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GENERAL INTRODUCTION 

More efforts have been advanced on wide-band gap semiconductors because of the 

intense interest in technologic indusrerial as ultraviolet light emitters and detectors [1]. 

Among them, ZnO is one of the potential candidates in several technological 

applications such as, optoelectronic, solar cells, and photocatalyst [2-3] due to its high 

exciton binding energy (60 meV) and its wide band gap (~3.3 eV) [3]. It is known as 

an n-type semiconductor material. Further, ZnO is a commercially available material 

having the advantages of low cost, non-toxicity and high chemical stability [4]. It is a 

key technological and a versatile functional material. 

In the past decade, ZnO has been explored for new device applications when extra 

functionalities are intentionally introduced through proper doping or alloying with 

impurity ions despite the considerable challenges. 

Recently, the ZnO presented an interesting subject for doping with various elements 

such as transition and noble metals. This is of course very suitable to improve the 

optoelectronic and photocatalytic properties because the incorporation of dopants 

generates lattice defects and changes consequently the band gap energy [5].  

In particular, the doping with rare-earth elements has been extensively investigated, 

experimentally as well as theoretically. 

ZnO is worth noting that much effort has also been made through doping rare earth 

(RE) ions into the ZnO host, which undergoes up conversion (UC) luminescence and 

energy transfer, in realizing new optoelectronic and photonic device applications such 

as solid-state full-colour displays, infrared detectors, solar cells, biological fluorescent 

labels, and all-solid compact lasers [6]. 
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There have been many recent studies reported the electronic and optical properties of 

rare earth elements doped ZnO such as Poongodi et al (2015) [7] deposited 

nanostructured Nd doped ZnO thin films on glass substrate by a sol–gel spin coating 

technique, Honglin et al (2014) [8] prepared the ZnO nanopowders doped with 

(La,Er,Nd) rare-earth by chemical method and Zhang et al (2014) [9] studied the 

electronic structure and magnetism of RE (RE = La, Ce, Pr, Nd and Eu) doped ZnO 

using generalized gradient approximation (GGA) and GGA+U.  

In particular, the attractive interest of Erbium (Er)-doped semiconductors in optical 

applications such as light-emitting and laser diodes, is because of the sharp 

photoluminescence (PL) at 1.54 µm from the intra-4f shell transition in Er3+ ions [10]. 

Wherefore, many investigations are done for optical properties of Er doped ZnO, and 

some of them specifically, the photocatalysis of Er-doped ZnO [11-15]. Likewise the 

Er-doped ZnO films have been fabricated using many techniques, including sintering 

[16], wet processing [17], ion implantation [18, 19], textured spraying [20], electron-

beam evaporation [21], and pulsed-laser deposition (PLD) [22, 23]. 

The majority of works carried out the above properties at low temperature (77 K) 

precluding their use at room temperature [24]. However, few reports for Er doped ZnO 

in thin film or wurtzite phases have been experimentally investigated showing the PL 

spectra at room temperature, as given in the work of Honglin [8]. Consequently, no 

further theoretical understanding on the correlation between their properties is clarified. 

Therefore, it is still important to present a theoretical investigation of structural,  

electronic and optical properties of such material in order to enlighten the correlation 

between them.  

Erbium can be found in three magnetic phases: ferromagnetic below 19 K, 

antiferromagnetic between 19 and 80 K and paramagnetic above 80 K [8]. In this work, 

https://en.wikipedia.org/wiki/Ferromagnetic
https://en.wikipedia.org/wiki/Antiferromagnetic
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we aimed to study the structural and electronic properties of Zn1-xErxO for (x= 0, 0.25, 

0.50, 0.75, 1) by density functional theory (DFT) with generalized gradient 

approximation (GGA) and studying the effect of Er doped ZnO in comparison with 

pure ZnO in paramagnetic phase that is observed at high temperature using modified 

Becke-Johnson exchange potential (mBJ).  

 In this case, electronic and optical properties are obtained for 25% of Er doped ZnO in 

zinc blend structure by caring out a first principles calculations based on density 

functional theory (DFT). In general, it is shown that this structure is similar to wurtzite 

one in electronic and optical band structure [25]. This work is considered as an 

extension of our recent studies realized on ZnO-ZB [25]. Our results were discussed 

qualitatively as well as quantitatively in comparison with few experimental available 

results. 

The present thesis is divided into five chapters. In Chapter I, we introduce the domain 

of the II-VI semiconductors, rare earth elements and REE doping II-VI semiconductors 

and their technological applications.  

Chapter II resumes the basic ideas behind the DFT, while Chapter III contains a brief 

description of the methodology of calculations. 

In chapter IV, we report the numerical investigations of the structural, and electronic 

properties of Zn1-xErxO for (x= 0, 0.25, 0.50, 0.75, 1) carried out by density functional 

theory (DFT) with generalized gradient approximation (GGA). 

Fifth chapter discusses the results of the electronic and optical properties of pure ZnO 

and Er-doped ZnO executed by modified Becke-Johnson exchange potential (mBJ). 

Finally, a general conclusion is presented for each of the investigated class of systems. 
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1.1 INTRODUCTION  

Semiconductors are the materials, which play an important role in the development in 

the field of science and technology. The two most important semiconductors are Silicon 

(Si) and Germanium (Ge). Since last three decades, various groups of semiconductors 

have come up to play the role in various terrestrial as well as extraterrestrial 

applications. Some important semiconducting materials that compete with Ge and Si 

belong to II-VI, III-V etc. group of materials.  

The group II-VI compounds like ZnS, ZnSe, ZnO and ZnTe have been successfully 

used as a detector, sensors, modulators and many more scientific applications. Besides, 

rare earth elements occupy a very special position in solid-state physics because of their 

unique outer electron configuration including two unfilled shells. This chapter deals II-

VI semiconductors, as especially Zinc Oxide in addition to Rare Earth Elements doped 

ZnO. 
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1.2 II-VI SEMICONDUCTORS COMPOUNDS 

II-VI semiconductor compounds are combinations of two atoms, one of the alkaline 

earth metals (group 2 of the Periodic table) or one of the group 12 elements (group 12 

of the periodic table) and one atom of the Chalcogens (group 16 of the periodic table). 

The II–VI semiconductors have been extensively studied due to their effective use in 

optoelectronic industry. These compounds are commonly used in many established 

commercial electronic and optoelectronic devices operating in blue to ultraviolet 

spectral regions such as visual displays, high-density optical memories, transparent 

conductors, solid-state laser devices, photodetectors, solar cells etc. 

In recent years, II-VI compound semiconductors have attracted considerable 

technological and scientific interest due to the large range of electronic energy band 

gaps, which they exhibit. The direct band gaps of these alloys cover the entire spectral 

region from near infrared to ultra violet. The wide band gap materials consist of the 

chalcogen compounds of Zn and Cd such as ZnTe, ZnS and CdTe. The largest band 

gap is 3.4eV for ZnS. The range of technical applications of these compounds extends 

beyond those of the more established semiconductors such as Si, Ge and some of the 

III-V compounds, primarily because they offer this wider range of band gap values. In 

addition, when the ternary II-VI compounds such as CdHgTe are included, the range of 

band gaps available becomes continuous. Some of the devices for which these materials 

are important and in which they are commonly used are solar cells, infrared detectors, 

electroluminescent diodes, lasers, phosphors, switches, passivation layers and radiation 

detectors. 

The electronic and optical properties of these semiconductors can be controlled by 

concentration of impurities in the materials as well as growth and operating conditions. 

https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Alkaline_earth_metals
https://en.wikipedia.org/wiki/Alkaline_earth_metals
https://en.wikipedia.org/wiki/Periodic_table
https://en.wikipedia.org/wiki/Group_12_element
https://en.wikipedia.org/wiki/Chalcogen
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1.2.1 CRYSTAL STRUCTURE OF II-VI COMPOUNDS 

The compounds belonging to group II-VI consist of equal number of atoms of an 

element from the II b column of periodic table and of an element from the VI column. 

They are related in crystallography and physical properties to the semiconducing III-V 

compounds and the IV b elements Ge and Si. Almost all the compounds of group II-VI 

crystallize in such a manner that each atom of one element is located at the centre of a 

regular tetrahedron, the apices of which are occupied by atoms of other elements. Two 

possible structures can be formed from such tetrahedral zinc blende (cubic) phase and 

the wurtzite (hexagonal) phase. In the sphalerite structure, the atoms of one element are 

located at the sites of an fcc lattice, while the atoms of the second element occupy 

centers of four (out of total of eight) small cubes as shown in figure 1.1. The space 

group is F43m (Td
 2). The coordination is 4 for atoms of both elements. Similarly, the 

other possible structure observed in group II-VI compounds is wurtzite as shown in 

figure 1.2. Its space group is P63mc (C6v 
4). Here again the coordination number is 4 for 

atoms of both elements. The zinc blende and wurtzite structures are almost similar. The 

main reason for such a similarity is the number of atoms in the first and second 

coordination spheres are the same. The basic difference between the two structures 

arises due to the position of atoms in the third coordination sphere. The distance from 

a given atom to its neighbours in that sphere is shorter in wurtizite structure than in the 

sphalerite structure. In the majority of II-VI compounds, the interatomic distances in 

the tetrahedral of both modifications are very similar. Moreover, the distance from a 

given atom to its neighbours in the first and second coordination spheres are also very 

similar for both structures. 
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        Figure 1.1 The zinc blende structure of ZnO. 

 

                                 Figure 1.2 The wurtzite structure of ZnO. 
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Table 1.1  Physical Properties of some II–VI compound semiconductors. 

 

 

 

CdSe CdS ZnTe ZnSe ZnO ZnS 
Material 

property 

1623 2023 

(WZ,100 

atm) 

1513 1797 2248 2038 

(WZ,150 

atm)  

Melting point(K) 

-/1.751 2.50/2.50 2.394 2.71/- -/3.4 3.68/3.911 Energy gap Eg at 

300K(ev)(ZB/WZ

) 

–/4.6 –/5.2 5.5/– 4.0/– –/9.5 4.6/8.5 d E g / d T (x 10-4  

ev /K ) ZB/W 

WZ WZ ZB ZB/WZ WZ ZB/WZ Structure 

2.630 (ZB) 2.530 

(ZB) 

2.636 (ZB) 2.454 

(ZB) 

1.977 

(WZ) 

2.342 (WZ) Bond length (μm) 

6.08 5.82 6.10 5.67 – 5.41 Lattice constant 

(ZB) a at 300K 

(Å) 

0.263 0.252 0.264 0.246 – 0.234 ZB nearest-

neighbor dist.at 

300K (nm) 

5.655 4.87 5.65 5.26 – 4.11 ZB density at 

300K (g/cm3) 

 

 

 

 

4.30 

7.02 

1.633 

 

 

 

 

4.135 

6.749 

1.632 

 

 

 

 

4.27 

6.99 

1.637 

 

 

 

 

3.98 

6.53 

1.641 

 

 

 

 

3.2495 

5.2069 

1.602 

 

 

 

 

3.811 

6.234 

1.636 

Lattice constant 

(WZ) at 300K 

(nm) 

 

a= b 

c 

c/a 

5.81 4.82 – – 5.606 3.98 WZ density at 

300K (g/cm3) 

C6me/F43

m 

C6me/F4

3m 

–/F43m –/F43m –/C6me C6me/F43

m 

Symmetry 

ZB/WZ 

15 30.5 10 21 60 36 Exciton binding 

energy(meV) 

 

0.0015≤ ≤ 0.007 – 1-2×10-3 – ≤ 0.15 Absorption coeff. 

(including two 

surfaces) (cm−1) 
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1.3 ZINC OXIDE (ZnO) 

Zinc Oxide is a semiconducting compound of the group-II b element Zn and the group 

VI element O. The zinc atoms locate almost in the position of hexagonal close packing. 

Every oxygen atom places within a tetrahedral group of four zinc atoms. Zinc Oxide is 

an inorganic compound with the formula of ZnO. It is a II–VI compound semiconductor 

whose ionicity resides at the borderline between the covalent and ionic semiconductors. 

It occurs in nature as the mineral zincite. It is a key technological material. It belongs 

to the family of II–VI compound wide-gap semiconductor with a room temperature 

direct band gap of 3.37 eV and a large exciton binding energy of about 60 meV, which 

makes it a very attractive material for the applications to the advanced optoelectronic 

devices [1, 2].  Zinc oxide has attracted significant attention as a material for ultraviolet 

(UV) light-emitters, varistors, transparent high power electronics, surface acoustic 

wave devices, piezoelectric transducers and gas sensors and also as a window material 

for displays and solar cells[3,4]. 

1.3.1 STRUCTURAL PROPERTIES OF ZnO 

Table 1.2 shows a compilation of basic physical parameters for ZnO [7, 8]. It should be 

noted that there still exists uncertainty in some of these values. For example, there have 

few reports of p-type ZnO and therefore the hole mobility and effective mass are still 

in debate. Similarly, the values for thermal conductivity show some spread in values 

and this may be a result of the influence of defects such as dislocations [9], as was the 

case for GaN. The values for carrier mobility will undoubtedly increase as more control 

is gained over compensation and defects in the material. 

 

 

https://en.wikipedia.org/wiki/Inorganic_compound
https://en.wikipedia.org/wiki/Chemical_formula
https://en.wikipedia.org/wiki/Zinc
https://en.wikipedia.org/wiki/Zinc


  

 

13 
 

GENERALITES OF II-VI SEMICONDUCTOR AND RARE EARTH ELEMENTS                                      CH I 

 

Table 1.2 Physical parameters of ZnO 

Physical parameters Values 

Lattice parameters at 300 K 

a 

c 

 

u 

 

3.2495 Å 

5.2069 Å 

 

0.345 

Density 5.606 g/cm3 

Stable phase at 300 K Wurtzite 

Melting point 1975 C0 

Thermal conductivity 0.6, 1–1.2 

Linear expansion a0: 6.5 ×10-6 

coefficient(/C0) c0: 3.0 × 10-6 

Static dielectric constant 8.656 

Refractive index (ZB,WZ) 2.008, 2.029 

Energy gap 3.37 eV, direct 

Intrinsic carrier 

Concentration 

<106 cm-3 (max n-type doping>1020 

cm-3 

electrons; max p-type doping<1017 

cm-3 

holes) 

Exciton binding energy 60 meV 

Electron effective mass 0.24 

Electron Hall mobility at 

300 K for low n-type conductivity 

200 cm2/V s 

Hole effective mass 0.59 

Hole Hall mobility at 300 K 

for low p-type conductivity 

5–50 cm2/V s 

 

 

ZnO belongs to the group of II‐VI binary compound semiconductors which crystallize 

in either a cubic (zinc blende) or hexagonal (wurtzite) structure where each anion is 

surrounded by four cations at the corners of a tetrahedron, and vice versa. The bonding 
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of this tetrahedral coordination is characteristic of sp3 covalent bonding, but these 

materials also have substantial ionic character. Therefore, as shown in Figure 1.3, the 

crystal structures of ZnO are wurtzite (B4), zinc blende (B3), and rock‐salt (B1). Under 

ambient conditions, the thermodynamically stable phase is wurtzite, while the ZB ZnO 

structure is only revealed by growth on cubic substrates; moreover, the RS (NaCl) 

structure probably grows at relatively high pressure.  

 

 

 

 

 

 
 

 

 

 

 

Figure 1.3 Crystal structures of ZnO: (a) cubic rock‐salt(B1), (b) zinc blende (B3), and (c) wurztie (B4). 

The shaded gray and black spheres denote Zn and O atoms, respectively [8]. 
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1.3.2 LATTICE PARAMETERS 

The wurtzite structure has a hexagonal unit cell with two lattice parameters, a and c, in 

the ratio of 𝑐 𝑎 = √8 3 ⁄⁄ = 1.633. Each sub‐lattice consists of one type of atom 

represented with respect to each other along the three fold c‐axis by the amount of 

u=3/8=0.375 (in an ideal wurtzite structure) in fractional coordinates. The internal 

parameter u is defined as the length of the bond parallel to the c-axis (anion–cation bond 

length or the nearest-neighbor distance) divided by the c lattice parameter. The basal 

plane lattice parameter (the edge length of the basal plane hexagon) is universally 

depicted by a; the axial lattice parameter (unit cell height), perpendicular to the basal 

plane, is universally described by c. Each sublattice includes four atoms per unit cell, 

and every atom of one kind (group II atom) is surrounded by four atoms of the other 

kind (group VI), or vice versa, which are coordinated at the edges of a tetrahedron. The 

crystallographic vectors of wurtzite are  �⃗� = 𝑎 (1 2⁄ , √3
2

⁄ , 0) , �⃗⃗� =

𝑎 (1 2⁄ , −√3
2

⁄ , 0) , 𝑐 = 𝑎(0,0, 𝑐 𝑎⁄ ) In Cartesian coordinates, the basis atoms are 

(0, 0, 0), (0, 0, 𝑢𝑐) , 𝑎 (1 2⁄ ,√3
6

⁄ , 𝑐 2𝑎⁄ ) , and𝑎 (1 2⁄ ,√3
6

⁄ , [𝑢 + 1
2⁄ ] 𝑐 𝑎⁄ ) . 

Table 1.3 tabulates measured and calculated lattice parameters, c/𝑎 ratio, and u 

parameter reported by several groups for ZnO crystallized in wurtzite, zinc blende, and 

rocksalt structures for comparison. The zinc blende ZnO structure is metastable and can 

be stabilized only by heteroepitaxial growth on cubic substrates, such as ZnS [9], 

GaAs/ZnS [10], and Pt/Ti/SiO2/Si [11], reflecting topological compatibility to 

overcome the intrinsic tendency of forming wurtzite phase. In the case of highly 

mismatched substrates, there is usually a certain amount of zinc blende phase of ZnO 

separated by crystallographic defects from the wurtzite phase. The symmetry of the zinc 

blende structure is given by space group 𝐹4̅3𝑚 in the Hermann–Mauguin notation and 



  

 

16 
 

GENERALITES OF II-VI SEMICONDUCTOR AND RARE EARTH ELEMENTS                                      CH I 

 

𝑇𝑑
   2 in the Schoenflies notation and is composed of two interpenetrating face-centered 

cubic (fcc) sublattices shifted along the body diagonal by one-quarter of the length of 

the body diagonal. There are four atoms per unit cell and every atom of one type (group 

II) is tetrahedrally coordinated with four atoms of other type (group VI), and vice versa. 

Like other II–VI semiconductors, wurtzite ZnO can be transformed to the rocksalt 

(NaCl) structure at relatively modest external hydrostatic pressures. The reason for this 

is that the reduction of the lattice dimensions causes the interionic Coulomb interaction 

to favor the ionicity more over the covalent nature. The space group symmetry of the 

rocksalt type of structure is Fm3m in the Hermann–Mauguin notation and  𝑂ℎ
5  in the 

Schoenflies notation, and the structure is sixfold coordinated. However, the rocksalt 

structure cannot be stabilized by the epitaxial growth. In ZnO, the pressure-induced 

phase transition from the wurtzite (B4) to the rocksalt (B1) phase occurs in the range 

of 10 GPa associated with a large decrease in volume of about 17% [12]. 

