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Abstract: A new measure of quality is proposed for 
evaluating the performance of geometrical active 
segmentation based on Level-set method’s. The technique is 
intended for the evaluation of the segmented image and 
features objective assessment of discrepancy with the 
theoretical contours, in tandem with subjective visual 
evaluation using F-measure criteria. The proposed 
mathematical model is extremely simple, even from the 
perspective of computational cost. Encouraging results 
were obtained for a selection of test images, especially in 
relation to other recently proposed and/or currently 
employed quality measures in medical image segmentation 
area. 
 
Index Terms-Segmentation, geometrical active contour, 
level-set, F-measure 

 
1. Introduction 
 

Segmentation of medical images is an important step 
in various applications such as visualization, quantitative 
analysis and image-guided surgery. Numerous 
segmentation methods have been developed in the past two 
decades for extraction of organ contours on medical 
images. Furthermore the subsequent analysis of segmented 
objects is hampered by the primitive, pixel level 
representations from those region-based segmentation [1]. 
Deformable models, on the other hand, provide an explicit 
representation of the boundary and the shape of the object. 
They combine several desirable features such as inherent 
connectivity and smoothness, which counteract noise and 
boundary irregularities, as well as the ability to incorporate 
knowledge about the object of interest [2]. However, 
parametric deformable models have two main limitations. 
First, in situations where the initial model and desired 
object boundary differ greatly in size and shape, the model 
must be re-parameterized dynamically to faithfully recover 
the object boundary. The second limitation is that it has 
difficulty dealing with topological adaptation such as 
splitting or merging model parts, a useful property for 
recovering either multiple objects or objects with unknown 
topology. This difficulty is caused by the fact that a new 
parameterization must be constructed whenever topology 
change occurs, which requires sophisticated schemes. Level 
set deformable models [3], also referred to as geometric 

deformable models, provide an elegant solution to address 
the primary limitations of parametric deformable models. 
These methods have drawn a great deal of attention since 
their introduction in 1987 [1]. Advantages of the 
geometrical active contour model over parametric active 
contour include: (i) no parameterization of the contour, (ii) 
topological flexibility, (iii) numerical stability, (iv) 
segmentation quality. 
Recent reviews on the subject include papers from [4, 5]. In 
this paper, we give a general overview of the geometric 
active contour based on level set segmentation methods and 
their application in medical imaging area. Mainly these 
methods are controlled and final segmentation is strongly 
affected by intrinsic and extrinsic image parameters. In the 
present work, we are interested to found optimal 
parameter for a good segmentation. In medical image it to 
difficult to found a referenced image, so we propose in this 
work to evaluate the segmentation method based on level-
set by measuring three cues, the brightness, texture and 
contrast. The paper is organized as follow, in the next 
section we give an overview of the segmentation based on 
level-set method, where geometrical active contours is 
detailed and discussed in third section. In the forth section 
we present an overview evaluation framework for 
geometrical active contour segmentation. In the last section, 
the main results obtained and mainly the segmentation 
quality measure where the optimal parameter for level-set 
method segmentation are relatively determined. 
 
2. Background 
 
Segmentation of an image I via active contours, also 
referred to as snakes [1], operates through an energy 
functional controlling the deformation of an initial contour 
curve ( ) [ ]1,0, ∈ssC  under the influence of internal and 
external forces achieving a minimum energy state at high-
gradient locations. The energy functional for active contour 
models is expressed as: 
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The first positive parameters ( βα , ) defines the internal 
energy of the deformable object, controlling the rigidity and 
elasticity of the contour while the last term define the 



external energy, attracting the model to high-gradient 
locations in the image I. Active contour segmentation via 
minimization of the energy functional in equation (1) is 
typically implemented with a parametric active contour 
models which is explicitly formulated as a parameterized 
contour on a regular spatial grid, tracking its point positions 
in a Lagrangian formulation [7].  In their paper [2], 
introduced the concept of geometric active contour models, 
which provide an implicit formulation of the active contour 
in a level set approach. To introduce the concepts of the 
level set approach, we focus on the boundary value problem 
of a close contour C deforming with a speed F along its 
normal direction:  

