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Abstract: Recent developments on medical imaging techniques have brought a completely new research field on 
image processing. The principal aim is to improve medical diagnosis through segmented  images. Techniques have 
been developed to help for identifying specific structures within a  magnetic resonance  image: MRI. The Active 
Contour methods, these methods are adaptable to the desired features in the image . In our work, we describe two 
classes of active contour models and discussing application aspects in medical imaging area. 
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I. INTRODUCTION: 

Techniques of image processing are more and more used in 
medical field. Mathematical algorithms of feature extraction, 
modelling and measurement can be exploited in the images to 
detect pathology, evolution of the disease, or to compare a 
normal subject to abnormal one.   
The advance of medical imaging devices has realised several 
developments in modern medicine and most of them in 
magnetic resonance imaging:MRI. These techniques provide 
detailed, non-invasive diagnosis of most human body 
structures. A second development have provided by coupling 
some computational techniques to help specialists to analyze 
the enormous amount of data contained in medical images. 
The aim of these methods is extracting and analyzing 
scientifically relevant and clinically important pieces of 
information from the original set of images.  
One of the most important applications is, hence, the 
segmentation of specific structures. These methods make 
possible the application of mathematical or geometrical 
models on the steps of description and analysis of the 
acquired information. 
Image segmentation is a fundamental issue in biomedical 
imaging area. Segmenting structures from medical images 
and the reconstruction of a compact analytic representation of 
these structures is difficult. This difficulty was due to the 
sheer size of the data sets and the complexity and variability 
of the anatomic shapes of interest. 
The active contour method is one of the most successful 
image segmentation techniques, it has received a tremendous 
amount of attention in medical image processing. The 
segmentation operation can carried out manually or 
automatically. A manual segmentation requires a skilled 
operator trained to use a digital tool to mark the contours of 
the desired structures.  
An obvious disadvantage is that an exhaustive process, where 
the results are hardly repeatable. Automatic techniques 

usually apply evolving interfaces dynamically adaptable to 
the desired features contained in the image. The difference 
between the two techniques is whether or not the user is 
involved the process. 
In this work, we are mainly concerned about the application 
active contour model in medical image segmentation.  
The paper is organised as follows. In next section we gives an 
overview theoretical background of the existent active 
contour model and we describe the two classes of active 
contour models, specially the Snakes model proposed by 
Kass et al [1] and the Level Set Method presented by Sethian 
[2]. The main features, advantages and disadvantages of the 
models are discussed. 

Section III contains an application of the two classes of active 
contour in medical image area, illustrated by some 
experiment results. 

II. BACKGROUND  ON  ACTIVE CONTOUR MODELS: 
Active Contour models define interfaces on the image 

domain, which can move accordingly to internal forces and 
external forces derived from image characteristics. The 
external forces are defined as the gray-level gradient. There 
are two types of active contour models: the parametric 
models, such as the Snakes [1], and the geometric models, 
like the Level Set method [2-13]. The first models define an 
elastic contour which can dynamically adapt to desired edges 
of objects in the image. This adaptation occurs in response to 
both forces. An algorithm that implements this model must 
keep contour representation during the calculation. The 
second ones use a different approach, as they embed the front 
as the zero level set of a higher dimensional function, and 
then calculate the evolution of this new function. This 
evolution is dependent on characteristics extracted from the 
image and geometric restrictions of the function itself. 



 

II.1 PARAMETRIC MODELS: 
The original parametric active contour model was 

introduced by Kass, Witkin and Terzopoulois [1], and is 
known as Snakes, due to the way the contour moves to its 
final position. In this model, the contour has a initial user, 
specified position and an associated objective function 
defined as the energy of the snake. The snake may then be 
defined as a curve ( ) ( ) ( )( )[ ]sysxsv ,= , [ ]1,0∈s  which moves 
in the image domain to minimize the energy function [5] 
shown below: 
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The first part of the integral is related to the snake’s internal 
energy, and imposes restrictions to its movement by 
controlling the elasticity and stiffness parameters, which are 
weighed by α and β, respectively. The second part stands for 
the external energy, and is responsible for driving the snake 
towards important features in the image, e.g. edges of specific 
body structures in a MR image. 
For a given gray-level image ( )yxI , , this internal energy 

intE  is identified as: 
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and the external energy can be written as: 
( ) ( )( ) 2,, yxIyxGEext ∗∇−= σ    (2.b) 

where σG is a two dimensional gaussian filter with a standard 
deviation σ  and ∇  is the gradient operator. This filter is 
applied to the image in order to improve the image’s edge 
map, and also to perform some noise reduction [4]. So, on 
regions closer to edges the gradient term yields high values. 
A local minimum to (1) can be found by resolving the 
Euler-Lagrange equation on v  

