities which are parallel and cooperative activities. We only focus on the 
latter problem. 

Regarding state-of-the-art studies on mutli-occupant HAR presented in Chapter II,  we 
showed that a number of studies in the pervasive environment have been conducted. In term 
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of sensor deployment there exist two main classes of approaches. Those relying on wearable 
sensors (Wang et al., 2009) (Wang et al., 2011) (Gu et al., 2009b). Those relying on 
infrastructure sensors. In this context, some  studies focused on the data association problem 
which is about recognizing the occupants (Hsu et al., 2010) (Cook et al., 2010). Although, we 
are not dealing with the problem of data association in this thesis, we argue that developing 
solutions for this problem is crucial for deploying HAR systems. For instance,  (Hsu et al., 
2010) showed that the quality of data association results impacts the quality of activity 
recognition if both are integrated in one system. 

Other studies not dealing with data association also proposed to recognize the activities 
without differentiating between the occupants. Singla et al. (Singla et al., 2010) used a single 
chain HMM to model the activities of two occupants (e.g. Occupant 1 performs activity 1, 2 
and 3; while the Occupant 2 performs activity 3, 4 and 5,  In the inference step, one activity 
label is inferred; it represents either activity of Occupant 1 or activity of Occupant 2). As in 
(Hsu et al., 2010) (Cook et al., 2010), these approaches do not recognize neither parallel 
activities nor cooperative ones and are therefore not suitable for HAR in multi-occupant 
setting. Still not considering the data association problem, some studies proposed a separate 
model for each occupant as shown in the second approach of (Hsu et al., 2010) and the second 
approach of (Singla et al., 2010). These studies, however, did not deal with cooperative 
activities and only recognized parallel ones.  Few approaches  did consider both parallel and 
cooperative activities between occupants (Alemdar et al., 2013) (Chen and Tong, 2014) 
(Chiang et al., 2010). We concluded that all proposed approaches were essentially 
probabilistic based on graphical models. 

Chapter III investigates multi-occupant HAR direction further. Our aim is to accurately 
recognize both parallel and collaborative activities from non-intrusive sensors. We do not 
focus on only one of the two types of activities as done in the literature related to multi-
occupant activity recognition, but on both types.  

The HMM is a conventional graphical probabilistic model that has been studied for years 
and is very well understood. This model has been successfully applied in many sequential 
data modeling problems such as speech recognition, handwritten digit recognition, biological 
sequence analysis as well as HAR. Some activities' characteristics have a significant impact  
on the activity recognition performance. For example an activity can be performed in different 
ways that is in non-deterministic way and sometimes with a different sequential ordering 
regarding the actions composing the activity. HMMs are robust to the noise in sensor readings 
and to the uncertainty while performing activities. Moreover, the HMM is capable of 
considering the sequential nature of activities. 

Hence we suggest two variants of HMM named CL-HMM and LHMM and  compared our 
two approaches to conventional models (i.e. PHMM, CHMM). The CL-HMM represents a 
variant of the combined label approach based on HMM applied in (Chen and Tong, 2014) 
(Alemdar et al., 2013) and is based on the use of one HMM chain on both combined  
activities labels and combined observations labels. Applying the LHMM, we proposed one 
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HMM is constructed for each occupant. Hidden states in each HMM represent the set of 
activities performed by the occupant. Likewise for the CHMM and the PHMM. However, co-
temporal dependencies between activities of occupants are represented differently in CHMM 
and LHMM while in PHMM no dependency exists between occupants' activities. 
Considering, these co-temporal dependencies in CHMM, each activity in HMM does not 
depends on only the previous activity at time t-1 of the same HMM, but also on the previous 
activities at time t-1 from the other HMMs. In LHMM, activities of all HMMs corresponding 
to the occupants are joined at each time step. 

Two main experiments are studied with a special attention on to the performance of the 
models on cooperative and parallel activities. The first experiment presents the results of 
HAR for each occupant using all models. Compared to CHMM, LHMM and CL-HMM 
improved individual activities accuracy as well as cooperative accuracy by approximately 7%, 
6%  and 4%, 14% respectively. Although both proposed approaches performed equivalently 
while recognizing parallel individual activities we point out that the CL-HMM performed the 
best in the recognition of cooperative activities (i.e. difference in performance between the 
two models is significant 9.5%).  Another important result while comparing cooperative 
activities results breakdown by occupants is that the performance difference is about 30% 
from Occupant 2 to Occupant 1 for PHMM, CHMM and LHMM while CL-HMM performs 
similarly for both occupants. The latter result emphasizes the importance of a balanced model 
which recognizes the activities equivalently from an occupant to another one in a multi-
occupant environment. 