Table 1.3 Measured and calculated lattice constants of wurtzite ZnO 

  a(Å) c(Å) c/ a u Ref 

  1.633 0.375 Ideal 

3.2496 5.2042 1.6018 0.3819 [38] 

3.2501 5.2071 1.6021 0.3817 [39] 

      3.286       5.241 1.595       0.383 [40] 

Zinc blende (4.619[13], 4.60[14], 4.463, 4.37and 4.47[15]) 

Rocksalt (4.271[16], 4.30[14]) 

 

1.3.3 THE BAND STRUCTURAL AND ENERGY BAND GAP 

The band structure of ZnO was first calculated in 1969 using Greens function and 

followed up soon after with experimental results from x-ray induced photo-emission 

spectroscopy and UV photoemission measurements [17]. 
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A very important property of any given semiconductor is its band structure, because 

many important properties such as the band gap and effective electron and hole masses 

are derived from it. ZnO is considered most suitable semiconductor among all his 

family members for ultraviolet lasing at room temperature, device application as well 

as possibilities to engineer the band gap, for this reason a clear understanding of the 

band structure is important to explain the electrical properties and many other 

phenomena because it determines the relationship between the energy and the 

momentum of the carrier. The electronic band structure of ZnO has been calculated by 

a number of groups [18, 19]. The results of a band structure calculation using the Local 

Density Approximation (LDA) and incorporating atomic self-interaction corrected 

pseudopotentials (SIC-PP) to accurately account for the Zn 3d electrons is shown in 

figure 1.4 [19]. The band structure is shown along high symmetry lines in the hexagonal 

Brillouin zone. Both the valence band maxima and the lowest conduction band minima 

occur at the Γ point, k=0 indicating that ZnO is a direct band gap semiconductor. The 

bottom 10 bands (occurring around −9 eV) correspond to Zn 3d levels. The next 6 bands 

from −5 eV to 0 eV correspond to O 2p bonding states. The first two conduction band 

states are strongly Zn localized and correspond to empty Zn 3s levels. The higher 

conduction bands (not illustrated here) are free-electron-like. 

The O 2s bands (also not illustrated here) associated with core-like energy states, occur 

around −20 eV. The band gap as determined from this calculation is 3.77 eV. 
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Figure 1.4 The band structure of bulk wurtzite ZnO calculated using self-interaction-corrected 

pseudopotentials (SIC-PP). This method is much more efficient at treating the d-bands than the 

standard LDA method [19] 

There are several experimental methods to study the band structure of ZnO such as X-

ray induced photoemission spectroscopy [20, 21], UV photoemission measurements 

[22, 23], angle-resolved photoelectron spectroscopy [24, 25], and low-energy electron 

diffraction [26]. These experimental tools greatly facilitate the understanding and 

improvement of theoretical calculations. 
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1.3.4 OPTICAL PROPERTIES OF ZnO 

The optical properties are usually described by dielectric constant 𝜀(𝜔), sometimes by 

refractive index 𝑛(𝜔), extinction coefficient 𝑘(𝜔) and absorption coefficient 𝛼(𝜔). 

These features are very important to determine the optical and electronic properties of 

the crystal.  The index of refraction of a material is a number that indicates the speed at 

which light moves through a material compared to how it moves through a vacuum. 

The extinction coefficient is an imaginary portion of the index of refraction that 

indicates the absorption loss when the wave passes through the sample. Optical 

constants give information about how the light moves through the sample and reflects 

off the material and can be used to measure the band gap of the material.  

Optical properties and processes in ZnO as well as its refractive index were extensively 

studied many decades ago. The renewed interest in ZnO is fuelled and fanned by its 

prospects in optoelectronics applications owing to its direct wide band gap of 3.37 eV 

at room temperature with large exciton energy of 60 meV and efficient radiative 

recombination. The strong exciton binding energy, which is much larger than that of 

GaN (25 meV), and the thermal energy at room temperature (25 meV) can ensure an 

efficient exciton emission at room temperature under low excitation energy. 

Consequently, ZnO is recognized as a promising photonic material in the blue UV 

region. Optical transitions in ZnO have been studied by a variety of experimental 

techniques such as optical absorption, transmission, reflection, photoreflection, 

spectroscopic ellipsometry, photoluminescence, cathodoluminescence, calorimetric 

spectroscopy, etc. Room temperature PL spectra of ZnO typically consists of a UV 

emission band and a broad emission band, which is also called deep band emission 

(DBE). Figure 1.5 shows a typical PL spectrum of single crystal bulk ZnO at room 

temperature.  
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Figure 1.5 PL spectrum of single crystal bulk ZnO. The spectrum is normalized to the 

free exciton (FE) emission[*]. 

 

 

 

 

 

 

 

 

 

 

 

* Alimujiang Fulati (mechanical characterization and electrochemical sensor applications of zinc oxide 

nanostructures) Linkoping university. Sweden (2010) (thesis) 
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1.4 RARE EARTH ELEMENTS (REES) 

The rare earth elements (REES) are a group of 17 chemical (metallic) elements, which 

appear in the periodic table. The group consists of the 15-lanthanide elements along 

with Yttrium and Scandium as shown in Fig. 1.7.  

A mixture of rare earths was discovered in 1794 by J. Gadolin and ytterbium was 

separated from this mixture in 1878 by Mariganac, while the last rare earth element 

promethium (Pm) was separated by a nuclear reaction in 1974.Therefore, a period of 

more than 100 years separates the discovery of all the rare earth elements.  

They share many similar properties, which is why they occur together in geological 

deposits. The 17 REEs are found in all REE deposits but their distribution and 

concentrations vary. They are referred to as ‘rare’ because it is not common to find 

them in commercially viable concentrations. REEs generally fall into one of two 

categories – light rare earths (LREE) (lanthanum, cerium, praseodymium, neodymium, 

promethium, samarium) and heavy rare earths (HREE) (europium, gadolinium, 

terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, scandium, and 

yttrium). With varying levels of uses and demand. REE mineral deposits are usually 

rich in either LREE or HREE, but rarely contain both in significant quantities. In 

general, they are vital to some of the world’s fastest growing markets: clean energy and 

high technology. The rare earth elements are distinguished by their incomplete internal 

4f shell. When diluted in solid hosts, the rare earth atoms become almost always 

trivalent ions, losing the two 6s and one 4f electrons. The 4f electrons are shielded from 

external fields by the two remaining electronic shells with larger radial extension 

(5s25p6) [27].  
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1.4.1 COMMON APPLICATIONS OF RARE EARTH ELEMENTS 

The range of applications in which they are used is extraordinarily wide, from the 

everyday (automotive catalysts and petroleum cracking catalysts, flints for lighters, 

pigments for glass and ceramics and compounds for polishing glass) to the highly 

specialized (miniature nuclear batteries, lasers repeaters, superconductors and 

miniature magnets).Separately, or as compounds, various rare earth metals are used also 

in the production of super alloys. 

REES are now especially important and used extensively, in the defense industry. Some 

of their specific defense applications include anti-missile defense, aircraft parts, 

communications systems, electronic countermeasures, jet engines, rockets, underwater 

mine detection, missile guidance systems and space-based satellite power (Table1.3). 

 

Figure 1.6  A simplified Periodic Table with lanthanide elements [28]. 



  

 

23 
 

GENERALITES OF II-VI SEMICONDUCTOR AND RARE EARTH ELEMENTS                                      CH I 

 

Table 1.4 Rare Earth Elements and some their Uses. 

N0 Element Symbol Uses 

1 Cerium Ce Catalyst, Fuel additive, Optical polish, Ceramic, 

Glasses And Phosphors 

2 Dysprosium Dy Lasers, Magnets, Ceramic, Phosphors And 

Nuclear Applications 

3 Erbium Er Ceramic, Glasses dyes, Optical Fibers, Lasers, 

Photography And Nuclear Applications 

4 Europium Eu Phosphors, Lasers And Phosphors 

5 Gadolinium Gd Lasers, Ceramic, Optical, Magnetic Detection 

And Medical Image Visualization 

6 Holmium Ho Lasers, Ceramic, Magnets, Optics And Nuclear 

Applications 

7 Lanthanum La Catalyst, Ceramic, Glasses , Phosphors And 

Pigments 

8 Neodymium Nd Catalyst, Lasers, IR Filters And Magnets 

9 Praseodymium Pr Ceramic, Glasses And Pigments 

10 Promethium Pm Phosphors, Nuclear Batteries And Measuring 

Devices 

11 Samarium Sm Magnets, Microwave Filters, Lasers And Nuclear 

Applications 

12 Scandium Sc Aerospace, Lighting, Nuclear Applications And 

Semiconductors 

13 Terbium Tb Lasers, Lighting And Phosphors 

14 Thulium Th Electron Beam, Lasers And Medical Image 

Visualization 

15 Yttrium Y Capacitors, Phosphors, Radars And 

Superconductors 

16 Ytterbium Yb Lasers, Chemical Industry And Metallurgy 

17 Lutetium Lu Catalyst And Medicine 
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1.4.2 ERBIUM(Er) 

 

Erbium (Er) is a chemical element, a Rare-Earth Elements of the lanthanide series of 

the periodic table. Pure erbium is a silvery white metal that is relatively stable in air. It 

slowly reacts with water and quickly dissolves in diluted acids, except hydrofluoric acid 

(HF) because of formation of the protective fluoride (ErF3) layer on the surface of the 

metal. Erbium is a very strong paramagnet above approximately 85 K (−188 °C, or 

−307 °F). Between 85 K and 20 K (−253 °C, or −424 °F) the metal is antiferromagnetic, 

and below about 20 K it is arranged in a conical ferromagnetic structure [29]. 

The element was discovered in 1842 as an oxide by Carl Gustaf Mosander, who 

originally called it terbia; in the confusion arising from the similarity in the properties 

of the rare-earth elements, the names of two, terbium and erbium, became interchanged 

[30]. The element occurs in many rare-earth minerals; among the more important are 

the laterite ionic clays, xenotime, and euxenite. Erbium also occurs in the products of 

nuclear fission. In Earth’s crust, erbium is as abundant as tantalum and tungsten. 

Natural erbium is a mixture of six stable isotopes: erbium-166 (33.5 percent), erbium-

168 (26.98 percent), erbium-167 (22.87 percent), erbium-170 (14.91 percent), erbium-

164 (1.6 percent), and erbium-162 (0.14 percent). Not counting nuclear isomers, a total 

of 30 radioactive isotopes of erbium are known. Their mass varies from 142 to 177. All 

the radioactive isotopes of erbium are relatively unstable: their half-lives range from 1 

http://www.britannica.com/science/rare-earth-element
http://www.britannica.com/science/lanthanoid
http://www.britannica.com/science/periodic-table-of-the-elements
http://www.britannica.com/science/metal-chemistry
http://www.britannica.com/science/water
http://www.britannica.com/science/acid
http://www.britannica.com/science/paramagnetism
http://www.britannica.com/science/antiferromagnetism
http://www.britannica.com/science/ferromagnetism
http://www.britannica.com/biography/Carl-Gustaf-Mosander
http://www.britannica.com/science/terbium
http://www.britannica.com/science/xenotime
http://www.britannica.com/science/euxenite
http://www.britannica.com/science/nuclear-fission
http://www.britannica.com/place/Earth
http://www.britannica.com/science/tantalum
http://www.britannica.com/science/tungsten-chemical-element
http://www.britannica.com/science/isotope
http://www.britannica.com/science/radioactive-isotope
http://www.britannica.com/science/half-life-radioactivity
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second (erbium-145) to 9.4 days (erbium-169). The element adopts a close-packed 

hexagonal structure with a = 3.5592 Å and  c = 5.5850 Å at room temperature. 

When raised to a high-energy state by absorption of infrared light, the Er3+ion emits 

photons at wavelengths of 1.55 micrometres—one of the wavelengths commonly 

employed in fibre-optic signal transmission. Hence, the major use of erbium is in fibre-

optic telecommunications, as a component of the signal amplifiers in long-distance 

telephone and data cables. Its compounds are used in lasers and as a pink colouring 

agent for glasses. Erbium-stabilized zirconia (ZrO2) makes pink synthetic gems. 

Another small-scale use of erbium is in the intermetallic compound Er3Ni, which has a 

high magnetic heat capacity around 4 K (−269 °C, or −452 °F), which is needed for 

effective regenerative heat exchange at low temperatures, and, therefore, the compound 

is employed as a regenerator material in low-temperature cryocoolers. Erbium behaves 

as a typical rare-earth element, forming compounds in which its oxidation state is +3, 

such as the pink oxide Er2O3. The Er3+ ion is pink in solution.  

Electron shell configuration of Erbium is 1s2, 2s2 2p6, 3s2   3p6   3d10, 4s2   4p6   4d10   4f12, 

5s2   5p6, 6s2. 

Erbium's everyday uses are varied. It is commonly used as a photographic filter, and 

because of its resilience, it is useful as a metallurgical additive. Other uses: 

 Used in nuclear technology in neutron-absorbing control rods[31, 32]. 

 When added to vanadium as an alloy, erbium lowers hardness and improves 

workability [33]. 

 Erbium oxide has a pink color, and is sometimes used as a colorant for glass, 

cubic zirconia and porcelain. The glass is then often used in sunglasses and 

cheap jewelry[33]. 

http://www.britannica.com/science/infrared-radiation
http://www.britannica.com/science/ion-physics
http://www.britannica.com/science/photon
http://www.britannica.com/science/fiber-optics
http://www.britannica.com/topic/telecommunications-media
http://www.britannica.com/technology/telephone
http://www.britannica.com/technology/laser
http://www.britannica.com/technology/glass
http://www.britannica.com/science/zirconia
http://www.britannica.com/topic/gemstone
http://www.britannica.com/science/heat-capacity
http://www.britannica.com/science/rare-earth-element
https://en.wikipedia.org/wiki/Filter_%28photography%29
https://en.wikipedia.org/wiki/Nuclear_power
https://en.wikipedia.org/wiki/Control_rod
https://en.wikipedia.org/wiki/Control_rod
https://en.wikipedia.org/wiki/Erbium#cite_note-11
https://en.wikipedia.org/wiki/Vanadium
https://en.wikipedia.org/wiki/Alloy
https://en.wikipedia.org/wiki/Erbium#cite_note-CRC-12
https://en.wikipedia.org/wiki/Erbium_oxide
https://en.wikipedia.org/wiki/Glass
https://en.wikipedia.org/wiki/Cubic_zirconia
https://en.wikipedia.org/wiki/Porcelain
https://en.wikipedia.org/wiki/Sunglasses
https://en.wikipedia.org/wiki/Jewelry
https://en.wikipedia.org/wiki/Jewelry
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 Erbium-doped optical silica-glass fibers are the active element in erbium-doped 

fiber amplifiers (EDFAs), which are widely used in optical communications 

[34]. The same fibers can be used to create fiber lasers. In order to work 

efficiently, erbium-doped fiber is usually co-doped with glass 

modifiers/homogenizers, often aluminum or phosphorus. These dopants help 

prevent clustering or Er-ions and transfer the energy more efficiently between 

the Er ions and the signal. Co-doping of optical fiber with Er and Yb is used in 

high-power Er/Yb fiber lasers. Erbium can also be used in erbium-doped 

waveguide amplifiers[31]. 

 An erbium-nickel alloy Er3Ni has an unusually high specific heat capacity at 

liquid-helium temperatures and is used in cryocoolers; a mixture of 65% Er3Co 

and 35% Er0.9Yb0.1Ni by volume improves the specific heat capacity even more 

[35,36]. 

 A large variety of medical applications (i.e. dermatology, dentistry) utilize 

erbium ion's 2940 nm emission (see Er:YAG laser), which is highly absorbed 

in water (absorption coefficient about 12000/cm). Such shallow tissue 

deposition of laser energy is necessary for laser surgery, and the efficient 

production of steam for laser enamel ablation in dentistry. 

 

 

 

 

 

https://en.wikipedia.org/wiki/Optical_fibers
https://en.wikipedia.org/wiki/Erbium-doped_fiber_amplifier
https://en.wikipedia.org/wiki/Erbium-doped_fiber_amplifier
https://en.wikipedia.org/wiki/Optical_communications
https://en.wikipedia.org/wiki/Lasers
https://en.wikipedia.org/w/index.php?title=High-power_Er/Yb_fiber_lasers&action=edit&redlink=1
https://en.wikipedia.org/wiki/Erbium-doped_waveguide_amplifier
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1.5 RARE EARTH ELEMENTS DOPED ZnO 

Semiconductors doped with rare earth ions are excellent phosphors of high efficiency 

and low degradation in addition to their unique physical and chemical properties [37]. 

II-VI compound semiconductors have been found to be unique host materials for doping 

of optically active impurities, which exhibit luminescence at room temperature [38]. 

Rare earth ions in II-VI semiconductors compounds have been studied since more than 

50 years [39] in powders [40], bulk crystals [41], thin films [42], and epitaxial layers 

[43]. Recently, rare earths (RE) doped semiconductors have long been the topic of 

research owing to their prominent and desirable optical and magnetic properties. 

Typically, trivalent rare earth elements have very stable emissions, due to the 4f 

electrons, which are deeply buried and hence well shielded from the outer shells. This 

property of the rare earth elements makes it possible; to incorporate them into various 

hosts with different lattice and still preserve the typical rare earth emissions. 

Semiconductors such as ZnO, GaN, ZnSe doped with rare earth ions show evidence of 

electroluminescence; these materials are candidates for traditional semiconductor light 

emitting diodes and enable new technologies for highly distinguishable emissive flat 

panel displays. 

Recently, the ZnO presented an interesting subject for doping with various elements 

such as transition metals and nobel metals. This is of course very suitable to improve 

the optoelectronic and photocatalytic properties because the incorporation of dopants 

generates lattice defects and changes consequently the band gap energy [44].  In 

particular, the doping with rare-earth elements has been extensively investigated, 

experimentally as well as theoretically.  

Poongodi et al [45] deposited nanostructured Nd doped ZnO thin films on glass 

substrate by a sol–gel spin coating technique. The results show the degradation of 
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methylene blue dye and the decrease in grain size and light absorption over an extended 

visible region by Nd ion doping in ZnO film contributed equally to improve the 

photocatalytic activity. 

 Honglin et al [46] prepared the ZnO nanopowders doped with (La,Er,Nd) rare-earth by 

chemical method. The photoluminescence (PL) measurement revealed that pure and 

Res doped ZnO had different IUV/IDLE ratios, and the absorption spectra of doped ZnO 

exhibited enhanced optical absorption in visible region. Zhang et al [47] studied the 

electronic structure and magnetism of RE (RE = La, Ce, Pr, Nd and Eu) doped ZnO 

using generalized gradient approximation (GGA) and GGA+ U, it appeared the 

influence of  a dopant on the electronic and magnetism properties of ZnO. 