( )( ) ( )( ) extEsvsv ∇=− 42 βα  (3)  
This equation represents a force balance condition, where the 
term ( )( ) ( )( )svsv 42 βα −  corresponds to the internal forces 
and 0=∇ extE  to the external, image-derived forces. By 
treating ( )sv  as a time-dependent function, and supposing 
that a solution is available where 0=t . The snake’s evolving 
equation is expressed as: 

( ) ( ) ( ) ( ) ( ) 0,,, 42 =∇−−= extt Etsvtsvtsv βα  (4) 
When the snake reaches steady state, a solution is found to 
(3). The model is solved numerically by using finite 
difference techniques, as shown by Kapur et al in [6]. 
In this works, we consider a discrete active contour model 
defined using finite difference approximations of the 
derivative in (4). 
Despite the model’s consistency and simplicity, there are 
some performance problems associated to it [2]. For example, 
the initial position of the snake must be close to the desired 
contour in the image, otherwise the snake may not evolve 
correctly, as it may find local minima away from the contour. 
Another common problem is that equation (4) can produce 
meaningless results. This problem can happen every time 

there are concavities or sharp corners in the gray-level image. 
Further more, the snake is indivisible, that is, it cannot split 
itself into two or more separated entities to adapt themselves 
to topological changes in the image domain. Fortunately, 
there is a number of solutions to the above problems, 
although each of them usually brings additional complexity to 
the model, and sometimes, new problems.  

Most solutions define additional terms added to the 
external force component of equation (3), as a way to 
improve the snake’s capture range and force it towards the 
image edges. The initialization problem can be improved by 
adding a constant normal force component to the external 
force term. 
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This is the Balloon model proposed by Cohen in [7]. The 
snake may then inflate or deflate, depending on the sign and 
magnitude ( 1k ) of the balloon force. Although the balloon 
model prevents the snake from stalling in homogeneous 
regions of the image (hence in-creasing its capture range), 
special care must be taken to choose appropriate values to k  
and 1k  in order to make the balloon force strong enough to 
make the snake overcome weak edges and noise, but without 
overshooting a desired contour. In [7,22] Cohen has proposed 
a different external force model as gradient potential function 
computed using Euclidean distance map. These forces are 
referred to as distance potential forces, because they have 
higher values farther away from the edges of interest. This 
model also improves the initialization problem, but does 
nothing to make the snake more adaptable to sharp corners 
and concave regions. The latter problems could only be 
diminished by another external force model proposed by Xu 
and Prince in [4,5,23]. Their model, the Gradient Vector Flow 
: GVF, produces a field with strong forces near the edges, but 
also extending the gradient map farther into homogeneous 
regions using a computational diffusion process, which is 
also responsible for creating vectors that point into boundary 
concavities. The gradient vector flow was then defined as the 
vector field ( ) ( ) ( )( )yxvyxuyxg ,,,, = that minimizes the 
energy function:  

( ) dxdyfgfvvuu yxyx
222222∫ ∫ ∇−∇++++= µε  (6) 

where ( ) ( ) ( )yxIyxGyxf ,,, ∗∇= σ  is defined as the edge 
map function for a gray-level image. 
The field f∇  has vectors pointing toward the edges, but it 
has a narrow capture range, in general. Furthermore, in 
homogeneous regions, ( )yxI ,  is constant, f∇   is zero, and 
therefore no information about nearby or distant edges is 
available. 
From (6) we see that when f∇ is small, the energy is 
dominated by the partial derivatives of the vector field, 
yielding a smooth force field. In other terms, for larger values 
of f∇ , the second term dominates the integrand and is 
minimized when fg ∇= . This  ensures that g  will be just 



