I. Introduction

Afin d'optimiser la cellule solaire, il est nécessaire de décrire le comportement des composants électriques. A cette fin ; nous utilisons deux types de simulation, simulation par SCAPS et simulation par SILVACO. Nous discutons l'effet des défauts sur deux types de cellules solaires : à base de n-p silicium et à base de couches minces N-ZnO. Les résultats de cette simulation numérique sont présentés dans ce chapitre

II. Résultats et Discussion

Pour chaque cellule, Nous étudions l'effet de l'épaisseur et du dopage de l'émetteur sur les paramètres de sortie de la cellule. Nous commençons par le matériau Si ensuite, la couche mince de ZnO.

1. La cellule solaire a base de Si [1]

Une cellule solaire est un composant électronique qui convertit la lumière du soleil en électricité. La structure de base est présentée sur la figure III.1.

Le principe de la conversion photovoltaïque peut être décrit par les mécanismes suivants :

- absorption des photons incidents et création de paires électron-trou si l'énergie du photon incident est supérieure au gap du matériau.

- Diffusion des porteurs de charges minoritaires jusqu'à la zone de charge d'espace. Transfert des charges électriques dans la zone où elles vont être majoritaires grâce au champ électrique présent au niveau de la zone de charge d'espace de la jonction P-N et collecte. Au cours de la diffusion des charges vers la zone de charge d'espace, les charges électriques peuvent se recombiner et être perdues.

- dissipation de puissance dans la charge et dans les résistances parasites.

Figure III.1 : Structure d'une cellule photovoltaïque en silicium [1]

1.1 Détermination des caractéristiques de la cellule solaire à base de Si par le *logiciel* SCAPS

Les paramètres physiques du Si définis dans l'interface du logiciel SCAPS sont présentés dans le tableau III.1 [2]. Ces paramètres permettent d'étudier l'influence du dopage, l'influence de l'épaisseur à la fois avec défauts et sans défauts.

Paramètres	Définition	Valeurs
Er	Permittivité relative	11.9
$E_g (eV)$	Energie de gap	1.12
X (eV)	Affinité électronique	4.05
$N_{\rm c}({\rm cm}^{-3})$	La densité d'état efficace dans la bande de conduction	2.8×10^{19}
<i>N</i> ν (cm ⁻³)	La densité d'état efficace dans la bande de valence	1.04×10^{17}
μ_n (cm ² /Vs)	La mobilité des électrons	1500
$\frac{\mu_p}{(cm^2/Vs)}$	La mobilité des trous	450
$v_{the}(cm/s)$	La vitesse thermique des électrons	10 ⁷
$v_{thh} (cm/s)$	La vitesse thermique des trous	10 ⁷
T (K)	Température	300

Tableau III.1 : Paramètres physiques du silicium introduits dans SCAPS.

a. La cellule solaire N-P :

Figure III.2 : Structure n-p de la cellule solaire en silicium cristallin avec logiciel SCAPS

Cette figure (III.2) montre un schéma de la cellule N-P en silicium. La région N éclairée qui constitue l'émetteur est à gauche et la région P plus épaisse, qui forme le collecteur est à droite.

Région	Epaisseurs (µm)	Dopage (cm ⁻³)
Emetteur	0.1	1E 16
Collecteur	70	1E 16

Les épaisseurs et le dopage choisis sont regroupés dans le tableau III.2

Tableau III.2 : Epaisseurs et dopage de la cellule solaire à base de Si [2]

b. Influence de l'épaisseur

Nous prenons la structure précédente, nous traitons la couche de n-Si sous une température T= 300°K, le dopage d'émetteur N_D =1.000E+16(cm⁻³) car le dopage de la base est nécessairement faible de façon à minimiser la recombinaison des porteurs photo-générés. Nous varions l'épaisseur de d_E= 0.1µm jusqu'à d_E= 0.6 µm. Les résultats sont mentionnés dans les tableaux suivants :

Epaisseur(µm)	V _{oc} (v)	J_{sc} (Am/cm ²)	FF%	η %
0.1	0.4433	41.8884	74.03	13.75
0.2	0.4381	42.1590	72.16	13.41
0.3	0.4292	36.1014	70.30	10.89
0.4	0.4146	24.9426	68.86	7.12
0.5	0.3946	14.6084	67.67	3.90
0.6	0.3708	7.8186	66.48	1.93

a. Sans défauts

Tableau III.3 : Les paramètres de sortie de la cellule à base de Si en fonction de l'épaisseur SCAPS.