DU Fangli et al [48] prepared Ce-doped ZnO films by the sol-gel method with spin 

coating onto glass substrates. It was found that Ce-doped ZnO films showed a 

hexagonal wurtzite structure and had a (101) preferred orientation. The infrared 

emissivity increased with the temperature rising when the ZnO films were doped with 

3 at % and 7 at % of Ce concentration. However, the infrared emissivity decreased with 

the temperature increasing when the ZnO film was doped with 5 at.% of Ce. This 

suggests that the infrared emissivity of the films is remarkably changed by controlling 

the Ce doping concentration.  

Sofiani etal [49] deposited zinc oxide (ZnO) and cerium-doped zinc oxide (ZnO:Ce) 

films by reactive chemical pulverization spray pyrolysis technique using zinc and 

cerium chlorides as precursors. All deposited ZnO layers at the temperature 450ºC are 

polycrystalline and indicate highly c-axis oriented structure. The dimension of 

crystallites depends on incorporation of Ce atoms into the ZnO films. The 

photoluminescence spectra of the films have been studied as a function of the deposition 

parameters such as doping concentrations and post growth annealing. 
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Photoluminescence spectra were measured at the temperature range from 13 K to 320 

K.   

Eugenio Hernan Otal etal [50] studied the introduction and stability of the heavy 

lanthanide Er, into ZnO by HRTEM, XRD and thermal treatments. The applied 

synthesis route allows introducing the Er atoms in the lattice in a metastable state. The 

stability depends on the Er concentration. ZnO with Er concentrations of less than 2% 

are stable up to 800ºC, while higher concentrations result in a phase segregation at T > 

700ºC. Unit cell parameters obtained from the Rietveld refinement of XRD patterns 

provide a conclusive evidence of the incorporation of the Er ions in the host ZnO matrix.   

Fanyong Ran et al [51] have fabricated using erbium acetate as an Er source, transparent 

ZnO films doped with Er by sol–gel method through spin-coating on quartz substrates.  

The ZnO:Er films exhibit wurtzite structure with preferential orientation of the (002) 

plane. The film that annealed at 800ºC shows the highest degree of preferential 

orientation. Coalescence of small grains result in very large and irregularly shaped 

grains for the film annealed at 1000ºC. The estimated optical band gap of Er-doped 

ZnO films annealed at different temperatures is 3.28 eV, which is almost independent 

of annealing temperature and quite similar to that of undoped ZnO film. 
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2.1 INTRODUCTION  

Density Functional Theory (DFT) is one of the most widely used methods for "ab initio" 

calculations of the structure of atoms, molecules, crystals, surfaces, and their 

interactions [1, 2].  The main idea of DFT is to describe a many-body interacting system 

via its particle density and not via its many-body wavefunction. Its significance is to 

reduce the 3N degrees of freedom of the N-body system to only three spatial coordinates 

through its particle density. It is used to calculate properties such as equilibrium 

geometries, electronic, optic, activation energies, and reaction energies. 

In this chapter, we will discuss the general theory and historical background about DFT, 

as well as, we will introduce some important concepts in DFT.  
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2.2 THE DENSITY FUNCTIONAL THEORY (DFT) 

Density functional theory is one of the most popular and successful quantum 

mechanical approaches to matter. It is a method in quantum mechanical modeling that 

studies the behavior of the material by solving the Schrödinger equation (SE) and 

finding the ground state of the system. Ground state is defined as the state in which the 

system has the lowest possible energy. The theory originates from the pioneering work 

due to Thomas [3] and Fermi [4] in the early thirties of the twentieth century and further 

refinements by Hartree [5], Dirac [6, 7], Fock [8] and Slater [9]. 

It was given a firm foundation by Hohenberg, Kohn and Sham almost forty years after 

the work of Thomas and Fermi. The original scheme as proposed by Hohenberg and 

Kohn (HK) [10] and Kohn and Sham (KS) [11] is a ground-state theory which provides 

a reliable and inexpensive method for the calculation of ground-state energy of an 

interacting many Fermionic system. 

2.2.1 THE MANY-BODY SYSTEM AND BORN-OPPENHEIMER 

APPROXIMATION 

The Hamiltonian of a many-body condensed-matter system consisting of nuclei and 

electrons can be written as: 

Ĥ =  T̂T  + ÛT 

Ĥ = T̂n(R⃗⃗⃗) + T̂e(r⃗) + Ûnn(R⃗⃗⃗) + Ûee(r⃗) + Ûne(R⃗⃗⃗, r⃗) 

Ĥ = ∑−
ℏ2

M
I

∇2 R⃗⃗⃗I

2
+ ∑−

ℏ2

m
i

∇2r⃗i
2

+
e2

4πε0
∑

+ZIZJ

|R⃗⃗⃗I − R⃗⃗⃗J|I≠J

+
e2

4πε0
∑

−1

|r⃗i − r⃗j|i≠j

+
e2

4πε0
∑

−ZI

|r⃗i − R⃗⃗⃗I|i,I

                                                                                  (2.1) 
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where the indexes I, J run on nuclei, i and j on electrons, RI and M are positions and 

masses of the nuclei, ri and m of the electrons, ZI the atomic number of nucleus I.  

The first term is the kinetic energy of the nuclei, the second term is the kinetic energy 

of the electrons, the third term is the potential energy of nucleus-nucleus Coulomb 

interaction, the fourth term is the potential energy of electron-electron Coulomb 

interaction and the last term is the potential energy of nucleus-electron Coulomb 

interaction. The time-independent Schrödinger equation for the system reads: 

Ĥψ(R⃗⃗⃗, r⃗) = E ψ(R⃗⃗⃗, r⃗)                                                                  (2.2) 

where ψ(R⃗⃗⃗, r⃗) is the total wavefunction of the system. In principle, everything about 

the system is known if one can solve the above Schrödinger equation. However, it is 

impossible to solve it in practice. A so-called Born Oppenheimer (BO) approximation 

was made by Born and Oppenheimer [12] in 1927. Since the nuclei are much heavier 

than electrons (the mass of a proton is about 1836 times the mass of an electron), the 

nuclei move much slower (about two order of magnitude slower) than the electrons. 

Therefore we can separate the movement of nuclei and electrons. When we consider 

the movement of electrons, it is reasonable to consider the positions of nuclei are fixed, 

thus the total wavefunction can be written as: 

ψ(r⃗, R⃗⃗⃗) = ψn(R⃗⃗⃗)ψe(r⃗, R⃗⃗⃗)                                                            (2.3) 

where ψn(R⃗⃗⃗) describes the nuclei and ψe(r⃗, R⃗⃗⃗) the electrons (depending parametrically 

on the positions of the nuclei). With the BO approximation, Eq. (2.2) can be divided 

into two separate Schrödinger equations: 

Ĥe ψe(r⃗, R⃗⃗⃗) = V(R⃗⃗⃗) ψe(r⃗, R⃗⃗⃗)                                                            (2.4) 

where 
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Ĥe = −∑
ℏ2

m
i

∇2r⃗i
2

+
1

2
∑

ZIZJe
2

|R⃗⃗⃗I − R⃗⃗⃗J|I≠J

+
1

2
∑

−e2

|r⃗i − r⃗j|i≠j

 − ∑
ZIe

2

|r⃗i − R⃗⃗⃗I|i,I

                  (2.5)   

and 

[∑−
ℏ2

M
I

∇2 R⃗⃗⃗I

2
+ V(R⃗⃗⃗)]ψn(R⃗⃗⃗) = E′ψn(R⃗⃗⃗)                                                                   (2.6) 

Eq. (2.4) is the equation for the electronic problem with the nuclei positions fixed. The 

eigenvalue of the energy V(R⃗⃗⃗) depends parametrically on the positions of the nuclei. 

After solving Eq. (2.4), V(R⃗⃗⃗) is known and by applying it to Eq. (2.6), which has no 

electronic degrees of freedom, the motion of the nuclei is obtained. Eq. (2.6) is 

sometimes replace by a Newton equation, i.e., to move the nuclei classically, using 

∇Vas the forces. Then the whole problem is solved. 

The significance of the BO approximation is to separate the movement of electrons and 

nuclei. Now we can consider that the electrons are moving in a static external potential 

Vext(r) formed by the nuclei, which is the starting point of DFT. The BO approximation 

was extended by Bohn and Huang known as Born-Huang (BH) approximation [13] to 

take into account more nonadiabatic effect in the electronic Hamiltonian than in the BO 

approximation. 

2.2.2 THOMAS-FERMI-DIRAC APPROXIMATION 

The very earliest attempt at using the density instead of the wavefunction was published 

only a year after Schrödinger’s work independently by Enrico Fermi (14) and Llewellyn 

Thomas (15). In this method, they used the electron density n(r)as the basic variable 

instead of the wavefunction. The total energy of a system in an external potential Vext(r) 

is written as a functional of the electron density n(r)) as: 
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    ETF[n(r)] = A1 ∫n(r)5 3⁄ dr + ∫n(r) Vext(r)dr                                             

+
1

2
∬

n(r)n(r′)

|r − r′|
drdr′                                                                             (2.7) 

where the first term is the kinetic energy of the non-interacting electrons in a 

homogeneous electron gas (HEG) with A1 =
3

10
(3π2)2 3⁄  in atomic units (ħ = me =

e = 4π ϵ0⁄ = 1). The kinetic energy density of a HEG is obtained by adding up all of 

the free-electron energy state εk = k2 2⁄  up to the Fermi wavevector kF =

[3π2n(r)]1 3⁄ as: 

    t0[n(r)] =
2

2π3
∫

k2

2

kF

0

4πk2dk = A1n(r)
5 3⁄                                                  (2.8) 

The second term is the classical electrostatic energy of the nucleus-electron Coulomb 

interaction. The third term is the classical electrostatic Hartree energy approximated by 

the classical Coulomb repulsion between electrons. In the original TF method, the 

exchange and correlation among electrons was neglected. In 1930, Dirac [16] extended 

the Thomas-Fermi method by adding a local exchange term  A2 ∫ n(r)4 3⁄ dr to Eq. (2.7) 

with, A2 = −
3

4
(3/π)1 3⁄ , which leads Eq. (2.7) to 

    ETF[n(r)] = A1 ∫n(r)5 3⁄ dr + ∫n(r)Vext(r)dr                                             

+
1

2
∬

n(r)n(r′)

|r − r′|
drdr′ + A2 ∫n(r)4 3⁄ dr                                          (2.9) 

The ground state density and energy can be obtained by minimizing the Thomas- Fermi-

Dirac equation (2.9) subject to conservation of the total number (N) of electrons. By 

using the technique of Lagrange multipliers, the solution can be found in the stationary 

condition: 

δ {ETFD[n(r)] − μ (∫n(r)dr − N)} = 0                                                         (2.10) 
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where μ is a constant known as a Lagrange multiplier, whose physical meaning is the 

chemical potential (or Fermi energy at T=0 K). Eq. (2.10) leads to the Thomas-Fermi-

Dirac equation, 

5

3
A1n(r)

2 3⁄ + Vext(r) + ∫
n(r′)

|r − r′|
dr′ +

4

3
A2n(r)

1 3⁄ −  μ = 0                             (2.11) 

which can be solved directly to obtain the ground state density. 

The approximations used in Thomas-Fermi-type approach are so crude that the theory 

suffers from many problems. The most serious one is that the theory fails to describe 

bonding between atoms, thus molecules and solids cannot form in this theory. [17] 

Although it is not good enough to describe electrons in matter, its concept to use 

electron density as the basic variable illustrates the way DFT works. 

2.2.3 THE HOHENBERG-KOHN (HK) THEOREMS 

DFT was proven to be an exact theory of many-body systems by Hohenberg and Kohn 

[10] in 1964. It applies not only to condensed-matter systems of electrons with fixed 

nuclei, but also more generally to any system of interacting particles in an external 

potential Vext(r). The theory is based upon two theorems. 

2.2.3.1 THE FIRST HOHENBERG-KOHN THEOREM 

The ground state particle density n(r) of a system of interacting particles in an external 

potential Vext(r) uniquely determines the external potential Vext(r), except for a 

constant. Thus, the ground state particle density determines the full Hamiltonian, except 

for a constant shift of the energy. In principle, all the states including ground and excited 

states of the many-body wave functions can be calculated. This means that the ground 

state particle density uniquely determines all properties of the system completely. For 

simplicity, here the ground state of the system is non- degenerate. It can be proven that 

the theorem is also valid for systems with degenerate ground states [18]. The proof is 
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based on minimum energy principle. Suppose there are two different external potentials 

Vext(r) and Vext
′ (r) which differ by more than a constant and lead to the same ground 

state density n0(r). The two external potentials would give two different Hamiltonians, 

Ĥ and Ĥ′, which have the same ground state density n0(r) but would have different 

ground state wavefunctions, Ψ and Ψ′with ĤΨ = E0Ψ and Ĥ′Ψ′ = E0
′ Ψ′ Since Ψ′ is 

not the ground state of  Ĥ, it follows that 

E0 < ⟨Ψ′|Ĥ|Ψ′⟩ 

< ⟨Ψ′|Ĥ′|Ψ′⟩ + ⟨Ψ′|Ĥ − Ĥ′|Ψ′⟩                                      (2.12) 

< 𝐸0
′ + ∫n0(r)[Vext(r) − Vext

′ (r)]dr 

Similarly 

E0
′ < ⟨Ψ′|Ĥ|Ψ′⟩ 

< ⟨Ψ′|Ĥ|Ψ′⟩ + ⟨Ψ′|Ĥ′ − Ĥ|Ψ′⟩                                         (2.13) 

< 𝐸0 + ∫n0(r)[Vext
′ (r) − Vext(r)]dr 

Adding Eq. (2.12) and (2.13) lead to the contradiction 

E0 + E0
′ < E0 + E0

′                                                  (2.14) 

 Hence, no two different external potentials Vext(r) can give rise to the same ground 

state density n0(r), i.e., the ground state density determines the external potential 

Vext(r), except for a constant. That is to say, there is a one-to-one mapping between 

the ground state density n0(r) and the external potential Vext(r), although the exact 

formula is unknown. 
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2.2.3.2 THE SECOND HOHENBERG-KOHN THEOREM 

There exists a universal functional F[n(r)]  of the density, independent of the external 

potential Vext(r), such that the global minimum value of the energy functional 

E[n(r)] = ∫ n(r)Vext(r)dr + F[n(r)] is the exact ground state energy of the system 

and the exact ground state density n0(r)  minimizes this functional. Thus, the exact 

ground state energy and density are fully determined by the functional E[n(r)]. 

The universal functional F[n(r)]can be written as 

F[n(r)] ≡ T[n(r)] + Eint[n(r)]                                                          (2.15) 

where T[n(r)] is the kinetic energy and Eint[n(r)] is the interaction energy of the 

particles. According to variational principle, for any wave function Ψ′, the energy 

functional E[Ψ′]: 

E[Ψ′] ≡ ⟨Ψ′|T̂ + V̂int + V̂ext|Ψ
′⟩                                                    (2.16) 

has its global minimum value only when Ψ′ is the ground state wavefunction Ψ0 ,with 

the constraint that the total number of the particles is conserved. According to HK 

theorem I,Ψ′ must correspond to a ground state with particle density  n′(r) and external 

potential Vext
′ (r), then E[Ψ′] is a functional of n′(r). According to variational principle: 

 

E[Ψ′] ≡ ⟨Ψ′|T̂ + V̂int + V̂ext|Ψ
′⟩ 

                                                       = E[n′(r)] 

                                                       = ∫ n′(r)Vext
′ (r) dr +F[n′(r)] 

                                                        > 𝛦[Ψ0]                                                                 (2.17) 

                                                       = ∫n0(r)Vext(r)dr +  F[n0(r)] 

                                                       = E[n0(r)] 
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Thus, the energy functional E[n(r)] = ∫ n(r)Vext(r)dr + F[n(r)] evaluated for the 

correct ground state density n0(r) is indeed lower than the value of this functional for 

any other density n(r). Therefore by minimizing the total energy functional of the 

system with respect to variations in the density n(r); one would find the exact ground 

state density and energy. 

The HK theorems can be generalized to spin density functional theory with spin degrees 

of freedom [19]. In this theory, there are two types of densities, namely, the particle 

density n(r) = n↑(r) + n↓(r) and the spin density s(r) = n↑(r) + n↓(r) where ↑ and ↓

 denote the two different kinds of spins. The energy functional is generalized to 

[n(r), s(r)]. In systems with magnetic order or atoms with net spins, the spin density 

functional theory should be used instead of the original one-spin density functional 

theory. DFT can also be generalized to include temperature dependence and time 

dependence known as time-dependent density functional theory (TD-DFT) [20, 21]. 

Although HK theorems put particle density n(r) as the basic variable, it is still 

impossible to calculate any property of a system because the universal functional 

F[n(r)] is unknown. This difficulty was overcome by Kohn and Sham [11] in 1965, 

who proposed the well known Kohn-Sham ansatz. 

