LISTE DE FIGURES

CHAPITRE I

Figure I.1 : Représentation graphique des spectres AM0 et AM1.5	
Figure I.2 : Transitions inter-bandes d'électrons dans un semi-conducteur4	
Figure I.3 : Coefficient d'absorption du silicium et profondeur de pénétration5	
Figure I.4 : L'effet photovoltaïque7	
Figure I.5 : Structure (a) et diagramme de bande (b) d'une cellule photovoltaïque. Les7	
Figure I.6 : Principales pertes intrinsèques pour une cellule photovoltaïque en silicium	
Figure I.7 : Rendement quantique externe d'une cellule photovoltaïque11	
Figure I.8 : Schéma électrique équivalent d'une cellule photovoltaïque12	,
FigureI.9 : Jonction P-N	
Figure I .10 : Jonction P-N	
Figure I.12 : La caractéristique d'une cellule photovoltaïque non éclairée est celle en14	
Figure I.13 : les différentes zones de caractéristique I=f(V) d'une cellule photovoltaïque15	
Figure I.14 : Schéma électrique d'une cellule photovoltaïque en court-circuit16	
Figure I.15 : Schéma électrique d'une cellule Photovoltaïque en circuit ouvert16	
Figure I .16 : détermination graphique de résistance shunt Et série17	
Figure I .17: La caractéristique de I=f(V) en fonction de température	
Figure I.18 : La caractéristique de P= f(V) en fonction de température	
Figure I.19 : La caractéristique I=f(v) en fonction de l'éclairement	
Figure I .20 : La caractéristique P=f(v) en fonction de l'éclairement19	
Figure I .21: Caractéristique courant tension de Ns cellule en série	1
Figure I .22 : Caractéristique courant tension de (Np) cellule en parallèle	I
Figure I.23 : Types de cellules photovoltaïques. (A) silicium monocristallin,	

Figure I-24 : Maille élémentaire d'un cristal de silicium	22
Figure I. 25. Principe de la cellule à hétérojonction [17]	22
Figure I. 26. Schéma de principe d'un concentrateur photovoltaïque [17]	24
Figure I. 27. Schéma de principe d'une cellule organique [17]	25
Figure I. 28. Cellule solaire tout	26
Figure I. 29. Procédé technologique de dépôt chimique nommé PECVD [17]	27
Figure I. 30Schéma de principe d'une cellule à base de silicium amorphe27	
Figure I. 31. Schéma simplifié d'un module a-Si en couche mince	28
Figure I. 32. Principaux nano-objets 1D : les nano fils, les nanotubes, les nano bâtonnets	31
Figure I. 33. Evolusion théorique et expérimentale de ZT	31

CHAPITRE II :

Figure II-1: Les deux approches de fabrication de nanostructures	
Figure II-2: Les trois principaux modes de croissance des nanostructures	
Figure II-3: Schéma de principe de l'ablation laser	
Figure II-4:Image TEM de nano fils de silicium élaboré par ablation laser [24]	
Figure II-5: Schéma de principe de l'épitaxie par jet moléculaire (MBE)	
Figure II-6 : Schéma des étapes utilisées lors du processus MBE, et les images MEB	
Figure II-7: Images MEB de nanotubes de carbone et nano fils de silicium obtenus,	
Figure II-8: Schéma descriptif du réacteur PECVD,	40
Figure II-9: Digramme de phase binaire (Au-Si)[31]	41
Figure II-10: Précipitation d'un nano fil par le mode de croissance VLS [31]	
Figure I-11: A) Image MEB des nano fils de silicium synthétisés par VLS, B) un nano fil	
Figure II-12: Vue schématique de la réalisation de nano fils hétéro structurés par VLS	
(a) l'incorporation préférentielle d'un réactif mène à la croissance axiale 1D ;	
Figure II-13 : Représentation schématique du mécanisme de croissance VSS	44