1=∇ FC     (2) 
Their fundamental idea is, instead of tracking in time the 
positions of the front on a regular grid as: 

( ) ( ) ( ){ }tsCyxst ===Γ ,    (3) 
to embed the curve into a higher dimension function ( )ts,φ  
such that: 
1.  the set ( ){ }00,/ ==tss φ  defines the initial contour .   
2.  the function φ  evolves with the dynamic equation: 
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where N
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is the unit normal vector to the curve expressed as:  
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The front implicitly defined as: 
( ) ( ){ }0, ==Γ tsst φ    (7) 

corresponds to the solution of the initial boundary value 
problem defined parametrically in equation (3). In their 
paper [13, 14], focused on motion under mean curvature 
flow where the speed term is expressed as: 
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Since its introduction, the concept of deformable models for 
image segmentation defined with a level set approach has 
motivated the development of several families of method 
that include: geometric active contours based on mean 
curvature flow, gradient-based implicit active contours and 
geodesic active contours. 
 
3. Segmentation methods  
 
3.1. Level Set speed regularizers functions 
 
The main issue of geometrical active contours segmentation 
methods is related to contour leakage at locations of weak 
or missing boundary data information. This phenomenon is 
provided for segmentation of a high-resolution Magnetic 
resonance image: (MRI) slice. Several efforts have been 
performed to add stopping criteria on the entire front, and 
local pixel freezing rules, or combine gradient with region 
information to make the segmentation process more robust 
to poor edge definition [8, 9]. When dealing with weak 

boundaries the most radical solution to leaking problems is 
to remove the expansion term at the cost of requiring an 
initialization close to the final solution. An alternative to 
this approach was proposed by [10] initially keeping the 
expansion term for pushing the model and turning it off as 
it approaches the object boundary. Detection of the 
boundary location was performed using a homogeneity map 
derived from scale-based fuzzy connectivity. [11] discussed 
the problem of segmentation of an object with missing 
boundaries and introduced a new geometric model for 
subjective surfaces. Starting from a reference point inside 
the object to segment, the ‘point of view’, a geometric 
deformable model is evolved with mean curvature flow and 
image-derived speed terms until a piecewise constant 
solution is reached. This piecewise constant solution, is the 
subjective surface defined by the segmentation process that 
is flat inside the object and has boundaries defined by 
geodesic curves. The authors also introduced the notion of 
“modal” contours which are contours that are perceived in 
the visual context and “amodal” contours which are 
associated with partially occluded objects.  
All the level set segmentation methods presented above are 
based on image gradient intensity making them prone to 
leaking problems in areas with low contrast. A second 
problem related to the use of the image gradient as the only 
image-derived speed term is that it makes the segmentation 
process very sensitive to the initial position of the level set 
function as the model is prone to converge to false edges 
that correspond to local minima of the functional. Medical 
images typically suffer from insufficient and spurious edges 
inherent to physics of acquisition and machine noise from 
different modalities. To address these limitations, one 
approach can be followed is to fuse regularizer terms in the 
speed function as detailed in [9]. Recent works on the 
fusion of classical geometric and geodesic active contours 
models speed terms with regularizers, i.e. regional statistics 
information from the image. Regularization of the level set 
speed term is desirable to add prior information on the 
object to segment and prevent segmentation errors when 
using only gradient-based information in the definition of 
the speed. Three main types of regularizers were identified 
as: (a) Clustering-based regularizers, (b) Bayesian-based 
regularizers and (c) Shape-based regularizers. 
In this paper, we give a brief overview of each regularizer’s 
method.  
a. Clustering-Based Regularizers: In [12] the following 
energy functional for level set segmentation: 
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Where PV is a regional force term expressed as a 
combination of the inside and outside regional area of the 
propagating curve. This term is proportional to a region 
indicator taking value between 0 and 1, derived from a 
fuzzy membership measure as described in [12]. 
b. Bayesian-Based Regularizers: Recent work [13] 
proposed an approach similar to the previous one where the 
level set energy functional expressed as: 
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uses a modified propagation term 0V as a local force term. 
This term was derived from the probability density 
functions inside and outside the structure to segment. The 
data consistency term ( )Ig ∇ is modified using a 
transitional probability from going inside to outside the 
object to be segmented. 
c. Shape-Based Regularizers: [14] introduced shape-based 
regularizers where curvature profiles act as boundary 
regularization terms more specific to the shape to extract 
than standard curvature terms. A shape model is built from 
a set of segmented exemplars using principle component 
analysis applied to the signed-distance level-set functions 
derived from the training shapes. The principal modes of 
variation around a mean shape are computed. Projection 
coefficients of a shape on the identified principal vectors 
are referred to as shape parameters. Rigid transformation 
parameters aligning the evolving curve and the shape model 
are referred to as pose parameters. To be able to include a 
global shape constraint in the level set speed term, shape 
and pose parameters of the final curve ( )tµφ are estimated 
using maximum a posteriori estimation. The new 
functional is derived with a geodesic formulation with 
solution for the evolving surface expressed as: 
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where 1λ  and 2λ , are two parameters that balance the 
influence of the gradient-curvature term and the shape-
model term. In more recent work, [15] introduced further 
refinements of their method by introducing prior intensity 
and curvature models using statistical image-surface 
relationships in the regularizer terms. Limited clinical 
validation have been reported using this method but some 
illustrations on various applications including segmentation 
of the femur bone, the corpus callosum and vertebral bodies 
of the spine showed efficient and robust performance of the 
method.  
 