2.2.3 THE KOHN-SHAM (KS) ANSATZ 

Kohn-Sham (KS) ansatz put Hohenberg-Kohn theorems into practical use and makes 

DFT calculations possible with even a single personal computer [11]. This is part of the 

reason that DFT became the most popular tool for electronic structure calculations. The 

KS ansatz was so successful that Kohn was honored the Nobel prize in chemistry in 

1998. 
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The KS ansatz is to replace the original many-body system by an auxiliary independent-

particle system and assume that the two systems have exactly the same ground state 

density. It maps the original interacting system with real potential onto a fictitious non-

interacting system whereby the electrons move within an effective Kohn-Sham single-

particle potential VKS(r). For the auxiliary independent-particle system, the auxiliary 

Hamiltonian is 

ĤKS = −
1

2
∇2 + VKS(r)                                                                      (2.18) 

in atomic units (ħ = me = e = 4π ϵ0⁄ = 1) For a system with N independent 

electrons, the ground state is obtained by solving the N one-electron Schrödinger 

equations, 

(−
1

2
∇2 + VKS(r))ψi(r) = εiψi(r)                                                (2.19) 

where there is one electron in each of the N orbitals ψi(r) with the lowest eigenvalues 

εi.The density of the auxiliary system is constructed from: 

n(r⃗) = ∑|ψi(r⃗)|
2

N

i=1

                                                                          (2.20) 

which is subject to the conservation condition: 

∫n(r)dr = N                                                                               (2.21) 

The non-interacting independent-particle kinetic energy TS[n(r)] is given by, 

TS[n(r)] = −
1

2
∑∫ψi

∗(r)∇2ψi(r) dr

N

i=1

                                         (2.22) 

Then the universal functional 𝐹[𝑛(𝑟)] was rewritten as 

𝐹[𝑛(𝑟)] = 𝑇𝑆[𝑛(𝑟)] + 𝐸𝐻[𝑛(𝑟)] + 𝐸𝑋𝐶 [𝑛(𝑟)]                                (2.23) 

where, 𝐸𝐻[𝑛(𝑟)] is the classic electrostatic (Hartree) energy of the electrons, 
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𝐸𝐻[𝑛(𝑟)] =
1

2
∬

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′                                                  (2.24) 

moreover, 𝐸𝑋𝐶[𝑛(𝑟)] is the XC energy, which contains the difference between the exact 

and non-interacting kinetic energies and the non-classical contribution to the electron-

electron interactions, of which the exchange energy is a part. Since the ground state 

energy of a many-electron system can be obtained by minimizing the energy functional 

𝐸[𝑛(𝑟)] = 𝐹[𝑛(𝑟)] + ∫ 𝑛(𝑟) 𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟, subject to the constraint that the number of 

electrons N is conserved, 

𝛿 {𝐹[𝑛(𝑟)] + ∫𝑛(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 − 𝜇 (∫𝑛(𝑟)𝑑𝑟 − 𝑁)} = 0                          (2.25) 

and the resulting equation is 

𝜇 =
𝛿𝐹[𝑛(𝑟)]

𝛿𝑛(𝑟)
+ 𝑉𝑒x𝑡(𝑟) 

                                                      =
𝛿𝑇𝑆[𝑛(𝑟)]

𝛿𝑛(𝑟)
+ 𝑉𝐾𝑆(𝑟)                                           (2.26) 

where 𝜇 is the chemical potential, 

                     𝑉𝐾𝑆(𝑟) =  𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑋𝐶(𝑟) 

                            = 𝑉𝑒𝑥𝑡(𝑟) +
𝛿𝐸𝐻[𝑛(𝑟)]

𝛿𝑛(𝑟)
+

𝛿𝐸𝑋𝐶[𝑛(𝑟)]

𝛿𝑛(𝑟)
                                    (2.27) 

is the KS one-particle potential with the Hartree potential 𝑉𝐻(𝑟) 

𝑉𝐻(𝑟) =
𝛿𝐸𝐻[𝑛(𝑟)]

𝛿𝑛(𝑟)
 

                                     = ∫
n(r′)

|r − r′|
dr′                                           (2.28) 

and the XC potential VXC(r) 

VXC(r) =
δEXC[n(r)]

δn(r)
                                                                (2.29) 
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Equations (2.19), (2.20), (2.27) together are the well-known KS equations, which must 

be solved self-consistently because VKS(r) depends on the density through the XC 

potential. In order to calculate the density, the N equations in Eq. (2.19) have to be 

solved in KS theory as opposed to one equation in the TF approach. However an 

advantage of the KS method is that as the complexity of a system increases, due to N 

increasing, the problem becomes no more difficult, only the number of single-particle 

equations to be solved increases. 

Although exact in principle, the KS theory is approximate in practice because of the 

unknown XC energy functional EXC[n(r)]. An implicit definition of EXC[n(r)] can be 

given as 

EXC[n(r)] = T[n(r)] − TS[n(r)] + Eint[n(r)] − EH[n(r)]                     (2.30) 

where T[n(r)] and Eint[n(r)] are the exact kinetic and electron-electron interaction 

energies of the interacting system respectively. It is crucial to have an accurate XC 

energy functional EXC[n(r)]or potential VXC[n(r)]in order to give a satisfactory 

description of a realistic condensed-matter system. The most widely used 

approximations for the XC potential are the local density approximation (LDA) and the 

generalized-gradient approximation (GGA). 

The KS energy eigenvalues of Eq. (2.19) are not for the original interacting many-body 

system and have no physical meaning. They cannot be interpreted as one-electron 

excitation energies of the interacting many-body system, i.e., they are not the energies 

to add or subtract from the interacting many-body system, because the total energy of 

the interacting system is not a sum of all the eigenvalues of occupied states in equation 

(2.19), i.e., Etot ≠ ∑ εi
occ
i . The only exception is the highest eigenvalue in a finite 

system which is the negative of the ionization energy, -I, because it determines the 

asymptotic long-range density of the bound system which is assumed to be exact. No 
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other eigenvalue is guaranteed to be correct by the KS theory. Nevertheless, within the 

KS theory itself, the eigenvalues have a well-defined meaning and they are used to 

construct physically meaningful quantities. They have a definite mathematical 

meaning, often known as the Slater-Janak theorem. The eigenvalue is the derivative of 

the total energy with respect to occupation of a state, i. e. 

εi =
dEtotal

dni
 

                                                      = ∫
dEtotal dn(r)

dn(r) dni
dr                                  (2.31) 
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2.2.5 SOLVING KOHN-SHAM EQUATIONS 

By using independent-particle methods, the KS equations provide a way to obtain the 

exact density and energy of the ground state of a condensed matter system. The KS 

equations must be solved consistently because the effective KS potential VKS  and the 

electron density n(r) are closely related. This is usually done numerically through some 

self-consistent iterations as shown in Fig. 2.1.1. The process starts with an initial 

electron density, usually a superposition of atomic electron density, then the effective 

KS potential VKS is calculated and the KS equation is solved with singleparticle 

eigenvalues and wavefunctions, a new electron density is then calculated from the 

wavefunctions. After this, self-consistent condition(s) is checked. Self-consistent 

condition(s) can be the change of total energy or electron density from the previous 

iteration or total force acting on atoms is less than some chosen small quantity, or a 

combination of these individual conditions. If the self-consistency is not achieved, the 

calculated electron density will be mixed with electron density from previous iterations 

to get a new electron density. A new iteration will start with the new electron density. 

This process continues until self-consistency is reached. After the self-consistency is 

reached, various quantities can be calculated including total energy, forces, stress, 

eigenvalues, electron density of states, band structure, etc... 

The most timing consuming step in the whole process is to solve KS equation with a 

given KS potential VKS.  
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Figure 2.1 Flowchart of self-consistency loop for solving KS equations. 
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There are several different schemes to the calculation of the independent-particle 

electronic states in solids where boundary conditions are applied. They are basically 

classified into three types [22]: 

1. Plane waves. 

In this method, the wavefunctions (eigenfunctions of the KS equations) are expanded 

in a complete set of plane waves  eik.r and the external potential of nuclei are replaced 

by pseudopotentials, which include effects from core electrons. Such pseudopotentials 

have to satisfy certain conditions. Most widely used pseudopotentials nowadays include 

norm-conserving pseudopotentials [23] (NCPPs) and ultrasoft pseudopotentials [24] 

(USPPs). In norm-conserving pseudopotentials, five requirements should be satisfied: 

a. the pseudo valence eigenvalues should agree with all-electron valence eigenvalues 

for the chosen atomic reference configuration; 

b. the pseudo valence wavefunctions should match all-electron valence wavefunctions 

beyond a chosen core radius Rc; 

c. the logarithmic derivatives of the pseudo and the all-electron wavefunctions should 

agree at Rc, 

d. the integrated charge inside Rc for each wavefunction agrees (norm-conservation); 

and 

e. the first energy derivative of the logarithmic derivatives of the all-electron and pseudo 

wavefunctions agree at Rc, and therefore for all r ≤  Rc. 

In ultrasoft pseudopotentials, the norm-conservation condition is not required so that 

the pseudo wavefunctions are much softer than pseudo wavefunctions in norm 

conserving pseudopotentials. As a result, it significantly reduces the number of plane 

waves needed to expand the wavefunctions (smaller energy cutoff for wavefunctions). 
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Plane waves have played an important role in the early orthogonalized plane wave [25-

27] (OPW) calculations and are generalized to modern projector augmented wave [28-

30] (PAW) method. Because of the simplicity of plane waves and pseudopotentials, 

computational load is significantly reduced in these methods and therefore it is most 

suitable for calculations of large systems. In this method, forces can be easily calculated 

and it can be easily developed to quantum molecular dynamics simulations as well as 

response to (small) external perturbations. However, results from plane wave methods 

using pseudopotentials are usually less accurate than results from all-electron full 

potential methods. Moreover, great care should be taken when one generates a 

pseudopotential and it should be tested to match results from all-electron calculations. 

The most widely used codes using plane waves and pseudopotentials are plane wave 

self-consistent field (now known as Quantum ESPRESSO) (PWscf), ABINIT and 

VASP.  

2. Localized atomic (-like) orbitals. 

The most well known methods in this category are linear combination of atomic orbitals 

(LCAO), also called tight-binding [31] (TB) and full potential non-orthogonal local 

orbital [32] (FPLO). The basic idea of these methods is to use atomic orbitals as the 

basis set to expand the one-electron wavefunction in KS equations. 

In FPLO, in addition to the spherical average of the crystal potential, a so-called 

confining potential Vcom = (r r0⁄ )m is used to compress the long-range tail of the local 

orbitals (wave functions), where m is the confining potential exponent with a typical 

value of 4, r0 = (x0rNN/2)3 2⁄  is a compression parameter with x0 being a 

dimensionless parameter and rNN the nearest neighbor distance. Therefore, the atomic-

like potential is written as 
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Vat(r) = −(1 4π⁄ )∫V(r − R − 𝒯)d3r + Vcom(r)(2.58) 

where the first term is the spherical average of the crystal potential mentioned above. 

For systems containing atom(s) with partially filled 4f and 5f shells, the confining 

potential exponent m needs to be increased to 5 or 6. In practice, the dimensionless 

parameter x0 is taken as a variational parameter in the self-consistent procedure. 

3. Atomic sphere methods. 

Methods in the class can be considered as a combination of plane wave method 

and localized atomic orbitals. It uses localized atomic orbital presentation near the 

nuclei and plane waves in the interstitial region. The most widely used methods are (full 

potential) linear muffin-tin orbital[33] (LMTO) as implemented in LMTART[30] by 

Dr. Savrasov and (full potential) linear augment plane wave[33-35] (LAPW) as 

implemented in WIEN2K[36]. 
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3.1 INTRODUCTION 

In this chapter, we are going to present the methodology used in the calculation of our 

work. We explain how the exchange-potential correlation can be treated through 

various approximations (LDA, GGA and GGA+U). We attempt to introduce the 

fundamental concepts of the linearized / augmented plane wave plus local orbitals 

(L/APW+lo). We show also the different versions of (L/APW+lo) and their main 

developing steps in terms of linearization, full potential, local orbitals and mixed basis 

sets.  Then, we will submit the modified becke-johnson potential (mBJ) and the wien2k 

code. 
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3.2 EXCHANGE CORRELATION FUNCTION 

The KS ansatz successfully maps the original interacting many-body system onto a set 

of independent single-particle equations and makes the problem much easier. In the 

meantime, without knowing the exact form of the XC energy functional 𝐸𝑋𝐶[𝑛(𝑟)], the 

KS equations are unsolvable. Although the exact XC energy functional 𝐸𝑋𝐶 [𝑛(𝑟)] 

should be very complicated, simple but successful approximations to it have been made, 

which not only predict various properties of many systems reasonably well but also 

greatly reduce computational costs, leading to the wide use of DFT for electronic 

structure calculations. 

3.2.1 THE LOCAL DENSITY APPROXIMATION (LDA) 

Kohn and Sham introduced the Local Density Approximation (LDA) in 1965 [1]. It is 

the most widely used one. In LDA, the XC energy per electron at a point r is considered 

the same as that for a homogeneous electron gas (HEG) that has the same electron 

density at the point r. The total exchange-correlation functional 𝐸𝑋𝐶[𝑛(𝑟)] can be 

written as, 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛(𝑟)] = ∫𝑛(𝑟) ∈𝑋𝐶

ℎ𝑜𝑚 (𝑛(𝑟))𝑑𝑟                                 

                                         = ∫𝑛(𝑟)[∈𝑋
ℎ𝑜𝑚 (𝑛(𝑟)) +∈𝐶

ℎ𝑜𝑚 (𝑛(𝑟))]𝑑𝑟                   (3.1) 

                                            =   𝐸𝑋
𝐿𝐷𝐴[𝑛(𝑟)] + 𝐸𝐶

𝐿𝐷𝐴[𝑛(𝑟)] 

For spin unpolarized systems and 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛↑(𝑟), 𝑛↓(𝑟)] = ∫𝑛(𝑟) ∈𝑋𝐶

ℎ𝑜𝑚 (𝑛↑(𝑟), 𝑛↓(𝑟))𝑑𝑟                           (3.2) 

for spin polarized systems [2], where the XC energy density ∈𝑋𝐶
ℎ𝑜𝑚 (𝑛(𝑟)) is a function 

of the density alone, and is decomposed into exchange energy density ∈𝑋
ℎ𝑜𝑚 (𝑛(𝑟)) and 

correlation energy density ∈𝐶
ℎ𝑜𝑚 (𝑛(𝑟)) so that the XC energy functional is 
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decomposed into exchange energy functional  𝐸𝑋
𝐿𝐷𝐴[𝑛(𝑟)] and correlation energy 

functional 𝐸𝐶
𝐿𝐷𝐴[𝑛(𝑟)] linearly. Note that 𝐸𝑋𝐶

𝐿𝐷𝐴[𝑛↑(𝑟), 𝑛↓(𝑟)] is not written in the way 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛↑(𝑟), 𝑛↓(𝑟)] = ∫[𝑛↑(𝑟) ∈𝑋𝐶,↑

ℎ𝑜𝑚 (𝑛↑(𝑟)) + 𝑛↓(𝑟) ∈𝑋𝐶,↓
ℎ𝑜𝑚 (𝑛↓(𝑟))] 𝑑𝑟         (3.3) 

as one may think. The exchange energy functional 𝐸𝑋
𝐿𝐷𝐴[𝑛(𝑟)] employs the expression 

for a HEG by using it pointwise, which is known analytically as [3] 

                           𝐸𝑋
𝐿𝐷𝐴[𝑛(𝑟)] = ∫ 𝑛(𝑟) ∈𝑋

ℎ𝑜𝑚 (𝑛(𝑟))𝑑𝑟 

                                           = −
3

4
(
3

𝜋
)
1 3⁄

∫𝑛(𝑟)4 3⁄ 𝑑𝑟                                            (3.4) 

where 

∈𝑋
ℎ𝑜𝑚 (𝑛(𝑟)) == −

3

4
(
3

𝜋
)
1 3⁄

𝑛(𝑟)1 3⁄                                                  (3.5) 

is the exchange energy density of the unpolarized HEG introduced first by Dirac [3]. 

Analytic expressions for the correlation energy of the HEG are unknown except in the 

high and low density limits corresponding to infinitely weak and infinitely strong 

correlations. The expression of the correlation energy density of the HEG at high 

density limit has the form 

  ∈𝐶= AIn(𝑟𝑠) + 𝐵 + 𝑟𝑠(CIn(𝑟𝑠) + 𝐷)                                                              (3.6) 

and the low density limit takes the form 

    ∈𝐶=
1

2
(
ℊ0

𝑟𝑠
+

ℊ1

𝑟𝑠
+ ⋯)                                                                                      (3.7) 

where the Wigner-Seitz radius 𝑟𝑠 is related to the density as 

4

3
𝜋𝑟𝑠

3 =
1

𝑛
                                                                                                    (3.8) 

In order to obtain accurate values of the correlation energy density at intermediate 

density, accurate quantum Monte Carlo (QMC) simulations for the energy of the HEG 

are needed and have been performed at several intermediate density values [4].  
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Most local density approximations to the correlation energy density interpolate these 

accurate values from QMC simulations while reproducing the exactly known limiting 

behavior. Depending on the analytic forms used for ∈𝐶 , different local density 

approximations were proposed including Vosko-Wilk-Nusair [5] (VWM), Perdew-

Zunger [6] (PZ81), Cole-Perdew [7] (CP) and Perdew-Wang [8] (PW92). 

For spin polarized systems, the exchange energy functional is known exactly from the 

result of spin-unpolarized functional: 

𝐸𝑋[𝑛↑(𝑟), 𝑛↓(𝑟)] =
1

2
(𝐸𝑋[2𝑛↑(𝑟)] + 𝐸𝑋[2𝑛↓(𝑟)])                                          (3.9) 

The spin-dependence of the correlation energy density is approached by the relative 

spin-polarization: 

𝜁(𝑟) =
𝑛↑(𝑟) − 𝑛↓(𝑟)

𝑛↑(𝑟) + 𝑛↓(𝑟)
                                                                                      (3.10) 

The spin correlation energy density ∈𝐶 (𝑛(𝑟), 𝜁(𝑟)) is so constructed to interpolate 

extreme values 𝜁 = 0,±1corresponding to spin-unpolarized and ferromagnetic 

situations.  

The XC potential 𝑉𝑋𝐶(𝑟) in LDA is 

                                      𝑉𝑋𝐶
𝐿𝐷𝐴 =

𝛿𝐸𝑋𝐶
𝐿𝐷𝐴

𝛿𝑛(𝑟)
 

                              =  ∈𝑋𝐶 (𝑛(𝑟)) + 𝑛(𝑟)
∂ ∈𝑋𝐶 (𝑛(𝑟))

∂𝑛(𝑟)
                             (3.11) 

Within LDA, the total energy of a system is: 

𝐸𝑡𝑜𝑡[𝑛(𝑟)] = 𝑇𝑆[𝑛(𝑟)] + 𝐸𝐻[𝑛(𝑟)] + 𝐸𝑋𝐶[𝑛(𝑟)] + ∫𝑛(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 

𝐸𝑡𝑜𝑡[𝑛(𝑟)] = ∑ ⟨𝜓𝑖(𝑟)|−
1
2∇2|𝜓𝑖(𝑟)⟩

𝑂𝐶𝐶

𝑖

+ 𝐸𝐻[𝑛(𝑟)] + 𝐸𝑋𝐶[𝑛(𝑟)] + ∫𝑛(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 
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𝐸𝑡𝑜𝑡[𝑛(𝑟)] = ∑ ⟨𝜓𝑖(𝑟)|−
1
2∇2 + 𝑉𝐻[𝑛(𝑟)] + 𝑉𝑋𝐶[𝑛(𝑟)] + 𝑉𝑒𝑥𝑡(𝑟)|𝜓𝑖(𝑟)⟩

𝑂𝐶𝐶

𝑖

− ∑⟨𝜓𝑖(𝑟)|+𝑉𝐻[𝑛(𝑟)]|𝜓𝑖(𝑟)⟩

𝑂𝐶𝐶

𝑖

− ∑⟨𝜓𝑖(𝑟)|+𝑉𝑋𝐶[𝑛(𝑟)]|𝜓𝑖(𝑟)⟩

𝑂𝐶𝐶

𝑖

− ∑⟨𝜓𝑖(𝑟)|+𝑉𝑒𝑥𝑡[𝑛(𝑟)]|𝜓𝑖(𝑟)⟩ + 𝐸𝐻[𝑛(𝑟)] + 𝐸𝑋𝐶[𝑛(𝑟)]

𝑂𝐶𝐶

𝑖

+ ∫𝑛(𝑟)𝑉𝑒𝑥𝑡(𝑟)𝑑𝑟 

                    = ∑ 𝜀𝑖 −
1

2
∫

𝑛(𝑟) 𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′

𝑂𝐶𝐶

𝑖

+ ∫𝑛(𝑟)(∈𝑋𝐶 (𝑟) −  𝑉𝑋𝐶(𝑟))𝑑𝑟 

                    = ∑ 𝜀𝑖 −
1

2
∫

𝑛(𝑟) 𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′

𝑂𝐶𝐶

𝑖

+ ∫𝑛(𝑟)2
∂ ∈𝑋𝐶 (𝑛(𝑟))

∂𝑛(𝑟)
𝑑𝑟            (3.12) 

As mentioned before, 𝐸𝑡𝑜𝑡 ≠ ∑ 𝜀𝑖
𝑂𝐶𝐶
𝑖 . 

