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Abstract 
The aim of this work is the study of the description of 
ECG signals by the Wigner-Ville Distribution (WVD) in 
order to classify related pathologies. The major problem 
of the WVD is the interferences (cross-terms). The 
Smoothed Pseudo-Wigner-Ville Distribution (SPWVD) 
makes it possible to reduce these interferences by a 
suitable choice of two windows H and G and their 
corresponding sizes Lg and Lh. We propose here a 
classification method based on the SPWVD and the 
nearest representative decision rule, the latter requires 
the choice of a distance and the definition of a 
representative for each training class. Two beat classes 
were considered: normal beats (NOR) and premature 
ventricular beats (PVC). By using the MIT-BIH data-base, 
the method was tested on a set composed of more than 
80.000 beats. The best classification rate that we obtain is 
90,66%, this one was carried out by using only the first 
most discriminant coefficient.  
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1. Introduction 

 
Classification of electrocardiogram (ECG) is an important 
area in biomedical signal processing. Several algorithms 
have been developed for classification of ECG beats. 
These techniques use a variety of features to represent the 
ECG and a number of classification methods. Features 
include ECG morphology [1], [2], [3] heartbeat interval 
features [1], [2], [4], wavelet coefficients [5], [6], higher 
order cumulant features [7], and hermite polynomials [8]. 
Classifiers methods employed include linear 
discriminants [1], [6], [9], back propagation neural 
networks [6], [2], [7], self-organizing maps with learning 
vector quantization [11], and self-organizing networks 
[12]. 
 
A way to improve the classification performances consists 
in applying the decision rule to data whose representation 
space is characterised with a good discrimination between 
the signals of different classes. Aim of this work is the 
study of the classification performances of the ECG beats 
according to the discrimination which can be provided by 
the smoothed pseudo-Wigner-Ville distribution. The 
method used is based on the nearest representative 

decision rule, the relevance of this one is firstly related on 
the choice of the distance used to measure the degree of 
resemblance between signals, and secondly to the 
definition adopted for the representative of each training 
class. 
 
2. Electrocardiogram 

 
An ECG is a recording of the activity of the heart, it is 
composed mainly of deflections set (Fig1): a P wave , a 
set of three waves Q, R, S called QRS complex, and a 
wave T. the P wave  translates the atrial activity and, the 
QRS complex and the T wave translates the ventricular 
activity. The heart diseases are represented on the ECG by 
deflections whose morphology, amplitude or duration, are 
completely or partially abnormal. 
 

Fig.1: A normal ECG beat  
 

3. Wigner-Ville Distribution 
 
3.1. Definition  
 
For a finite energy signal, the Wigner-Ville distribution 
(WVD) [10] is defined as:   
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This distribution provides a time-frequency representation 
of the signal x with any restriction on the time and 
frequency resolutions, because the windowing will be 
made in an autonomous way with the signal itself [11].  
An interpretation of this expression can be found in terms 
of probability density: expression (1) is the Fourier 
transform of an acceptable form of characteristic function 
for the distribution of the energy [10]. 
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3.2. Interferences 
 

The major disadvantage of the DWV is the presence of 
interferences terms (or cross-terms) (see Fig.3 and Fig.4). 
As the WVD is a bilinear function of the signal x the 
quadratic superposition principle applies: 
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3.3. Interference reduction 
 
The discrete version of the WVD may be affected by a 
spectral aliasing (Fig.2), in particular if the signal x is 
real-valued and sampled at the Nyquist rate. To resole this 
problem we can use the analytic signal. Indeed, as its 
bandwidth is half the one of the real signal the aliasing 
will not take place in the useful spectral domain of this 
signal. This solution presents another advantage: since the 
spectral domain is divided by two, the number of 
components in the time-frequency plane is also divided by 
two. Consequently, the number of interference terms 
decreases significantly (Fig. 3). We recall that the analytic 
signal is calculated by applying the Hilbert transform (HT) 
to the real signal. 
To reduce the importance of the interferences terms 
remaining after the use of the Hilbert transform we carry 
out a double smoothing: of the WVD: in time and in 
frequency, the first is controlled by the window h; the 
second is controlled by the window g, we obtain the 
smoothed pseudo-Wigner-Ville distribution (DPWVL)  
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4. Classifier 
 