 

like the edge map gradient when it is large, but also forces the 
vector field to vary smoothly in homogeneous regions. The 
parameter µ  establishes the trade-off between the first and 
second terms, and should be set directly according to the 
amount of noise in the image. We note that the first 
smoothing term within the integrand of (6) leads to the 
Laplacian operator in the corresponding Euler equations. It 
has recently been shown that this term corresponds to an 
equal penalty on the divergence and curl of the vector field 
[8]. Therefore, the external field resulting from this 
minimization can be expected to be neither entirely ir 
rotational  norontirely solenoidal. We refer the reader more 
detailed solution to [4,5,23]. 
Another model, denominated Dual Active Contour [8,14,15], 
uses a pair of snakes approaching the desired contour from 
both inner and outer sides, as a way to improve the detection 
of global minima. This improves the initial position 
limitations, as well as the evaluation of the stiffness and 
elasticity parameters. As disadvantages, we may cite its 
complex implementation and low computational efficiency. 
All models shown above, although solving some of the 
problems faced by the original Kass et al. model [1], still 
aren’t able to deal with topological changes on the snake 
contour. This technique solves the initialization problem and 
provides a more robust snake evolution, despite of its 
complex implementation.  Some experiments are given’s in 
last section using the GVF model [4,5] to extract specific 
shapes from a selected  MR image. 

II.2 Geometric models 
The geometric models where first proposed by Sethian in [10]. 
It defines a front evolving according to a given curvature 
dependent speed function F . This function can also depend 
on the image gradient [4,23]. When the speed function is 
monotonic. We can defines a geometric models based on the 
Level Set evolution curve.  

II.2.1 The level set approach 
The main idea of this model is to, instead of actually 
parameterizing the front ( )tS , represent it as the zero level set 
of a higher dimensional function φ , and calculate the 
evolution of this function as a initial value problem. This can 
be modeled as: 

0=∇+
∂
∂ φφ F

t
(7) 

given ( )0, =tsφ . At any instant, the position of front ( )tS  
shall be given as the zero level set of the evolving function φ  

( ) ( ) ( ){ }0,,, 2 =∈= tyxRyxtS φ  (8) 

The speed scalar function F depending on: 
- Local proprieties of the front, like the local 

curvature. 
- External parameters related to the image gradient. 
- additional propagation terms. 

 This should work in a similar way to the external snake 
energy shown previously, leading the evolving front towards 
the desired contours in the image. A common choice for F is 
[2,10]: 

( ) ( )yxgkF I ,1 ε+±=  (9) 
where ε  is a constant ( )10 << ε , k  is the local curvature of 
the level set functionφ . This curvature can be defined as: 
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The term ( )yxg I , is an image-dependent halting criteria 
calculated as:  

( ) ( )( )yxIG
yxg I ,*1

1,
σ∇+

= (11) 

which works in a similar manner than the snake’s external 
energy defined in equation (2), as it yields smaller values 
when closer to higher gradients in the image, bringing 
equation (9) to very low values and consequently slowing 
down the evolution of the front S . The uniform expansion or 
contraction with speed respectively 1 or -1 corresponds to 
pressure forces defined in the balloon snake model [7].  Other 
more complex speed function definitions are discussed in 
[2,11]. 
The diffusive term εκ  has a smoothing effect and also acts as 
a restriction term just like the internal energy term of the 
original snake model. 
A numerical solution for equation (7) can be developed from 
an explicit finite difference approximation of the time 
gradient 
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where the unknown value of the function in the new time step 
1+n

ijφ  is calculated from the values derived in the previous 

time step n
ijφ  . This formulation is then made more stable than 

the parametric models by using a different set of 
approximations to the gradient of φ . According to Sethian 
[10], a central difference scheme, for example, would fail in 
points where the front develops a sharp corner, and the 
singularity introduced would propagate numerical errors 
throughout the iteration process. For that matter, a better set 
of approximations can be obtained by using hyperbolic 
schemes over Hamilton-Jacobi equations [10,2], which 
would converge to the right viscosity solution while keeping 
a smooth and homogeneous front. Equation (12) would then 
be approximated as: 
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and the differential operators −D and +D  stand for left and 
right finite difference approximations, respectively, as shown 
below : 
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A numerical algorithm to solve the previous sets of equations 
should iteratively solve (13) for each point in the domain, 
until a steady situation is found. As this equation is explicit in 
time, a stability criteria must be defined to correctly choose 
the time step t∆ . As shown by Sethian [2], the front should 
not cross more than one grid point per time step, such that 