The LDA is very simple; corrections to the exchange-correlation energy due to the 

inhomogeneities in the electronic density are ignored. However, it is surprisingly 

successful and even works reasonably well in systems where the electron density is 

rapidly varying. One reason is that LDA gives the correct sum rule to the exchange-

correlation hole. That is, there is a total electronic charge of one electron excluded from 

the neighborhood of the electron at r. In the meantime, it tends to underestimate atomic 

ground state energies and ionization energies, while overestimating binding energies. It 

makes large errors in predicting the energy gaps of some semiconductors. Its success 

and limitations lead to approximations of the XC energy functional beyond the LDA, 

through the addition of gradient corrections to incorporate longer range gradient effects 
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(GGA), as well as LDA+U method to account for the strong correlations of the d 

electrons in transition elements and f electrons in lanthanides and actinides. 

3.2.2 GENERALIZED-GRADIENT APPROXIMATION (GGA) 

As mentioned above, the LDA neglects the in homogeneities of the real charge density, 

which could be very different from the HEG. The XC energy of inhomogeneous charge 

density can be significantly different from the HEG result. This leads to the 

development of various generalized-gradient approximations (GGAs) which include 

density gradient corrections and higher spatial derivatives of the electron density and 

give better results than LDA in many cases. Three most widely used GGAs are the 

forms proposed by Becke [9] (B88), Perdewet al [10], and Perdew, Burke and Enzerhof 

[11] (PBE). 

The definition of the XC energy functional of GGA is the generalized form in Eq. (3.2) 

of LSDA to include corrections from density gradient ∇n(r) as 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛↑(𝑟), 𝑛↓(𝑟)] = ∫𝑛(𝑟) ∈𝑋𝐶

ℎ𝑜𝑚 (𝑛(𝑟))(𝑛↑(𝑟), 𝑛↓(𝑟), |∇𝑛↑(𝑟)|, |∇𝑛↓(𝑟)|,… ) 𝑑𝑟 

 

                               = ∫ 𝑛(𝑟) ∈𝑋
ℎ𝑜𝑚 (𝑛(𝑟))𝐹𝑋𝐶(𝑛↑(𝑟), 𝑛↓(𝑟), |∇𝑛↑(𝑟)|, |∇𝑛↓(𝑟)|, … ) 𝑑𝑟  

(3.13) 
 

where 𝐹𝑋𝐶  is dimensionless and ∈𝑋𝐶
ℎ𝑜𝑚 (𝑛(𝑟)) is the exchange energy density of the 

unpolarized HEG as given in Eq. (3.5). FXC can be decomposed linearly into exchange 

contribution 𝐹𝑋 and correlation contribution FC as 𝐹𝑋𝐶 = 𝐹𝑋 + 𝐹𝐶. For a detailed 

treatment of 𝐹𝑋 and 𝐹𝐶in different GGAs [12]. 

GGA generally works better than LDA, in predicting bond length and binding energy 

of molecules, crystal lattice constants, and so on, especially in systems where the charge 

density is rapidly varying. However, GGA sometimes overcorrects LDA results in ionic 
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crystals where the lattice constants from LDA calculations fit well with experimental 

data but GGA will overestimate it. Nevertheless, both LDA and GGA perform badly in 

materials where the electrons tend to be localized and strongly correlated such as 

transition metal oxides and rare-earth elements and compounds. This drawback leads 

to approximations beyond LDA and GGA. 

3.2.3 LDA+U METHOD 

Strongly correlated systems usually contain transition metal or rare earth metal ions 

with partially filled d or f shells. Because of the orbital-independent potentials in L(S) 

DA and GGA, they cannot properly describe such systems. For example, L(S) DA 

predicts transition metal oxides to be metallic with itinerant d electrons because of the 

partially filled d shells. Instead, these transition metal oxides are Mott insulators and 

the d electrons are well localized. In order to properly describe these strongly correlated 

systems, orbital-dependent potentials should be used for d and f electrons. 

There are several approaches available nowadays to incorporate the strong electron- 

electron correlations between d electrons and f electrons. Of these methods including 

the self-interaction correction (SIC) method [13], Hartree-Fock (HF) method [14], and 

GW approximation [15], LDA+U method [16] is the most widely used one. 

In the LDA+U method, the electrons are divided into two classes: delocalized s, p 

electrons which are well described by LDA (GGA) and localized d or f electrons for 

which an orbital-dependent term  
1

2
𝑈 ∑ 𝑛𝑖𝑛𝑗𝑖≠𝑗  should be used to describe Coulomb d 

− dor f – f interaction, where ni are d− or f−orbital occupancies. The total energy in L(S) 

DA+U method is given as [16]: 

𝐸𝑡𝑜𝑡
𝐿𝐷𝐴+𝑈[𝜌𝜎(𝑟), {𝑛𝜎}] = 𝐸𝐿𝑆𝐷𝐴[𝜌𝜎(𝑟)] + 𝐸𝑈[{𝑛𝜎}] − 𝐸𝑑𝑐[{𝑛𝜎}]                   (3.14) 



 

62 
 

METHODOLOGY                                                                                                      CH III 

 

where 𝜎denotes the spin index, 𝜌𝜎(𝑟) is the electron density for spin-𝜎  electrons and 

{𝑛𝜎} is the density matrix of d or f electrons for spin-𝜎, the first term is the standard 

LSDA energy functional, the second term is the electron-electron Coulomb interaction 

energy given by[16] 

𝐸𝑈[{𝑛𝜎}] =
1

2
∑ {⟨𝑚,𝑚′′|𝑉𝑒𝑒|𝑚

′, 𝑚′′′⟩𝑛𝑚𝑚′,𝜎𝑛𝑚′′𝑚′′′,−𝜎

{𝑚},𝜎

− (⟨𝑚,𝑚′′|𝑉𝑒𝑒 |𝑚
′,𝑚′′′⟩

− ⟨𝑚,𝑚′′|𝑉𝑒𝑒|𝑚
′′′, 𝑚′⟩)𝑛𝑚𝑚′,𝜎𝑛𝑚′′𝑚′′′ ,𝜎}                                       (3.15) 

where m denotes the magnetic quantum number, and 𝑉𝑒𝑒  are the screened Coulomb 

interactions among the d or f electrons. The last term in Eq. (3.14) is the double counting 

term, which removes an averaged LDA energy contribution of these d or f electrons 

from the LDA energy. It isgiven by [16] 

𝐸𝑑𝑐 [{𝑛𝜎}] =
1

2
𝑈𝑁(𝑁 − 1) −

1

2
 𝐽[𝑁↑(𝑁↑ − 1) + 𝑁↓(𝑁↓ − 1)]                       (3.16) 

where 𝑁𝜎 = 𝑇𝑟(𝑛𝑚𝑚′,𝜎)  and 𝑁 = 𝑁↑ + 𝑁↓ . U and J are screened Coulomb and 

exchange parameters. 

As a simple approximation, if the exchange and non-sphericity is neglected, Eq. (3.14) 

is simplified to [16] 

𝐸𝑡𝑜𝑡
𝐿𝐷𝐴+𝑈 = 𝐸𝐿𝐷𝐴 +

1

2
𝑈∑ 𝑛𝑖𝑛𝑗

𝑖≠𝑗
−

1

2
𝑈𝑁(𝑁 − 1)                                   (3.17) 

The orbital energies 𝜀𝑖 are derivatives of Eq. (3.17) with respect to orbital occupations 

𝑛𝑖: 

𝜀𝑖 =
𝜕𝐸

𝜕𝑛𝑖
= 𝜀𝐿𝐷𝐴 + 𝑈 (

1

2
− 𝑛𝑖)                                                                       (3.18) 

In this simple consideration, the LDA orbital energies are shifted by −U/2 for occupied 

orbitals (𝑛𝑖 = 1) and by +U/2 for unoccupied orbitals (𝑛𝑖 = 0), resulting in lower and 
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upper Hubbard bands separated by U, which opens a gap at the Fermi energy in 

transition metal oxides. 

In the general case, the effective single-particle potential is 

             𝑉𝑚𝑚′,𝜎 =
𝜕(𝐸𝑈[{𝑛𝜎}] − 𝐸𝑑𝑐[{𝑛𝜎}])

𝜕𝑛𝑚𝑚′,𝜎

= ∑{⟨𝑚,𝑚′′|𝑉𝑒𝑒|𝑚
′,𝑚′′′⟩𝑛𝑚′′𝑚′′′,−𝜎

{𝑚}

− (⟨𝑚,𝑚′′|𝑉𝑒𝑒 |𝑚
′,𝑚′′′⟩ − ⟨𝑚,𝑚′′|𝑉𝑒𝑒|𝑚

′′′ ,𝑚′⟩)𝑛𝑚′′𝑚′′′ ,𝜎} −𝑈 (𝑁

−
1

2
) + 𝐽 (𝑁𝜎 −

1

2
)                                                                                  (3.19) 

which is used in the effective single-particle Hamiltonian 

�̂� = �̂�𝐿𝑆𝐷𝐴 + ∑|𝑖𝑛𝑙𝑚𝜎⟩

𝑚𝑚′

𝑉𝑚𝑚′,𝜎⟨𝑖𝑛𝑙𝑚′𝜎|                                                 (3.20) 

where i denotes the site, n the main quantum number, and l the orbital quantum 

number. The matrix elements of 𝑉𝑒𝑒  can be expressed in terms of complex spherical 

harmonics and effective Slater integrals 𝐹𝑘 as [17] 

⟨𝑚,𝑚′′|𝑉𝑒𝑒|𝑚
′,𝑚′′′⟩ = ∑𝑎𝑘(𝑚,𝑚′,𝑚′′, 𝑚′′′)𝐹𝑘

𝑘

                                  (3.21) 

where 0 ≤ k ≤ 2land 

𝑎𝑘(𝑚,𝑚′, 𝑚′′, 𝑚′′′) =
4𝜋

2𝑘 + 1
∑ ⟨𝑙𝑚|𝑌𝑘𝑞|𝑙𝑚

′⟩

𝑘

𝑞=−𝑘

⟨𝑙𝑚′′|𝑌𝑘𝑞
∗ |𝑙𝑚′′′⟩                (3.22) 

𝐹𝑘 ≈ ∬ 𝑑𝑟1𝑑𝑟2(𝑟1𝑅𝑖(𝑟1))
2

∞

0

(𝑟2𝑅𝑖(𝑟2))
2 𝑟<

𝑘

𝑟>
𝑘+1  𝐹𝑜𝑟 𝑘 > 0                       (3.23) 

Here, 𝑟< is the smaller of𝑟1 and 𝑟2and 𝑟> the larger. The relations between the 

Slater integrals and the screened Coulomb and exchange parameters U and J are: 

𝑈 = 𝐹0;      𝐽 = (𝐹2 + 𝐹4) 14⁄ ,   For 3𝑑𝑜𝑟 4𝑑systems, 

𝑈 = 𝐹0;      𝐽 = (286𝐹2 + 195𝐹4) 6435⁄ ,   For 4𝑓 𝑜𝑟 5𝑓 systems,                        (3.24) 
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The ratio 𝐹4 𝐹2⁄ and 𝐹6 𝐹2⁄  are taken from atomic situations. 𝐹4 𝐹2⁄ ~0.625 for 3d 

transition elements [18] and 𝐹4 𝐹2⁄ ~0.625, 𝐹6 𝐹2~1 2⁄⁄   for 4f lanthanides. 

The screened Coulomb parameter U can be calculated from the constraint LDA method 

[19], so that the LDA+U method remains a first principle method (no adjustable 

parameters). For the double-counting term, there are two different treatments: the so-

called around mean field (AMF) and fully localized limit (FLL) (called atomic limit) 

approaches. The former is more suitable for small U systems [20] and the latter is more 

suitable for large U systems [21]. The energies for the double counting are given by 

[41] 

            𝐸𝐴𝑀𝐹
𝑑𝑐 =

1

2
∑ [𝑈𝑚𝑚′ − 𝛿𝜎,𝜎′𝐽𝑚𝑚′]

𝑚≠𝑚′,𝜎𝜎′

�̅��̅� 

                                             =
1

2
𝑈𝑁2 −

𝑈 + 2𝑙𝐽

2𝑙 + 1

1

2
∑𝑁𝜎

2

𝜎

                                   (3.25) 

𝐸𝐹𝐿𝐿
𝑑𝑐 =

1

2
∑ [𝑈𝑚𝑚′ − 𝛿𝜎,𝜎′𝐽𝑚𝑚′]�̅�𝜎

𝑚≠𝑚′,𝜎𝜎′

�̅�𝜎′  

                                         =
1

2
𝑈𝑁(𝑁 − 1) −

1

2
𝐽∑𝑁𝜎(𝑁𝜎 − 1)

𝜎

                          (3.26) 

where �̅� = 𝑁 2(2𝑙 + 1)⁄  is the average occupation of the correlated orbitals and �̅�𝜎 =

𝑁𝜎(2𝑙 + 1) is the average occupation of a single spin of the correlated orbitals. Note 

that, Eq. (3.26) is the same as Eq. (3.16). 

3.2.4 THE MODIFIED BECKE-JOHNSON POTENTIAL 

The method described above belongs to the so-called generalized KS framework [22] 

mixing DFT and Hartree-Fock (HF) theories. Nevertheless, if one wants to stay inside 

the true Kohn Sham framework and use a method that can lead to KS gaps close to the 

experimental band gaps, the potential proposed by Becke and Johnson (BJ) [23], which 

was designed to reproduce the exact exchange potential in atoms, can be a good starting 



 

65 
 

METHODOLOGY                                                                                                      CH III 

 

point. The multiplicative BJ potential, which does not contain any empirical 

parameters, reads: 

𝑣𝑥
𝐵𝐽(𝑟) =  𝑣𝑥

𝐵𝑅(𝑟) +
1

Π
√

5

6
√

𝑡(𝑟)

𝑛(𝑟)
                                                      (3.27) 

where 

𝑡(𝑟) =
1

2
∑∇𝜓𝑖

∗(𝑟) .  ∇𝜓𝑖(𝑟)

𝑁

𝑖=0

                                                            (3.28) 

is the KS kinetic-energy density and 

𝑣𝑥
𝐵𝐽(𝑟) = −

1

𝑏(𝑟)
(1 − 𝑒−𝑥(𝑟) −

1

2
𝑥(𝑟)𝑒−𝑥(𝑟))                               (3.29) 

is the Becke Roussel (BR) exchange potential, which was proposed to model the 

Coulomb potential created by the exchange hole. In equation (3.29), x is determined 

from a nonlinear equation involving 𝑛, ∇𝑛(𝑟), 𝛻2𝑛(𝑟) and t, and b is calculated with  

𝑏 = [𝑥3𝑒−𝑥(𝑟) (8Π𝑛)⁄ ]1 3⁄                                                                (3.30) 

It has been shown that the BJ potential can be further improved for the description of 

band gaps by using a modified version developed by Tran and Blaha (TB-mBJ) which 

introduces a parameter to change the relative weights of the two terms in the BJ 

potential: 
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𝑣𝑥
𝐵𝐽−𝑚𝐵𝐽(𝑟) =  𝑐𝑣𝑥

𝐵𝑅(𝑟) + (3𝑐 − 2)
1

Π
√

5

6
√

𝑡(𝑟)

𝑛(𝑟)
                                       (3.31) 

with 

𝑐 = 𝛼 + 𝛽 (
1

𝑉𝑐𝑒𝑙𝑙

∫
∇𝑛(𝑟′)

𝑛(𝑟′)
𝑐𝑒𝑙𝑙

𝑑3(𝑟′))

1 2⁄

                                              (3.32) 

where 𝑉𝑐𝑒𝑙𝑙  is the unit cell volume and 𝛼 and 𝛽 are two free parameters whose values 

are 𝛼 = −0.012 and 𝛽 = 1.023 bohr (1/2) according to a fit to experimental results. The 

way in which this linear combination is written makes sure that for any value of c the 

LDA exchange potential is recovered for a constant electron density. For c= 1 the 

original BJ potential is recovered. This potential has yield satisfying results for many 

different systems, including transition-metal compounds [24–26]. 

3.3 FULL POTENTIAL LINEARIZED / AUGMENTED PLANE WAVE 

PLUS LOCAL ORBITALS - FP-L/APW+LO 

3.3.1 AUGMENTED PLANE WAVE (APW) METHOD 

APW method is the most popular techniques for the solution of the electronic structure 

using Kohn-Sham (KS) equations. Slater proposed the technique in 1937 [27, 28].  

In this approach, In the APW scheme the unit cell is partitioned into two types of 

regions: (i) spheres centered around all constituent atomic sites rα with a radius Rα, and 

(ii) the remaining interstitial region, abbreviated as I (see Figure 3.1). In this case, the 

wave functions are expanded into PWs each of which is augmented by atomic solutions 

in the form of partial waves, i.e. a radial function times spherical harmonics. In 

particular, radial solutions of Schrödinger's equation are employed inside non-

overlapping atom centered spheres and plane waves in the remaining interstitial zone. 
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The introduction of such a basis set is due to the fact that close to the nuclei the potential 

and wave functions are very similar to those in an atom, while between the atoms then 

are smoother. The APWs consist of : 

𝜑(𝑟) =

{
 
 

 
 ∑alm

α ulm
α (r, ε)                                    r < Rα

lm

Ω−1 2⁄ ∑𝐶𝐺𝑒𝑥𝑝(𝑖(�⃗⃗� + �⃗�). 𝑟)

𝐺

              𝑟 ∈ 𝐼         
                             (3.33) 

From (3.33) 𝜑 is the wave function, Ω is the unit cell volume, 𝑟is the positioninside 

sphere α with the polar coordinates 𝑟, �⃗⃗� is a wave vector in the irreducible Brillouin 

zone (IBZ) and 𝑢𝑙𝑚is the numerical solution to the radial Schrödinger equation at the 

energy ε .The KS orbitals 𝜓(𝑟) are expressed as a linear combination of APWs 𝜑(𝑟). 

