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General introduction

The growing demand of energy in our modern industrial life requires the search for alternative
energy sources outside the limited and polluted current sources, such as fossil fuels. Renewable
energy, in its various forms, such as wind and solar energies, is an interactive, available and
environment friendly solution. The Sun is the main source of most energy in the Earth. This
includes photovoltaic and solar thermal energy, wind energy, geothermal energy, hydropower,
and even the energy generated by oil (Sen, 2008).

Solar energy can be used in different range of applications such as generating electricity by
photovoltaic effect, architecture and building design (e.g. air conditioning and cooling systems)
and other fields, such as health sector (disease control and skin cancer research) (Badescu,
2008). This energy has the advantage of being extremely sustainable and inexhaustible (solar
energy received at the Earth for one year is a thousand times higher than the energy produced
by oil). However, its amount is not constant in time and place because of its random nature
(Wu and Chan, 2011; Huang et al., 2013), due to the gases, clouds and dust within the
atmosphere, which absorbs and/or scatter radiation at different wavelengths. In addition,
obtaining reliable radiation data at ground level require systematic measurements. However, in
most countries the spatial density of radiometric stations is inadequate. Hence, quantification
of solar radiation data at each point in the Earth became more and more important due to
the increasing number of solar energy applications.

Quantifying the solar radiation is the data set describing the evolution of the solar radiation
at a given place and during a given period. Its study is the starting point of any investigation
in the field of solar energy. It could be used to simulate the design and the optimization
of photovoltaic systems. For that, a large number of solar radiation computation models
were developed, ranging from very complicated computer codes to empirical relations ( Zhang
2003; Kaplanis and Kaplani2007 ; Boland 2008; Wu and Chan 2011; Pandey and Soupir 2012;
Badescu et al. 2013). These models are tested and compared with measured ground data
and the accuracy is then improved by researches throughout the years. Moreover, the kinds of
measured solar radiation data depend strongly on the application of monthly or daily averaged
data which are required for climatology studies and feasibility for solar energy systems. Hourly
data are needed to simulate the performance of solar systems or during collector testing. Small
scales solar radiations are used for process simulation or designing and optimizing device sizing.

The aim of this thesis is to summarize the main approaches, methods and techniques
applied to the reconstruction of solar ground components while analyzing the benefits and
limitations of each. Then, we try to develop new models to estimate (Tadj et al., 2014) and
forecast solar radiation data ( Benmouiza and Cheknane., 2013 ; Benmouiza and Cheknane,
2015) to use it in solar energy applications such as sizing of stand-alone PV systems. Thus,
the models are applied and tested in Algeria. The choice of Algeria sites is due to the inter-

10
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esting potentially of solar energy ( Mefti and Bouroubi, 1999) . Indeed, it has a considerable
territory of solar radiation (more than 2500 sunshine hours per year). Although conditions
(geographical, climatic and weather) are very favorable, solar power has not been widely used
and this market remains almost untouched. Hence, it is important for a country as Algeria,
to estimate the potential of this type of energy in order to identify possible and effective ways
to use it in an energy policy perspective .

In Algeria, different main sources of solar radiation information can be found such as ra-
diation measurements made in meteorological and radiometric stations and some estimation
models. The first is the most direct, and therefore more accurate, but it is not always avail-
able; because in Algeria, for example, weather stations are few and often very remote from
each other. In addition, only the sunshine duration can be measured sunshine and rarely
we can measure global solar radiation. Hence, it is necessary to study the repartition of the
radiometric stations in Algeria as well as analysis of sunshine duration in order to classify and
study the amount of solar radiation in the country. The other methods are used to estimate
the radiation from a set of input parameters such as sunshine duration, time of sunrise and
sunset, temperature, relative humidity, atmospheric pressure and also the geographical coor-
dinates of the place (latitude, longitude and altitude). The later models can be classified into
four categories: spectral models, semi-empirical models, meteorological models and physical
models. However, long-term solar radiation estimation and measuring is not possible because
of some financial and technical limitations. Hence, developing forecasting models is needed in
order to get more information about future values of solar radiation amount at any place in
Algeria. These data can be used in different applications such as estimation of the PV output
systems and stand-alone PV systems sizing .

Thesis outline

For developing all the previously mentioned points, this thesis is structured along logical lines
of progressive thought. After an introduction, the methodology of our work revolves around
five chapters which link theory to practice as follows;

Chapter 1 is designed to be an introduction to solar radiation fundamental concepts. It
presents some basic definitions and useful general information about solar radiation in partic-
ular coordinate systems, astronomical variables and the constitution of the atmospheric layers
as well as solar radiation at the top of the atmosphere.

Chapter 2 deals with the study and classification of the sunshine hours in Algeria. Be-
fore that, we will present the instrumentation used to measure solar radiation components as
well as solar radiation databases over the world. At the end of this chapter, a solar map is
reconstructed based on Ordinary Kriging interpolation method to classify the energy zones in
Algeria.

Chapter 3 we will focus on a range of models encountered in the literature to estimate
the components of solar radiation. A comparison between semi empirical, meteorological and
physical models is presented. A new approach based on satellite image processing is also pro-
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posed to estimate hourly solar radiation at any place in Algeria.

Chapter 4 proposes two novel hybrid models to forecast solar radiation data in small scales.
It presents a new hybrid autoregressive moving average (ARMA) and nonlinear autoregressive
neural network (NAR) models, and a hybrid k-means and NAR models.

Chapter 5 surveys the algorithms for sizing stand-alone PV systems in small scales based
on the study of loss of load probability (LLP).

The thesis will be ended by a general conclusion with some perspectives for future works.
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Chapter 1

Solar radiation fundamental concepts

1.1 Introduction

The Sun is the main source of energy available on Earth. This includes, thermal, wind,
hydroelectric and solar energy. Solar radiation emission from Sun into Earth appears in the
form of electromagnetic waves. Solar radiation is absorbed, reflected, or diffused by solid
particles in the Earth’s atmosphere that depends on the weather, climate and other factors.
The incoming radiation at any given point takes different shapes depending on the geometry
of the Earth, its distance from the Sun, geographical location of any point on the Earth,
astronomical coordinates, and the composition of the atmosphere. This chapter provides the
basic astronomical variables and their definitions used in the calculation of solar radiation
(energy) assessment. These basic concepts, definitions, and derived astronomical equations
furnish the foundations of solar energy evaluation at any given location.

1.2 Nature of Sunlight

Sun has played a dominant role for different natural activities in the universe for the formation
of fossil and renewable energy sources. It will continue to do so until the end of the Earth’s
remaining life, which is predicted to be about 5 × 109 years. The diameter of the Sun is
R = 1.39×106 km. And, its mass is equal to 2×1030 Kg that composed predominantly of the
two lightest elements, Hydrogen, H, which makes up about 70% of the mass, and Helium, He,
about 27%; and the remaining 3% of solar matter is made up of all the other 90 or so elements
(McAlester, 1983). The origin of solar radiation received on the Earth is the conversion of H
into He through solar fusion. He is steadily being produced from lighter H as four nuclei unite
to form one nucleus of helium with a release of electromagnetic energy as presented in Fig.1.1
and Fig.1.2.

