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Abstract 
We present in this work the efficiency of the wavelet transform, in exploring non-stationary signals such 
as those containing transients and discontinuities, and time varying spectra signals. We examine the non-
stationarity problem as well as the alternative solutions suggested to deal with like the time-frequency 
analysis. In this context, we have applied the continuous wavelet transform –CWT- to a set of classical 
types of signals showing each a particular feature and to a real signal, which is the electrocardiogram ECG 
signal to evaluate the CWT efficiency. The obtained results demonstrated the higher ability of the wavelet 
transform in localizing specified temporal and spectral features of a signal.   
 
Keywords: 
Wavelet transform, time-frequency analysis, ECG signal.  
 
1 Introduction 
By hearing the tem "signal processing" it comes to 
mind different ideas: signal analysis, noise removing, 
filtering, coding, compression... In fact, the signal 
processing world includes all these techniques as well 
as other ones. However, a major work of signal 
processing deals with the signal analysis. We mean by 
signal analysis representing a signal - more precisely 
the information carried by that signal - with respect of 
a set of well known functions or bases.  
Joseph Fourier, in 1807, was the first who has 
demonstrated that a continuous signal f(t), with some 
specified conditions, can be represented by a set of 
coefficients with respect to a well known base. He stated 
that any 2S periodic signal f(t) is the summation of infinite 
trigonometric functions. 
Since that date a new concept of mathematics and 
signal processing was born : signal representation or 
analysis with respect specified bases. 
Haar, in his thesis in 1909, brought up with a new 
basic function called Haar basic function, a scale 
varying function. This basic function was in fact the 
first “wavelet” that was not called yet. This function 
was exploited by several searchers mainly in 1930’s 
and showed the improved results compared to Fourier 
bases in studying some types of signals such as: Paul 
Levy and Littlewood-Paley technique...[10]. 
The physicist Gabor, in 1946,  introduced the short 
time Fourier transform –STFT- using elementary time- 

 
frequency atoms. This transform had the ability to 
analyze non-stationary signal whereas it suffers from 
its fixed time-resolution due to the fixed window 
support size[12].  
In early of 1980’s, the theoretical physicist Alex 
Grossman and the engineer Jean Morlet and their 
collaborators introduced the wavelet function and 
launched a new ere of wavelet theory. In about 1986, 
Stéphane Mallat and Yves Meyer established 
relationship between the wavelet theory and the 
multiresolution analysis. Based on this work, Pierre-
Gilles Lemarié and Yves Meyer constructed 
orthogonal wavelet bases in parallel with St?mberg 
work. In the same context, Ingrid Daubechies, in 1989, 
constructed a set of compact support wavelet functions 
with a fixed regularity [8, 12]. Since 1990, the wavelet 
theory finds various fields of applications in signal 
processing, mathematics, and engineering....  
 
2 Time frequency problem 
2.1 Series expansion of signal:
The series expansion of a signal, or as it has been 
stated in the introduction the signal decomposition, 
suggests that a signal f(t) of space V can be expressed 
as a linear combination of a set of basic complex 
functions \i(t) as follows [1]: 

f(t) = 6i ai \i(t)                (1) 



If a set of  basic functions ^\i(t)` is complete, there 
exists a dual set ^Mi(t)`i�Z such as the expansion 
coefficients in equation (1) can be computed as: 

ai = ³ Mi(t) f(t) dt                        (2) 
Energy computation leads to :  
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It states that the series expansion of a signal provides a 
new representation of the original signal but it must 
preserve the total energy. This expression is the 
general formula of Parseval’s theorem. 
2.2    Fourier Analysis –FT-
Though the FT is first example of series expansion in 
the course of history, it remains a very powerful tool in 
signal processing and widely used.  
If the signal x(t) is of finite energy, its FT X(f) is given by: 

X(f) = ³ x(t)  e-2 S f t dt                        (4) 
A study of the FT formula shows that : 
a) The interpretation of processes that are sometimes 

different from the reality; switching ON and next 
OFF an apparatus is a good example of this wrong 
interpretation. After small time of switching OFF 
operation the signal –current or voltage- will be 
null ‘static zero’. This nullity is well computed by 
FT and is interpreted by the superposition of an 
infinite number of sinusoidal waves ‘dynamic 
zero’. 

b) Reconstructing the original time-varying signal 
depends mainly on the cancellation of the high 
frequency Fourier coefficients, that is sensitive to 
high-frequency noise; 

c) The FT is perfectly local in frequency whereas it 
is global in time. It can localize any two very 
adjacent frequencies, while the time occurrence of 
these frequency components is completely lost. 
This limitation arises especially when dealing with 
the non-stationary signal. 