Figure II-14: Image MEB de nano fils de silicium obtenus par croissance VSS
Figure II-15: Représentation schématique du mécanisme de croissance SLS
Figure II-16 : Image MEB de nano fils de silicium obtenus par SLS45
Figure II-17 : (a-d) Image MET (a) de nano fil de Si obtenus par croissance assistée
Figure II-18 :(a) Principe de la photolithographie, (b) Elaboration de nano fils
Figure II-20: (a) Gravure Isotrope et (b) Gravure Anisotrope
Figure II-21: Gravure de silicium dans une solution aqueuse à base d'HF52
Figure II.22 (a) Transistor conventionnel à effet de champ (MOSFET)
par la grille. (d) Transitor MOS à grille en face arrière à canal nanofil
Figure II.23 détection d'un virus à l'aide d'un MOSFET à canal nano fil56
Figure II.24- (a)Cellule solaire à nano fil unique à jonction radiale p-i-n

CHAPITRE III :

Figure III 1 – Schéma de la cellule solaire à nano fils. Les différentes couches60
Figure III.2 – Images SEM d'une cellule à nano fils avec les couches de a62
Figure III.3 – Image SEM d'une cellule à nano fils qui montre la variation d'épaisseur62
Figure III.4 – Schéma de la cellule solaire à nano fil vue de haut, avec la grille63
Figure III.5 – Images SEM de la cellule finale sur (a) une zone sans grille et (b) sur une zone64
Figure III.6 – Caractéristique courant-tension de la cellule à nano fils
Figure III.7 – (a) Caractéristique courant-tension de la cellule à nano fils sous obscurité64
Figure III.8 – Mesures de réflectivité de la cellule à nano fils comparée à un substrat d66
Figure III.9 – Mesure de rendement quantique (a) externe et (b) interne de la cellule67
Figure III.10 – Diffusion de la lumière par un fil de longueur infinie
Figure III.11 (a) Section transversale d'un nanofil coaxial de cœur Si

Figure III.12. (a) Efficacités d'absorption QscaUP et QscaUP de diffusion de la lumière76
Figure III.13 – (a) Spectre d'efficacité d'absorption d'un nanofil77
Figure III.14 – Idem mais pour un nanofil cœur/gain Si/Ge
Figure III.15 – Variation de la valeur t de l'épaisseur de la gaine
Figure III.16: Structure de la cellule de référence simulée sous Microvolt
Figure III.17.1a simulation de nano fils avec un profil de génération substitué
Figure III.18. Maillages qu'utilises dans la modélisation 3D de nano fils
Figure III.19. Nano fil Utilisation de coordonnées radiales
Figure III.20. Evolution de la caractéristique I-V en fonction de la largeur
Figure III.21. Evolution du rendement de la cellule en fonction la longueur des nan fils
Figure III.22 Evolution du courant de court-circuit (a), de la tension de circuit
Figure III.23 Evolution du rendement de la cellule en fonction du dopage du substrat Pour la cellule de référence et pour deux diamètres
Figure III.24. Schéma de la cellule p-i-n simulée
Figure III.25. Variation des caractéristiques de la cellule p-i-n en fonction de l'épaisseur de la couche intrinsèque : (a) le courant de court-circuit JSC, (b) la tension en circuit-ouvert VOC, (c) le facteur de forme (FF) et (d) l'efficacité
Figure III.26. Variation de la réponse spectrale de la cellule p-i-n en fonction de l'épaisseur de la90
Figure III.27. Variation des caractéristiques de la cellule p-i-n en fonction de l'épaisseur de92
Figure III.28. Variation de la réponse spectrale de la cellule p-i-n en fonction de l'épaisseur de la92
Figure III.29. Variation des caractéristiques de la cellule p-i-n en fonction de l'épaisseur de la94
Figure III.30. Variation de la réponse spectrale de la cellule p-i-n en fonction de l'épaisseur de94
Figure III.31. Variation des caractéristiques de la cellule p-i-n en fonction du gap de la couche pnc-Si:H
Figure III.33. Diagramme de bande d'énergie de la cellule p-i-n
Figure III.34. Diagrammes de bande d'énergie de la cellule p-i-n pour différentes valeurs du gap98
Figure III.35. Variation des caractéristiques de la cellule p-i-n en fonction du gap de la couche99
Figure III.36. Diagrammes de bande d'énergie de la cellule p-i-n pour différentes valeurs du gap100
Figure III.37. Variation des caractéristiques de la cellule p-i-n en fonction du gap de la couche101
Figure III.38. Variation de la réponse spectrale de la cellule p-i-n en fonction du gap de la couche102

Figure III.39. Diagrammes de bande d'énergie de la cellule p-i-n pour différentes valeurs du gap de
la102