Pour les valeurs d'épaisseur variant de 0,1 à 0,6 μm , on remarque une diminution du J_{sc}; Il passe de 41.8884 Am/cm² à 7.8186 Am/cm². Quant à la valeur de la tension, elle diminue ; elle varie entre 0.4433v et 0.3708 v. Concernant, le facteur de forme FF, il varie de 74.03% à 66.48%. on remarque que le rendement obtenu pour une épaisseur de 0.1 μ m est de 13.75% quant à l'épaisseur de 0.6 μ m, elle donne un rendement de 1.93 %. Cette différence de 0.5 μ m va engendrer une diminution de 11.82 % . Donc, les couches à très faible épaisseur sont les plus intéressantes et les plus attrayantes.

Epaisseur(µm)	$V_{oc}(v)$	$J_{sc}(Am/cm^2)$	FF%	η %
0.1	0.4286	41.87	59.26	10.64
0.2	0.4195	43.471	59.36	9.82

b. Avec défauts

0.3	0.4012	30.1254	40.12	7.88
0.4	0.3901	17.369	39.02	4.09
0.5	0.3741	11.157	37.41	2.01
0.6	0.3508	2.987	35.68	0.78

Tableau III.4 : Les paramètres de sortie de la cellule avec l'effet de l'épaisseur avec défaut dans SCAPS

Pour les valeurs d'épaisseur on remarque une augmentation du J_{sc} ; Il passe de 41.87 Am/cm² à 43.471Am/cm² et une diminution de 43.471Am/cm² à 2.987Am/cm².

Concernant le rendement obtenu, il est égal à 10.64% pour une épaisseur de 0.1μ m quant à l'épaisseur de 0.6 μ m, elle donne un rendement de 0.78 %. Nous concluons que plus l'épaisseur de la couche est faible, plus le rendement est meilleur.

Nous traçons les courbes des valeurs obtenues dans les tableaux en fonction de l'épaisseur pour vérifier son effet sur les paramètres de la cellule solaire. (Figure III.3)

Figure III.3 : Influence de l'épaisseur sur les performances de la cellule solaire sans défaut et avec défaut : (a) la tension du circuit ouvert, (b) le courant de court circuit, (c) la facteur de forme, (d) le rendement «SCAPS »

D'après ces figures : le rendement obtenu de la cellule solaire a base de Si pour « sans défauts » est de 13.75% à l'épaisseur de 0.1 μ m et pour « avec défauts », le rendement est de 10.64% à l'épaisseur 0.1 μ m.

La diminution très rapide est constatée quand l'épaisseur de l'émetteur a augmenté. On peut dire que l'augmentation de l'épaisseur de l'émetteur a une influence sur la profondeur de la zone des charges d'espace, cela veut dire que la profondeur de la zone des charges d'espace diminue car la probabilité de présence des électrons a diminué et par conséquent le I_{cc} diminue.

Dans le cas de la cellule « sans défauts », on remarque que les valeurs des paramètres ou caractéristiques électriques sont plus importants que dans le cas de la cellule « avec défauts ». Et c'est tout à fait justifié car cela est dû à la présence d'une barrière de potentiel dans la structure atomique qui stoppe et diminue la circulation électronique (électron ou trou).

c. Influence du dopage

Afin de connaitre l'influence du dopage, nous avons choisi de travailler à la température ambiante (T= 300°K). L'épaisseur de la couche de N-Si de la structure précédente est $d_E=0.1\mu m$. La concentration du dopage varie de $N_D = 1.000E + 10(cm^{-3})$ jusqu'à $N_D = 1.000E + 16(cm^{-3})$. Les résultats obtenus sont résumés dans les tableaux suivants pour les deux cas ; cellule « sans défauts » et cellule « avec défauts ».