2.5     Duration and bandwidth of a signal
The signal transformations are based on basic 
functions called windows or supports. These windows 
must be of finite duration and bandwidth. 
Unfortunately, this can not be possible since a finite 
duration signal can not be, any way, of a finite 
bandwidth and vice versa. A solution consists on 
neglecting the amplitudes that are beyond a certain 
threshold of interest. The duration Tu and the 
bandwidth Bu are defined as the interval within which 
the most of energy is distributed. 
The finite center Tc of a finite duration signal is given 
by [1, 10]: 
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The finite duration 'T is given by: 
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The value Tc determines the mean position of a signal 
on the time axis while the quality Tu or 'T is the 
measurement of the expanse of the signal around the 
center Tc. 
Similarly for the spectral case, the frequency center Fc 
and the bandwidth Bu or 'F are given by: 
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The finite centers Tc and Fc are the temporal and 
spectral localization’s of a signal while the radii 'T
and 'F are the temporal and spectral resolutions of the 
transform. Obviously, a “good” transform requires  
simultaneous small time and frequency resolutions. 
Unfortunately, this in not possible due to the 
uncertainty principle (or Heisenberg inequality) stating 
WKDW��� 7
 ) t 1/(4S)#0.08. The only solution, using a 
particular window support, is to trade time resolution 
for the frequency resolution or vice versa. 
2.6     Windowed Fourier transform
The drawbacks of the FT stated in paragraph 2.2 have 
arisen new concepts such as finite time localization 
rather than the global time localization of the FT. 
Gabor, in 1945, introduced a translated modulated 
time-varying window g(t), with a finite temporal 
support 'T, given by [12]: 

gp,s(t) = g(t-p)e-ist (8) 
Its spectrum expression is :  

Gp,s(w) = G(w-s). e-ip(w-s) (9) 
The windowed Fourier transform, known as short time 
Fourier transform, defined by Gabor is the inner 
product of the time-varying signal f(t) and the set of 
modulated shifted windows gp,s(t), given by : 

STFTf(p,s) =<f(t), gp,s(t)> = ³ f(t) g*p,s(t) dt  
= ³f(t) g(t-p)e-ist dt               (10) 

This is the FT of the truncated portion of the original 
signal f(t) - f(t) g(t-p) –centered at the time occurrence 
p+k'T with k is an integer number.  
Conversely, by applying the Fourier Parseval formula, 
STFTf(p,s) can be expanded as : 

STFTf(p,s) =(1/2S) <F(w), Gp,s(w)>  
= (1/2S) ³ F(w) G*p,s(w) dw           (11) 

This leads, by using equation 12, to: 
STFTf(p,s) = (1/2S) . e-ips ³ F(w) Gp,s(w-s) e-ipw dw           

(12) 
This expression can be viewed as the inverse FT of the 
truncated portion of the original signal spectrum F(w) 



–F(w) Gp,s(w-s)- centered at the frequency localization 
s + k.'F with k is an integer number. 
These two remarks yields to state that the STFT is a 
simultaneous time-frequency of a signal whose basic 
functions or atoms, as it is shown on figure 1, are 
rectangles of length of 'T and height of 'F related to 
the basic function window g(t) sizes.  
 
Frequency                               Information cell             
 

Figure 1 : time-frequency view of the signal –STFT-. 
 
STFT provides time localization of a signal while at 
the other hand it degrades the frequency localization 
due to the convolution process. The two parameters 
('T and 'F) depend firmly on the window and its 
spectrum sizes.  They mean that a signal can not be 
represented as point in the time-frequency plan; its 
position can be only determined within a rectangle of 'T*'F [16].  
The STFT is the FT analysis of a non-stationary time-
varying signal that is divided into a sequence of fixed 
size segments in which the signal is assumed to be 
quasi-stationary. Obviously, the major limitation of the 
STFT is the “fixed” time-frequency resolution. This 
obligated the signal analysts to bring up with a more 
“flexible” approach to overcome this limitation. 
3 Wavelet analysis 
3.1     Wavelet function
Morlet and Grossman introduced a finite support 
function called the wavelet \(t) or the “mother” 
wavelet. Scaling and shifting, the mother wavelet, 
respectively, with a factor of s and W generates a family 
of functions called wavelets given by [8, 16]: 
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As a basic constraint on the wavelet function, it has to 
be localized both in time and frequency domains, i. e. 
it has to be of finite temporal and spectral supports. 
This is given by: ³ µ\(t)µ dt < f and     ³µ<(f)µ df  <  f (14) 

where <(f) is the FT of  \(t).  

