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Abstract 
A methodology for automating the simulation of the 
functional requirements and the synthesis of the 
functional dimensions during the design stage is modelled 
step by step using the dispersions method introduced by 
Bourdet and the minimal transfer method of Duret. This 
methodology is constructed around three procedures. The 
first procedure executes the verification of the functional 
requirements by automatically extracting the functional 
dimension chains in the mechanical sub-assembly. Then a 
second procedure performs an optimization of the 
dispersions on the basis of unknown variables. The third 
procedure uses the optimized values of the dispersions to 
compute the optimized average values and tolerances of 
the functional dimensions in the chains. 
 
 
1. Introduction 
 

Industrial experience shows that the allocation of   
tolerances to individual parts in mechanical design often 
requires simultaneous engineering product /process and 
co-operative work  between design and manufacturing 
engineers.  This tolerancing phase leads to significant 
choices which influence the manufacturing process and 
the cost of manufacturing the  parts.  Indeed, the decisions 
taken during this phase of design induce  almost 70% of 
the total cost of producing the parts [1].  For that reason it 
is necessary to optimize the manufacturing means and to 
produce according to the functional requirements by  
checking the capabilities of the available means in the 
workshop.  The objective of the  optimization of design 
tolerances is to minimize the total cost  of manufacture of 
all the tolerances during production.  Many researchers 
treat only  design tolerances  [2] or manufacturing 
tolerances  [3] separately.  They often use  assembly 
simulation by the Monte Carlo method  which proved to 
be greedy in computing time.  The  synthesis of the 
tolerances is a more complex problem than the  analysis of 
the tolerances.  It aims at finding the values of the  various 

tolerances taking part in the achievement of a functional  
requirement, by optimizing the total cost of the 
production.  The respect of  the functional requirement is 
taken as a constraint of the optimization problem.  The 
objective function requires to choose a model of 
production  cost according to the tolerance to be 
produced.  The models used are  always empirical models 
which give only a rough idea of the production cost [4,5].  
Some tolerance synthesis models integrate  the capability 
parameters  of the manufacturing processes in the 
constraints of the  optimization problem in terms of 
statistical standard deviations [6].  But the majority of 
these  models do not integrate these parameters in terms of  
manufacturing dispersions  and in any case do not permit 
the synthesis  of optimised average values of design 
dimensions.  The method of dispersions called  ∆l method 
introduced by Bourdet [7]  represents an effective method 
of integration of the capability parameters  in term of 
dispersions in the process plan simulation [8,9] for the 
synthesis and optimisation of manufacturing dimensions  
and tolerances. 
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Figure 1. Simultaneous tolerance synthesis 
 
This paper presents a model for  the simulation of 

functional requirements of a mechanical assembly and the 
synthesis of optimised design dimensions and tolerances 



by  the ∆l method. In this work, the method  of dispersions 
is combined with the method of the minimum transfer  
introduced by Duret [10] to automate the procedure of the 
verification of  the functional conditions and the 
extraction of the functional dimension chains  by matrix 
algebra.  The optimization of  dispersions is carried out 
starting from a matrix of unknown  dispersions [1] in 
place of the matrix of  minimal reference dispersions.  The 
optimized dispersions are used to  calculate the tolerance 
intervals and the lengths of simulation  are used to 
synthesize the average values for the functional  
dimensions. 
 
2. Simultaneous tolerance design 
 

New design processes of simultaneous engineering are 
under development.  They are the  concurrent  engineering   
processes  where all the engineering actors work  
simultaneously on a product.  In these processes, the fact 
of integrating upstream the manufacturing analysis in the 
design stage of a product, should make it possible to 
optimize the tolerances and a better quality assurance of 
the finished products.  This implies to  have tools for 
tolerance analysis and synthesis which must  integrate in 
their definition the functional aspects of  design and the 
stochastic aspects of manufacture and inspection at the 
same time. The functional dimensioning and tolerancing 
tool naturally federates the technical  data to ensure the 
functional requirements of the  products.  It becomes 
obvious that its integration in CAD/CAM systems is  
essential for the global definition of the product numerical 
model. Mastering the functional dimensioning and 
tolerancing tools with simultaneous engineering and co-
operative  work [11] as shown in figure 1 eliminates any 
source of  incompatibility between the design activities 
upstream and manufacturing activities downstream. Thus, 
the use of such tools avoids any loss of information and 
minimizes scrap parts as a consequence. 
 