An important aspect of multi-occupant activity recognition is advocated by experiment 2. 
Specifically, the correct inference of occupants' activities at each time step. The aim is to 
correctly infer the activity of each occupant present in the living space at each time step. 
Hence, joint results for both occupants using all the models are discussed in this experiment.  
If both occupants 'inferred activities labels are equal to occupants 'true activities labels at time 
t, occupants 'activities are then assumed to be correctly classified. As a result, the 
misclassification of the activity of one of the two occupants at time impacts the overall 
classification outcome in contrast to experiment 1. We concluded from this experiment that 
LHMM is the best model for the recognition of parallel individual activities (i.e. 3.89% and 
6.65% better than CL-HMM and CHMM respectively) While the CL-HMM is more 
appropriate to recognize cooperative activities (i.e. improvement of 27.31% in comparison to 
CHMM ) followed by the LHMM model. 

Although state-of-the-art studies reported that PHMM performs well in the case of 
individual activities performed in parallel, our two experiments shows that the PHMM model 
is the least accurate model for both types of activities. 

Most studies in the literature focused on developing a graphical probabilistic model-based 
solution to better recognize cooperative activities assuming that interactions between 
occupants 'individual chains improve the recognition rate of these activities. Our experiments 
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prove that these added interactions between occupant's models are also valuable for the 
recognition of individual activities performed in parallel. 

We conclude from our two experiments that both proposed approaches outperformed 
baseline ones and are not only appropriate for the recognition of cooperative activities but 
also for individual parallel ones.  

IV.2 Future Research 

There are a number of directions to move our research forward. 

(1) Due to the novelty of the field of multi-occupant activity recognition, there are 
many open issues with respect to sensory data pre-processing steps such as 
discretization and feature representation. 
Sensory data used in our experiments is represented as a sequence of events. It is a 
binary sensor data and every change in a sensor state (i.e. value) generates an event. 
We assigned two different symbols for each change in sensor value (e.g. symbol "1" 
and symbol "2" to "ON" and "OFF" values respectively for the motion sensor "M01"). 
Hence, the observation variable is multinomial with support {1,...N} while N is the 
number of encoding symbols. The use of events avoid us the need for discretization. 
We plan to discretize the sensor data using a constant time slice after applying the pre-
processing procedure (see Section III.4.1.2). Hence, observations are referred to as 
timeslices and each time slice  is represented as a binary vector whose length 
corresponds to the number of sensors. At time t, a position in the vector  is set to 1 if 
the ith sensor changed state.  We also plan to  experiment different lengths of the time 
interval used for discretization (e.g. 10 seconds, 20 seconds,...60 seconds). This would 
allow us to suggest a feature representation or to experiment existing ones such as 
changepoint and last-fired representation (Kasteren et al., 2010). Transforming sensor 
data to a different feature representation sometimes improves the recognition 
performance of a model significantly as shown in (Kasteren et al., 2010). 

(2) How much training multi-occupant sensory data is needed to accurately learn the 
different models' parameters? Both proposed HMM-based approaches and baseline 
ones presented in Chapter III rely on labeled data to learn the model parameters in a 
supervised context. Because collecting labeled data is expensive especially in a multi-
occupant environment, we plan to experiment the required amount of labeled activity 
data for learning the different models' parameters. This experiment cannot be done 
without a pre-discretization of sensory data. 

(3) Evaluating our proposed models on real behaviors: We will investigate real-world 
multi-occupants activities in a more complex scenario as the data used is rather 
scripted and does not reflect on the real-world setting. Specifically, we plan to 
evaluate the proposed models on another data collections like those of ARAS 
(Alemdar et al., 2013). 
The dataset used in our experiments is labeled as the data association variables are 
given. Thus, the performance of activity recognizer is independent to that of data 
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associator. This allows comparing the performance of activity recognition models in 
an objective manner. In contrast, the data association variables are not given by ARAS 
dataset, hence, we first plan to develop a knowledge-based approach that is an 
ontological approach in order to identify by whom is trigged each active sensor at time 
based on context information (i.e. activity performed by each occupant, properties of 
the activity performed at time, locations of active sensors in the living space, ...). 
Then, we could apply our proposed models. However, the activity recognition 
performance of each model would be immediately affected by the performance of the 
data association recognizer (i.e. when the sensor data is incorrectly associated with the 
occupant).  

IV.3 Open Research Questions 

In order to bring the multi-occupant activity recognition systems to a more mature stage, 
some research avenues require to be further investigated. Next, a list of open research 
questions is discussed. 