In order to evaluate the relevance of such representation 
in ECG signals classification a method based on the 
nearest representative decision rule is implemented [13]. 
This rule requires the choice of a distance (D) and the 
definition of an element representing (prototype) for each 
training class. We concentrate on the classification of 
normal (NOR) and abnormal PVC beats.  
To reduce the computing time a dimensionality reduction 
is strongly desirable, this one can be carried out by 
calculating the Fisher contrast of the time-frequency 
image provided by the WVD or SPWVD. In the case of 
two classes (NOR and PVC) the Fisher contrast is given 
by: 
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With 
)c(

),t(W ν is the average of the normalised WVD of 

training signals of the class C and 
)c(

),t(W ν its variance. In 

the case of several classes the reader can refer to [13].  
 

 
Fig. 2 : WVD of a normal ECG beat without TH 

 
Fig. 3 : WVD of a normal ECG beat with TH 

 
Fig. 4: SPWVD of a normal ECG beat with TH 

 
By calculating the Fisher contrast for all the coordinates 
we obtain a contrast map, the dimensionality reduction 
consists in building the classifier on the first most 
discriminant co-ordinates (of stronger contrasts) indicated 
by MDC (Most Discriminant Coordinates).  
 
Each class (c) is represented by the MDC coefficients of 
the average of normalised WVD (or SPWVD) of 

corresponding signals, i.e, .W
)c(

)MDC( (or
)c(

)MDC(PWL ). 
By using the nearest representative rule, an unknown 
signal x, is affected to the class of which the 
representative is nearest (within the meaning of the 
distance D). 
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where represents the MDC coefficients of the 
WVD normalized of beat x. The distances which were 
studied are: 
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2) Symmetrical relative entropy or (J-divergence) 
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For more details about the distances the reader can refer 
to [14]: 
 
5. Data description 
 
ECG signals used were randomly selected from the MIT-
BIH Arrhythmia Database [15], which contains 48 
recordings, each containing two 30-min ECG lead signals 
(denoted lead A and B) The data are bandpass filtered at 
0.1–100 Hz and sampled at 360 Hz. There are over 109 
000 labeled ventricular beats from 15 different heartbeat 
types. To implement our classification procedure we 
worked out three sets of signals (derivation A) 
EA: Training set: formed starting from 31 recordings 
ETR: Reduced Test set: formed starting from 30 
recordings. 
ETE: Extended Test set, it gathers all the NOR and PVC 
beats of MIT-BIH database, excluded those which are 
used in EA (47 recordings were used). 
 

Sets  NOR PVC Total 

EA 300  200 500 
ETR 300  200 500 
ETE 74708  6928 81636 

Tab 1 : Sets of ECG signals extracted from MIT-BIH 
database 

 
6. Preprocessing 
 
This study did not investigate the problem of heartbeat 
detection from the ECG; instead we have utilized the 
heartbeat fiducial point times provided with the MIT-BIH 
arrhythmia database. Each beat ECG will be represented 
on a segment of 100 points, by taking the point 
corresponding to the peak R and 49 points and 50 points 
respectively on the left and on the right of R. then they are 
centered by removing the mean value. 
 
7. Results 
 
To study the influence of the interferences terms on the 
classification performances, these last were evaluated on 
ETR set by using the DWV with and without Hilbert 
transform. The results are presented in tables 2 and 3. The 
classification rates are calculated according to first MDC 

coefficient, this choice will be justified later. These results 
showed that the use of the Hilbert transform gave a light 
improvement of the total classification rate (especially in 
the case of the quadratic distance). Moreover a relatively 
important change is marked in the classification rate of 
each class separately, which translates the influence of the 
Hilbert transform on the discrimination power of the time-
frequency representation provided by WVD. 
 