3.  Simulation of the functional requirements  
 
3.1. Dispersions model 
 

During machining the length L  of  a part in batch 
production under the same conditions and a given tool 
adjustment, it is always noticed a dimensional variation of 
the parts.  The scatter given by the successive values 
recorded for the batch of parts between the largest and the 
smallest dimensions is called total dispersion ∆l and is 
given as :   

∆l = Lmax – Lmin    (1)  
 
The ∆l model introduces the concept of simulation 

lengths  Li which makes it possible to locate, in each  

reference datum of the production, the reference surface 
and various  machined surfaces.  ∆li is  the allowed 
dispersion of a simulation length Li representing the 
variation of the location of  surface i  in the fixed 
reference system of the  production machine tool.  
Relations are then established between the  machined 
dimensions and the simulation lengths.  Since the 
functional dimensions are obtained by the  machined 
dimensions of the finish operations, the simulation lengths 
are used to model the average dimension values as 
follows: 

(Cfi,j )moy. = Lj  - Li    with   j > i     (2) 
 
where i and j are indices of the bound surfaces. 
 
In order to model the simulation of a mechanical 

assembly of  parts, we consider the simplified sub-
assembly example of figure 2 [9].  This assembly is 
constructed as a matrix of dispersions assigned to surfaces 
of the parts.  After that, matrix algebra is carried out for 
each functional requirement of the assembly by the 
minimal transfer method [10]. 
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Functional requirements  

j= 4 ±  1     External shaft A thread  
 for nut D to grip  
k= 2  ±  0.5     Internal shaft A thread  
 for nut D to grip  
 

 
 

Figure 2. Sub-assembly sample example 
 

3.2. Chain extraction and verification procedure 
 
The assembly is constructed in the form of a matrix of  

Is  columns and Ip  lines.  Is   represents the index of 
surfaces and Ip   represents the index of parts.  As the first 
table of figure 3 shows, element  AIs,Ip of the matrix 
contains a value of dispersion only when surface  Is  
belongs to part Ip as a terminal or a contact surface, 
otherwise it is null. Then a verification procedure of  the 
design functional requirements is carried out using the 
minimal transfer method as outlined in figure 4. When the 
condition of minimal transfer is satisfied, the design 
functional dimensions participating in the design 
functional requirement are those bounded by surfaces 



having the two dispersions stationed on the same line 
(same part). Thus, we obtain all the functional dimensions 
in the dimension chain for every functional requirement. 
 

 

Figure 3. Verification and chain extraction for k12,13 
 

3.2.1. Minimal transfer method. As figures 3 and 4 
illustrate,  the principle of the method is  to recognize first 
the two surfaces which delimit a functional requirement.  
They are noted  l and  m.   The verification procedure is 
carried out for each functional requirement (CC) by 
successive elimination of the dispersions from single 
element columns and lines, except for columns l and m. 
The elimination process is repeated until the minimal 
transfer condition  given by zero or two  ∆l  per column is 
reached. The functional dimensions of the parts 
participating in the chain are then extracted  from the 
surfaces (columns) containing  the dispersions present on 
the corresponding line of the  matrix. 
 