The emitted energy of the Sun is 3.8× 1026W and it arises from the thermonuclear fusion
of H into heat temperatures around 1.5 × 106 K at the core of the Sun. The energy released
by the thermonuclear reaction is transported by energetic photons, but because the strong
absorption of the peripheral gases, most of these photons do not penetrate the surface. The
Sun radiates electromagnetic energy in terms of photons which are light particles. Almost 30%
of this incident energy of the Earth is reflected back, but the rest is absorbed and is, eventually,
retransmitted to deep space in terms of long-wave infrared radiation. The total power that is
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Figure 1.1: H burning in Sun (McAlester 1983).
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Figure 1.2: Proton conversion into He nuclei plus energy (Şen, 2008).

incident on the Earth’s surface from the Sun every year is 1.73×1014 kW and this is equivalent
to 1.5× 1018 kWh annually, which is equivalent to 1.9× 1014 Tons. Compared to the annual
world consumption of almost 1010 Tons, this is a very huge and inappreciable amount. This
energy is considered uniformly spread all over the world’s surface and, hence, the amount that
falls on one square meter at noon time is about 1 kW in the tropical regions. The amount
of solar power available per unit area is known as radiance or radiant-flux density. This solar
power density varies with latitude, elevation, season of the year and the time of a particular
day. Most of the developing countries lie within the tropical belt of the world where there
are high solar power densities, and so they want to exploit this source in the most beneficial
ways. On the other hand, about 80% of the world’s populations live between latitudes 35°N
and 35° S. These regions receive the Sun’s radiation for almost 3000 – 4000 h/year. In solar
power density terms, this is equivalent to around 2000 kWh/year. Additionally, in these low
latitude regions, seasonal sunlight hour changes are not significant. This means that these
areas receive the Sun’s radiation almost uniformly throughout the year (Şen, 2008).
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Figure 1.3: The declination angles

1.3 Earth Motion

Earth’s orbital movement around the Sun affects the climate, solar radiation, and temporal
variations. The total amount of solar radiation reaching the Earth’s surface can vary due
to changes in the Sun’s output, such as those associated with Earth’s axis tilt, wobble, and
orbital trace. The Earth rotates around the polar axis in 24 hour that generates the day and
night. The path of the Earth around the Sun is an ellipse with very low eccentricity (that is
to say close to a circle) during 365 days in the year. The angle between the Earth–Sun line
and the equatorial plane is called the declination angle, d, which changes with the date and
it is independent of the location. The declination is maximum 23°45’ on the summer/winter
solstice and 0° on the equinoxes (Stacey 1992) as showed in Fig.1.3. The Sun-Earth distance
varies between 147,106 kilometers (3rd January) and 153,106 km (3rd July ); its average value
is 150,106 km.

Also, the speed of the Earth in its orbit around the Sun is not a uniform movement. It is
larger in winter than in summer. Because of that, the duration of spring and summer is longer
than the duration of the autumn and winter (duration of summer is 93.6 days, the spring 92.8
days, autumn is 89.8 days and winter, 89.0 days). This variation of the lengths of the seasons
is an immediate result of Kepler’s second law (law of areas). The combination of movements
of the Earth on its axis and around the Sun allows us to determine the position of the Sun,
according to the site (latitude and longitude) and time (day of the year and time) on the one
hand and day length on the other hand.

1.4 Geographic parameters

Earth is separated by the equator into two hemispheres, the northern hemisphere located
on the side of the North Pole and the southern hemisphere, which is situated adjacent to the
South Pole. On the other hand, it is divided from west to east by the meridian passing through
Greenwich (near London in England).
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Figure 1.4: Geographic coordinates.

1.4.1 Latitude

In geography, latitude (ϕ) is a geographic coordinate that specifies the north-south position
of a point on the Earth’s surface. Latitude is an angle which ranges from 0° at the equator
to 90° (North or South) at the poles. , it is counted positively (0 to 90 °) to the north and
negatively (0 to -90 °) to the south.

1.4.2 Longitude

Longitude is a geographic coordinate that specifies the east-west position of a point on the
Earth’s surface. It is an angular measurement, usually expressed in degrees and denoted by
(φ). The angle extent of 360 ° with respect to a meridian reference, with a range of +180 ° to
-180 ° or 180 ° east to 180° west.

1.4.3 Altitude

Altitude or height is a distance measurement, usually in the vertical or up direction, between
a reference datum and a point or object. Altitude is commonly used to mean the difference
between a point and a mean level, usually the sea level (or level 0) of a location.

1.5 Astronomical parameters

1.5.1 Sun position

Solar radiation and energy calculations require some geometric and time quantities concerning
the Sun position relative to the Earth and any point on the Earth. The Sun’s position is
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marked at every moment of the day and year by two different coordinate systems (equatorial
and horizontal).

1.5.1.1 Equatorial coordinates

The Sun movement is marked with respect to the equatorial plane of the Earth using two
angles; the declination d and hour angle w.

a) Solar declination

The solar declination is the angle of the direction of the Sun with its projection on the
equatorial plane. It varies between 23 ° 45 ’at the summer solstice (June 21) and -23 ° 45’ at
the winter solstice (December 21) (Stacey 1992). This variation produces the seasons. The
solar declination is expressed by the following equation (Iqbal, 1983)

δ = (0.006918-0.399912cosΓ + 0.07257sinΓ-0.006758cos2Γ (1.1)
+ 0.000907sinΓ-0.002697cos3Γ + 0.00148sin3Γ)(180/π)

Γ is the day angle expressed in radians given by

Γ = 2π(Nd − 1)/365 (1.2)

Expressing all angles in degrees, then Eq. (1.1) will be expressed as follows.

δ = 23, 45◦. sin

[
360

365
(Nd + 284)

]
(1.3)

Nd is the day number of the year, ranging from 1 to 365. (For 1stJanuary Nd = 1, and
31st December Nd = 365).

b) Hour angle

The hour angle, w, is the angular distance required for the Earth to rotate once a day,
which is equal to 15° multiplied by the number of hours (15×24 = 360°) from local solar noon.
It can be defined in degree by

ω = 15(12− TST ) (1.4)
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Figure 1.5: Useful angles. (Şen, 2008).

TST is the true solar time. The hour angle is measured from solar noon, it is positive if
it is before noon and negative if it is afternoon (ω is 0 ° at noon, -90 ° at 6 PM and 90° in 6
AM).

1.5.1.2 Horizontal coordinates

The horizontal coordinate system is formed by the plane of the astronomical horizon and ver-
tical location. In this reference, the coordinates are the Sun height, h, and the azimuth, θz
(Iqbal ,1983 ; Duffie and Beckman, 2006 ).

a) Sun height

The height of the Sun is the angle formed by the direction of the Sun and its projection
on the horizontal plane. It is particularly equal to 0 ° at sunrise and sunset in true solar time.
Its value is maximum at noon. It expresses by

sin(h) = cos(δ) cos(φ) cos(ω) + sin(φ) sin(δ) (1.5)

b) Azimuth of the Sun

The azimuth of the Sun is the angle between the projection of the Sun direction in the
horizontal plane and the South direction
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sin(θz) =
cos(δ) sin(ω)

cos(h)
(1.6)

It equals to zero at true solar time noon and it is maximum at sunrise and sunset.

1.5.2 Time zones

Geometrical division of time across the world is 24 longitudinal divisions. Time zones are
determined by dividing the Earth into 24 lines with 15 degrees of longitude in width. The
prime meridian is the Greenwich, which defines the Universal Time. Each country uses the
nearest longitude time as principal time.

1.5.3 Solar time

For applications of solar energy, it is necessary to introduce the solar time, which is calculated
taking into account the difference between the mean solar time and local time.

1.5.3.1 Mean solar time

The rotation of the Earth around itself introduces the concept of using MST. It is the average
time between two successive passages of the meridian of the place, a full rotation of the Earth
around itself takes 24 hours.