Inside the MT sphere a KS orbital can only be accurately, described if  ε in the APW 

basis functions is equal to the eigenenergy,𝜀𝑖. Therefore, a different energy-dependent 

set of APW basis functions must be found for each eigenenergy. 𝐶𝐺  and 𝑎𝑙𝑚are 

expansion coefficients; 𝐸𝑙is a parameter (set equal to the band energy) and V the 

spherical component of the potential in the sphere. 

[−
𝑑2

𝑑𝑟2
+

𝑙(𝑙 + 1)

𝑟2
+ 𝑉(𝑟) − 𝐸𝑙] 𝑟 𝑢𝑙𝑚(𝑟) = 0                                                 (3.34) 

Slater has motivated the use of these functions by noting that plane waves are the 

solutions of the Schrödinger's equation in a constant potential and radial functions are 

solutions in a spherical potential. This approximation to the potential is called 

"muffintin" (MT). Since the continuity on the spheres boundaries needs to be 

guaranteed on the dual representation defined in Eq. (3.33), constraint must be imposed. 

In the APW method, this is done by defining the 𝑢𝑙𝑚in terms of 𝐶𝐺in the spherical 

harmonic expansion of the plane waves. 
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In the APW technique, continues basis sets (functions) are used, which cover all the 

space within the sphere. However, APW is a commonly used technique for the 

calculations of the structural, electronic, optical and magnetic properties of solids but 

even then, it has some disadvantages. One example of the limitation of this technique 

is; it cannot be extended beyond the average spherical muffin-tin approximation. The 

basis functions, for this approach, have a kink at the border of the muffin-tin and hence 

at the boundary their derivatives are discontinues. Another drawback of this approach 

is the radial function𝑢𝑙𝑚(𝑟, 𝐸𝑙) is dependent upon energy, which leads a nonlinear 

eigenvalue problem. This can cause numerical complications if 𝑢𝑙become very small at 

the empty sphere boundary. 

3.3.2 LINEARIZED AUGMENTED PLANE WAVE (LAPW) METHOD 

The APW technique is modified by Anderson and is called LAPW method [29]. The 

LAPW approach solves the problems of APW method i.e., the basis functions and their 

first derivative were discontinues at the muffin-tin boundary between core and 

 

 

 

 

 

 

 

Interstitial (I)                                 Interstitial (I) 

Sphere (α) 

Sphere 

(α) 

Figure 3.1 Adaptation of the basis set by dividing the unit cell into 

atomic spheres and interstitial regions. 
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interstitial region. To solve the problem Ander- son introduced a linearization scheme 

and that is why he used the term linearized augmented plane wave method (LAPW). 

He launched an additional term in the basis within the MT sphere. In the LAPW 

technique inside the MT region, the radial wave function is linearized by a linear 

combination of 𝑢𝑙𝑚(𝑟, 𝐸𝑙)and �̇�𝑙𝑚(𝑟, 𝐸𝑙)[30-32]: 

𝜑(𝑟) =

{
 
 

 
 ∑[alm

α ulm
α (r, ε) + blm

α �̇�(𝑟)]𝑌𝑙𝑚(𝑟),             𝑟 < 𝑅𝛼

lm

Ω−1 2⁄ ∑𝐶𝐺𝑒𝑥𝑝(𝑖(�⃗⃗� + �⃗�). 𝑟),

𝐺

                       𝑟 ∈ 𝐼         
                           (3.35) 

where the 𝑏𝑙𝑚are coefficients for the energy derivative analogous to the 𝑎𝑙𝑚.The basis 

functions inside the spheres are linear combinations of a radial functions 𝑢𝑙(𝑟)𝑌𝑙𝑚(𝑟) 

and their energy derivatives 𝑢𝑙(𝑟)𝑌𝑙𝑚(𝑟) and �̇�𝑙(𝑟)𝑌𝑙𝑚(𝑟) are the augmenting 

functions. The 𝑢𝑙 are defined as in the APW method (Eq. 3.34) and the energy 

derivative, �̇�𝑙(𝑟)𝑌𝑙𝑚(𝑟), satisfies the following equation: 

[−
𝑑2

𝑑𝑟2
+

𝑙(𝑙 + 1)

𝑟2
+ 𝑉(𝑟) − 𝐸𝑙] 𝑟�̇�𝑙𝑚(𝑟) = 𝑟 𝑢𝑙𝑚(𝑟)                                   (3.36) 

The LAPWs provide a sufficiently flexible basis to properly describe eigen functions 

with eigen energies near the linearization energy, which can be kept fixed. This scheme 

allows us to obtain all eigen energies with a single diagonalization in contrast to APW. 

The LAPWs are plane waves in the interstitial zone of the unit cell, which match the 

numerical radial functions inside the spheres with the requirement that the basis 

functions and their derivatives are continuous at the boundary. In this method no shape 

approximations are made and consequently such a procedure is often called "full-

potential LAPW" (FP-LAPW). The much older muffin-tin approximation corresponds 

to retain only the l = 0and m = 0 component in Eq. (3.36). A spherical average inside 

the spheres and the volume average in the interstitial region is thus taken. 
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Inside atomic sphere a linear combination of radial functions times spherical 

harmonics,𝑌𝑙𝑚(𝑟), is used. The linear combination of 𝑢𝑙(𝑟) and �̇�𝑙(𝑟) constitute the 

socalled "linearization" of the radial function. 𝑢𝑙(𝑟) and �̇�𝑙(𝑟)  are obtained by 

numerical integration of the radial Schrödinger equation on a radial mesh inside the 

sphere. The LAPWs have more variational freedom inside the spheres than APWs. This 

greater exibility is due to the presence of two radial functions instead of one; non-

spherical potentials inside spheres can be now treated with no difficulty. There is 

however, a price to be paid for the additional exibility of the LAPWs: the basis functions 

must have continuous derivatives and consequently higher plane wave cut-offs are 

required to achieve a given level of convergence. The solution of the KS equations are 

expanded in this combined basis according to the linear variation method: 

𝜓𝑘 = ∑𝑐𝑛𝜑𝑘𝑛

𝑛

                                                                                         (3.37) 

and the coefficients 𝑐𝑛are determined by the Rayleigh-Ritz variational principle. The 

convergence of this basis set is controlled by a cut-off parameter Rmt×Kmax, where Rmt 

is the smallest atomic sphere radius in the unit cell and Kmax is the magnitude of the 

largest Kn vector in Eq. (3.37). 

3.3.3 AUGMENTED PLANE WAVE PLUS LOCAL ORBITAL 

(APW+LO) METHOD 

The APW basis functions can also be modified just like the LAPW ones by introducing 

local orbitals. Sjosted et al. [30] improved APW by introducing local orbital (lo), i.e., 

APW+lo basis. As in the APW approach, the radial wavefunction is evaluated at fixed 

energy but this new technique includes another type of orbital's for flexibility. These 

orbitals are denoted by lo instead of LO in the LAPW [31]: 
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𝜑(𝑟) = {
[alm

α,l0ulm
α (r, ε) + blm

α,l0�̇�(𝑟)]𝑌𝑙𝑚(𝑟),             𝑟 < 𝑅𝛼

                     0,                                                         𝑟 ∈ 𝐼         
                 (3.38) 

The normalization condition that the function 𝜑(𝑟) at the MT radii is zero determines 

the two coefficients in the equation. In this approach �̇�𝑙does not depend upon the plane 

waves and is included only for the selected set of the l quantum numbers. The energy 

derivative term in the APW+lo, method is only included in just a few lo's and not in 

every plane wave like that in the LAPW one. Therefore we are not sure that the energy 

linearization of APW+lo basis is accurate like LAPW, though it converges faster than 

LAPW and gives the same accuracy as LAPW technique [32]. 

3.3.4 FULL-POTENTIAL LINEARIZED AUGMENTED PLANE WAVE 

METHOD (FP-LAPW) 

The muffin-tin approximation was frequently used in 1970 in the APW and LAPW 

techniques [33]. The potential is assumed to be constant in the interstitial region while 

spherical symmetric in the muffin-tin region. These approximations are effective in 

highly coordinated systems like face centered metallic structures. These approaches are 

not very efficient in the calculations of the structural and electronic properties of 

covalent bonded and open structure solids. For these type compounds, the calculated 

results show inconsistency with the experimental results. In order to obtain better 

predications for these properties of compounds, no shape approximation is used. These 

compounds are treated with FP-LAPW method. The FP-LAPW method combines the 

LAPW basis with the treatment of the full potential without including any shape 

approximation in both interstitial and muffin-tin regions [33]. In FP-LAPW approach, 

the potential is expanded in two regions in such away that (a) inside the atomic sphere 

it is in the lattice harmonics and (b) inside interstitial region as Fourier series [33]: 
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𝑉(𝑟) = ∑𝑉𝐿𝑀(𝑟)𝑌𝐿𝑀(𝑟)                                                             (3.39)

𝐿𝑀

 

𝑉(𝑟) = ∑𝑉𝐾𝑒𝑥𝑝(𝑖�⃗⃗�. 𝑟)                                                              (3.40)

𝐿𝑀

 

Where (3.39) for inside the atomic sphere, while (3.40) for outside the atomic sphere. 

This form is known as full-potential scheme. The selection of the radii of the sphere in 

muffin-tin approximation is very critical but not in the FP-LAPW. 

3.4 THE WIEN2K CODE 

The WIEN2k package is a computer program written in Fortran that performs quantum 

mechanical calculations on periodic solids. It was originally developed by Peter Blaha 

and Karl Heinz Schwarz from the Institute of Materials Chemistry of the Vienna 

University of Technology. The first public release of the code was done in 1990. Then, 

the next releases were WIEN93, WIEN97, and WIEN2k. It basically uses the full-

potential (linearized) augmented plane-wave and local-orbitals [FP-(L)APW+lo] basis 

set to solve the Kohn–Sham equations of density functional theory. 

This package allows to study most of the electronic structure properties of a crystalline 

solid: electron density, density of states (DOS), various types of spectra, magnetism 

(ferromagnetic, antiferromagnetic and non-magnetic configurations), non-collinear 

magnetism, band structure, Fermi surface, deferent exchange-correlation potentials 

including the local density approximation (LDA), various generalized gradient 

approximation (GGA) (Perdew-Wang [8] or Perdew-Burke-Ernzerh of [11], Wu-Cohen 

[34]), meta-GGA [35, 36] and the LDA+U method [16] in various flavors for the double 

counting terms, as well as the socalled Tran-Blaha modified Becke-Johnson potential 

[24], and hybrid functional [37]. 

 

 

https://en.wikipedia.org/wiki/Vienna_University_of_Technology
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https://en.wikipedia.org/wiki/Plane_wave
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4.1 INTRODUCTION 

we chose ZnO to be our field study, Because it is highly doped with atomic impurities, 

and there now exists considerable academic research efforts to control ZnO doping to 

both improve existing physical properties and add new material dimensionalities, 

including varying the optoelectronic, magnetic , magneto-optic, electromagnetic, 

thermoelectric and piezoelectric properties .. 

In this chapter, we used GGA approximation to explore the structural, electronic and 

optic properties of pure zinc blende (ZB) ZnO phase and several compositions of       

Zn1-xErxO alloys for (x = 0, 0.25, 0.50, 0.75, 1).  
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4.2 COMPUTATIONAL DETAILS 

All calculations have been carried out using density functional theory with help of the 

full-potential linearized augmented plane-wave (FP-LAPW) method as implemented in 

WIEN2k package [1,2], which self-consistently finds the eingenvalues and eingen 

function of the Kohn-Sham [3] equations for the system. We have used the Generalized 

Gradient Approximation (GGA) as parameterized by Perdew, Burke and Ernzenhorf 

[4] and modified Becke-Johnson (mBJ) approximation [5] for electronic and optical 

properties. The valence electron configurations used in the calculations are Zn (3d10 

4s2), O (2s2 2p4), Er (4f12 5s2 5p6 6s2) respectively. We adopted a 8 atoms simple cubic 

supercell in which the Zn substitution by Er correspond to 25%, 50%, 75% and 100% 

of concentration (Fig. 1).To investigate the effect of Er doping and the effect of Er 

doping on the structural geometry of ZnO. The simulated super cells for above 

mentioned concentrations are optimized over a range ± 10 around the equilibrium 

volume and then values of the lattice constants are evaluated by fitting the obtained data 

(variation of the unit cell volume versus energy) into Murnaghan equation of state [6]. 

The wave function, charge density and potential were expanded by spherical harmonic 

functions inside non-overlapping spheres surrounding the atomic sites (muffin-tin 

spheres) and by a plane-wave basis set in the remaining space of the unit cell (interstitial 

region). The maximum l quantum number for the wave function expansion inside 

atomic spheres was confined to lmax=10. The charge density was Fourier expanded up 

to Gmax= 9 (Ry)1/2. The convergence parameter RMTKmax (Where Kmax is the maximum 

modulus for the reciprocal lattice vector, and RMT is the average radius of the muffin 

tin spheres) which controls the size of the basis set in these calculations, was set to 7. 

The reciprocal space is sampled by a 5×5×5 Monkhorst–Pack mesh [7] with sufficient 
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125 k-vectors in the irreducible Brillouin zone. The iteration process is repeated until 

the calculated total energy of the crystal converges to less than 10-5 Ry. 

 

 

 

 

 

 

 

 

Figure 4.1 Supercell of Zn1-xErxO alloys : (a) pure ZnO   (b) Zn75Er25O    (c) Zn50Er50O   (d) Zn25Er75O  (e) 

ErO. 
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4.3 STRUCTURAL PROPERTIES 

4.3.1 STRUCTURAL PROPERTIES OF ZnO 

The structural properties of Zn1-xErxO alloys were studied for (x= 0, 0.25, 0.50, 0.75, 

1). They are obtained by a minimization of the total energy depending on the volume 

for ZnO and Er doped ZnO in the zincblende structure (see Fig 4.1).We compute the 

lattice constants, bulk modulus and the pressure derivative of the bulk modulus by 

fitting the total energy versus volume according to the Murnaghan's equation of state 

[6]: 

E(V) = E0 +
B0V

B0
′ [

(V0 V⁄ )B0

B0
′ − 1

+ 1] −
B0V0

B0
′ − 1

                               (4.1) 

 

where E0 and V0are the energy and volume at equilibrium. B and B′are the bulk modulus 

and it’s the pressure derivative.  

The equilibrium structural properties such as the lattice constants, bulk modulus, 

pressure derivative and total energy are computed using the GGA scheme. The obtained 

results are summarized and compared with some available experimental and theoretical 

data in Table 4.1. 

The optimized lattice constant is 4.552 A0 for pure ZnO, which is in good agreement 

with the experimental data 4.47 A0 [8] and other theoretical results [9-13]. 

 The lattice constants calculated for pure ZnO is very close to the experimental results, 

proving that our calculation parameters are valid. The lattice parameter a calculated for 

ZnO is 1.8% greater than the experimental value, indicating that the GGA scheme 

overestimates the lattice constant [14].  

As well as our result of bulk modulus B of ZB ZnO is in reasonable agreement with 

experimental results and previous theoretical studies [10, 15]. 
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Figures 4.2  Total energys as a function of the volumes for Zn1-xErxO alloys with 

GGA approximation 
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Table 4.1 Lattice constants a, bulk modulus B, and pressure derivations of the bulk B' 

of pure ZnO. 

 

  

Prestent Other Calculations Expriment 

a (Å) 

 

4.552 4.614 [13], 4.53 [9] 

4.62 [15] 

4.47 

B (GPa) 145.8 129.7 [15], 139.32 [16] 

165.9 [10] 

 

- 

B' 4.24 4.33 [10] 

4.096 [15] 

- 

 

4.3.2 STRUCTURAL PROPERTIES OF Zn1-xErxO ALLOYS 

In this case, we Substituted 25%, 50%, 75 and 100% from Er to Zn atoms in ZnO 

compound and performed the optimization (Fig 4.1). Our results of structural 

optimization for Er doped ZnO summarized in Table 4.2. 

 The lattice constants and pressure derivative calculated for Zn1-xErxO alloys clearly 

increase when we doped Zinc Oxide compound with Erbium, but the bulk modulus 

decreases. 

In fact, to the best of our knowledge, there are no experimental values for the structural 

properties of Zn1-xErxO alloys. 
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Table 4.2 Lattice constants a, bulk modulus B, and pressure derivations of the bulk B' 

of Zn1-xErxO alloys  

Er-doped ZnO 

% 

Lattice constants (a) (Å) Bulk modulus B (GPa) Pressure derivative B' 

25% 4.759 122.45 4.31 

50% 4.919 114.13 4.11 

75% 5.047 103.53 3.52 

100% 5.137 98.98 5.12 

 

Fig. 4.3 illustrates the relation between lattice constant (a) and composition of dopant 

(x), where the lattice constant increase to increasing of composition of dopant.  

The calculated bulk modulus for Zn1-xErxO decreases with rise of X, as shown in 

Fig.4.4.  
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Figure 4.3 Lattice Constant a as a function of  Composition X for Zn1-x ErxO alloys. 
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Figure 4.4 Bulk modulus B as a function of Composition X for Zn1-x ErxO alloys. 
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4.4 ELECTRONIC PROPERTIES OF PURE ZnO AND Zn1-xErxO 

ALLOYS 

4.4.1 ELECTRONIC PROPERTIES OF PURE ZnO 

Fig 4.5 displays the electronic band structures of zincblend ZnO using GGA 

approximation. It appeared that ZnO has a direct band gap semiconductor. The 

calculated energy band gap is 0.623 eV at  high symmetry point, which is close to the 

previous theoretical reports [17, 18], which are lower than the experimental value [19]. 

The underestimation of the band gap is mainly a scribed that the GGA or the local 

density approximation (LDA) calculation has the limitation in reproducing well the 

unoccupied electronic states [20]. 

 

       Figure 4.5 Band structure of pure ZnO using GGA calculation. 
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The total DOS and partial DOS of pure illustrated in Fig. 4.6. The valence band of pure 

ZnO is mainly consisted by three separated regions: the deep region -17.82 to -17 eV, 

which mainly originated from O 2s states, the middle region of -6.43 to 0 eV, which 

mainly derived from Zn 3d states and a part of O 2p states. 

The valence band for pure ZnO mainly consists of the 2p, 2s states of O and 3d states 

of Zn. and the conduction band of ZnO dominated by the state of Zn 4s and 3p and 

2pstates of O. 
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Figure 4.6 Total DOS and partial DOS of pure ZnO using GGA calculation. 
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4.4.2 ELECTRONIC PROPERTIES OF Zn1-xErxO ALLOYS 

The electronic properties of Zn1-xErxO also performed by GGA calculation. The band 

gap results of Zn1-xErxO(x= 0, 0.25, 0.50, 0.75, 1) are listed in Table 4.3.  Our results 

appeared that all compounds are semiconductors and they have a direct bands gap at  

high symmetry point. 

