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Abstract : Finite Element Time Domain Method is 
used to determine  the intrinsic elements of a broad-
band small-signal equivalent circuit (SSEC) of FET’s. 
The values of the differents elements are calculated 
from the Y parameters of the intrinsic MESFET, which 
are obtained from the Fourier analysis of the device 
transient reponse to voltage-step perturbations at the 
drain and gate electrodes. The success of this analysis 
depends crucially on the accuracy of the values 
calculated for the instantaneous currents at the 
electrodes during the transient. As application we have 
determined the SSEC for the case of a vertical drain 
and source contacts GaAs MESFET’s. 
 

I. INTRODUCTION 
 
Usually, the SSEC of a FET’s is designed by choosing 
a topology, so that each element provides a lumped 
approximation to some physical aspect of the device. 
A SSEC which is commonly accepted is formed of 
fifteen different frequency-independent elements: 
eight of them corresponding to the external parasitic 
effects and normally considered independent of the 
bias point, and the other seven describing the intrinsic 
behavior of the FET and dependent on the biasing 
conditions. In this paper we describe a theoretical 
procedure to calculate the intrinsic elements of the 
FET SSEC starting from the Y parameters obtained by 
using of a Finite Element Method (FEM) simulation. 
The FEM includes all the mechanisms relevant to the 
transport in small semiconductor devices (non-
stationary effects, velocity overshoot, etc). 
For a given operating point, the Y parameters are 
obtained from the Fourier analysis of the device 
transient response to voltage-step perturbations at the 
drain and gate electrodes. The validity of the intrinsic 
SSEC proposed can be verified by checking the 
frequency dependence of the calculated elements.  

 
II. THEORETICAL ANALYSIS 

 
In this technique, we employ the Fourier 
decomposition of the FET response to transient 
excitations. Let us suppose that over the stationary 

operating point we apply a voltage-step perturbation 
of amplitude 'Vj at electrode j, and that Ii(t) is the 
current response at electrode i. the complex Yij 
parameter will be given by the relation between the 
Fourier components of both signals, and can be shown 
to be[1]: 
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where Ii(0) and Ii(f) are the stationary currents at 
electrode i before and after the voltage perturbation 
respectively. 
Figure 1 shows the small-signal equivalent circuit of 
the intrinsic FET, where Cds, Cgs and Cgd correspond 
to the drain-source, gate-source and gate-drain 
capacitances respectively. Ri is the resistance of the 
ohmic channel between the source and the gate. gm0 
represents the steady-state transconductance, and W the 
delay time of the transistor. gds is the drain 
conductance. 
For a given bias point, the elements of this intrinsic 
equivalent circuit can be obtained from the complex Y 
parameter corresponding to that point. 
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Figure 1 :Small-signal equivalent circuit of the intrinsic FET 



The Yij parameter will be given by a simple circuit 
analysis [2], [3]: 
In the following, i=1 will stand for the gate and i=2 
for the drain. 
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From these expressions, and separating the Y
parameters into their real and imaginary parts, the 
equivalent circuit elements can be found analytically: 
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The program used in simulation contains the 
implementation of Poisson’s equation and the current 
continuity equation in discrete form by the use of the 
finite element method [4]. A self consistent solution to 
the two equations is found by using a Scharfetter-
Gummel approach [5], where Poisson’s equation and 
current continuity equation are solved after each time 
step until the solution has converged. The classical 
semiconductor equations assume that the carrier 
velocities are an instantaneous function of the local 
electric field and that the mobility and diffusion 
coefficients are functions of electric field alone (some 
models take into account further temperature 
dependence).  

The choice of a suitable diffusivity model poses some 
fundamental problems. As is well know, for fields 
below the threshold field, the diffusivity can be 
defined through a generalized Einstein relationship: 
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where Kb is the Boltzmann coefficient  and Tn is the 
electron temperature assumed isotropic. 

This relationship becomes invalid for E>EC. In this 
case, the diffusivity may be modeled as an Einstein 
relation in lattice temperature T with one additional 
Gaussian term, to give [6]: 
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The diffusivity dependence on the electric field has 
been computed according to the relations (14) and 
(15). Figure 3 represents a comparison between these 
results  and those obtained from Monte Carlo 
simulations of Pozela and Reklaitis [7]. 