1.5.3.2 Universal Time

Universal Time (UT) is a time standard based on the rotation of the Earth. It is a modern
continuation of Greenwich Mean Time (GMT). GMT is sometimes used loosely as a synonym
for UTC. The difference between mean solar time and universal time is called the longitude
correction. The relation between universal time and mean solar time is defined by

MST = UT ± (ϕ/15) (1.7)

(+) for eastern longitude, and (-) for western longitude.

1.5.3.3 Legal Time

Standard time (or local) is the official time of the state. It differs from the global Greenwich
time by a shift in hours.

LT = UT + ∆H (1.8)

4H is the time difference between states (4H =1 for Algeria)
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1.5.3.4 True solar time

Solar time is a reckoning of the passage of time based on the Sun’s position in the sky. The
fundamental unit of solar time is the day. True solar time and mean solar time differs. This
difference is called the equation of time varies depending on the day ( Iqbal ,1986).

TST = MST + ET (1.9)

ET is the equation of time.

1.5.3.5 Equation of time

This is an equation which takes into account the rotation speed variation of the Earth; it is
given in minutes by Spencer (1972)

ET = 9.87 sin(2β0)− 7.53 cos(β0) (1.10)

β0 is a function defined in degree by

β0 =
360

365
(Nd − 81) (1.11)

1.5.3.6 Transition from the standard time to the true solar time

In general, to convert the standard local time LT true solar time TST, the following expression
is used.

TST = LT −∆H + (
ET + 4φ

60
) (1.12)

1.5.4 Surface Orientation

Any surface is defined by two angles (αz, γ):
αz: the surface azimuth, is the angle between the projection of the normal to the horizontal

surface and south direction.
γ: surface height, is the angle between the normal of the surface and its projection on the

horizontal plane.

1.5.5 Angle of incidence

The angle of incidence i for a plane of an inclination β′ is the angle formed by the directional
vector of the solar beam and the outgoing normal to the plane. For a south-oriented plane

cos(i) = cos(δ) cos(ω) cos(φ− β′) + sin(δ) sin(φ− β′) (1.13)
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For a north-oriented plane

cos(i) = cos(δ) cos(ω) cos(φ− β′) + sin(δ) sin(φ+ β
′
) (1.14)

For a horizontal plane (β − 0 = 0), cos(i) = sin(h).

1.6 Emission from the Sun

1.6.1 Nature of solar radiation

The solar radiation is an electromagnetic wave (Fig. 1.6) emitted by the Sun . We are talking
about electromagnetic radiation (EMR) when the radiation behaves like a force field that
affects the electrical and magnetic properties of matter. Light is the visible part of EMR, that
we can capture it with our eyes (Şen, 2008).

The radiation from the Sun is spread over a wide frequency range at the speed of light, on
average, 499 seconds, or 8 minutes and 19 seconds to reach our atmosphere. Solar radiation
contains electromagnetic wavelengths as short as 0.2mm (ultraviolet) with maximum energy
centred at around 0.4mm (visible blue light).

Fig.1.7 clearly shows that most of solar radiation occurs in the short-wave visible and
ultraviolet portions of the electromagnetic spectrum. There is some long-wave component of
infrared. However, large bands of these are absorbed by gasses and particles within the upper
atmosphere (Badescu ,2008) .

1.6.2 Sunlight spectrum

The Sun sends us an electromagnetic radiation, which is in the field of light. This infrared
radiation is composed of visible light and ultraviolet:

• Visible wavelengths between 0.4 µm and 0.8 µm, it comprises 48% of the radiation;

• Ultraviolet (UV) radiation at wavelengths shorter than 0.4 µm, it represents 6% of the
radiation;

• Infrared (IR) radiation at wavelengths greater than 0.8 µm it covers 46% of the radiation.

Figure 1.6: Electromagnetic waves.
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Figure 1.7: Solar spectrum.

1.7 Structure and composition of the Atmosphere

Before arriving at ground level, solar radiation undergoes physical changes in passing through
the atmosphere; it interacts with the gaseous and solid constituents of the atmosphere.

1.7.1 Definition of the Earth atmosphere

The atmosphere is the gaseous layer that surrounds our planet. Although it is very thin
in comparison to the Earth’s radius, its role is filtering the incoming solar radiation that is
essential for the presence of life on Earth. It consists of 78.09% Nitrogen, 20.95% Oxygen,
0.93% Argon, and a variety of other gases. The role of the atmosphere is essential to life on
Earth because:

• It allows to have an average temperature;

• It limits the temperature differences between day and night, and contributes to global
warming by trapping a portion of solar radiation by greenhouse;

• It absorbs most of the harmful ultraviolet radiation of the Sun in the ozone layer.

1.7.2 Structure of the Atmosphere

The atmosphere is divided into layers according to major changes in temperature. Gravity
pushes the layers of air down on the Earth’s surface. This push is called air pressure. 99% of
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Figure 1.8: Vertical temperature profile in the atmospheric layers.

the total mass of the atmosphere is below 32 kilometres. The World Meteorological Organi-
zation (WMO) defines four zones that characterize thermal phenomenon (that is to say, the
temperature variations in the atmosphere) as shown in Fig.1.8.

a) Troposphere- 0 to 12 km - Contains 75% of the gases in the atmosphere. This is where
you live and where weather occurs. As height increases, temperature decreases.

b) Stratosphere - 12 to 50 km - in the lower part of the stratosphere. The temperature
remains constant (-60 degrees Celsius). This layer contains the ozone layer.

c) Mesosphere - 50 to 80 km - in the lower part of the mesosphere. The temperature drops
in this layer to about -100 degrees Celsius. This is the coldest region of the atmosphere. This
layer protects the Earth from meteoroids.

d) Thermosphere - 80 km and up - The air is very thin. Thermosphere means "heat
sphere". The temperature is very high in this layer because ultraviolet radiation is turned into
heat. Temperatures often reach 2000 degrees Celsius or more.

1.7.3 Composition of the atmosphere

To characterize the composition of the atmosphere, three regions are defined as follows: Ho-
mosphere (which includes the Troposphere, Stratosphere and Mesosphere) in which the com-
position of dry air is uniform and invariable. Heterosphere wherein the composition of the
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air is subject to a systematic variation and vertical photosphere formed exclusively of free
electrons and protons. Only Homosphere involved in the phenomenon of propagation of the
solar radiation because it contains the main elements that alter the spectral composition of
light, as dry air, atmospheric water and aerosols. Moreover, scientists have preferred to add
a fourth element defined by cloud cover. In fact, although it composed mainly of water under
various conditions, clouds affect solar radiation significantly. We also see that they play an
important role in the spectral and directional characterization of solar radiation.

1.7.3.1 The dry atmospheric air

Dry air consists mainly of four parts, namely: Nitrogen (N2, 78.08% of the volume), Oxygen
(O2, 20.94%), Argon (Ar, 0.93%) and Carbon dioxide (CO2, 0.033%), called permanent gases.
However, these components have variable concentrations, which depending on the latitude,
wind, urban site and the season. Among the components of the dry air, the ozone. It is a
particular element to be considered in the phenomenon of absorption of solar radiation, despite
its low concentration (10-6% by volume of dry air). Indeed, most of the ultraviolet radiation
is absorbed by this element, thereby protecting the land of these high-energy radiations. The
amount of ozone depends on latitude and season (Şen, 2008). It is significant in an area
between 15 and 30 km altitude. In the upper atmosphere, ozone is created by ultraviolet
radiation from the Sun.