Fig.4.7 shows the relation between the band gap and the concentration of impurity 

(metal erbium). It can be noted that the band gap varies with the proportion of impurity. 

It is found that Eg increases with the Er component. 

 

Table 4.3  The band gap of Zn1-xErxO alloyes compared to exprimental and other 

theoretical calculations . 

Zn1-xErxO Present  Experimental Other calculations 

0 0.623 3.3 [3] 0.641[21]0.73 [22] 
0.804[15] 

 

0.25 1.43 - - 

0.50 1.52 - - 

0.75 1.86 - - 

1 2.41 - - 
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Figure 4.7 The energy band gap as a function of Composition X for Zn1-xE xO alloys. 

 

The electronic band structures, total DOS and partial DOS of Zn1-xErxO by GGA 

calculation illustrated in Fig. 4.8 and Fig.4.9 respectively. 

They are shown that the Fermi-level move towards higher energy direction and enter 

into the conduction band, exhibiting n-type behavior after doping. The position of 4f-

Er is observed localizes around the Fermi level yielding to the movement of the upper 

valence band downward. The Fermi level is shifted upward into the conduction band 

with the presence of 4f-Er state.  

 

 

 

 



 

90 
 

STRUCTURAL AND ELECTRONIC PROPERTIES OF Zn1-xErxO ALLOYS                 CH IV 

 

 

 



 

91 
 

STRUCTURAL AND ELECTRONIC PROPERTIES OF Zn1-xErxO ALLOYS                 CH IV 

 

 

Figure 4.8 The electronic band structures of Zn1-xErxO: (a) Zn25Er75O (b) Zn50Er50O 

(c) Zn75Er25O (d) ErO 
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Figure 4.9 The partical and total Donsity of states (DOS) of of Zn1-xErxO: (a) Zn25Er75O 

(b) Zn50Er50O (c) Zn75Er25O (d) ErO 
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CONCLUSIONS  

In summary of this chapter, we investigated the structural and electronic properties of 

Zn1-xErxO. Our results of structural properties are agreement with the theatrical and 

experimental values. We have investigated the composition dependence of the lattice 

constant, bulk modulus, band gap. We studied the behavior of the equilibrium volume, 

bulk modulus and the band gap of Zn1-xErxO alloys as a function of the calculated band 

structures and density of states indicate a semiconducting character of the involved 

materials. We observed effect of Er on electronic and optical properties of Zn1-xErxO 

for(x= 0, 0.25, 0.50, 0.75, 1). 
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5.1. INTRODUCTION 

In this chapter, we will investigate the electronic and optical properties of pure ZnO 

and Erbium doped Zinc Oxide by density functional theory (DFT) with modified 

Becke-Johnson exchange potential (mBJ). We attempt to see the influence of Erbium 

(25%) to electronic and optical properties of ZB ZnO such as the energy gap, the upper 

valence bandwidth (UVBW), the total valence bandwidth (TVBW), the dielectric 

constant and   absorption coefficients.  
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5.2 ELECTRONIC PROPERTIES 

5.2.1 ELECTRONIC PROPERTIES OF PURE ZnO 

Electronic band structures and total density of states obtained with mBJ potential are 

shown in Figure 5.1 for pure ZnO. It is clear that ZnO is a direct band gap 

semiconductor with a calculated band gap of 2.58 eV at  high symmetry point, which 

is in good agreement with those of experimental and other sophistical calculations as 

seen in Table 5.1. Other principle features of the calculated band structures such as the 

upper valence bandwidth (UVBW), the total valence bandwidth (TVBW) and the 

splitting dZn and fEr are given in the same table. The total and partial densities of states 

DOS of pure ZnO are presented in Figure 5.2. It elucidates that the valence band for 

pure ZnO mainly consists of the 2p, 2s states of O and 3d states of Zn. The upper 

valence band of the width 5.755 eV is dominated by 2p state of O, while its 2s state is 

localized in the lower level of VB at 18.64 eV. 

 

Figure 5.1  Band structures and total DOS for pure ZnO by mBJ potential. 
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Table 5.1  Calculated principle features of band structures for pure and Er-doped ZnO. 

 

Pure ZnO 

Er-doped ZnO 
Present  Exp Other calc 

Eg 

 

 

 

 

  

2.58 3.3 [9] 0.50 [1]a  0.73 [2]a 

2.59 [3]b 0.804 [3]a 

2.47 [4]c 

 2.98 

UVBW 
5.755 

  4.521 

TVBW 
19.293 

  17.719 

dZn 

5.755 
  4.521 

fEr 

- 

  
3.708 

 

Occupied 

States 

0   

1.870 

a GGA calculation. 

b mBJ+LDA calculation 

c GW calculation 
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Below the valence band maximum (VBM), the 3d Zn states give rise in the same energy 

width of that of 2p O. As a result, the hybridization is formed between 2p O and 3d Zn 

states. It is worth noticing that the level position of 3d Zn is corrected via mBJ potential 

compared to the GGA one (see Table 2). This correction contributes to the enhanced 

energy band gap. Good agreement is achieved with other experimental and hybrid 

functional PBE0 values. 

The lowest conduction band (CBM) is attributed to the Zn 4s states and O 2p states 

which is well compared to the experimental and theoretical data.  

 

 

Figure 5.2 Partial density of states (DOS) for pure ZnO using mBJ potential.. 
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5.2.2 ELECTRONIC PROPERTIES OF ER DOPED ZnO 

The total density of states DOS and band structure of Er-doped ZnO are illustrated in 

Figure 5.3. The estimated electronic energy gap (2.98 eV) is observed under Fermi level 

in the range from 1.74 eV to4.72 eV. Figure 5.4 is given the partial density of states 

(DOS) for Er-doped ZnO using mBJ potential. 

The position of 4f-Er is observed localizes around the Fermi level yielding to the 

movement of the upper valence band downward. The resulting value of the optical 

energy band gap is then 4.72 eV obtained by mBJ potential. Therefore, the Fermi level 

is shifted upward into the conduction band with the presence of 4f-Er state. 

 

Figure 5.3  Band structures and total DOS for Er-doped  ZnO by mBJ potential. 
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Consequently, this later state acts as donor giving rise to the n-type metallic 

conductivity. Wu et al [5] have explained this feature for the case of Ga doped ZnO as 

follow: The occupied states in the bottom of the conduction band can be regarded as an 

additional energy barrier that must be overcome before the electron can be excited from 

the valence to the conduction bands. This barrier also causes the increasing of the 

optical band gap to 4.72 eV. We can notice from this feature that this significant effect 

of Er in ZnO had a strong modification in optoelectronic properties. Detailed 

information about the positions of several contributed states is listed in Table 5.1for 

pure and Er doped ZnO. 

 

Figure 5.4 Partial density of states (DOS) for Er-doped ZnO using mBJ potential. 
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5.3. OPTICAL PROPERTIES 

To investigate the optical properties of materials, it is necessary to calculate the 

imaginary part of the dielectric function   𝜀2(𝜔). Because the optical properties are 

usually described by dielectric function 𝜀(𝜔), sometimes by refractive index 𝑛(𝜔), 

extinction coefficient 𝑘(𝜔) and absorption coefficient 𝛼(𝜔). These features are very 

important to determine the optical and electronic properties of the crystal.  

5.3.1 DIELECTRIC FUNCTION 

The dielectric function describe as ε (ω) = ε1 (ω) + iε2 (ω).whereε1 (ω) represents the 

dielectric real part and ε2 (ω) is the dielectric imaginary part.  

The real part of dielectric functionε1 (ω), represents the dispersion of the incident 

photons by the materials, while the imaginary part ε2 (ω) results from the inter band 

transition between occupied states below Fermi level and unoccupied state on top Fermi 

level due the photon absorption. In fact, the absorption coefficient, reflectivity, and 

transmittance are also calculated from the dielectric function. 

The dielectric imaginary part is given mathematically as following: 

𝜀2(𝜔)𝛼𝛽 =
4𝜋2𝑒2

𝑚2𝜔2
∑∫⟨𝑓|𝑃𝛼|𝑖⟩⟨𝑖|𝑃𝛽|𝑓⟩

𝑖𝑓

𝑊𝑖(1 − 𝑊𝑓)𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔)𝑑3𝑘         (5.1) 

where ⟨𝑓|𝑃𝛼|𝑖⟩ and ⟨𝑖|𝑃𝛽|𝑓⟩ are dipole matrix elements, f and i are final and the initial 

states respectively, 𝑊𝑖  (resp. 𝑊𝑓) is the Fermi distribution function centred at 𝐸𝑖(resp. 

𝐸𝑓).The real part ε1 (ω) is computed from ε2 (ω) using the Kramers– Kronig relation in 

the form: 

𝜀2(𝜔)𝛼𝛼 = 1 +
2

𝜋
𝑃 ∫

𝜔′𝜀2(𝜔
′)𝛼𝛼

𝜔′2 − 𝜔2
𝑑𝜔′                                                                    (5.2)

∞

0

 

where P and 𝜔 are the constant of integration and the frequency of the incident photons. 
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Figure 5.5 displays 𝜀1(𝜔) and 𝜀2(𝜔) of pure and Er doped ZnO. The real part 𝜀1(𝜔) 

represents the dispersion of the incident photons by the materials, while the imaginary 

part 𝜀2(𝜔) of the dielectric function of pure ZnO and Er-doped ZnO is important to 

determine the different transitions due to photons absorption in these two cases, from 

occupied to unoccupied states. 

In this work, we have not used scissor operator since the mBJ potential is known to 

improve the band gap very closely to the experimental one as it is remarked for our pure 

ZnO (see Table 2). Therefore we expected that the calculated optical properties of pure 

and Er doped ZnO are more improved compared to other classical approximations 

(GGA or LDA). 

From 5.5 (a), the calculated static dielectric function 𝜀1(0) given at 0 frequency is 2.26, 

11.94 for ZnO and Er doped-ZnO respectively. The value of ZnO agree with the 

reported results, for instances, (LDA+U) [6] and (GGA+mBJ) [7].The figure shows 

also a significant increase of the dielectric function under doping with Er. Figure 5.5  

(b) shows the imaginary part 𝜀2(𝜔) of the dielectric function. For pure ZnO, we found 

that the peak observed at 2.58 eV, which corresponds to the energy band gap value, 

corresponds to the transition from O 2p occupied sates at (VBM) to the Zn 4s 

unoccupied states at (CBM).The others peaks viewed at high energies result from the 

transitions between various occupied to unoccupied states from the valence band to the 

conduction band. For Er doped ZnO, a new high peak is observed at low energy near 

1.2 eV. This latter is due to the transition between Er 4f donor occupied states located 

around Fermi level and the Zn 4s and Zn 4p unoccupied states in the conduction band. 
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Figure 5.5 The dielectric functions of pure and Er-doped ZnO: (a) Real part and (b) 

imaginary part. 
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5.3.2 REFRACTIVE INDEX AND THE EXTINCTION COEFFICIENT 

The refractive index is a very important physical parameter related to the microscopic 

atomic interactions and the design, analysis of heterostructure lasers and other wave-

guiding semiconductor devices. It can be described by: 

𝑛(𝜔) = √
|𝜀2(𝜔)| + 𝜀1(𝜔)

2
                                                                                (5.3) 

whereε1 (ω) is the dielectric real part and ε2 (ω) is the dielectric imaginary part. 

Whereas, extinction coefficient define as a measure of the rate of diminution of 

transmitted light via scattering and absorption for a medium. It is written in following 

form: 

𝐿(𝜔) =
𝜀2(𝜔)

𝜀1
2(𝜔) + 𝜀2

2(𝜔)
                                                                                     (5.4) 

 

Figure 5.6 illustrates the calculated refractive index n () and the extinction coefficient 

k(). The static refractive indices are deduced from the figure 5 (a) as 1.50 and 3.46 for 

pure and Er- doped ZnO respectively. Similar values are observed for pure ZnO 

compared to those reported in the literature [8]. Increasing behavior can be found with 

Er doping which consequently affects considerably the exciton energy (60 meV for 

ZnO).  
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Figure 5.6  (a) the refractive index and (b) the extinction coefficient, of pure ZnO and 

Er-doped ZnO. 
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5.3.3 THE ABSORPTION COEFFICIENT 

The absorption coefficient is a measure of the rate of decrease in the intensity of 

electromagnetic radiation (as light) as it passes through a given substance. It given 

symbolically as  

𝛼(𝜔) = √2 𝜔 [√𝜀1
2(𝜔) + 𝜀2

2(𝜔) − 𝜀2(𝜔)]

1 2⁄

                                                  (5.5) 

The absorption coefficient is displayed in figure 5.7 for IR, Visible and UV regions. 

For pure ZnO, the absorption coefficient decreased of drastically from UV to visible 

regions finally vanished. We see that the Er doping has increased the coefficient 

absorption in all spectra regions unless in a small region in UV domain which can be 

neglected (as seen in the figure). Furthermore, red shift is also achieved under Er doping 

indicating the importance of its 4f donor occupied states. 
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Figure 5.7 The absorption coefficient of pure and Er-doped ZnO. 
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CONCLUSION 

In summary of this chapter, a theoretical investigation of the structural, electronic and 

optical properties of pure zinc blend ZnO and Er-doped ZnO has been reported. This 

study has been done using DFT with mBJ approximation.  It is found that, the calculated 

energy band gap and the lattice parameter of pure ZnO are close to the experimental 

ones and in a good agreement with other theoretical calculations. The good agreement 

between our mBJ band gap with experimental one for pure ZnO supports our choice of 

no using the scissor operator for optical properties for both pure and Er-doped ZnO. It 

is also shown that, the incorporation of Er in ZnO affects considerably the electronic 

and optical properties compared with pure ZnO. For example, the optical energy gap 

has increased by 83% under Er doping. From imaginary dielectric function, we have 

established that red shift is also achieved under Er doping indicating the importance of 

its 4f donor occupied states. 
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GENERAL CONCLUSON 

We can summarize our work in thesis to the following: The structural and electronic 

properties of Erbium Zinc Oxide alloys for (x = 0, 0.25, 0.50, 0.75, 1) are investigated 

using DFT with GGA approximation. The structural optimization is performed by 

calculating the total energies for different volumes around the equilibrium cell volume 

V0 of Erbium Zinc Oxide. Obtained results of structural properties of pure ZnO are 

agreement with the theatrical and experimental studies.  

The lattice constants calculated for pure ZnO is very close to the experimental results, 

proving that our calculation parameters are valid. It is 1.8% greater than the 

experimental value, indicating that the GGA scheme overestimates the lattice constant. 

Likewise, other structural properties of pure ZnO are agreement to theoretical and 

experimental investigations. Furthermore, the structural properties of Erbium Zinc 

Oxide alloys are calculated but to the best of our knowledge, there are no experimental 

values for them.  

In other hand, the electronic properties of Erbium Zinc Oxide alloys are calculated. Our 

obtained energy band gaps of Erbium Zinc Oxide alloys are underestimated values 

because we used the GGA approximation.  

The calculated band structures and density of states indicate a semiconducting character 

of the involved materials. 

We observed effect of Er on electronic properties of Erbium Zinc Oxide for(x= 0, 0.25, 

0.50, 0.75, 1) where,  the energy gaps increase with increasing of composition and the 

Fermi-level move towards higher energy direction and enter into the conduction band, 

exhibiting n-type behavior after doping. As well, the position of 4f-Er is observed 
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localizes around the Fermi level yielding to the movement of the upper valence band 

downward. 

To improve electronic properties of pure ZnO and Er-doped ZnO we used a new 

potential, it called modified Becke-Johnson exchange potential (mBJ). We observed 

that energy band gaps of pure ZnO and Er-doped ZnO are enhanced.   

It is found that, the calculated energy band gap and the lattice parameter of pure ZnO 

are close to the experimental ones and in a good agreement with other theoretical 

calculations. The good agreement between our mBJ band gap with experimental one 

for pure ZnO supports our choice of no using the scissor operator for optical properties 

for both pure and Er-doped ZnO. 

In addition, a theoretical investigation of the optical properties of pure zinc blend ZnO 

and Er-doped ZnO has been reported. This study has been done using DFT with mBJ 

approximation.    

It is shown that, the incorporation of Er in ZnO affects considerably the optical 

properties compared with pure ZnO. For example, the optical energy gap has increased 

by 83% under Er doping. From imaginary dielectric function, we have established that 

red shift is also achieved under Er doping indicating the importance of its 4f donor 

occupied states and the absorption coefficient increased in all spectra regions unless in 

a small region in ultra violet (UV) domain which can be neglected. 
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a  b  s  t  r  a  c  t

The  structural,  electronic  and  optical  properties  of  pure  ZnO  and  Er-doped  ZnO  are  inves-
tigated by  density  functional  theory  (DFT)  with  generalized  gradient  approximation  plus
modified Becke-Johnson  exchange  potential  (GGA  +  mBJ).  The  obtained  results  of electronic
and  optical  properties  were  improved.  Good  agreement  with  the experimental  and  theo-
retical  studies  is  obtained  for pure  ZnO  since  the results  of Er-doped  ZnO  in  zinc  blend
structure  are  considered  as  new  predictions.  The  energy  gap  value  of  Er-doped  ZnO  is found
to  increase  with  Erbium  incorporation,  affecting  the  absorption  coefficients  in  all  spectra
regions.  Red  shift  is  also  achieved  under  Er doping  indicating  the  importance  of its  4f donor
occupied  states.  Similar  behavior  is  observed  in  the  literature  for  Er-doped  ZnO  in  wurtzite
structure.

© 2016  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

ZnO is one of the potential candidates in several technological applications such as, optoelectronic, solar cells, and pho-
tocatalyst [1,2] due to its high exciton binding energy (60 meV) and its wide band gap (∼3.3 eV) [3]. It is known as an n-type
semiconductor material. Recently, the ZnO presented an interesting subject for doping with various elements such as tran-
sition and noble metals. This is of course very suitable to improve the optoelectronic and photocatalytic properties because
the incorporation of dopants generates lattice defects and changes consequently the band gap energy [4]. In particular, the
doping with rare-earth elements has been extensively investigated, experimentally as well as theoretically. Poongodi et al.
[5] deposited nanostructured Nd doped ZnO thin films on glass substrate by a sol–gel spin coating technique. The results
show the degradation of methylene blue dye and the decrease in grain size and light absorption over an extended visible
region by Nd ion doping in ZnO film, contributed equally to improve the photocatalytic activity. Honglin et al. [6] prepared
the ZnO nanopowders doped with (La,Er, Nd) rare-earth by chemical method. The photoluminescence (PL) measurement
revealed that pure and REs doped ZnO had different IUV/IDLE ratios, and the absorption spectra of doped ZnO exhibited
enhanced optical absorption in visible region. Zhang et al. [7] studied the electronic structure and magnetism of RE (RE = La,
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Fig. 1. Unit supercell of zinc blend Er doped ZnO.