IV.3.1 Complex activity recognition in multi-occupant setting 

In real world situations, human activities are often carried out in complex way. The exiting 
research literature dealing multi-occupancy has not fully addressed the problem of 
cooperative activities in a way to cope with different situations like these: 

(1) Interleaved or concurrent activities performed in parallel by multiple occupants: 
Each occupant performs his/her activities in a concurrent or an interleaved manner and 
at the same time another occupant performs his/her activities in a concurrent or an 
interleaved manner. 

(2) There exist more complex situations in which an occupant switches between an 
activity and a collaborative activity or perform both in a concurrent manner. 

(3) Ambiguity of interpretation: The interpretation of similar activities may differ 
depending on the context, for example an activity turn the water tap can be part of 
many activities like cooking and drinking and the model should be able to handle 
these situations which appear in both single and multi-occupant settings. 

IV.3.2 Scalability of the activity model 

All the studies discussed in this thesis (both Chapter II and our proposed approaches in 
Chapter III) use datasets which are related to only two occupants and do not investigate the 
scalability of the models proposed therein. Evaluating such models with more than two 
occupants is an important aspect for real world situations. 

In Section II.5.6 we discussed the scalability of data association models and activity 
recognition models separately, as researchers working on multi-occupant activity recognition 
tend to focus on one of the two latter problems. First, we pointed out that dealing with 
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scalability in multi-occupancy setting should not only consider new activities, but also new 
occupants. Second, the scalability of the models in terms of the number of occupants is the 
most important issue. Although all studies presented in multi-occupant activity recognition 
have only considered a two-occupant situation (Chiang et al., 2010) (Cook et al., 2010) 
(Singla et al., 2010) (Alemdar et al., 2013) (Wang et al., 2009) (Wang et al., 2011) (Gu et al., 
2009b) (Lin and Fu, 2007) (Chen and Tong, 2014), some of them (Alemdar et al., 2013) (Gu 
et al., 2009b) (Chen and Tong, 2014) would be easily scalable to additional occupants than 
others (Chiang et al., 2010) (Cook et al., 2010) (Singla et al., 2010) (Wang et al., 2009) 
(Wang et al., 2011). 

IV.3.3 Resolution of conflicts 

People using the same resources may have different preferences. For instance, one prefers 
watching TV while the light is on, and another prefers it to be off.  This is valid for most of 
the shared but parallel activities.  

In (Davidoff et al., 2006) a fieldwork with 12 families is presented. The study reports on 6 
social characteristics of home life including multiple users’ conflicts at home. The study 
points out that an understanding of these characteristics should be more tightly-coupled with 
what services should ultimately be developed for, and how these services should be 
implemented. It also concludes that SH systems need to participate in value decisions and in 
negotiating group goal setting.  

In this context, the authors in (Hsu and Wang, 2008) propose a resource management 
system for a multi-occupant SH. The system relies on the strategy of agent conceding 
negotiation to manage the SH resources. The system consists of 3 components named as: 
home ontology, device controller and resource allocator. The home ontology describes the 
spatial organization of the SH as well as information on the devices equipping the living 
space. The device controller is responsible for collecting information about the occupants. It 
applies case-based reasoning to predict the resources an occupant may need. The controller 
finds matching cases in the case base to determine the potential resource conflicts. The 
resource allocator relies on Belief Desire Intention (BDI) agents, a communication blackboard 
and conceding negotiation mechanisms to manage conflicts over resources. To implement the 
SH system, a BDI agent is assigned to each occupant. The blackboard enables the BDI agents 
to communicate and facilitates the management of the resource conflicts. In terms of 
conceding negotiation, each agent is assigned a computed conceding risk and in case there is 
conflict the one with the lowest risk is chosen as conceder of the resource that looks for 
another resource. The negotiation cycle continues until a common resource use plan is 
obtained. 

IV.3.4  Pervasive multi-occupant activity datasets 

The quantitative comparison of multi-occupant activity recognition methods is not 
straightforward because studies use different datasets. The lack of standard benchmarks 
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makes difficult to exhaustively and fairly evaluate multi-occupant activity recognition models. 
The studies presented in  (Wang et al., 2009) (Wang et al., 2011) (Gu et al., 2009b) relied on 
private dataset as can be seen in table 1. Studies described in (Hsu et al., 2010) (Chiang et al., 
2010) (Cook et al., 2010) (Singla et al., 2010) (Chen and Tong, 2014) and in (Prossegger and 
Bouchachia, 2014) (Alemdar et al., 2013) used CASAS "Multiresident ADLs" and ARAS 
datasets respectively. Selecting the best approach from all these studies is not possible as they 
do not rely on the same activity data. 