1.7.3.2 Atmospheric water

The water in the atmosphere is mainly localized in the lower 10 km of the atmosphere. It
comes from the evaporation of water from the surface of the Earth, the oceans and seas. Its
concentration varies so widely. Water is found as gas molecules (water vapor), a liquid and
solid form in the clouds. As for ozone, its influence on solar radiation is important and should
determine its atmospheric content. For this, we are interested in the total optical thickness of
water vapor at the site concerned that is to say on the total weight of water vapor. The height
of perceptible water depends on the ability of the air to contain water vapor, and therefore its
relative humidity and temperature. Height of perceptible water varies from 0.1 to 1 cm in the
poles and in the desert where the air is dry, 2 to 5 cm in temperate climates and greater than
5 cm in tropical climates (Şen,2008).

1.7.3.3 Aerosols

Aerosols are all particles suspended in the air from various industrial and natural activities:
pollen, sand and crystal sea salts carried by wind, volcanic eruptions, meteorite dust, agricul-
tural and forest fires (rain, snow and hail are not considered aerosols). Aerosols have volumes,
concentrations, distributions, shapes and compositions of very different materials (Şen, 2008).
Their dimensions vary from a few nanometers to hundreds of micrometers (giant particles);
they are substantially higher than comparable dry air molecules and the wavelengths of the
light radiation. Aerosols are characterized by two coefficients (α and β)
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• α , characterizes the average size of airborne particles. More, the higher α describes the
smallest aerosols.

• β, The value of the Angstrom turbidity factor (Ångström, 1961), which describes the
aerosol content.

Generally, the concentration of aerosols is:

• Greater in polluted site in rural site;

• Superior over the continent than the oceans;

• More important, during drying periods.

1.7.3.4 Clouds

In meteorology, a cloud is a visible mass of liquid droplets or frozen crystals made of water or
various chemicals suspended in the atmosphere above the surface of a planetary body. Cloud
cover is often considered separately as a filter on a blue sky. Clouds contain suspended particles
in the air. This explains why after some thunderstorms the sky looks clear. Cloudiness is the
meteorological parameter for estimating the importance took from clouds in the diffusion
phenomenon and it is used as the first parameter to calculate the sunshine fraction.

1.7.4 Effect of the atmosphere on solar radiation

1.7.4.1 General Description

When electromagnetic radiation encounters a material medium, two phenomena occur: de-
crease its energy and a change in its direction. At the output of each molecule encountered,
besides the fraction absorbed, two radiations are identified: a transmitted radiation and scat-
tered radiation. After passing through a set of particles (atmosphere cloud), the entire ra-
diation transmitted becomes the direct radiation. The other scattered part is called diffuse
radiation. The distributed radiation toward hemisphere part is called the reflected radiation.

1.7.4.2 Concept of the air mass

Air mass defines the direct optical path length through the Earth’s atmosphere; it represents
how much atmosphere solar radiation has to pass through before reaching earth surface. Air
mass coefficient can be used to help characterize the solar spectrum after solar radiation has
travelled through the atmosphere. Air mass coefficient is commonly used to characterize the
performance of solar cells under standardized conditions, and is often referred to using the syn-
tax "AM" followed by a number. Air Mass (AM) equals 1.0 when the Sun is directly overhead
at sea level. "AM 1.5" is almost universal when characterizing terrestrial power-generating
panels. Many formulas exist for determining the amount of the air mass, especially Kasten
and Young (1989) where the general expression is given by Eq.(1.15)

ma=
(
P (λ)
P0

)
mr(h)= 1−0.1λ

sin(h)+0.50572.(h+6.07995)−1.6864 (1.15)
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Another formula is proposed by IQBAL to calculate the air mass

ma = exp (−0.0001184.λ)
1

cos(θz) + 0.15.(93.885− θz)−1.258
(1.16)

Where,

• ma is the corrected air mass;

• mr is the relative air mass at sea level;

• P is the average atmospheric pressure;

• Po is the average atmospheric pressure at sea level (Po=1013 mbar);

• θz zenith angle, θz= 90◦ − h .

1.8 Properties of the electromagnetic waves

1.8.1 Attenuation of solar radiation

During its passage through the atmosphere, solar radiation is attenuated by the phenomena of
absorption and scattering and reflection as shown in Fig. 1.9. This attenuation is due to the
different atmospheric constituents: gas molecules, water vapor and aerosols. The attenuation
of solar radiation is based on the number, size and nature of the molecules and particles en-
countered. It also varies with the length of the path of solar radiation through the atmosphere
(air mass) (Şen,2008).

1.8.1.1 Absorption

As solar radiation passes through the atmosphere, gasses, dust and aerosols absorb the inci-
dent photons. Specific gasses, notably ozone (O3), carbon dioxide (C0 2), and water vapor
(H2O), have very high absorption of photons that have energies close to the bond energies of
these atmospheric gases. This absorption yields deep troughs in the spectral radiation curve
(Spencer ,1972).

a) Absorption by ozone

Ozone (O3) is characterized by a strong absorption band at wavelengths between 210 and
290 nm in the ultraviolet range and a low absorption between 450 and 770 nm in the visible
domain.

b) Absorption steam

Water vapor (H2O) is an important factor in the attenuation of solar radiation. It absorbs
waves located in the area of infrared.
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Figure 1.9: Solar radiation path, a) direct, b) diffuse, c) reflected

c) Absorption by gases

The absorption of solar radiation by the gas is very low. In most literatures it is considered
negligible.

1.8.1.2 Scattering (diffusion)

Atmospheric scattering can be either due to the molecules of atmospheric gases or due to
smoke, haze, and fumes (Richards, 1993). One of the mechanisms for light scattering in the
atmosphere is known as Rayleigh scattering, which is caused by molecules in the atmosphere.
Rayleigh scattering is particularly effective for short wavelength light (that is, blue light) since
it has a λ−4 dependence. Beside Rayleigh scattering, aerosols and dust particles contribute to
the scattering of incident light known as Mie scattering (Şen,2008).
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a) Rayleigh scattering

Rayleigh scattering occurs when the particle size is less than the wavelength of the radia-
tion. These particles can be from the dust, nitrogen or oxygen molecules. Rayleigh scattering
scatters more significantly short wavelength. This form of diffusion is predominant in the
upper layers of the atmosphere. The extinction coefficient characterizing this type of diffusion
is given by Eq.(1.17)

kr(λ) = 0.008735λ−4 (1.17)

b) Mie scattering

We talk on Mie scattering when the particles are almost as large as the wavelength of the
radiation. This type of diffusion is often produced by aerosols such as dust, pollen, smoke and
water. This kind of diffusion affects the larger wavelengths and occurs mainly in the lower
layers of the atmosphere where larger particles are more abundant. This process dominates
when the sky is cloudy. The extinction coefficient of this type of diffusion is,

ka(λ) = βλ−α (1.18)

The calculation of α and β is done experimentally for just the wavelengths λ=380 nm and
l=500 nm. Hence, in most of the cases, is equal to 1.3 for temperate regions. It is close to 0
for smaller particles that increase with the particle size and achieved 4 for larger particles. The
β Coefficient is given in Table 1.1 according to different states of the atmosphere (Ångström,
1961),

1.8.1.3 Reflection

When a change of the propagation environment, a part of the electromagnetic wave reflected
again towards the original environment. Each body which receives an amount of EMR may
reflect a part. Reflected radiation is mainly reflected from the terrain and is, therefore, more
important in mountainous areas. When it comes to solar energy reflected by a portion of land
area, it calls the albedo.