The term 1/(s)1/2 guarantees the energy normalization: ³ µ\s,W(t)µ² dt = ³ µ\(t)µ² dt = 1                        (15) 

so all the wavelets -\s,W(t)- of the same family -\(t)- 
have the same energy and the same shape. 
In contrast to the CFT, that requires the trigonometric 
functions as bases, the wavelet function has not a 
standard basis function. The constructed wavelet must 
satisfy two additional  properties  that are : the 
admissibility and the regularity. The admissibility 
condition allows the signal reconstruction while the 
regularity condition implies a quick decrease of 
wavelet coefficients with decrease of scale [16]. 
3.2     The Continuous Wavelet transform CWT
The CWT is the inner product of the time-varying 
signal x(t) and the set of wavelets \s,W(t), it is given by: 
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using Parseval’s identity, CWT can be written, also, as: 

Wx(s,W)=(1/2S).<X(w), <(w)>                    (17) 
Where X(f) and <(f) are the FT of x(t) and \(t) 
respectively.  
Applying FT properties:  
Wx(s,W) = (s)1/2 ³ X(w) <*(sw) eiwW dw                   (18) 
The CWT is a simultaneous temporal and spectral 
analysis of the time varying signal. In fact, the CWT is 
a time-scale representation of a signal however it can 
be considered as time-frequency analysis due the 
inverse proportionality between the scale and the 
frequency.  
We have mentioned that the wavelet temporal function 
and its spectrum are of finite support. This yields to 
finite temporal and spectral centers and radii. 
Mathematical computations lead to that the CWT with 
specified scale s0 and shift W0 picks up the information 
about x(t) within the time interval [W0 +(s0.Tc)-(s0.'T), W0 +(s0.Tc)+(s0.'T)] and the frequency –scale- interval 
[(Fc-'F)/s0, (Fc+'F)/s0]. These two intervals 
determine the time-frequency window (or the 
information cell) sizes having temporal support of 
(2.s0.'T) and spectral support of (2.'F/ s0) and 
centered at temporal occurrence (W0 + (s0.Tc)) and 
frequency position ('F/ s0). It is obvious that the 
information cell sizes of the CWT are governed by the 
scale s0 and shift W0 values. In summary, the CWT is 
simulated to microscope where the scale and the shift 
values represent the zoom (in, out) and the position of 
the picked image respectively. This zooming (in and 
out) procedure permits analyzing specified portions of 
the signal with different scales. 
 3.3     Wavelet applications
To evaluate the wavelet transform theory we have 
applied the CWT to two cases of signals: the first one 
representing a slight discontinuity and a sharp 
transient; and the second case is a superposition of two 
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linear chirp functions of the form f(t)= exp(jSv1t²) + 
exp(jSv2t²) with D1=250 and D2=50.  
Figures 2 and 3 show: (a) the temporal representation 
of the studied signal, (b) the time-scale analysis of the 
signals by applying the CWT Matlab command [13]. 

Figure 2 :  Application of the CFT (middle) and CWT 
(bottom) to transient signal (top) 
 

Figure 3 : Application of the CFT (middle)  and the 
CWT (middle) to the chirp signal (top) 
 
For the first case, the CWT picks up obviously the 
discontinuity at the temporal sample 150 and the sharp 
transient at the temporal sample 210. For the second 
case, by using the Morlet wavelet function, the CWT 
can distinguish obviously the two slopes D1 and D2. 

4 ECG and Wavelet theory 
As its name indicates, the electrocardiogram –ECG-
signal is the electrical picked-up signal of the heart 
activity. A normal ECG signal consists of a set of well 
known waves: P, Q, R, S, and T waves (see figure 4). 
The P wave is associated with the atria depolarization 
–or activity-; it is characterized by its lower amplitude 
value and a typical duration from 0.05 to 0.08 sec. The 
QRS complex is associated to the ventricle 
depolarization, it is the most prominent feature of the 
ECG signal due to the important amplitude of the R 

wave. The T wave is associated to the ventricle 
repolarization –the rest state-, it is characterized by its 
largest duration typically from 0.12 to 0.24 sec.  
A satisfactory analysis of the ECG signal implies 
accurate measurements of waves boundaries in 
addition to some important intervals that are RR, PQ, 
and  QT intervals and the ST segment, [2, 17]. 
In practice, the real ECG signal is corrupted by several 
types of noise such as: the EMG, muscle artifacts, 50 
Hz powerline interference, the base line wandering... 
The non-stationary behavior of the ECG signal, that 
becomes severe in the cardiac anomaly case, obligated 
biomedical engineers to analyze the ECG in both time 
and frequency simultaneously. The ability of the 
wavelet transform to explore signals into different 
frequency bands with adjustable time-frequency 
resolution makes it a suitable tool for the ECG signal 
analysis and processing. Two major areas of wavelet 
theory applications to ECG signal are distinguished: 
ECG signal analysis with no requiring signal synthesis 
and wavelet coefficients treatment requiring signal 
reconstruction [15]. We state in the first case : ECG 
analysis [11], ECG waves detection [17], ventricular 
late potentials detection [14], and ST segment analysis 
in ischemic [6]. In the second case, we state mainly 
ECG compression [9], and ECG denoising [5].  
 