$N_D(cm^{-3})$	V _{oc} (v)	$J_{sc}(Am/cm^2)$	FF%	η %
1E10	0.1725	40.1324	54.84	3.80
1E 12	0.2858	41.5841	68.21	8.11
1E 14	0.3959	41.8156	74.41	12.32
1E 16	0.4433	41.8884	74.03	13.75

a. Sans défauts

Tableau III.5 : Les paramètres de sortie de la cellule avec l'effet du dopage ND de sans défaut dans SCAPS.

Nous avons noté que le meilleur résultat est donné pour un dopage fort 1E 16. Effectivement, le rendement est égale à la valeur de 13,75% par contre on a un léger décalage concernant le facteur de forme.

$N_D(cm^{-3})$	V _{oc} (v)	$J_{sc}(Am/cm^2)$	FF%	η %
1E 10	0.009	10.235	19.19	1.76
1E 12	0.028	12.02	21.87	7.36
1E 14	0.022	13.833	43.05	11.21
1E 16	0.03	26.246	43.58	13.10

b. Avec défauts

Tableau III.6 : Les paramètres de sortie de la cellule avec l'effet du dopage ND de avec défaut dans SCAPS.

Dans le cas de notre test sur la cellule « avec défauts », le meilleur résultat est donné pour un dopage fort 1E 16. Et le rendement est égal à la valeur de 13,10%.

Le tracé des courbes des caractéristiques électriques en fonction du dopage est donné par la (Figure III.4)

Figure III.4 : Influence de dopage sur les performances de la cellule solaire sans défaut et avec défaut : (a) la tension du circuit ouvert, (b) le courant de court circuit, (c) la facteur de forme, (d) le rendement «SCAPS »

D'après ces figures : le rendement obtenu de la cellule solaire à base de Si pour « sans défauts » est de 13.75% de dopage N_D = 1E16 cm⁻³ et pour « avec défauts » le rendement est égale à 13.10% pour un dopage N_D = 1E16 cm⁻³.

L'augmentation de dopage permet une amélioration remarquable du rendement de conversion de la structure. En effet, avec l'augmentation de dopage, la durée de vie des porteurs minoritaires et la mobilité augmentent. Nous avons constaté que le rendement augmente malgré la grande présence des impuretés.

Donc les distorsions provoquées dans le réseau sont suite à l'introduction d'impuretés (dopage) et à l'augmentation de la concentration des électrons libres.

Notre étude basée sur une simulation numérique de cellule solaire à base de Si a pour but de trouver des paramètres technologiques optimaux en variant l'épaisseur et le dopage de cellule dans les deux cas : « sans défaut » et « avec défauts ». Nous avons voulu complémenter nos résultats avec un autre logiciel ; le logiciel SILVACO-ATLAS

1.2 Détermination des caractéristiques de la cellule solaire avec le Logiciel SILVACO

a. La Cellule solaire N-P à base de Si :

Figure III.5 : Structure n-p de la cellule solaire en silicium cristallin avec logiciel SILVACO.

La simulation de cette structure (N) Si/(P) Si par SILVACO, nous a permis d'obtenir la caractéristique I-V. Celle-ci nous a donné les différentes caractéristiques électriques (ICC, VCO, PM et FF) représentés dans la section suivante.

b. La caractéristique J-V

La figure montre les résultats de la simulation de caractéristique J-V sur la cellule Si « sans défauts » et « avec défauts »:

Figure III.6 : Caractéristique J(v) de la cellule solaire sous éclairement avec logiciel SILVACO.

D'après la figure III.6, nous avons obtenu une puissance maximale pour la cellule solaire à base de Si « sans défauts ». On peut expliquer cela par le fait qu'au niveau de l'arrangement des atomes, il n y a pas d'impuretés donc, les électrons se déplacent facilement sans aucune barrière de potentiel.par contre dans la cellule à base de Si « avec défauts » les impuretés sont liées à la barrière de potentiel. Elles empêchent le déplacement des électrons, donc la puissance délivrée par la cellule se voit diminuer.