3.2.2. Functional requirements verification based on 
minimal dispersions. The verification of the functional 
requirements is carried out by checking the feasibility of 

the assembly design in regards to the capabilities of the 
available manufacturing processes in the workshop in 
terms of minimal dispersions [12]. This condition is 
fulfilled when the manufacturing means can produce the 
design set dimensions imposed by the design office. In 
technical terms this condition is satisfied when the 
tolerance interval (IT) of the functional requirement CC is 
greater or equals the manufacturing stack up tolerance due 
to the summation of all dispersions ∆li  with reference 
minimal values and given by equation (3) as : 
 

ITCC  ≥ ∑∆li   (3) 
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Figure 4. Minimal transfer flowchart 

 
3.3. Procedure for the optimization of dispersions 
 

Using the extracted tolerance chains, we build an 
optimisation matrix of Ic lines and Id columns where each 
line represents a functional requirement and each column 
represents a dispersion. We can notice that each line 
corresponds to a tolerance chain associated to a  
functional dimension chain. When a dispersion is present 
in a chain a variable x is affected to the corresponding 
position in the matrix. Otherwise the position takes the 
value zero [13]. 

Design project in matrix format 
Surfaces  

11 12 13 14 15 
A ∆l11

(A) ∆l12
(A) 0 0 ∆l15

(A) 
F ∆l11

(F) 0 ∆l13
(F) 0 0 

 
Parts 

G 0 0 ∆l13
(G) ∆l14

(G) 0 

Computation of functional requirement  k12,13  between  
surfaces l=12 and m=13 : 

1(1)- Set single element columns to zero except l and m : 

Surfaces  
11 12 13 14 15 

A ∆l11
(A) ∆l12

(A) 0 0 0 
F ∆l11

(F) 0 ∆l13
(F) 0 0 

 
Parts 

G 0 0 ∆l13
(G) 0 0 

1(2)- Set single element lines to zero: 
Surfaces  

11 12 13 14 15 
A ∆l11

(A) ∆l12
(A) 0 0 0 

F ∆l11
(F) 0 ∆l13

(F) 0 0 
 

Parts 
G 0 0 0 0 0 

Minimal transfer condition satisfied. 

Tolerance interval for functional requirement k12,13  is :   

∆k12,13  = ∑∆li = (∆l11
(A)+∆l12

(A)) + (∆l11
(F)+∆l13

(F)) 

Tolerance chain for  k12,13  is :   

IT k12,13 = IT Cf11,12
(A) + IT Cf11,13

(F)  

Functional requirement  k12,13  is verified by :  

IT k12,13  ≥ (∆l11
(A)+∆l12

(A)) + (∆l11
(F)+∆l13

(F))   
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Figure 5. Flowchart of the optimisation 
 

As the flowchart of figure 5 explains, we start by 
computing a distribution coefficient  k’j for all the lines 
using equation (4 ); where w  is the number of known 
dispersions,   p  the number of unknown dispersions and  j  
the rank number. 
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Figure 6 explains the optimisation process for the 

sample example which is carried out by equal distribution 
for the line with the lowest k’j. The computed dispersions 
of the line are then introduced in all the columns where 
they appear. The process is repeated for the remaining 
lines using the new ∆li values. 
 
3.3. Procedure for design dimensions synthesis 
 
The designer generally determines, through classical 
design computations (material strength, weight,…), the 
limit values for design dimensions not to be exceeded. 

The dispersions method can be used to simulate and  
determine the optimal values of the functional dimensions 
which fulfil the  functional requirements. Based on the 
fundamental model developed by Bourdet [7] and on the 
matrix format of the mechanical assembly, we can 
calculate the average lengths Li limited by two ∆li. For 
each part, the origin of basic average lengths are taken on 
the leftmost surface (surface 1, L1=0). Using the 
functional requirements (CC) and the standard dimensions 
(CS) we build a system of equations to determine the 
basic average lengths Li using relations (5) and (6) as 
follows : 

(CCi,j )moy. = Lj  - Li    (5) 
(CSi,j )moy. = Lj  - Li   (6) 

 
 

 
 

Figure 6. Optimisation for the sample example 
 

 
The CS dimensions are selected to supplement the 

system among  the functional dimensions of standard 
parts.  In the case of unbounded dimensions, CCmoy and 
CSmoy  are  calculated by using the optimized dispersions 
by the  following relations : 
 

( )( )
2

.optminmin
moy

∑ ∆++
= ilCCCC

CC  (7) 