Table 1.1: β Coefficient according to different stats of the atmosphere.

Atmosphere β

Very dark blue sky ( Pure ) 0.02
Clear blue sky 0.05
Blue slightly sky 0.1
Milky blue and almost white sky (polluted sky) 0.2
Highly polluted sky 0.4
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Table 1.2: Albedo values. (Şen,2008)

Surface Albedo (%)
New snow 85
Old snow 75
Clayey desert 29- 31
Green grass 8- 27
Pine forest 6- 19
Calm sea surface 2- 4
Granite 12- 18
Water ( depending on angle of incidence) 2- 78
High-level cloud 21
Middle-level cloud ( between 3 and 6 KM) 48
Low-level cloud sheets 69
Cumulus clouds 70

a) Definition of albedo

The albedo reflection coefficient is the reflective quality of a surface. It is expressed as a
percentage of reflected radiation to incoming radiation and zero percent is total absorptions
while 100% is total reflection. To determine the Albedo, a scale of 0-1 is used, with 0 cor-
responding to the black, for a body without any reflection, and 1 corresponding to a perfect
mirror, for a body that is scattered in all directions and without absorption. Table 1.2 shows
some Albedo values.

N.B. The different mathematical equations proposed in literature of reflection, absorption
and diffusion are discussed in Chapter 3.

1.9 The extraterrestrial solar radiation

Extraterrestrial solar radiation (outside the atmosphere) is the solar radiation that strikes the
surface of the atmosphere.

1.9.1 Solar constant

To study the effect of solar radiation on the Earth system, it is necessary to determine the
amount of energy reaching the Earth’s atmosphere. Once the surface radiance of the Sun is
determined, the amount of energy reaching the top of the Earth’s atmosphere Eext can be
calculated using the following equation (Mil1er, 2010; Koupelis, 2010)

Eext = σ
′
T 4
su

(
Rsu
Ds,e

)2

(1.19)

Where,
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• Tsu is the temperature of the top of the Sun = 5800 K;

• Rsu is the radius of the Sun;

• Ds,e is the average Sun-Earth distance = 1.5× 108 Km ;

• σ’ is the Constant of Stephane Boltzmann = 5.67× 10−8W.m−2.K−4 .

The average amount of energy received on a surface perpendicular to incoming radiation at
the top of the atmosphere is the solar constant I0. The generally accepted solar constant of
1368 W/m2 (Monteith, 1962) is a satellite measured yearly average.

1.9.1.1 Correction of solar constant

Due to the elliptical path of the Earth rotation on the Sun, the distance Sun-Earth is variable
that causes a variation in the solar constant values. The correction of the solar constant is
given by,

Isc = I0E0 (1.20)

E0 is the solar constant correction factor (Duffie and Beckman,1991) expressed by

E0 =

(
Ds,e

Dse

)2

= 1 + 0.033 cos [2π(Nd)/365] (1.21)

Dse is the actual Sun- Earth distance.

1.9.2 Global horizontal extraterrestrial solar radiation

The global horizontal solar radiation outside the atmosphere for a site of height h from the
Sun is defined as the projection of normal solar radiation amount on this horizontal plane as
expressed by the following equation,

G0,h = Isc sin(h) (1.22)

a) Global daily extraterrestrial solar radiation

The daily global radiation on a horizontal surface is obtained by integrating equation (1.22)
from sunrise to sunset:

G0,day =

tssˆ

tsr

Isc(Nd). sin(h(TST ))dt (1.23)
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tsr and tss correspond to the sunrise and sunrise times.

b) Global hourly extraterrestrial solar radiation

The global hourly extraterrestrial radiation on a horizontal surface is obtained using the
following equation,

G0,hour =

t2ˆ

t1

Isc(Nd). sin(h(TST ))dt (1.24)

t1 and t2 represent two hour times .

1.10 Solar radiation components at the ground level

As a result of its passage through the atmosphere, the extra-terrestrial radiations are separated
into different components, beam (direct), diffuse and reflected solar radiation.

a) Direct beam irradiance (Gb)

Beam irradiance is the energy flux density (units: W/m2) of the solar radiation incoming
from the solid angle subtended by the Sun’s disk on a unitary surface perpendicular to the rays.

b) Diffuse irradiance (Gd)

It represents the energy flux density of the solar radiation incoming from the entire sky
come on a horizontal surface, excluding the direct beam coming from the Sun’s disk.

c) Global irradiance (G)

It is the sum of the direct horizontal and diffuse components, given by,

G = Gb +Gd (1.25)

The term “global” is associated to the fact that the solar radiation is received from the entire
2π solid angles of the sky vault.

d) Total irradiance (Gt)

It is the sum of beam flux density, diffuse flux density, and the reflected flux density Gr.

Gt = Gb +Gd +Gr (1.26)
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1.10.1 Clearness index

The daily clearness index kt is the ratio H/Hext, where H and Hext are the monthly average of
the daily solar radiation and the daily extra-terrestrial solar radiation on a horizontal surface,
respectively.

kt = H/Hext (1.27)

1.11 Sunshine hours

Sunshine duration during a given period (e.g. within one day) is defined as the sum of the time
for which the direct solar irradiance exceeds 120 W/m2. In other terms, sunshine duration is
the period during which the solar disk is clearly visible. In a Sun-Earth system without atmo-
sphere, the daily sunshine is equal to the day length S0 which depends only on the latitude
and declination.

S0 =
2

15
.a cos(− tan(φ) tan(δ)) (1.28)

1.11.1 Sunshine fraction

The sunshine fraction noted σ , is the ratio between the measured sunshine duration S and
the astronomical day length S0. It is expressed as follows,

σ = S/S0 (1.29)

Sunshine fraction is strictly caused by climatic conditions and the sky cases (clear, cloudy...
etc.). It differs from one region to another, depending on the season that reflects the diversity
of climate and seasonal regime in the country.

1.12 Conclusion

This chapter introduces the basic concepts necessary for the study of solar radiation. We
have discussed various astronomical and geographical as well as the characteristics of the solar
radiation parameters at the top of the atmosphere. These basic concepts, definitions, and
derived astronomical equations furnish the foundations of the solar energy evaluation at any
given location. The next chapter presents the measured solar radiation as well as the sunshine
data at ground level that allows us to better situate our problem namely, modeling of the
received solar radiation over Algeria.
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Nomenclature

4H Time difference.

Ds,e Average Sun-Earth distance.

Dse Actual Sun-Earth distance.

E0 Solar constant correction factor.

ET Equation of time.

G Global radiance at ground level.

G0,day Global daily extraterrestrial solar radiation.

G0,ext Global horizontal extraterrestrial solar radiation.

G0,hour Global daily extraterrestrial solar radiation.

Gb Direct beam radiance at ground level.

Gd Diffuse radiance at ground level.

Gr Reflected radiance at ground level.

Gt Total radiance at ground level.

h Sun height.

H Monthly average of the daily solar radiation on a horizontal surface.

Hext Daily extra-terrestrial solar radiation on a horizontal surface.

i Angle of incidence.

I0 Solar constant.

Isc Corrected solar constant.

kt Clearness index.

LT Local Time.

ma Corrected air mass.

mr Relative air mass at sea level.

MST Mean solar time.

Nd Day number of the year.

P Average atmosphere pressure.

Po Average atmosphere pressure at sea level (Po=1013 mbar).



CHAPTER 1. SOLAR RADIATION FUNDAMENTAL CONCEPTS 35

Rsu Radius of the Sun.

S Measured sunshine duration.

S0 Day length.

TST True solar time.