Accuracy (%) 
Distances 

NOR PVC Average
Q 79,66 84,50 81,60 
J 84 81,50 83 

Tab. 2 : Classification performances 
 (WVD without HT, ETR set) 

 
Accuracy (%) 

Distances 
NOR PVC Average

Q 87,33 76,50 83 
J 89 75 83,4 

Tab. 3 : Classification performances 
 (WVD with HT, ETR set) 

 
DPWVL offers several choices of configuration, in this 
case the research of the optimal classification procedure 
passes by the determination of the five parameters (h, Lh, 
g, Lg, distance D) leading to best discrimination between 
the NOR and PVC classes. Tables 4 and 5 present the best 
classification performances obtained by examining 16 
types of window for various combinations (Lh, Lg), the 
two windows h and g were taken of the same type. The 
experiments showed that the classification rate remains 
roughly unchanged whatever the number of MDC 
coefficient considered. Thus one can be satisfied by using 
the first coefficient to build the classifier. 
 

Accuracy (%) 
Distances

NOR PVC Average
Windows 

Q 93,33 95 94  h : Dolph, Lh: 11 
 g : Dolph, Lg: 47 

J 95,33 94 94,8  h : Parzen, Lh: 5  
 g : Parzen, Lg: 69

Tab. 4: Best performances 
(SPWVD without HT, ETR set) 

 
Accuracy (%) 

Distances
NOR PVC Average

Windows 

Q 98 82,33 91,8  h : Parzen, Lh: 7 
 g : Parzen, Lg: 83 

J 98,33 82,5 92  h : Nutbess, Lh: 5  
 g : Nutbess, Lg: 65

Tab. 5: Best performances 
(SPWVD with HT, ETR set) 

 
 



The performances obtained by using the SPWVD (that it 
is with or without Hilbert transform) are definitely better 
than those obtained by the not smoothed WVD. This can 
lead us to believe that the suppression of the interferences 
terms always gives a better discrimination; indeed, this 
conclusion is not exact for two reasons: 
1) The smoothing which gave a good discrimination did 
not give a good legibility; this situation is illustrated by 
the figure 5  
2) The discrimination obtained by the DPWVL without 
transform of Hilbert is better with that obtained with 
transform of Hilbert although the latter makes it possible 
to reduce the number of the terms of interferences. 
 

 

 
Fig. 5: SPWVD of a normal ECG beat 

(a): good legibility (b): good discrimination 
 
In our context, the suppression of the interferences terms 
is not an objective, because these interferences contain 
information which can be discriminating like the phase of 
the various components [16]. Thus one does not have to 
expect that the interferences disappear when the goal is 
discrimination. However in practice smoothing aiming at 
obtaining a good discrimination, generally leads to a 
partial or total suppression of the interferences terms, but 
that must be understood like a side effect of the adopted 
choice. 
In order to evaluate the generalization capacity of our 
classifier, the best configuration thus obtained (SPWVD 
without HT, h (Parzen, 5) g (Parzen, 69), symmetrical 
relative entropy) is tested on ETE set (81636 ECG beat). 
The results are indicated in table 6; they show a light 
reduction in classification rate, which proves the good 
generalization of the classifier with respect to the statistics 
of the considered classes (NOR, PVC). 
 

 NOR PVC Average

Accuracy (%) 90,7 96,98 90,66 

Tab 6: Results test on the ETE set  
 

It is interesting in the question of our work to highlight a 
point related to the decision nature taken by the decision 
rules based on the distances and more particularly that 
which is used in this study:  the nearest representative rule.  
In general, the value of distance measured between two 
signals does not reflect necessarily in all the cases the 
morphological resemblance degree between them. To 
clarify this idea we have to synthesize the example 
illustrated by the figure 6, if we calculate the quadratic 
distance between the signal to be classified and the two 
prototypes 1 and 2, it is found that the nearest 
representative rule assigns the signal to the class 
represented by prototype 1 while the morphology of the 
signal to be classified is closer with that to prototype 2.  
This false decision was also obtained for the symmetrical 
relative entropy.   

 
Fig.6:  Synthetic signals illustrating the limitation of the 

decision rule based on the distances:  the signal 
morphology to be classified is nearer with the prototype2 

but in term of distance becomes closer with the 
prototype1qui has a different morphology 

 
8. Conclusion 
 
In this work we studied a classification method based on 
the extraction of the relevant parameters of the smoothed 
pseudo-Wigner-Ville distribution in order to classify two 
types of ECG beats (Normal and PVC). The method 
allowed a strong dimensionality reduction of the problem 
while carrying out satisfactory performances. The 
experiments also showed the importance of the couple 
choice (representation, distance) to have good 
performances. 
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