( )( )
2

.optminmin
moy

∑ ∆++
= ilCSCS

CS  (8) 

Dispersions data matrix for design project : 
N° CC ∆l11

(A) ∆l11
(F) ∆l12

(A) ∆l13
(F) ∆l13

(G) ∆l14
(G) ∆l15

(A) IT 

1 k12,13  x x x x 0 0 0 1 

2 j14,15 x x 0 x x x x 2 

Determine distribution order for rank 1 
N° CC ∆l11

(A) ∆l11
(F) ∆l12

(A) ∆l13
(F) ∆l13

(G) ∆l14
(G) ∆l15

(A) IT k’1 

1 k12,13  x x x x 0 0 0 1 0.25 

2 j14,15 x x 0 x x x x 2 0.3333 

Processing of line 1 
N° CC ∆∆∆∆l11

(A) ∆∆∆∆l11
(F) ∆∆∆∆l12

(A) ∆∆∆∆l13
(F) ∆l13

(G) ∆l14
(G) ∆l15

(A) IT k’1 

1 k12,13  0.25 0.25 0.25 0.25 0 0 0 1 0.25 

Save dispersions and determine  distribution order for rank 2 
N° CC ∆∆∆∆l11

(A) ∆∆∆∆l11
(F) ∆∆∆∆l12

(A) ∆∆∆∆l13
(F) ∆l13

(G) ∆l14
(G) ∆l15

(A) IT k’1 k’2 

1 k12,13  0.25 0.25 0.25 0.25 0 0 0 1 0.25 - 

2 j14,15 0.25 0.25 0 0.25 x x x 2 0.3333 0.4166 

Processing of line 2 
N° CC ∆∆∆∆l11

(A) ∆∆∆∆l11
(F) ∆∆∆∆l12

(A) ∆∆∆∆l13
(F) ∆∆∆∆l13

(G) ∆∆∆∆l14
(G) ∆∆∆∆l15

(A) IT k’2 

2 j14,15 0.25 0.25 0 0.25 0.4166 0.4166 0.4166 2 0.4166 

Final matrix with optimised dispersions 
N° CC ∆∆∆∆l11

(A) ∆∆∆∆l11
(F) ∆∆∆∆l12

(A) ∆∆∆∆l13
(F) ∆∆∆∆l13

(G) ∆∆∆∆l14
(G) ∆∆∆∆l15

(A) IT

1 k12,13 0.25 0.25 0.25 0.25 0 0 0 1 

2 j14,15 0.25 0.25 0 0.25 0.4166 0.4166 0.4166 2 



 

 
 

Figure 7. Optimal design dimension and tolerance synthesis 
 
Equations (5) to (8) give a system of n equations and 

n unknown Li. When the simulation lengths Li are 
computed, we calculate the average functional 
dimensions using equation (2). Figure 7 illustrates step 
by step this procedure for the sample example. This 
procedure is automated in the flowchart of figure 8.  For 
the sample example we have five surfaces so we need 
five functional requirements. We complete the two 
functional conditions k and j with two conditions as 
minimal dimensions in the dispersions matrix. These are 
given by  the standard parts in the assembly. In our case, 
we take the nut D (CS13,14

(G)  = 10 mini) and the disc F 
(CS11,13

(F) = 4 mini). The global matrix after the 
optimisation of dispersions using the tolerance intervals 
of the bounded functional conditions is given for this 
example in the first table of figure. 
 
4. Applications of the simulation 
 

A simulation module of design mechanical 
assemblies based on the method of dispersions was 

programmed on the basis of the methodology previously 
outlined by the flowcharts  of figures 4, 5 and 8.  The 
final program named CAFT (Computer Aided 
Functional Tolerancing)  consists of four functions.  The 
first one consists of the  preparation of the simulation 
data of the assembly in matrix form.    The three other 
functions correspond to the three procedures  composing 
simulation.  The program was tested and validated on 
several  examples giving results agreeing with the 
manual simulation of the simple examples and very 
satisfactory results for the simulation of complex 
assemblies  [14].  The program can  be easily  integrated 
into a  CAD/CAM system. 