As the process of collecting activity data requires financial resources which are not within 
the reach of all research laboratories, researchers tend to use publicly available datasets. 
Hence, the motivation for presenting eight datasets publicly available may serve as 
benchmarks for future research on multi-occupancy (see Section II.3). It must be emphasized 
that there is a real lack of pervasive multi-occupant activity recognition datasets, in particular, 
datasets that include activity data of more than two individuals and covering the various types 
of cooperative activities. This will allow researchers to experiment the scalability of their 
proposed activity models. 

IV.3.5 Online learning and inference for real-time multi-occupancy 

In comparison to offline activity recognition, online activity recognition has not been much 
investigated. Indeed most of the work presented in this thesis is based on offline supervised 
learning. Few work based on online learning has been, however, presented in (Kasteren et al., 
2008) (Bouchachia and Vanaret, 2014). Online learning and online inference are required for 
some situations to adapt the models incrementally as new data becomes available or to make 
decision in pseudo-real time respectively. 

Often a monitoring system needs to make inference instantly in situation that may render 
an elderly person at risk, (e.g. forgetting to take medication). In these situations we need to 
detect these unusual events at time in order to intervene. The latter problem is of more 
importance in a multi-occupant setting as it may put not only the person who caused the 
unusual events at risk and vulnerable but also all the occupants at home, (e.g.  forgetting the 
stove on). Online inference is also important in situations in which the SH  system would have 
temporary occupants, such as guests. In such cases, the system needs to recognize the new 
guests and to distinguish between them and the occupants. Because of the relevance of online 
learning and online inference in this context of activity monitoring, it is important that more 
effort should be devoted to it. 
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Appendix A: Viterbi algorithm for HMM 

 
 

We follow the notation specified in Chapter III, the following algorithm represents the viterbi 
decoder for the hidden states (i.e. activities) of one occupant at home that is R=1. 

Let δt(i) be the maximal probability of state sequences of the length t that end in state i and 
produce the t first observations for the given model. 

(݅)௧ߜ = max {ܲ൫(ܽଵ
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The matrix ψ is used to retrieve the optimal hidden states  at the backtracking step. 

 Initialization 

(݅)ଵߜ = ଵܤ(݅)ଵߨ
ଵ(݅), i=1,...,N 
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 Recursion 
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 Termination 
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 Path backtracking 
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ଵ} = ߰௧ାଵ(ܽ௧ାଵ

ଵ ), t=T-1, T-2,...,1 
 

where P* is the maximum likelihood of δT(i) at time T and aT
1 is the most probable activity 

at time T.  

This Viterbi algorithm results in a computational complexity of O(T N2) where T is the 
total number of events in the dataset. Note that N is the number of activities of the occupant 
(i.e. R=1). 

 

 

 



 

 
 

 

 

Appendix B: Viterbi algorithm for CHMM 
 

 

Let δt(i) be the maximal probability of state sequences of the length t that end in state i and 
produce the t first observations for the given model. 
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The matrix ψ is used to retrieve the optimal hidden states pairs at the backtracking step. 

 Initialization 
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 Recursion 
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 Termination 
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 Path backtracking 
{ܽ௧

ଵ, ܽ௧
ଶ} = ߰௧ାଵ(ܽ௧ାଵ

ଵ , ܽ௧ାଵ
ଶ ), t=T-1, T-2,...,1 

 
where P* is the maximum likelihood of δT(i) at time T and aT

1, aT
2 are the most probable 

activities corresponding to Occupant 1 and Occupant 2  at time T.  

This algorithm was extracted from (Nefian et al., 2002). It results in a computational 
complexity of O(TN2M2), where T is the total number of events in the dataset. N and M 
represent the number of hidden states (i.e. activities) for Occupant 1, Occupant 2 respectively. 

 
 



 

 
 

Abstract 

In Smart Home environments, automatic health monitoring of elderly persons allows to assess their cognitive 
and physical wellbeing though Human Activity Recognition (HAR) that is the recognition of their Activities of 
Daily Living. Most of the research has been devoted to HAR of single occupants in the environment. However, 
living environments are usually inhabited by more than one person. We focus in this thesis on the problem of 
modeling multi-occupant activities. In particular parallel activities and cooperative activities are considered. To 
deal with multi-occupant activities we investigate different approaches based on Hidden Markov Models 
(HMMs).  Specifically, we propose an HMM-based method, called HMM based Combined Label (CL-HMM), 
where activities labels as well as observation labels of different occupants are combined to generate the 
corresponding sequence of activities as well as the corresponding sequence of observations on which a 
conventional HMM is applied. We also propose a Linked HMM (LHMM) in which activities of all occupants 
are linked at each time step. We compare these two models to baseline models which are Coupled HMM 
(CHMM) and Parallel HMM (PHMM). The experimental results show that the proposed models outperform 
CHMM and PHMM when tested on parallel and cooperative activities. 