	V _{oc} (v)	J_{sc} (Am/cm ²)	FF%	η %
[2]	33.68	0.500	79.49	13.41
Notre travail (Sans défaut)	0.4433	41.8884	74.03	13.75
Avec travail (Avec défaut)	0.4286	41.87	59.26	10.64

Tableau III.7 : Paramètres de sortie de la cellule.

2. Détermination des caractéristiques de la cellule solaire en couche mince à base de ZnO

Dans notre travail nous avons opté pour un autre matériau le ZnO. En effet, l'oxyde de zinc est un matériau connu et utilisé depuis très longtemps à diverses fins. L'application la plus connue de l'oxyde de zinc est son utilisation systématique dans les toitures. Actuellement, l'industrie de la peinture, les cosmétiques, etc., utilisent encore ce matériau dont on produit des dizaines de milliers de tonnes par an.

2.1 Détermination des caractéristiques de la cellule solaire par le logiciel SCAPS

Nous nous proposons de simuler les propriétés essentielles d'une cellule à base de CIGS, elle contient une couche de type n-ZnO, une couche n-CdS et p-CIGS avec le logiciel SCAPS. Les paramètres physiques sont présentés dans le tableau III.8 [4]

Paramètres	Définition	ZnO	CdS	CIGS
Er	Permittivité relative	09	10	13.6
$E_g (eV)$	Gap d'énergie	3.3	2.4	1
X (eV)	Affinité électronique	4.45	4	4.5
$N_{\rm c}({\rm cm}^{-3})$	La densité d'état efficace dans la bande de conduction	2.200E+18	2.200E+18	2.200E+18
ν (cm ⁻³)	La densité d'état efficace dans la bande de valence	1.800E+19	1.800E+19	1.800E+19
$\frac{\mu_n}{(cm^2/Vs)}$	La mobilité des électrons	1.000E+2	1.000E+2	1.000E+2
$\frac{\mu_p}{(cm^2/Vs)}$	La mobilité des trous	2.500E+1	2.500E+1	2.500E+1
$v_{the}(cm/s)$	La vitesse thermique des électrons	1.000E +7	1.000E +7	1.000E +7
$v_{thh} (cm/s)$	La vitesse thermique des trous	1.000E +7	1.000E +7	1.000E +7
T (K)	Température	300	300	300

Tableau III.8 : Paramètres physiques du silicium introduits dans SCAPS.

a. Cellule solaire en couche mince de N-ZnO :

Figure III.7 : Schéma de la cellule solaire en couche mince de n-ZnO avec logiciel SCAPS

Contrairement au Si, le ZnO ne peut être utilisé seul dans une cellule solaire. Il est souvent combiné à d'autres matériaux. La figure III-7 montre un schéma de la structure composée de N-ZnO, N-CdS, P-CIGS.

Nous avons étudié l'effet de l'épaisseur et l'effet de dopage sur la couche mince de ZnO comme, on l'a fait pour la cellule solaire à base de Si. Ces variations ont un impact sur les paramètres de sortie de la cellule « sans défauts » et « avec défauts ».

Les épaisseurs et le dopage choisis sont regroupés dans le tableau III.9

Région	Epaisseurs (µm)	Dopage (cm ⁻³)
Emetteur	0.2	1E 18

Tableau III.9 : Epaisseurs et dopage de la cellule solaire en couche mince a base de ZnO

b. Influence de l'épaisseur

Nous prenons la structure précédente, nous traitons la couche de N-ZnO à la température T=300°K, le dopage d'émetteur est de N_D =1.000E+18(cm⁻³) et nous varions d'épaisseur de d_E =0.2µm jusqu'à d_E = 1.2 µm. Les résultats sont mentionnés dans les tableaux suivants :

Epaisseur(µm)	V _{oc} (v)	$J_{sc}(Am/cm^2)$	FF%	η %
0.2	0.6119	33.4129	79.81	16.32
0.4	0.6118	33.2764	79.81	16.26
0.6	0.6118	33.2026	79.86	16.22
0.8	0.6118	33.1489	79.86	16.19
1	0.6117	33.1056	79.87	16.17
1.2	0.6117	32.0690	79.87	16.15

a. Sans défauts

Tableau III.10 : Les paramètres de sortie de la cellule avec l'effet de l'épaisseur sans défaut dans SCAPS