Figure 9 gives the output results of the CAFT 
program run as a separate module on the illustrative  
example on the basis of an optimisation with minimal 
dispersions.  The  program is in a phase of refinement 
under Delphi for an optimization  with unknown 
dispersions as explained previously in the optimisation 
section. On the other hand, a communication interface 
with CAD/CAM systems is under development in order  

Global design data matrix with optimised dispersions 

N°  CC ∆∆∆∆l11
(A) ∆∆∆∆l11

(F) ∆∆∆∆l12
(A) ∆∆∆∆l13

(F) ∆∆∆∆l13
(G) ∆∆∆∆l14

(G) ∆∆∆∆l15
(A) IT Σ∆li 

1 k12,13  0.25 0.25 0.25 0.25 0 0 0 1 1 

2 j14,15 0.25 0.25 0 0.25 0.416 0.416 0.416 2 2 

3 CS11,13
(F) 0 0.25 0 0.25 0 0 0 - 0.50 

4 CS13,14
(G) 0 0 0 0 0.416 0.416 0 - 0.832 

Computation of simulation average lengths 

5 surfaces →  5 lengths to compute →  5 equations to solve with L11 = 0 (origin).  
Equations due to bounded functional requirements  
Equation 1 :  k12,13 =  L13 - L12 = 2 
Equation 2 :  j14,15 =  L15 – L14 = 4 
Equations due to single bound conditions  
Equation 3 : CS11,13 =  L13 – L11 = 4.25      
Equation 4 :  CS13,14 =  L14 – L13 = 10.416                       
 
Equation 5 : L11 = 0 

After resolution of the system we get the following lengths: 

L11 L12  L13  L14 L15 
0 2.25 4.25 14.666 18. 666 

 
 
Computation of  tolerances for functional design dimensions : 
 
Parts Functional dimensions ∑∆li I T 

Cf11,12
(A) ∆l11

(A) + ∆l12
(A) 0.5 

A Cf11,15
(A) ∆l11

(A) + ∆l15
(A) 0.67 

F Cf11,13
(F) ∆l11

(F) + ∆l13
(F) 0.5 

G Cf13,14
(G) ∆l13

(G) + ∆l14
(G) 0.83 

 

The following system of equation is constructed : 
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Synthesied functional design dimensions : 
  

Cf11,12  2.25 ± 0.25 
Cf11,15   18.666 ± 0.335 
Cf11,13 4.25 ± 0.25 
Cf13,14   10.416 ± 0.415 

Computation of average functional design dimensions : 
  
Cf11,15moy  Cf11,12moy   Cf11,13moy   Cf13,14moy   
L15 – L11 L12 – L11 L13 – L11 L14 – L13 

18.666 2.25 4.25 10.416 

 



to allow the module to extract the simulation data from 
the mechanical assembly model built in these systems. 
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Figure 8. Flowchart of the optimisation 
 
5. Conclusions 
 

The objective of this work which is based on the 
approach of simultaneous engineering is to contribute to 
the development of a CAD/CAM tool  for functional 
design dimensions synthesis expressed by the  average 
values and the tolerance intervals.  The dispersions 
method  known as the ∆l  method which  proved reliable 
in the simulation of manufacturing dimensions wass used 
to develop a methodology for the automation of the 
simulation.  This methodology was constructed and 
tested manually step by step using  a simplified example 
of  mechanical assembly.  Afterwards, it was automated 
by the realization  of a computer program named CAFT.  
The program was  tested  thereafter on the simpler 
example as well as on complex assemblies which are 
difficult or impossible to treat manually.  The automatic 
treatment gave results agreeing with the manual  
treatment for the illustrative example and showed the 
effectiveness of  the automated simulation by solving the 
complicated examples.  The  final program can thus be 
used at will in order to simulate the  functional 
requirements of design projects and to make  it possible 
to choose adequate and optimal average values and  
tolerance intervals for the functional dimensions among 
several  possible solutions. 
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Figure 9. Output of the CAFT module for the sample example 