Tsu Temperature of the top of the Sun.

UT Universal Time.

α Average size of airborne particles.

αz Azimuth of a surface.

β Angstrom turbidity factor.

Γ Day angle.

γ Surface height (altitude).

δ Declination.

θz′ Azimuth angle.

θz Zenith angle.

σ The sunshine fraction.

σ’ Constant of Stephane Boltzmann.

ϕ Latitude.

φ Longitude.

ω Hour angle.
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Chapter 2

Study of solar radiation over Algeria

2.1 Introduction

Algeria is a vast and sunny territory, appropriate to the development of solar energy applica-
tions. However, such applications need the evaluation of the distribution of solar radiation.
These distributions can indirectly obtain in space and in time from hourly and daily sunshine
duration measurement collected in various locations in Algeria. In this chapter, and to study
the solar resource available in Algeria, a series of sunshine hours measured in 56 meteorological
stations in Algeria during ten years period (1992 / 2002 ) at different scales of time (month,
day) will be analyzed. Before that, we present the instrumentation used in the measurement
and describe the data available in trying to extract some useful information. Finally, we at-
tempt to classify the country in areas with the same energetic properties. Then, we study a
single site and generalize the results to all the area which it belongs.

2.2 Ground Measurements of Solar Radiation

Generally, the method used for measuring solar radiation is to transform the radiant energy
into heat. The overall solar radiation is often measured by solar radiometers. The measured
data are collected in some places in the world called surface solar radiation network. In
addition, measured data can be reached in some available online databases.

2.2.1 Solar Radiometers

Radiometry is the science of electromagnetic radiation measurement. The generic device is
named radiometer. Each of the quantities defined in chapter 1 is measured with a specific
device; for instance, the pyrheliometer that measures the direct beam irradiance and the
pyranometer that measures the horizontal beam and diffuse irradiances. Details on both in-
struments will be presented in the following parts.

a) Pyrheliometer

Pyrheliometer is an instrument that measures the direct solar radiation. It should be al-
ways oriented toward the Sun. Hence, a two-axis sun tracking mechanism was used for this

37
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Figure 2.1: a) Schematic of a pyrheliometer. b) Photo of Hukseflux DR01 first class pyrhe-
liometer (Hukseflux 2012).

purpose. Fig.2.1 shows a pyrheliometer that consists of a detector (multi-junction thermopile)
placed at the bottom of a collimating tube provided with a quartz window to protect the
instrument. The detector is coated with optical black paint (to act as full absorber of solar
energy in the wavelengths range 0.280-3 µm). The radiation received from the Sun is limited
to a circumsolar region (with an acceptance angle of 5°), the other diffuse radiation from the
sky is excluded. At the end of the tube, an electrical readout device is used to give the in-
stantaneous values of direct solar radiation in W/m2 (Paulescu et al., 2013).

b) Pyranometer

A pyranometer measured the global hemispherical solar radiation (direct + diffuse) with a
360° field of view. The pyranometer is represented in Fig 2.2. It consists of a white disk that
limits the acceptance angle to 180° and two domes made of glass to protect the sensor from
the weather threat (rain, wind and dust). A cartridge of silica gel inside the dome absorbs
water vapour. The diffuse solar radiation can be measured by eliminating the direct beam
radiation; a small shading disk can be mounted on an automated solar tracker that ensures
that the pyranometer is continuously shaded. However, because the variation of the Sun ele-
vation angle from day to another, the shadow ring must be oriented to ensuring the shadow

Figure 2.2: a) Schematic of a pyranometer. b) pyranometer equipped with shadow ring.
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during the day. In addition, the shadow ring may intercept a part of the diffuse radiation. The
percentage of diffuse radiation intercepted by the shadow ring varies during the year with its
position and atmospheric conditions for that its value must be corrected (Paulescu et al., 2013).

c) Sunshine duration measurement

Sunshine duration is the sum of the time intervals for which the direct solar radiation
exceeds the threshold of 120W/m2 (WMO 2008). Two methods are used in practice for
measuring sunshine duration, the burning card method and pyranometric method. Burning
card method is based on the Campbell-stokes (CS) sunshine recorder developed by John
Francis Campbell in 1853 and later modified in 1879 by Sir George Gabriel Stokes. It consists
of a glass sphere filled with water mounted in a spherical bowl that holds the recording card as
shown in Fig 2.3. The glass sphere focuses the beam radiation onto the card, burning a trace
whenever the Sun is shining. The position and length of the trace indicate the starting and
the duration of the sunshine interval. The Campbell-stokes recorder is still manufactured and
used today. However, it presents an error depends on the burning card temperature, humidity
and clouds (Kerr and Tabony, 2004).

The pyranometric method consists of determining the sunshine duration during a time
interval ∆t by multiplying the mean sunshine number (mean of ξ) during ∆t. Sunshine number
is a Boolean variable stating whether the Sun is covered or not by clouds. It is calculated
from the subtraction of the global and diffuse solar radiation. Then, direct radiation obtained
is compared with the WMO threshold as illustrated in Eq. (2.1) where θz is the Sun zenith
angle. The disadvantage of this method that is depends strongly on the accurate measuring
of the global and diffuse radiation.

x =

{
1 if (G−Gd)/ cos(θz) > 120 W/m2

0 otherwise
(2.1)

Figure 2.3: a) Schematic of Campbell-Stokes sunshine recorder (1. glass sphere, 2.burning
card, 3. Spherical bowl, 4. Sphere and Card holder). b) Photo of a typical Campbell- Stokes
sunshine recorder.
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Modern instruments such as electronic sunshine recorders (using photodiodes) are used to
determine the patent of sunshine. These devices have much time resolution and more precise
results that improve the reliability, and the accuracy of the measurements comparing with the
CS instruments.

2.2.2 Surface solar radiation networks

The knowledge of the solar energy available at any location depends not only on the total
measured values, but also on its temporal repartition, spectral distribution and its nature
(global, direct or diffuse). In most areas of the world, measuring solar radiation stations are
installed. However, their investment and maintenance cost is considered high. Hence, the
national networks consist of a small number of stations even in industrialized countries. In
addition, measurements are varying from station to another. The global solar radiation and
sunshine duration are available in mean daily or monthly basis. The diffuse, direct and cloud
cover data on hourly bases are rarely recorded. Nowadays, some databases are created in the
world that based on the interpolation and extrapolation of the available data for estimating
solar radiation at each point in the world. However, the error of estimating radiation increases
with the distance from the closest station. Moreover, the databases store various format and
units using various time idioms. Thus, sometimes even data access and correct interpretation
is a difficult task. In following, some surface networks as the World Radiation Data Center
(WRDC) and Baseline Surface Radiation Network (BSRN), Photovoltaic Geographical Infor-
mation System (PVGIS) and METEONORM (METEONORM) are summarized.

a) World Radiation Data Center (WRDC 2012)

World Radiation Data Center (WRDC 2012) is located at the Main Geophysical Obser-
vatory in St. Petersburg, Russia and serves as a central depository for solar radiation data
collected at over 1000 measurement sites throughout the world. Using the data measured from
the WMO (world meteorological organization), the WRDC archive contains mainly measure-
ments of global solar radiation, diffuse solar radiation and sunshine duration in the format
of daily sums and monthly mean. Data collected from 1964 to 1993 are accessible online on
the site of the US Department of Energy’s, National Renewable Energy Laboratory and data
collected from 1994 to present are accessible on the site of the Main Geophysical Observatory,
St. Petersburg, Russia.

b) Baseline Surface Radiation Network (BSRN 2012).