xtF ∆≤∆ )max(   (18) 
 where the maximum value has to be searched over the entire 
image domain. If we had a square uniform grid, with n  nodes 
in both directions x  and y , and supposing that k  iterations 
would be needed to reach the steady state, its computational 
complexity would be )( 2knO . Alternatively, Adalsteinsson 
and Sethian [12] propose to focus the calculations over a 
narrow band immediately close to the front. Equation (13) 
could then be applied to a much smaller set of points, 
sensitively decreasing the computational complexity 
to )(bknO , where b would be the width of the narrow band. As 
the front approaches the edges of the narrow band, the 
calculation would be halted and a new narrow band would be 
defined. 
This formulation should be used whenever the front ( )tS  is 
allowed to move in any direction. A very common and much 
simpler situation occurs when the front moves in only one 
direction, defined by a monotonic speed function F.  
First of all, the initialization details have to be commented. 
The level set functionφ  must satisfy the property 1=∇φ , 
preserving its configuration as a signed distance function of 
the front ( )tS , for all time [2]. So, if the initial configuration 
of S  is a single point,φ  is constructed to ensure that all its 
level sets are equidistant to the zero level set S . Supposing a 
constant uniform speed function 1=F  acting on the above 
defined level set function φ , we might expect that the initial 
point would expand indefinitely as a larger circle each 
iteration. This is the basic idea of the Level Set Method. The 
next step is to use a gray level gradient-driven speed function, 
as defined in equation (9) to evolve φ  towards the desired 
contours. Unfortunately, although F  is now a real, 
non-uniform function, defined only over F . The algorithm 
doesn’t see it that way, considering F  valid over the entire 
domain. It then updates all level sets of φ  according to F , 
causing φ  to be no longer a signed distance function where 

1=∇φ . 
This complication is briefly discussed in [2,10-13] by Sethian 
and additional framework is provided. One of the solutions 
presented is to periodically stop the calculations and 
reconstruct the signed distance function φ  according to the 
current position of ( )tS . This is a complex and expensive 

procedure, as it should be repeated every iteration to avoid 
errors. A second solution proposes to evaluate a extended 
velocity function extF , which is valid over the entire domain 
plus coinciding with F  over φ . Since extF  should also 
correspond to a signed distance function, it would have to 
satisfy  

0=∇φextF   (19) 
Although this alternative is said to bring more accurate results, 
its implementation is far from simple. Furthermore, the 
construction of an extension velocity function contradicts the 
most appealing feature of the method since it requires to 
actually build a explicit representation of the front ( )tS . A 
similar way to do this without actually building a explicit 
representation of S  is discussed by Gomes and Faugeras 
[13].  There is still the possibility of periodically reinitialize 
φ  as a signed distance function that satisfies 1=∇φ . 
 This would require to solve:   

( )( )φφφ
∇−=

∂
∂ 1sign

t
  (20) 

 to reorganize the level sets on both sides of S . Although this 
is a simpler alternative, it doesn’t consider the actual position 
of the front, leading to positioning errors. 

III Experiment results: 
In this section we show how the previous active contour 
models, both parametric and geometric, can be applied to 
medical image segmentation. 
In order to show the interests of the segmentation by active 
contour models. We select an MR image of 256x256 pixels. 
This image is selected from image database set[24]. The 
image represents slice brain attained of tumours pathology. 
 

 
 

Fig 1.  Transaxial slice brain image corresponding  
 to child of the 8 year old with tumours depicted. 

 
 
In order to segment the pathology in brain slice image, we 
must proceed initially by an operation of pre-treatment, this 
consists of application of the Gaussian filter to the initial 
image. A comment choice of σ is fixed between 0.1 and 1. 
 



 

 
(a)  image convolved with σ =1. 