Keywords: Human Activity Recognition, smart homes, activities of daily living, multiple occupants, pervasive 
sensing, probabilistic model, hidden markov model. 

 

Résumé 

Dans le contexte des maisons intelligentes, la surveillance automatique de la santé des personnes âgés permet 
d'évaluer leurs bien-être cognitif et physique à travers la  Reconnaissance des Activités Humaines (RAH) à 
savoir la reconnaissance de leurs  activités de la vie quotidienne. La plupart des recherches ont été consacrés à la 
RAH de personnes vivant seules dans l'environnement. Cependant, les environnements de vie sont généralement 
habités par plus d'une seule personne. Nous nous concentrons dans cette thèse sur le problème de la modélisation 
des activités de multiple occupants. En particulier les activités parallèles et les activités coopératives sont 
considérées. 

Afin de traiter les activités de multiple occupants, nous étudions différentes approches basées sur les Modèles 
de Markov Cachés (MMCs). Plus précisément, nous proposons une méthode basée sur les MMCs, appelé MCC 
basé Etiquettes Combinées (MMC-EC), où les étiquettes des activités ainsi que les étiquettes des observations 
des différents occupants sont combinées afin de générer la séquence correspondante des activités ainsi que la 
séquence correspondante d'observations sur les quelles un MMC classique est appliqué. Nous proposons 
également le MMC Lié appelé MMCL dans lequel les activités de tous les occupants sont liées à tout instant. 
Nous comparons ces deux modèles aux  modèles de références qui sont les MMC Couplés  (MMCC) et MMC 
Parallèles (MMCP). Les résultats expérimentaux montrent que les modèles proposés surpassent le MMCC et le 
MMCP lorsqu'ils sont testés sur les activités parallèles et les activités coopératives. 

Mots-clés: Reconnaissance des activités humaines, maison intelligente, activités de la vie quotidienne,  
occupation multiple, détection envahissante, modèle probabiliste, modèle de markov caché. 

 

 ملخّص

تسمح ھذه الأنظمة لتقییم العافیة المعرفیة و الجسدیة  .في البیئات المنزلیةّ الذكیةّ المراقبة الأوتوماتكّیة لصّحة كبار السّن تكتسب اھتماما متزایدا
ت في أأأ لمقیمون مفردون معظم الأبحاث تخصّص  .و ھو الاعتراف على أنشطة معیشتھم الیومیةّ) أأأ( من خلال الاعتراف على الأنشطة الإنسانیة 

بشكل . نركّز في ھذه الأطروحة على مشكلة نمنجة أنشطة مقیمون متعدّدون .غیر أنّ، بیئات العیش عادة یسكنھا أكثر من شخص واحد في بیئتھم
لى أساس نمادج ماركوف للتعامل مع أنشطة مقیمون متعدّدون نستخدم مقاربات مختلفة ع .خاص نعتبر الأنشطة المتوازیة و الأنشطة التعاونیة

بشكل محدّد، نقترح طریقة قائمة على  ن م م، تدعى ن م م على أساس بطاقات مدمجة أین یتم الدّمج بین بطاقات الأنشطة ). ن م م( المخفیة 
ن الملاحظات و التي یتم تطبیق بالإضافة إلى بطاقات الملاحظات من سكان مختلفون لتولید السّلسلة المقابلة من الأنشطة إلى جانب السلسة المقابلة م

یتم مقارنة ھذین النموذجین إلى نموذجین . نقدم أیضا ن م م مرتبط، أین أنشطة جمیع المقیمون مرتبطة في كلّ خطوة وقت. علیھن ن م م التقلیدي
ن م "و " ن م م م"النماذج المقترحة تتفوّق على تظھر النتائج التجریبیة أنّ ). ن م م ز( و ن م م المتوازیة ) ن م م م( المرجعیة ھم ن م م المترابطة 

  .عند اختبارھم على الأنشطة الموازیةّ و التعاونیة" م ز

الاعتراف على الأنشطة الإنسانیة، المنزل الذّكي، الأنشطة المعیشیّة الیومیّة، مقیمون متعدّدون، الاستشعار المنتشر، نموذج : الكلمات المفتاحیة 
 .  المخفي احتمالي، نموذج ماركوف