BSRN is a project of the Radiation Panel from the Global Energy and Water Cycle Ex-
periment (GEWEX 2012) as part of the World Climate Research Program (WCRP 2012). It
contains about 40 stations located on the world between latitude 80° N and 90° S. BSRN is
used for detecting important changes in the Earth’s radiation, which related to the climate
changes. It measures solar and atmospheric radiation with instruments of the highest available
accuracy and high time resolution (1–3 min).
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c) Photovoltaic Geographical Information System (PVGIS 2012)

PVGIS is a server, operated by the Joint Research Centre of the European Commission
that offers a map of solar radiation, temperature and other data for Europe and Northern
Africa. In Europe, the database is based on interpolation of ground station measurements (1
km grid, period 1981–1990). For Mediterranean Basin and Africa, the maps are developed by
processing the HelioClim-1 database (2 km grid resolution, period 1985–2004).

d) Meteonorm (METEONORM 2012)

Meteonorm is a database for solar energy application contains a large database of ground
station measurements collected from various sources (more than 8,300 are listed for the version
7). It offers two periods of measurements: (1) from 1961 to 1990 and 1996 to2005 for tempera-
ture, humidity, precipitation, and wind speed, and (2) 1961–1990 and 1981–2000 for radiation
parameters. The METEONORM outputs are climatology averages and derived products for
any point on Earth, estimated by interpolation at very high resolution (0.1–1 km).

2.2.3 Online available databases

Online solar radiation databases are the data derived from satellite data provided by web
based systems. The data are saved on servers in some websites, among them:

a) Satel-Light(European Database of Daylight and Solar Radiation)

Satel-Light (2012) was one of the first websites to provide solar radiation data. It’s based
on the Heliosat model (images produced by the Meteosat satellite every half hour) and covers
Europe and a small region of the North Africa. It provides monthly means of hourly and daily
values from the period 1996 to 2000.

b) SoDa

The project Solar Data (SoDa 2012) is a web service that offers long-term monthly, daily
and hourly solar radiation data and other information such as temperature measurements at
any place in the world. The SoDa database is processed by MINES ParisTech—ARMINES.
(HelioClim 2012).

c) NASA Surface Meteorology and Solar Energy (SMSE 2012)

It is a large archive that covers the entire globe using over 200 satellite-derived meteoro-
logical and solar radiation parameters. Data can be retrieved from the SMSE server (SMSE
2012), where they can be used in various solar applications, e.g., sizing and pointing solar
modules, solar cooking, tilted solar modules and cloud information.
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Figure 2.4: The annual solar radiation data in m2 for the world in 2013 (solarGis, 2013).of a
typical Campbell- Stokes sunshine recorder.

2.3 Solar radiation over the world

The amount of solar energy at ground level is about 720.1015 kW.h. Depending on the location,
solar energy changes between 1000 to 2300 kW.h/year in m2. That means solar power between
120 W/m2 to 1000 W/m2 which depends on the location, atmosphere and weather conditions
as expressed in Fig. 2.4, which represents the annual solar radiation data inm2 over the world.
However, only 26.1015 kW.h of the total solar energy received at ground level (about 0.5 %)
is used to meet our daily needs. A big part of this energy is used to produce electricity by
photovoltaic panels (33.6 TWh) or used in thermal power stations (1.6 TWh).

2.4 Solar radiation in Algeria

2.4.1 Presentation

Algeria is a country situated in the North of Africa on the Mediterranean coast with a total
area of 2,381,741 square kilometres. Algeria is the tenth-largest country in the world, and
the largest in Africa and the Mediterranean. The country is bordered in the northeast by
Tunisia, in the east by Libya, in the west by Morocco, in the southwest by Western Sahara,
Mauritania, and Mali, in the southeast by Niger, and in the north by the Mediterranean Sea
as shown in Fig.2.5. Algeria is divided topographically into three main regions that generally
run east-west. The first is the Tell, which is the Mediterranean coastal region. The second is
the High Plateaus, which are more inland and are fairly consistent, until the third region, the
Sahara, which covers almost 80% of Algeria’s land.
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Figure 2.5: Map of Algeria.

2.4.2 Meteorological network of Algeria

Algeria has a considered sunny area with mean annual sunshine varies between 2600 h / year
in the North and 3500 h / year in the South . However, the number of meteorological stations
(56 stations) is low comparing with the total surface of Algeria (more than 2 million km2).
The geographic situation of these stations is shown in Table 2.1.

In addition, Fig 2.6 shows the situation of stations on the Algeria map. It is clearly shown
that the most of stations are situated in the north and High Plateaus. However, their number
is negligible in the south (Sahara region) where there are high solar radiation values. Hence,
we considered that the density of this network is poor and it does not give much information
about the amount of solar radiation in Algeria.

Figure 2.6: Meteorological stations over Algeria.
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Table 2.1: Meteorological network of ONM (Mefti,2007)

Nº Station Longitude (º) Latitude (º) Nº Station Longitude (º) Latitude (º)
1 Beni Saf 1.33 W 35.25 29 Batna 6.35 E 35.71
2 Oran 0.60 W 35.63 30 Souk-Ahras 7.97 E 36.28
3 Arzew 0.26 W 35.81 31 Tebessa 8.11 E 35.41
4 Mostaganem 0.12 E 35.88 32 Saida 0.15 E 34.86
5 Maghnia 1.78 W 34.81 33 Elkheiter 0.04 E 34.09
6 Tlemcen 1.45 W 35.01 34 El Bayed 1.00 E 33.73
7 Mascara 0.30 E 35.6 35 Mecheria 0.26 W 33.55
8 S.Belabbes 0.65 W 35.18 36 Ainessefra 0.60 W 32.75
9 Chleff 1.33 E 36.21 37 Naama 0.30 W 33.26
10 Tenes 1.33 E 36.5 38 Bechar 2.25 W 31.63
11 Miliana 2.23 E 36.3 39 Biskra 5.73 E 34.8
12 Médéa 2.75 E 36.45 40 Ghardaia 3.80 E 32.4
13 Alger 3.25 E 36.71 41 Touggourt 6.13 E 33.11
14 Tizi Ouzou 4.50 E 36.91 42 El Oued 6.78 E 33.5
15 Ghazaouet 1.86 W 35.1 43 Ouargla 5.40 E 31.91
16 Bejaïa 5.05 E 36.75 44 El Golea 2.86 E 30.56
17 Jijel 5.57 E 36.8 45 Timimoun 0.28 E 29.25
18 Skikda 6.90 E 36.88 46 Béni Abbas 2.16 W 30.13
19 Annaba 7.81 E 36.83 47 Adrar 0.18 W 27.81
20 Guelma 7.46 E 36.46 48 Ain Salah 2.47 E 27.2
21 Tiaret 1.46 E 35.35 49 Ain Amenas 9.63 E 28.05
22 Djelfa 3.25 E 34.68 50 Janet 9.47 E 24.26
23 KsarChelala 2.32 E 35.16 51 Tamanrasset 5.45 E 22.8
24 M’sila 4.50 E 35.66 52 Assekrem 5.63 E 23.26
25 Boussaâda 4.20 E 35.33 53 B.BajiMokhtar 0.57 E 21.2
26 Bordj 4.66 E 36.06 54 Ain Guezzam 5.77 E 19.56
27 Setif 5.25 E 36.18 55 Illizi 8.43 E 26.5
28 Constantine 6.61 E 36.28 56 Tindouf 8.16 W 27.7

2.4.3 Solar radiation data in Algeria

The data are collected by the ONM (national office of meteorology) that covers 56 stations as
follow:

1. Daily and monthly sunshine data for the 56 stations from 1960 to 2002.

2. Hourly direct, diffuse and global solar radiation data for Oran , Ghardaia and Bouzareah
with other measurements such as relative humidity and temperature.