3.2. Level-Set implementation: 
 
In [16], introduced a reformulation of the Hamilton-Jacobi 
equation of (5) underlying the level-set initial formulation 
from [7] to eliminate problems related to reinitialization of 
the distance function and the need to extend the velocity 
field away from the level zero. The fact that the solution to 
Hamilton-Jacobi equations of the form in (5) is not distance 
functions has been demonstrated formally in [16]. [13] 
provide two simple examples illustrating this result. There 
are both theoretical and practical reasons pointed out 
motivate the preservation of the signed distance function 
during the segmentation process. Theoretically, the signed 
distance function gives a unique equivalence to the implicit 

description of the moving front. From a practical point of 
view, the use of a signed distance function enables to 
directly extract from the level-set function geometrical 
properties of the front and guarantees bounded values of the 
level-set function gradient, ensuring numerical stability of 
the segmentation iterative process. To derive the new 
dynamic equation, the level-set function is initialized as 

( )0,0 == tsφφ  as the signed distance function from the 
initial front.  The goal is to redefine a speed function such 
that φ  is preserved as the signed distance function from the 
level zero and ensures that the level-zero of φ evolves as in 
equation (2). These constraints are formulated as: 
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where 0S is a given closed hypersurface and ( )0, Ssdist is 
signed distance function from s to 0S , for s to 0S , for s  
outside 0S  positive and otherwise negative. The restriction 
on level-set function 1=∇φ , lead to derive the following 
dynamic equation as a solution of system described in (24). 
For Narrow-band algorithm the complexity to update level-
set function have a global cost ( )2mNΟ . In the three last 
year the narrow band method has is intensively applied in 
medical imaging area. The aim of our work is give a new 
application with optimal parameter’s where the initial level-
set function is proposed.  

 
4. Segmentation evaluation  
 
An effective evaluation of segmentation is important for 
optimally setting its parameters. However, evaluation of 
segmented medical images is difficult, and there is no 
standard method for evaluating automatically the 
segmentation quality. Common practice for evaluating 
segmentation results are based clinician judgment and 
consist in ad hoc subjective assessment by representative 
group of observers. A significant number of observers is 
required to produce statistically relevant results, thus 
making subjective evaluation expensive process. To avoid 
systematic subjective evaluation, an automatic procedure is 
desired to evaluate objectively either segmentation 
algorithm and segmentation results. For the first, the 
evaluation can be done by evaluating the complexity of the 
algorithms, and second can achieved by evaluating 
accordingly two classes proposed in [6,17]: 
1) Objective standalone evaluation: achieved when no 

reference of segmented images is available.  
2) Objective relative evaluation: achieved when reference 

segmentation, playing the role of ground truth, is 
available. 