SIMULATION DE L'ASSEMBLAGE Nø2

LES DONNEES DE L'AVANT PROJET

Nombre de Pièces : 3
Nombre de Surfaces : 5
Nombre de cotes conditions : 4

Representation matricielle de l'avant projet :
0.05 0.20 0.00 0.00 0.10
0.10 0.00 0.10 0.00 0.00
0.00 0.00 0.20 0.20 0.00

Cotes conditions representees de la maniere suivante :
Numero S.Source S.Cible IT Bil(1/0) Ct.Min Ct.Max
1 2 3 1.00 1 1.50 2.50
2 4 5 2.00 1 3.00 5.00
3 3 4 0.00 0 10.00 0.00
4 1 3 0.00 0 4.00 0.00

Nature des dispersions (Brute ou Non Brute(1/0):) :
0, 0, 0, 0, 0, 0, 0,

VERIFICATION DE L'AVANT PROJET

CALCUL DE L'ECART DE FABRICATION CONCERNANT LA COTE CONDITION
1

Comprise entre les surfaces l= 2 et m= 3

---------------------------------------------------
La matrice apres l'annulation des colonnes à un seul element
sauf l et m
0.05 0.20 0.00 0.00 0.00
0.10 0.00 0.10 0.00 0.00
0.00 0.00 0.20 0.00 0.00
La matrice apres l'annulation des lignes a un seul element
0.05 0.20 0.00 0.00 0.00
0.10 0.00 0.10 0.00 0.00
0.00 0.00 0.00 0.00 0.00
Somme [ 1]=0.45 IT[ 1]=1.00 Reliquat[ 1]=0.55
L avant-projet est verifie pour la cote condition 1

CALCUL DE L'ECART DE FABRICATION CONCERNANT LA COTE CONDITION
2

Comprise entre les surfaces l= 4 et m= 5
---------------------------------------------------
La matrice apres l'annulation des colonnes à un seul element
sauf l et m
0.05 0.00 0.00 0.00 0.10
0.10 0.00 0.10 0.00 0.00
0.00 0.00 0.20 0.20 0.00
La matrice apres l'annulation des lignes a un seul element
0.05 0.00 0.00 0.00 0.10
0.10 0.00 0.10 0.00 0.00
0.00 0.00 0.20 0.20 0.00
Somme [ 2]=0.75 IT[ 2]=2.00 Reliquat[ 2]=1.25
L avant-projet est verifie pour la cote condition 2

CALCUL DE L'ECART DE FABRICATION CONCERNANT LA COTE CONDITION
3

Comprise entre les surfaces l= 3 et m= 4
---------------------------------------------------
La matrice apres l'annulation des colonnes à un seul element
sauf l et m
0.05 0.00 0.00 0.00 0.00
0.10 0.00 0.10 0.00 0.00
0.00 0.00 0.20 0.20 0.00
La matrice apres l'annulation des lignes a un seul element
0.00 0.00 0.00 0.00 0.00
0.10 0.00 0.10 0.00 0.00
0.00 0.00 0.20 0.20 0.00
La matrice apres l'annulation des colonnes à un seul element
sauf l et m
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.10 0.00 0.00
0.00 0.00 0.20 0.20 0.00
La matrice apres l'annulation des lignes a un seul element

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.20 0.20 0.00
Somme [ 3] = 0.40

CALCUL DE L'ECART DE FABRICATION CONCERNANT LA COTE CONDITION
4

Comprise entre les surfaces l= 1 et m= 3
---------------------------------------------------
La matrice apres l'annulation des colonnes à un seul element
sauf l et m

 

0.05 0.00 0.00 0.00 0.00
0.10 0.00 0.10 0.00 0.00
0.00 0.00 0.20 0.00 0.00
La matrice apres l'annulation des lignes a un seul element
0.00 0.00 0.00 0.00 0.00
0.10 0.00 0.10 0.00 0.00
0.00 0.00 0.00 0.00 0.00
Somme [ 4] = 0.20