Pour les valeurs d'épaisseur on remarque une diminution du J_{sc} ; Il passe de 33.4129 Am/cm² à 32.0690 Am/cm². Quant à la valeur de la tension, elle diminue ; elle varie entre 0.6119V et 0.6117V. Concernant, le facteur de forme FF, il varie de 79.81% à 79.87%. On remarque que le rendement obtenu pour une épaisseur de 0.2 μ m est de 16.32% quant à l'épaisseur de 1.2 μ m, elle donne un rendement de 16.15 %. Cette différence de 1 μ m va engendrer une diminution de 0.17%. Donc, les couches à très faible épaisseur sont les plus intéressantes et les plus attrayantes.

Epaisseur(µm)	V _{oc} (v)	$J_{sc}(Am/cm^2)$	FF%	η %
0.2	0.6119	33.2871	79.91	16.27
0.4	0.6118	33.1676	79.92	16.22
0.6	0.6117	33.1012	79.93	16.18
0.8	0.6117	33.0487	79.94	16.16

b. Avec défauts

1	0.6116	33.0045	79.94	16.14
1.2	0.6115	32.9663	79.95	16.12

Tableau III.11 : Les paramètres de sortie de la cellule avec l'effet de l'épaisseur avec défaut dans SCAPS.

On remarque aussi, que le rendement obtenu pour une épaisseur de $0.2 \,\mu$ m est de 16.27% quant à l'épaisseur de $1.2 \,\mu$ m, elle donne un rendement de $16.12 \,\%$. Donc, les couches à très faible épaisseur donnent un meilleur rendement.

Nous traçons les courbes des valeurs obtenues dans les tableaux en fonction de l'épaisseur pour vérifier son effet sur les paramètres de la cellule solaire en couche mince de ZnO. (Figure III.10)

Figure III.8 : Influence de l'épaisseur sur les performances de la cellule solaire sans défaut et avec défaut : (a) la tension du circuit ouvert, (b) le courant de court circuit, (c) la facteur de forme, (d) le rendement «SCAPS »

D'après ces figures : le rendement obtenu de la cellule solaire en couche mince à base de ZnO pour « sans défauts » est de 16.32% de l'épaisseur $0.2 \,\mu$ m et pour « avec défauts » donne un rendement de 16.27% de l'épaisseur $0.2 \,\mu$ m. Plus l'épaisseur diminue, plus nous aurons un rendement, une tension de circuit ouvert et une intensité de court-circuit élevés.

L'augmentation de l'épaisseur influe sur la création des paires électron-trou, d'où la diminution du rendement (une dégradation de 16.32% à 16.15% « sans défauts » et 16.27% à 16.12% « avec défauts ».

En outre, quand la couche ZnO est très épaisse, la performance de cellules se dégrade en raison d'une part de l'augmentation de la résistance en série (augmentation des pertes), et d'autre part de l'épaisseur de la couche. Plus l'épaisseur diminue, plus l'absorption augmente. Par conséquent une épaisseur optimale de la couche ZnO est nécessaire pour la meilleure performance de la cellule solaire d'où la nécessité de vérifier nos résultats avec l'expérience.

c. Influence du dopage

Nous prenons la structure précédente, nous traitons la couche de n-Si à la température T=300°K, l'épaisseur est $d_E=0.2\mu m$. Nous varions la concentration du dopage N_D =1.000E+18(cm⁻³) jusqu'à N_D =1.000E+23(cm⁻³). Les résultats obtenus sont mentionnés dans les tableaux suivants.

a. Sans défauts

$N_D(cm^{-3})$	V _{oc} (v)	$J_{sc}(Am/cm^2)$	FF%	η %
1E 18	0.6119	33.4129	79.91	16.32
1E 19	0.6120	33.4844	80.15	16.42
1E 20	0.6122	33.5722	80.32	16.50
1E 21	0.6123	33.6610	80.42	16.57
1E 22	0.6123	33.7320	80.46	16.62
1E 23	0.6124	33.7713	80.47	16.64

Tableau III.12 : Les paramètres de sortie de la cellule avec l'effet du dopage ND de sans défaut dans SCAPS.