One of the important issues of segmentation with 
geometrical active contour based on a level set method 
were image is segmented accordingly to edge–stop function 
( )Ig ∇ . The edge stop map is single reference for 

comparing the segmentation results were g  is closely 
related to variance of Gaussian kernel. Another important 
parameter for evaluating the segmentation, 
optimal ε parameter and the choice of a good initial level 
set function is need to ensure the fast convergence. As in 
[17], a way to match segmentation to a reference image and 
calculating precision and recall for the match is proposed. 
Thinned edges are matched to those of referenced image 
and based on this match; precision (P) and recall (R) are 
calculated. To assess the precesion and recall, the F-
measure is selected as an optimal evaluation parameter as 
fellows: 
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Where θ defines the tradeoff between precision and recall. 
As detailed in [37, 39], θ  is selected as 0.5, which we also 
followed in this work. For a better resolution, successive 
samples of are interpolated and P and R are estimated by 
linear interpolation using the P and R values for a range of 
ε  between 0 and 1 and for F  between 0 and 1. Finally, 
the value of ε , F  with the highest F-measure is selected 
as the optimum for variance of the Gaussian kernel.  This 
process is repeated for a range ofσ ,ε  and the scale with 
the highest F-measure is selected as the optimum g . The 
location of the maximum value F-measure along a 
precision–recall curve provide the optimal segmentation. In 
the next section we described the most important 
segmentation results and we give an evaluation of 
geometrical active based on level-set method. 
 
Experiment results: 
We consider in the first of all some images from 
BERKELY dataset of image. The images are selected to be 
significante in grayscale mode and nearly to those of MRI. 
To applied successfully the geometrical active contour. The 
parameter of edge stop function must be evaluated. This 
can be done subjectively by choosing iteratively the 
goodness edge-stopping image by fixing a set value forσ . 
After this images are compared via the F-measure. For this, 
we have found that for geometrical active contour the 
goodness values are between [0.4.. 08]. This first result is 
very helpful to objectively evaluate the segmentation 
quality. In the second steep, we remark that the choice the 
initial level set function affects significantly the 
convergence speed for algorithm 1 and 2. 
For this we have to design a initial level set function with 
help the two algorithms to converge quickly to their final 
results accordingly to (12). The first idea is to find an 
oscillatory damping spatial function for with the condition 
of distance is respected in Fig 1. We give an example of the 
two initial level-set functions.  

      
(a)                                                  (b) 

Figure 1: Initial level-set function. 
 

For each of these function the algorithm converge more 
rapidly and with the same accuracy as the function 
proposed in [8, 9]. To segment an image, we have choose 
the parameter’s for 005.0=∆t  and for a set: 
σ =[0,4..0,8], F=[0..1] and the control parameter ε  in 
range of [0..1]. In this steep the image were considered 
affected by Gaussian noise of zero mean and a range of 
variance [0 0,001 0,01]. We realized a Matlab software on 
Linux for our simulation  (Pentuim IV, 2,7Ghz, 512 Moct).  
Applied the geometrical active contour, the segmentation 
results is closely related to stop edge function were the 
image resulting form this is narrowly affected by noise, so a 
good choice of the stop edge function parameter lead to a 
good segmentation. To evaluate the segmentation quality. 
we calculate the three optimal values of F̂ , P, R for the 
image with different values of σ , as shown in Fig .2 and 
with noised image in Fig 3.   
An evaluation of the relative objective quality segmentation 
is described in Fig.3.  The segmentation quality is relatively 
less good for noised image and the quality can be modified 
for others noise (Poisson, Bernoulli) kind.      
In the second steep we considered MRI brain image and 
particulary T1-weighted MRIs were interface between 
white matter and gray matter is clearly visible were the 
purpose is segment the anatomical structure.  Difficulties of 
MRI segmentation arise from imaging noise, 
inhomogeneities, partial volume effects and the highly 
convoluted geometry of the cortex. Regarding quantitative 
measurements of the brain anatomy using MRI, cortical 
gray matter surface, white matter surface, cortical surface 
area, cortical shape characteristics are among the most 
interesting to study brain anatomy. Such measurements can 
typically assist in characterizing, predicting or assessing 
neurological and psychiatric disorders via correlation to 
abnormality in the measurements. These measurements are 
all easily derived from the final level set function in a 
distance preserving  (ensured by reinitialization of the level 
set function during the iterative deformation process). 
Image is considered for two cases, for the first the image is 
not affected with a noise were the stop edge-map is selected 
for three values of σ . After the segmentation parameters 
are fixed we compare the segmented images in term of F-
measure. The F-measure curve as shown in Fig. 7 
confirmed. 
An evaluation of F-measure shows that for F=1 and ε =0.2 
the segmentation is better than the other cases. In presence 
of noise, the F-measure decreases significantly for the 