 
Fig 2.  Pathological  image convolved with a Gaussian  filter Gσ   
 
As shown in figure (2), the edge map shows higher values 
where the image gradient is larger, and low values over 
homogeneous regions. Fig 2 shows how the Gaussian filter 
blurs the edges, thus increasing the snake’s capture range as it 
spreads the force vectors along the potential field. 
 Using a traditional snake model and a fair initial position, we 
can see that it correctly evolves towards the desired contour, 
in figure 3, we show for adequate choice of snakes parameter 
α and β. 
For several experiments, we have fixed set of pairs (α,β). The 
experiments where done for α=1, and β=0.03 . This pair of 
(α,β) has drown agree results. And isolate correctly the 
tumours. 
 

     
(a ) initial contour                                    (b) final contour   

Fig3.  Pathological image segmented with 
classical  parametric active contour  models 

 
 On the other terms, if some parts of the snake (or all of it) 
where initialized over homogeneous regions of the image, the 
contour wouldn’t evolve correctly, stalling where the force 
field vectors have lower magnitude (fig 3). 
In adding the balloon model, it makes the snake less 
dependent on its initialization, by the use of pressure forces. 
The GVF model also improves the problems related to bad 
initial position without using pressure forces. Be-sides, this 
model doesn’t need a previous knowledge about whether the 
snake will grow or shrink, as does the Balloon model. 
However, it’s important not to overestimate the GVF snake 
initialization capability. If it is done way too distant of the 
desired contour, the snake may take a very long time to 
converge or even stall over homogeneous regions. The GVF 
model has shown better performance and more accurate 
results than the traditional, Balloon or Distance Vector 
models.  
But, it's also hard for  fixing a good  of  parameter, that leeds 
to locate the tumours area in the brain slice. After several test, 

for selecting the adequate parameters, it achieved for   
experiments values: α=1, β=0.03 , µ=1.2 and g=0.8    
 
   

        
(a ) initial contour                                (b) final contour   

 
Fig 4. Segmentation of a tumour in an MRI brain data 

 by the parametric active contour  model (GVF) 
 
 

         
(a ) initial contour                              (b) final contour   

 
Fig 5.  Segmentation of a tumour  in an MRI brain data 

 by the geometric active contour  model (Level Set Method ) 
 
In the second experiment, the pathology is segmented by 

fixing of the speed function equal to  several values between  
F= 1 and F=2 .  We  observe that for F=1, the tumours area 
segmented is more less then in the case of the parametric 
contour. The contour follows to best the edges of the 
pathologies.       

The area of tumours is more less then that detected for 
parametric active contour models.  

To compare the results drawn both by the parametric and 
geometric model. The key difficulty when working with 
active contour models is the correct definition of both the 
external energy term and speed function. Since both are based 
on the image gradient, one might expect similar behavior to 
both models. Problems related to bad initialization, local 
minima, and incorrect convergence may happen when 
working with either model, unless proper care is taken. 
Parametric model was be a more simple way than the 
geometric, regarding both the contour representation and 
implementation complexity. The explicit formulation of a 
evolving closed contour searching for a energy function 
minimization is far more intuitive. One may question about 
the Snake’s lack of robustness when dealing with sharp 
corners, topological changes and initialization problems, but 
as we have shown, there is no ideal method, only specific 
procedures to ensure the correct result obtained from specific 
image sets. On the other terms, the mathematical formulation 
of geometric models is more robust. Issues like topological 
changes and sharp corners are dealt with naturally. What is 
left to complain about is the lack of information regarding the 



 

actual algorithm implementation of both the Level Set 
Method due to problems when defining the correct extension 
velocity function 
 
IV Conclusions 
The main conclusion from this work is that there is no ideal 
segmentation method. Both parametric and geometric active 
contours are driven by forces extracted from the image itself, 
what makes them extremely dependent on the image quality, 
that is, lowly noised, fair definition of the structures’ edges 
and absence of local minima. Even if one is able to overcome 
these problems, there are still further difficulties, like the 
initialization problem for example, which has a strong impact 
on the correct contour’s convergence. This kind of problem 
may cause the procedure to be repeated until the result 
obtained is good enough for the user.  

Finally, it is important to observe that an efficient, precise 
medical image segmentation system should necessarily add 
to the model some level of intrinsic knowledge about the 
problem. Variables like the kind, shape and relative location 
of the common structures or pathology, and their size 
compared to some reference system such as a anatomy 
atlas[20], would improve enormously the model’s robustness 
and autonomy. 
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