Nous avons noté que le meilleur résultat est donné pour un dopage fort 1E 23. Le rendement obtenu est égal à la valeur de 16,64%

$N_D(cm^{-3})$	V _{oc} (v)	$J_{sc}(Am/cm^2)$	FF%	η %
1E 18	0.6119	33.2871	79.81	16.27
1E 19	0.6120	33.3615	80.10	16.36
1E 20	0.6121	33.4400	80.29	16.44
1E 21	0.6121	33.5161	80.40	16.50
1E 22	0.6122	33.5774	80.45	16.54
1E 23	0.6122	33.6053	80.47	16.56

b. Avec défauts

Tableau III.13 : Les paramètres de sortie de la cellule avec l'effet du dopage *ND* de sans défaut dans SCAPS.

Dans le cas de notre test sur la cellule « avec défauts », le meilleur résultat est donné pour un dopage fort 1E 23. Le rendement correspondant est égal à la valeur de 16,56%.

Le tracé des courbes des résultats obtenus en fonction de la variation de dopage pour vérifier l'effet de cette dernière sur les paramètres d'une couche de ZnO composant la cellule photovoltaïque est donné par la Figure III.11.

Figure III.9 : Influence de dopage sur les performances de la cellule solaire sans défaut et avec défaut : (a) la tension du circuit ouvert, (b) le courant de court circuit, (c) la facteur de forme, (d) le rendement «SCAPS »

Nous constatons d'après les graphes que plus la concentration du dopage augmente, plus les V_{oc} , J_{sc} , FF et η augmentent. On peut expliquer ceci par ce qui suit : on sait que les caractéristiques des matériaux semi-conducteurs sont fortement influencées par les impuretés ou les défauts. Ces derniers sont ajoutés pour augmenter la conductivité électrique ou le contrôle de la durée de vie. C'est à partir de cette concentration que l'augmentation du nombre des dopants peut améliorer la collecte des porteurs photo-générés et par conséquent favorise l'augmentation du rendement électrique. On conclut que l'augmentation du niveau de dopage donne une amélioration importante du rendement. Un matériau fortement dopé permet de réduire la recombinaison au niveau du contact metallique. Ceci est dû à la création de la barrière de potentiel causé par la différence du dopage entre la face arrière et avant de la cellule.

Nous complétons notre étude avec le logiciel SILVACO-ATLAS

2.2 Détermination des caractéristiques de la cellule solaire logiciel SILVACO

a. Cellule solaire en couche mince de n-ZnO :

Figure III.10 : Structure de la cellule solaire en couche mince de ZnO avec le logiciel SILVACOL

la simulation de cette structure (N) ZnO/(N)CdS/(P) CIGS par SILVACO, nous a permis d'obtenir la caractéristique I-V. Celle-ci nous a donné les différentes caractéristiques électriques (ICC, VCO, PM et FF). Elles sont présentées dans la section suivante.

b. La caractéristique I-V

La figure suivante montre les résultats de la simulation de la caractéristique I-V sur la cellule ZnO « sans défauts » et « avec défauts ». Pour de dopage 1E18 cm⁻³ et l'épaisseur 0.2 μ m de la couche mince en ZnO. Le courant reste stable jusqu'à la valeur avoisinante de 2,85V (point de flexion).

Figure III.11 : Caractéristique J(v) de la cellule solaire sous éclairement avec le logiciel SILVACO

Les paramètres de sortie de la cellule sont résumés dans le tableau III.14.

	V _{oc} (v)	J_{cc} (Am/cm ²)	FF%	⊡⁄₀
[5]	0.58	31,90	68.10	16.83
Notre travail « Sans défauts »	0.6119	33.4129	79.81	16.32
Notre travail « Avec défauts »	0.6119	33.2871	79.92	16.27

Tableau III.14: Paramètres de sortie de la cellule à base de ZnO.

En comparant nos résultats avec la littérature, nous remarquons que nos paramètres de V_{oc} , J_{cc} , et FF sont meilleurs par contre le rendement trouvé est inférieur.