values of variance noise of 0.01 to 0.001. For this, we have 
evaluated F-measure for different value of σ . As shown in 
Fig .7, the optimal segmentation is realized for σ =0.70. 
For three cases were the noise is present. As shown in Fig 
.4  F-measure increase and decrease rapidly after 0.7. 
 

 
(a) (b) (c) 

  
   

 
(d) 2.0=σ  (e) 7.0=σ  (f) 1=σ  

Figure 2:  Image stop edge function g for variance (d) 
5.0=σ  (e) 7.0=σ  (f) 1=σ  and their resulting 

segmentation. 
 

 
(a) 2.0=σ  (b) 7.0=σ  (c) 1=σ  

 
Figure 3: Image stop edge function g for noised image 

with an artificial Gaussian noise ( 310−=bσ ) and edge 
stop function generated for g  where the variance of kernel 
Gaussian is  (a) 0.2 (b) 0.7 (c) 1.  
 
Through the F-measure curve as shown in Fig.4, we show 
that the segmentation is optimal for 1.0=ε  and 1=F  
this optimum in term of F-measure is reached for 

7.0=σ . The second curve (blue color), shows the action 
of noise on the images traduced on the stop-edge function 

of geometrical active contour. To keep the robustness of the 
geometrical active contour method, the statistical properties 
of g  must be performed. 
Relatively, the optimal segmentation is realized for low 
level-noise and for a good choice of σ , ε , F . In this 
work we have shown that obtained for 70,0=σ , 1.0=ε  
and 1=F . The geometrical active contour have been 
tested on MRI image acquired from CHRU of LILLE (Fig 
5) 
 

 
Figure4: Evaluation of F-measure for different values of 
σ  for optimal value of 1.0=ε  1=F    
 

 
Figure 5:  MRI Axial slice T1 of 256x256 pixels  
 
5. Conclusion: 
 
Level set methods for segmentation of medical images have 
been the focus of intense research for the past decade 
producing very promising results. Major advantages of the 
method include its robustness to noisy conditions, its 
aptitude in extracting curved objects with complex 
topology and its clean numerical method of multi-
dimensional implementation. Despite their success, these 
methods still need to be refined to address two limitations. 
The first limitation is the complexity of algorithm needs to 
be further reduced, for viability of the method in clinical 
application where interactivity and therefore close to real 
time computation is critical. This optimization will have to 
handle the constant increase in data size observed in 
medical imaging applications with improvements of spatial 
resolution. 

noise variance=0 
noise variance=0,001



 

 
 

(a) 
 2.0=σ  

(b) 
70.0=σ  

(c) 
1=σ  

 
Figuire 6: Image stop edge function g for noised image 

with an artificial Gaussian noise ( 310−=bσ ) and edge 
stop function generated for g  where the 
 

 
Figure 7: Evaluation of F-measure for different values of 
σ  for optimal value of 1.0=ε  1=F  
 
The second is its robustness to variation in image quality 
and organ anatomy needs to be studied. Unfortunately, the 
geometrical active contour model is rarely validated in 
clinical studies. On the other hand it is well known that 
these methods require tuning of their parameters to adapt to 
the nature of the image data to segment. In that optic, it is 
therefore critical to evaluate robustness of the performance 
on a set of data that covers the range of quality encountered 
in clinical practice for a particular examination. For 
geometrical active contour models, it is also critical to test 
the method on a variety of abnormal (e.g. disease) cases 
that differ from the average anatomy that they typically 
represent 
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