 

 

 

Figure 2: Several models of the diffusivity-electric field relation 
at room temperature 



 

III. RESULTS AND DISCUSSION 

The simulated results (MEF) of the current 
versus gate-voltage curves of the device (figure 3) 
compared with the meaured reults MEAS) [8] are 
shown in figure 4. A variable mesh spacing is used to 
optimize speed and accuracy of the solution (Figure 
4). The mesh spacing criteria was based on the 
potential difference between the mesh nodes. The 
space steps are restrained to a maximum of a Debye 
length in the active channel and for numerical stability 
it has been found that an average step width of around 
0,03 µm in the active channel is necessary for a 
doping level of 1.1016cm-3.

In order to achieve a physically meaningful solution, 
the time step 't is limited to less than the dielectric 
relaxation time and to avoid degrading the accuracy of 
the numerical solution, 't is usually selected to lie in 
the range (10 to 25) fs. 

 

Transient data 

The device was also analyzed with regard to 
their transient behaviors. In order to determine the 
four Y parameters, two excitations are needed: one in 
the gate voltage and the other in the drain voltage. It 
must be stressed that the voltage-step amplitude must 
be sufficiently small, so as to avoid harmonic 
excitation in the device response, and large enough to 
get significant variations in the currents that dominate 
over numerical and physical noise. We have applied 'V1=0.125V for the case of the gate and 'V2=0.5V 
for the case of the drain. 

Figure 5 illustrates the transient response of the gate 
and the drain currents at the bias point VGS=-1.0V, 
VDS=2.0V. 

A significant source current was found only during the 
first 1ps after the step was applied. This spike is 
proportional to the time derivative of the applied 
voltage perturbation and is pure displacement current. 
The correct evaluation of these current spikes is 
essential [1]. In our case this is assured by the value 
adopted for the time step (10fs) in the simulation, 
which is small enough to this purpose. The duration of 
the transient changes depending on the operating 
point. 

The intrinsic Y parameters were obtained from the 
transients of figure 8 by means of (1) and (2). 

The final step in this procedure is to apply (7)-(13) to 
the previous Y parameters in order to determine the 
values of the SSEC elements. The dependence on 
frequency of the intrinsic elements obtained in this 
way is shown in figure 6. Before averaging the 
parameters over frequency, we plot versus frequency 
the relative parameter, defined as an offset plus the 
parameter at frequency point divided by the average. 
With the exception of the transconductance which 
varies slightly according to the frequency and the 
channel resistance which starts to decrease from 32 
GHz. It can be observed that all of them are frequency 
constant at least-up to 55 GHz. This means that the 
proposed SSEC describes correctly the AC behavior 
of the MESFET for this bias point, where the drain 
current is not very high and the accumulation of 
carriers between the gate and the drain is not 
important. 

The value of cut-off frequency fT can be calculated by 
dividing gm by (Cgs+Cgd). 

We get fT=15. GHz. 

 

Figure 3: Two-dimensional cross section of a 0.5µm  
MESFET  geometry 

Figure  4 :Comparison of the simulated characteristics I-V 
with Finite Element Method  and  measured [8] 



CONCLUSION 

A finite element method for the calculation of the FET 
SSEC has been described and applied to MESFET’s. 
The method consists in the excitation of the different 
elements from the frequency dependent Y parameters 
of the intrinsic FET, obtained from the Fourier 
analysis of the device transient reponse to voltage 
perturbations at the terminals. finally, the finite 
element method, which uses a correcting factor to 
model the field-dependent diffusivity-to-mobility 
ratio, has been a powerful tool to check the validity of 
small-signal models.  

Figure 5 : Transient reponse in the gate and drain currents of 
MESFET to a voltage step of amplitude and applied at t=0 
over the stationary point corresponding to VGS=-1.2V, 
VDS=1.5V. (a) 'VGS=0.125V  ,  (b) 'VDS=0.5V 

Figure  6 : Elements of the intrinsic small-signal equivalent 
circuit at the working point in saturation corresponding to  
VGS=-1.V, VDS=2.V. (a) capacitances, (b) conductances, (c) 
intrinsic resistance and delay time. 
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