Ce, Pr, Nd and Eu) doped ZnO using generalized gradient approximation (GGA) and GGA + U. It appeared the influence of
dopant on the electronic and magnetic properties of ZnO.

In particular, the attractive interest of Erbium (Er)-doped semiconductors in optical applications such as light-emitting
and laser diodes, is because of the sharp photoluminescence (PL) at 1.54 �m from the intra-4f shell transition in Er3+ ions [8].
The majority of works carried out the above properties at low temperature (77 K) precluding their use at room temperature
[9]. However, few reports for Er doped ZnO in thin film or wurtzite phases have been experimentally investigated showing
the PL spectra at room temperature, as given in the work of Honglin [6]. Consequently, no further theoretical understanding
on the correlation between their properties is clarified. Therefore, it is still important to present a theoretical investigation
of structural, electronic and optical properties of such material in order to enlighten the correlation between them.

Erbium can be found in three magnetic phases: ferromagnetic below 19 K, antiferromagnetic between 19 and 80 K and
paramagnetic above 80 K [8]. In this work, we aimed to study the effect of Er doped ZnO in comparison with pure ZnO,
modeled in paramagnetic phase that is observed at high temperature.

On the theoretical side, the density functional theory (DFT) has treated successfully the structural, electronic and optical
properties of semiconductors [10]. However, it underestimates the fundamental band gap energy of most semiconductor
oxides. In order to obtain a correct band gap, there are many theoretical approximation methods such as DFT + U, which is
used to improve the band gap. Unfortunately, these schemes are computationally expensive compared to the LDA or GGA.
Also, the recently proposed Tran–Blaha modified version of the Becke–Johnson potential (TB-mBJ) [11] has proved to be a
successful method for accurate band gaps of semiconductors and insulators better than GGA + U and LDA + U [12]. Therefore,
we used mBJ  potential, in addition to GGA approximation, to study the electronic and optical properties of pure and Er doped
ZnO.

Structural, electronic and optical properties are obtained for 25% of Er doped ZnO in zinc blend structure by caring
out a first principles calculations based on density functional theory (DFT). In general, it is shown that this structure is
similar to wurtzite one in electronic and optical band structure [13]. This work is considered as an extension of our recent
studies realized on ZnO-ZB [13]. Our results were discussed qualitatively as well as quantitatively in comparison with few
experimental available results.

2. Computational details

All calculations have been carried out using density functional theory with help of the full-potential linearized augmented
plane-wave (FP-LAPW) method as implemented in WIEN2k package [14,15], which self-consistently finds the eingen values
and eingen function of the Kohn-Sham [16] equations for the system. We  have used the Generalized Gradient Approximation
(GGA) as parameterized by Perdew, Burke and Ernzenhorf [17] and modified Becke-Johnson (mBJ) approximation [11] for
electronic and optical properties.

The valence electron configurations used in the calculations are Zn (3d10 4s2), O (2s2 2p4), Er (4f12 5s2 5p6 6s2) respectively.
We adopted an 8 atoms simple cubic supercell which corresponds to 25% of Er concentration (Fig. 1).

The wave function, charge density and potential were expanded by spherical harmonic functions inside non-overlapping
spheres surrounding the atomic sites (muffin-tin spheres) and by a plane-wave basis set in the remaining space of the
unit cell (interstitial region). The maximum l quantum number for the wave function expansion inside atomic spheres was
confined to lmax = 10. The charge density was Fourier expanded up to Gmax = 9 (Ry)1/2. The convergence parameter RMTKmax

(Where Kmax is the maximum modulus for the reciprocal lattice vector, and RMT is the average radius of the muffin tin
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Table  1
Calculated equilibruim lattice constant (a), bulk modulus (B) and its first pressure derivative (B’) for pure and Er doped ZnO.

a (Å) B (GPa) B’

Our work Exp. Calcul. Our work Exp. Calcul. Our work Exp. Calcul.

Pure ZnO 4.552 4.47 [20] 4.614 [25] 145.8 – 129.7 [13] 4.24 – 4.33 [22]
4.53 [21] 139.32 [26] 4.096 [13]
4.62 [13] 165.9 [22]

Er doped ZnO 4.759 – – 122.5 – – 4.31 – –

Table 2
Calculated principle features of band structures for pure and Er-doped ZnO given in (eV).

Pure ZnO Er doped ZnO

Our work Exp. Calcul. Our work Exp. Calcul.

GGA mBJ  GGA mBJ

Eg 0.62 2.58 3.3 [3] 0.50 [26]a 1.43 2.98 – –
0.73  [27]a

2.59 [13]b

0.804 [13]a

2.47 [21]c

UVBW 6.462 5.755 – – 5.136 4.521 – –
TVBW  17.823 19.293 – – 16.701 17.719 – –
�dZn 6.462 5.755 – – 5.136 4.521 – –
�fEr – – – – 1.395 3.708 – –
Occupied states 0 0 – – 1.273 1.870 – –

a GGA calculation.
b LDA + mBJ  calculation.
c GW calculation.

spheres) which controls the size of the basis set in these calculations, was set to 7. The reciprocal space is sampled by a
5 × 5 × 5 Monkhorst–Pack mesh [18] with sufficient 125 k-vectors in the irreducible Brillouin zone. The iteration process is
repeated until the calculated total energy of the crystal converges to less than 10−5 Ry.

3. Results and discussion

3.1. Structural properties

To investigate the physical properties of pure and Er-doped ZnO, we performed the structural optimization by calculating
the total energies for different volumes around the equilibrium cell volume V0 of ZB structure. The equilibrium structural
parameters were determined by fitting the total energy versus volume to Murnaghan’s equation of states [19]. Our obtained
results are summarized in Table 1 compared with the available experimental data and other theoretical results. Good agree-
ment is achieved for pure ZnO in ZB structure with our recent [13] and other theoretical [20–26] results. This latter constitutes
a good primary support to treat a hypothetical ZB Er-doped ZnO.

The calculated lattice constant for ZnO is a good agreement with the theoretical [21–35] and experimental [20] values. A
ratio of 1.8% in found to be greater than the experimental value, indicating that the GGA scheme overestimates the lattice
constant [27].

Our result of the bulk modulus B for ZB ZnO is in reasonable agreement with experimental results and previous theoretical
studies [15,22], while for Er-doped ZnO, there are no experimental or theoretical values, to the best of our knowledge, for
the structural properties in order to make the comparison.

The lattice parameter, bulk modulus and pressure derivative calculated both pure ZB ZnO and Er-doped ZnO are listed in
Table 1.

3.2. Electronic properties

Electronic band structures obtained with GGA + mBJ  approximation are shown in Fig. 2 for pure and Er-doped ZnO. It is
clear that ZnO has a direct band gap semiconductor at � high symmetry point with a calculated value of 2.58 eV. This later is
in good agreement with those of experimental and other sophistical calculations as seen in Table 2. Other principle features
of the calculated band structures such as the upper valence bandwidth (UVBW), the total valence bandwidth (TVBW) and
the splitting �dZn and �fEr are given in the same table. For Er-doped ZnO, the estimated electronic energy gap (2.98 eV) is
observed under Fermi level in the range from −1.74 eV to −4.72 eV. To illustrate the origin of this feature, we have calculated
the total and partial densities of states DOS as given in Fig. 3. The valence band for pure ZnO mainly consists of the 2p, 2s
states of O and 3d states of Zn. The upper valence band of the width 5.75 eV is dominated by 2p state of O, while its 2s state
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Fig. 2. Band structures and total DOS for: (a) pure ZnO and (b) Er-doped ZnO.

is localized in the lower level of VB at −18.64 eV. Below the valence band maximum (VBM), the 3d Zn states give rise in
the same energy width of that of 2p O. As a result, the hybridization is formed between 2p O and 3d Zn states. It is worth
noticing that the level position of 3d Zn is corrected via mBJ  potential compared to the GGA one (see Table 2). This correction
contributes to the enhanced energy band gap. Good agreement is achieved with other experimental and hybrid functional
PBE0 values.

The lowest conduction band (CBM) is attributed to the Zn 4 s states and O 2p states which is well compared to the
experimental and theoretical data.

For Er doped ZnO, the position of 4f-Er is observed localizes around the Fermi level yielding to the movement of the
upper valence band downward. The resulting value of the optical energy band gap is then 4.72 eV obtained by mBJ  potential.
Therefore, the Fermi level is shifted upward into the conduction band with the presence of 4f-Er state. Consequently, this
later state acts as donor giving rise to the n-type metallic conductivity. The occupied states in the bottom of the conduction
band, creates therefore an additional energy barrier, which help the electron to excite from the valence to the conduction
bands. This barrier also causes the increasing of the optical band gap to 4.72 eV. The same conclusion is obtained by Wu et al.
[9] for Ga doped ZnO in the wurtzite structure. We  can notice from this feature that this significant effect of Er in ZnO had a
strong modification in optoelectronic properties. Detailed information about the positions of several contributed states are
summarized in Table 2 for pure and Er doped ZnO.

3.3. Optical properties

The optical properties are usually described by dielectric constant ε (ω),  sometimes by refractive index n (ω),  extinction
coefficient k (ω) and absorption coefficient ˛ (ω).  These features are very important to determine the optical and electronic
properties of the crystal.

We  have not used scissor operator since the mBJ  potential is known to improve the band gap very closely to the experi-
mental one as it is remarked for our pure ZnO (see Table 2). Therefore we expected that the calculated optical properties of
pure and Er doped ZnO are more improved compared to GGA and LDA approximations.

Fig. 4 displays dielectric real part ε1 (ω) and dielectric imaginary part ε2 (ω) of pure and Er doped ZnO. The real part ε1 (ω)
represents the dispersion of the incident photons by the materials, while the imaginary part ε2 (ω) of the dielectric function
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Fig. 3. Partial DOS for: (A) pure ZnO and (B) Er-doped ZnO.

of pure ZnO and Er-doped ZnO is important to determine the different transitions due to photons absorption in these two
cases, from occupied to unoccupied states.

From 4(a), the calculated static dielectric function ε1 (0) given at zero frequency is 2.26, 11.94 for ZnO and Er doped-ZnO
respectively. The value of ZnO agree with the reported results, for instances, (LDA + U) [6] and (GGA + mBJ) [28]. The figure
shows also a significant increase of the dielectric function under doping with Er. Fig. 4(b) shows the imaginary part ε2 (ω) of
the dielectric function. For pure ZnO, we found that the peak observed at 2.58 eV, which corresponds to the energy band gap
value, corresponds to the transition from O 2p occupied sates at (VBM) to the Zn 4s unoccupied statesat (CBM). The others
peaks viewed at high energies result from the transitions between various occupied to unoccupied states from the valence
band to the conduction band. For Er doped ZnO, a new high peak is observed at low energy near 1.2 eV. This latter is due to
the transition between Er 4f donor occupied states located around Fermi level and the Zn 4s and Zn 4p unoccupied states in
the conduction band.
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Fig. 4. The dielectric functions of pure and Er-doped ZnO: (a) Real part and (b) imaginary part.
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Fig. 5. (a) The refractive index and (b) the extinction coefficient, of pure and Er-doped ZnO.

Fig. 5 illustrates the calculated refractive index n (ω) and the extinction coefficient k (ω). The static refractive indices
are deduced from Fig. 5(a) as 1.50 and 3.46 for pure and Er- doped ZnO respectively. Similar values were observed for pure
ZnO compared to those reported in the literature [29]. Increasing behavior can be found with Er doping which consequently
affects considerably the exciton energy (60 meV  for ZnO).

The absorption coefficient is displayed in Fig. 6 for IR, Visible and UV regions. For pure ZnO, the absorption coefficient
decreased of drastically from UV to visible regions finally vanished. We  see that the Er doping has increased the coefficient
absorption in all spectra regions unless in a small region in UV domain which can be neglected (as seen in the figure).
Furthermore, red shift is also achieved under Er doping indicating the importance of its 4f donor occupied states.
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4. Conclusion

In summary, a theoretical investigation of the structural, electronic and optical properties of pure zinc blend ZnO and
Er-doped ZnO has been reported. This study has been done using DFT with (GGA + mBJ) approximation. It is found that,
the calculated energy band gap and the lattice parameter of pure ZnO are close to the experimental ones and in a good
agreement with other theoretical calculations. The good agreement between our mBJ  band gap with experimental one for
pure ZnO supports our choice of no using the scissor operator for optical properties for both pure and Er-doped ZnO. It is
also shown that, the incorporation of Er in ZnO affects considerably the electronic and optical properties compared with
pure ZnO. For example, the optical energy gap has increased by 83% under Er doping. From imaginary dielectric function, we
have established that red shift is also achieved under Er doping indicating the importance of its 4f donor occupied states.
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[4] D. Li, J.F. Huang, L.Y. Cao, L.I. Jia-Yin, H.B. OuYang, C.Y. Yao, Ceram. Int. 40 (2014) 2647.
[5] G. Poongodi, R.M. Kumar, R. Jayavel, Ceram. Int. 41 (2015) 4169.
[6] L. Honglin, L. Yingbo, L. Jinzhu, Y. Ke, J. Alloys Compd. 617 (2014) 102.
[7] X.J. Zhang, W.B. Mi,  X.C. Wang, H.L. Bai, J. Alloys Compd. 617 (2014) 828.
[8] T. Gregorkiewicz, J.M. Langer, MRS  Bull. 24 (1999) 27.
[9] H.C. Wu,  Y.C. Peng, C.C. Chen, Opt. Mater. 35 (2013) 509.

[10] G. Hautier, A. Miglio, G.M. Rignanese, X. Gonze, Nat. Commun. 4 (2013) 2292.
[11] F. Tran, P. Blaha, Phys. Rev. Lett. 102 (2009) 226401.
[12] H. Zaari, G. El Hachimi, A. Benyoussef, A. El Kenz, J. Magn. Magn. Mater. 393 (2015) 183.
[13] M.R. Boufatah, A.E. Merad, Mater. Sci. Semicond. Process. 19 (2014) 179.
[14] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, J. wien2k, An augmented plane wave + local orbitals program for calculating crystal

properties, Karlheinz Schwarz, Techn. Universität Wien, Austria (2001).
[15] G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B 64 (2001) 195134.
[16] W.  Kohn, L.J. Sham, Phys. Rev. A 140 (1965) 1133.
[17] J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[18] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.
[19] F.D. Murnaghan, Proc. Natl. Acad. Sci. 30 (1944) 244.
[20] A. Ashrafi, C. Jagadish, J. Appl. Phys. 102 (2007) 071101.
[21] H. Dixit, R. Saniz, D. Lamoen, B. Partoens, J. Phys.: Condens. Matter 22 (2010) 125505.
[22] S. Cui, W.  Feng, H. Hu, Z. Feng, Y. Wang, J. Alloys Compd. 476 (2009) 306.
[23] B. Amrani, R. Ahmed, F. El Haj Hassan, Comput. Mater. Sci. 40 (2007) 66.
[24] A. JemmyCinthia, G. Sudhapriyanga, R. Rajeswarapalanichamy, M.  Santhosh, Proc. Mater. Sci. 5 (2014) 1034.
[25] H. Liu, H. Mao, M. Somayazulu, Y. Ding, Y. Meng, D. Husermann, Phys. Rev. B 70 (2004) 094114.
[26] M.  Kalay, H.H. Kart, S. Ö. Kart, T. Ç ağin, J. Alloys Compd. 484 (2007) 431.
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Abstract 

In recent years, a large number of researches focused on study the physical properties 

of ZnO, because of its unique characteristics. These properties make ZnO suitable for 

a wide range of technological applications, for example in optoelectronic, solar cells, 

photocatalyst, light-emitting diodes and laser diodes. For this reason, ZnO presented an 

interesting subject for doping with various elements such as transition and noble metals. 

In our work, we investigated the effect of Erbium (Er), as a dopant element, on physical 

properties of ZnO. This study has been done using Density Functional Theory (DFT) 

with generalized gradient approximation (GGA) and modified Becke-Johnson 

exchange potential (mBJ). Our obtained results shown that, the incorporation of Er in 

ZnO affects considerably the structural, electronic and optical properties.  

Keywords: Er-dopedZnO; GGA; mBJ potential; Electronic structures; Optical 

properties. 

Résumé  

Au cours des dernières années, un grand nombre de recherches est porté sur l'étude des 

propriétés physiques du ZnO, du fait de ses caractéristiques propres. Ces propriétés 

rendent le ZnO un matériau qui convient à une large gamme d'applications 

technologiques, comme par exemple, les cellules solaires, le photo-catalyseur, les 

diodes émettrices de lumière optoélectroniques et les diodes laser. Pour cette raison, le 

ZnO a présenté un sujet intéressant pour le dopage avec divers éléments tels que les 

métaux de transition et les métaux nobles. Dans notre travail, nous avons étudié l'effet 

d'Erbium (Er), comme un élément dopant, sur les propriétés physiques du ZnO. Cette 

étude a été effectuée à l'aide de la théorie de la fonctionnelle de densité (DFT) avec 

l’approximation du gradient généralisé (GGA) et le potentiel d'échange du type Becke-

Johnson modifié (mBJ). Les résultats obtenus montrent que l'incorporation du Er dans 

le ZnO affecte considérablement les propriétés structurales, électroniques et optiques. 

Mots-clés : ZnO dopée Er ; GGA ; potentiel mBJ ; structures électroniques ; Propriétés 

optiques 

 ملخص

، بسبب (ZnO)ك كسيد الز لأعلى دراسة الخصائص الفيزيائية  الباحثينفي السنوات الأخيرة، ركز عدد كبير من 

لايا الخالخلايا الشمسية،  مثلالتطبيقات التكنولوجية، في  واسعللاستخدام ال أهلته التي .خصائصه الفريدة

مع  (ZnO)أكسيد الز ك  ت دراسةقدمالسبب، ُ لهذا .، الثنائيات الباعثة للضوء وثنائيات الليزرالكهروضوئية

قمنا ، هذا في عملنا .ومشوق همموضوع معناصر التطعيم )التشويب( مثل العناصر الا تقالية والعناصر النبيلة ك

 الدراسة باستخدام   فذت هذهوقد  .كسيد الز كلأالفيزيائية  صائصعلى الخ (Er) بدراسة تأثير معدن الاربيوم 

معدن  أن عليها النتائج المتحصل أظهرت (mBJ).و(GGA)بالاضافة الى تقريبي  (DFT)الكثافة الوظيفية  ظرية 

 .لأكسيد الز كيؤثر بشكل كبير على الخصائص الهيكلية والالكترو ية والبصرية (Er)الاربيوم 

الخصائص  ;الخصائص البلورية  mBJ;و  GGAتقريبي ، بالاربيوم (ZnO)ك أكسيد الز تطعيم  كلمات البحث:

 الخصائص البصرية. ;الالكترو ية 
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