5 Results and discussion 
The main purpose of this work is to study the effect of 
wavelet transform application to the ECG signal. In this 
context, we have applied the CWT to a set of ECG 
records each with different signal-to-noise ratio SNR 
level. We are organized our work as follows: first, we 
applied the CWT to a high SNR ECG signal and next to 
ECG signals with weak SNR levels and base-line 
wandering. The first step is considered as a “learning” 
phase that allows the ECG waves localization; this 
procedure permits discriminating  the useful ECG 
information from the corrupted noise discrimination.  
The analyzed ECG signals are sampled at the rate of 
200 HZ with non a-priori filtering. Figures 5, 6, and 7 
show the CWT, obtained by applying the CWT Matlab 
command, of the ECG signals; parts (a) show the real 
ECG signal while parts (b) show the CWT coefficients.  
The CWT coefficients are gray-scale values, i.e. darker 
area indicates a high correlation of the ECG portion and 
the wavelet with the specified scale and shift 
parameters and vice versa. 
5.1 CWT of high SNR ECG signal
Figure 5 shows the CWT coefficients of a high SNR 
ECG signal. The resulting figure shows mainly the time 
occurrence of the R wave characterized by a set of 
parallel darker spikes along the different scales due to 
its sharp edges, whereas the T waves start to be visible 
at scale 10 due to its larger duration whereas detecting 
the P wave is detected hardly due to its low amplitude.  



This information is of a great importance when we deal 
with noisy ECG signals. Since we are interested in this 
work to detect the ECG waves, different experiments 
show that a lower duration wavelet, which is ‘db3’, is 
well suitable for this task. 
5.2     CWT of medium SNR ECG signal:
Figure 6 shows the CWT of an ECG signal with two 
different SNR levels: a medium SNR portion of ECG 
signal from the 1st sample to around the 1200th sample, 
and a high SNR portion of ECG signal from around 
1200th sample to the end of the record. Comparing the 
CWT of the two portions indicates clearly the noise that 
is captured by the CWT as low scale –high frequency- 
signal mainly from  scale 2 to scale 5  
-in fact the frequency band [50, 20] Hz. At the other 
hands, the R and T waves remain detectable even in the 
case of low amplitude 5th and 7th R waves (from left to 
right of the record). 
5. 4    CWT of ECG with BLW
figure 7 shows the CWT of an ECG signal with a great 
BLW noise. Referring to the characteristics of a normal 
ECG, the base-line is iso-electric and flat. 
Unfortunately, one of the major problems encountered 
in real ECG signal analysis is the presence of the base 
line wandering noise where the base-line will be no 
more flat and stable, as it is shown on the figure below, 
which is due to respiratory and patient movement.  
Different approaches are established to remove this 
noise, we state mainly the high pass filtering and the 
derivative process [2] whereas the major drawback of 
these techniques is that the overall ECG shape will be 
changed that prevents the adequate ECG components 
extraction [4]. The figure below shows obviously that 
the CWT cancels this noise, BLW, which allows 
accurate localization of R and T waves. This can be 
explained by the fact that the BLW is a DC offset 
component where referring to the admissibility property 
of the wavelet function this DC component is rejected.  
 

Conclusion 
We have presented in this work the assessment of the 
wavelet transform theory in the signal processing world 
mainly in the electrocardiography field. We have 
shown the efficiency of the CWT to explore the 
complicated signals and detect the hidden features that 
are invisible using different techniques such as the FT 
and band pass filtering. To evaluate practically the 
wavelet transform, we have applied the CWT to real 
ECG signals with different SNR levels. The obtained 
results show obviously the powerful ability of the 
wavelet transform in discriminating the useful ECG 
signal information from the undesired corrupted noise. 
As conclusion, the obtained results can be exploited in 
ECG waves localization in the presence of huge noise 
or the BLW and in designing filters with required cut-
off frequencies. 
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Figure 6: The CWT of real ECG signal with medium and high SNR
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