3. Etude comparative

3.1 Etude comparative entre la cellule solaire à base de Si et la cellule solaire en couche mince à base de ZnO

Figure III.12 : Etude comparative entre la cellule solaire a base de Si et la cellule solaire en couche mince a base de ZnO

On établit un tableau permettant la comparaison des grandeurs photovoltaïques des cellules solaires à base de Si et de couches minces de ZnO.

Grandeurs	La cellule solaire a base de		La couche mince a base de	
photovoltaïques	Si		ZnO	
	Sans défaut	Avec défaut	Sans défaut	Avec défaut
V _{oc} (v)	0.4433	0.03	0.6124	0.6122
J_{sc} (Am/cm ²)	41.8884	26.246	33.7713	33.6053
FF%	74.03	43.58	80.47	80.47
η%	13.75	13.10	16.64	16.56

Tableau III.15 : Etude comparatives des paramètres électriques avec défaut et sans défaut

On observe que le rendement de la cellule solaire à base de Si est inferieur à celle cellule en couche mince a base de ZnO soit sans défaut ou avec défaut. Ceci représente le grand défi au futur.

III. Conclusion

Le présent chapitre se divise en trois parties :

Tous d'abord, nous avons utilisé le logiciel de simulation SCAPS et le logiciel de simulation SILVACO. Ces deux logiciels permettent de simuler n'importe qu'elle structure photovoltaïque selon les matériaux disponibles.

Dans les premières et deuxièmes parties on a simulé deux cellules photovoltaïques la première à base de Si et la deuxième en couche mince à base de ZnO. Travail réalisé dans l'objectif de trouver les paramètres optimaux de la cellule solaire. En varient l'épaisseur et le dopage, nous avons obtenu les résultats suivants :

1- Cellule solaire à base de Si

Sans défaut

- $V_{oc} = 0.4433 v$, $J_{sc} = 41.8884 Am/cm^2$, FF =74.03 %, $\Box = 13.75\%$ > Avec défaut
- $V_{oc} = 0.03 v$, $J_{sc} = 26.246 \text{ Am/cm}^2$, FF =43.58 %, $\Box = 13.10\%$

```
2- Cellule solaire en couches minces à base de ZnO
```

```
Sans défaut
```

 $V_{oc} = 0.6124 v$, $J_{sc} = 33.7713 Am/cm^2$, FF = 80.47 %, $\Box = 16.64\%$

➢ Avec défaut

 $V_{oc} = 0.6122 v$, $J_{sc} = 33.6053 \text{ Am/cm}^2$, FF = 80.47 %, $\Box = 16.56\%$

La différence entre les deux cellules est présentée dans la troisième partie. Cette dernière consiste à établir une étude comparative entre les meilleures performances de sortie des deux cellules.

En conclusion, on peut dire qu'aux faibles dopages, le rendement est faible car le champ est insuffisant pour créer les paires électron-trou. En revanche, l'augmentation du nombre des dopants peut améliorer la collecte des porteurs photo-générés et par conséquent favorise l'augmentation du rendement électrique. L'augmentation du niveau de dopage donne, donc, une amélioration importante du rendement. Un matériau fortement dopé permet de réduire la recombinaison au niveau du contact métallique due à la création de la barrière de potentiel causé par la différence du dopage entre la face arrière et avant de la cellule.

IV. Références

- [1] http://pveducation.org/pvcdrom
- [2] R.Lakhdari, « Etude par simulation numérique de l'effet des défauts dans une cellule solaire N/P en silicium cristallin », Mémoire de Master, Biskra, 2014
- [3] A.Goetzberger, V.U.Hoffmann, « photovoltaic solar energy generation » Springer Series in optical sciences, 2005.
- [4] Y.Merabet, « Etude Des Caractéristiques Structurelles Des Couches Minces De ZnO. Application à une Cellule Photovoltaïque. », Mémoire de Master, Tlemcen, 2013
- [5] S.Mostefa Kara, « Etude Et Simulation De Cellules Photovoltaiques A Couches Minces A Base De CIS et CIGS », Mémoire de Magister, Tlemcen, 2012