TABLEAU D'OPTIMISATION ET DE REPARTITION DES DISPERSIONS
0.05 0.10 0.20 0.10 0.00 0.00 0.00
0.05 0.10 0.00 0.10 0.20 0.20 0.10
0.00 0.00 0.00 0.00 0.20 0.20 0.00
0.00 0.10 0.00 0.10 0.00 0.00 0.00

OPTIMISATION DES DISPERSIONS
S[1]= 0.450 IT[1]= 1.000 Reliquat[1]= 0.550
S[2]= 0.750 IT[2]= 2.000 Reliquat[2]= 1.250
Rang Reliquat Ordre de traitement
---- -------- -------------------
1 0.550 1
2 1.250 2

Rang : 1

Avant l'optimisation des dispersions de la cote 1
0.050 0.100 0.200 0.100 0.000 0.000 0.000
IT de la cote condition ---------------------->= 1.000
Ecart de fabrication concernant la cote condition -----------
->= 0.450
Reliquat concernant la cote condition -------->= 0.550
Nombre de dispersions optimisable concernant la cote
condition ->= 4
La repartition du reliquat ------------------->= 0.137

Apres l'optimisation des dispersions de la cote condition 1
0.188 0.237 0.338 0.237 0.000 0.000 0.000
IT de la cote condition----------------------->= 1.000
Ecart de fabrication concernant la cote condition ->= 1.000
Reliquat concernant la cote condition -------->= 0.000

Rang : 2

Avant l'optimisation des dispersions de la cote 2
0.188 0.237 0.000 0.237 0.200 0.200 0.100
IT de la cote condition ---------------------->= 2.000
Ecart de fabrication concernant la cote condition -----------
->= 1.163
Reliquat concernant la cote condition -------->= 0.837
Nombre de dispersions optimisable concernant la cote
condition ->= 3
La repartition du reliquat ------------------->= 0.279

Apres l'optimisation des dispersions de la cote condition 2
0.188 0.237 0.000 0.237 0.479 0.479 0.379
IT de la cote condition ---------------------->= 2.000
Ecart de fabrication concernant la cote condition -----------
->= 2.000
Reliquat concernant la cote condition -------->= 0.000

Dispersions optimisees
0.188 0.237 0.338 0.237 0.479 0.479 0.379

CALCUL DES COTES FONCTIONNELLES

Les longueurs moyennes de base:

Equation[1]: L 1 = 0,000
(On va prendre l'origine sur la surface nø1)

Equation[ 1]: 0.000 = L 1
Equation[ 2]: 2.000 = L 3 - L 2
Equation[ 3]: 4.000 = L 5 - L 4
Equation[ 4]: 10.479 = L 4 - L 3
Equation[ 5]: 4.237 = L 3 - L 1

Systeme d'equations : Solution L :

1L1+ 0L2+ 0L3+ 0L4+ 0L5 = 0.000 L[ 1]= 0.000
0L1- 1L2+ 1L3+ 0L4+ 0L5 = 2.000 L[ 2]= 2.238
0L1+ 0L2+ 0L3- 1L4+ 1L5 = 4.000 L[ 3]= 4.238
0L1+ 0L2- 1L3+ 1L4+ 0L5 = 10.479 L[ 4]= 14.716
-1L1+ 0L2+ 1L3+ 0L4+ 0L5 = 4.237 L[ 5]= 18.716

Cotes fonctionnelles moyennes :

Cf moy [ 1 2] = 2.238
Cf moy [ 1 3] = 4.238
Cf moy [ 1 5] = 18.716
Cf moy [ 3 4] = 10.479

COTES FONCTIONNELLES :
Cf [ 1 2] = 2.238 +0.263 -0.263
Cf [ 1 3] = 4.238 +0.237 -0.237
Cf [ 1 5] = 18.716 +0.283 -0.283
Cf [ 3 4] = 10.479 +0.479 -0.479

 