However, these databases have many missing data as shown in Fig.2.7 due to the absence of
measurements. Hence, we have selected only data from 1992 to 2002 to avoid the missing
data.
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Figure 2.7: Missing data in the Meteorological network of Algeria.

2.4.4 Analysis of the sunshine fraction

To know the amount of solar radiation over Algeria, the analysis of the sunshine fraction is
known as an important part that gives information about the amount of the monthly and
daily solar radiation basing on Angstrom (1924) equation expressed as follows;

G = G0

(
a+ b

S

S0

)
(2.2)

S is the measured mean monthly sunshine, it is calculated using the following equation ;

S =
1

N

Ny∑
Y ear=1

S(month, day, location) (2.3)

Where, Ny is equal to 10 that represents the number of the years (from 1992 to 2002). The
results of the mean monthly measured sunshine hours are presented in Table 2.2.

In what follows, we simulate the sunshine fraction for the 56 stations in order to know the
different climatic regions in Algeria based on the analysis of the sunshine fraction values.

Fig.2.8 shows an example of how to calculate the sunshine fraction for Algiers. First, we
plot the measured mean monthly sunshine extracted from Table (2.2). Then, we plot the day
length S0. Finally the sunshine fraction is plotted based on Eq. (1.29) ( Chapter 1).
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Table 2.2: Mean monthly measured sunshine hours.

Stations Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Beni Saf 6.47 7.63 7.99 9.4 9.36 9.91 10.23 9.52 8.6 7.39 6.62 6.09

Oran 6.22 7.46 8 9.4 9.7 10.67 10.86 10.06 8.87 7.38 6.47 5.88

Arzew 6 7.21 7.74 8.93 8.8 8.4 9.46 9.22 8.33 7.19 6.17 5.67

Mostaganem 6.08 7.6 8.38 9.4 9.67 10.71 10.83 9.84 8.81 7.31 6.24 5.89

Maghnia 6.82 7.76 7.89 9.47 9.87 10.75 11.16 10.21 9.09 7.67 7.01 6.28

Tlemcen 6.53 7.45 7.7 9.29 9.61 10.6 10.98 9.98 8.87 7.51 6.7 6.12

Mascara 6.1 7.2 7.57 8.94 9.55 10.67 10.97 9.97 8.81 7.41 6.28 5.85

S-Bel abbes 6.36 7.81 8.02 9.44 9.94 11.32 11.6 10.34 9.14 7.7 6.75 6.22

Chlef 5.75 6.91 7.75 9.13 9.93 11.1 11.53 10.33 9.18 7.58 6 5.2

Médéa 5.14 6.7 7.5 8.44 9.45 10.8 11.45 10.45 8.84 7.26 5.44 4.61

Alger 5.66 7 7.65 8.5 9.06 10.34 10.95 9.93 8.6 7.2 5.81 5.17

Bejaïa 5.18 6.3 7.11 8.02 8.86 9.9 10.83 9.93 7.78 6.73 5.46 4.92

Jijel 4.42 4.36 5.47 6.15 7.36 8.75 9.05 8.49 5.91 4.97 3.8 4.19

Skikda 5.05 6.37 7.34 8.2 9.27 10.29 11.24 10.06 8.13 6.97 5.3 4.51

Annaba 5.47 6.23 7.27 8.16 9.38 10.38 11.5 10.52 8.18 7.11 5.33 4.83

Guelma 5.34 6.22 7.11 7.96 9.21 10.07 11.44 10.19 8.2 7.14 5.51 4.96

Tiaret 5.69 7.2 7.7 8.74 9.57 10.72 11.08 9.84 8.99 7.74 5.98 5.46

Djelfa 5.86 7.58 8.08 9.14 9.88 10.61 10.97 9.68 8.86 8.11 6.56 6.21

M’sila 6.35 8.18 8.56 9.32 10.07 10.82 11.24 10.14 8.92 8.36 6.71 5.91

Boussaada 6.14 7.53 8.23 9.09 9.59 10.11 10.73 9.67 8.44 7.94 6.61 6.23

B.B.Arreridj 5.97 7.41 7.96 9.01 9.72 10.88 11.27 10.06 8.7 7.76 6.37 5.92

Sétif 6.19 7.7 8.1 9.05 9.81 10.97 11.42 10.24 8.88 7.8 5.85 5.29

Constantine 5.24 6.53 7.3 8.25 9.38 10.58 11.32 9.72 8.3 7.26 5.6 5.19

Batna 5.55 7.06 7.75 8.73 9.53 10.4 11.37 10.21 8.7 7.85 6.23 5.66

Souk Ahras 4.94 5.87 6.89 7.82 8.95 9.92 11.05 10 7.93 6.92 5.18 4.82

Tebessa 5.51 6.68 7.56 8.4 9.42 10.18 11.31 10.01 8.3 7.49 6.12 5.5

Saida 6.22 7.6 7.79 9.05 9.64 10.85 11.08 9.74 9.01 7.85 6.54 6.07

El-Bayad 5.92 7.3 7.96 9.19 9.89 10.62 10.73 9.52 9.3 8.11 6.1 5.94

Mecheria 6.71 8.02 7.94 9.24 9.51 10.05 9.64 8.53 8.8 7.93 7.3 6.73

Naama 6.7 8.01 7.9 9.43 9.75 10.15 9.86 8.86 9.05 8.21 7.35 6.79

Bechar 8.1 9.01 9.18 10.65 11.04 11.37 11.06 9.89 9.61 8.94 8.69 8.06

Biskra 7.27 8.68 9 10 10.58 11.42 11.64 10.71 9.07 8.65 7.44 7.4

Ghardaia 7.84 8.96 8.88 10.13 10.44 11.25 11.3 10.18 9.01 8.59 7.91 7.81

Touggourt 7.82 9 9 9.9 10.26 11.37 11.48 10.71 8.99 8.65 7.86 7.81

El Oued 7.65 8.79 9.13 9.84 10.17 11.12 11.41 10.82 8.96 8.5 7.68 7.6

Ouargla 7.73 8.62 8.95 9.67 9.6 10.79 11.06 10.34 8.24 8.39 7.44 6.56

Timimoun 8.57 9.01 9.03 9.63 10.4 10.95 10.79 10.07 8.44 8.91 8.52 8.51

Béni Abbes 8.44 9.08 9.49 10.71 11.06 11.35 10.93 10.07 9.32 9 8.85 8.63

Adrar 8.97 9.3 9.4 9.92 10.35 10.65 10.15 9.08 8.4 9.08 8.77 8.66

In Salah 8.95 9.24 9.1 9.43 9.73 10.64 11.04 10.27 8.39 9.13 8.84 8.71

In Amenas 8.53 9.18 9.02 9.02 9.23 10.27 11.75 11.17 9.41 9.23 8.65 7.69

Djanet 9.27 9.93 9.47 9.53 9.73 10.71 11.83 11.16 10.13 9.74 9.47 8.9

Tamanrasset 9.3 10.13 9.48 10.01 9.53 8.84 10.07 8.9 8.09 9.04 9.52 8.9

BB Mokhtar 8.61 9.33 8.64 8.58 8.18 6.13 4.89 4.83 5.41 8.39 8.56 8.13

Tindouf 8.54 9.54 9.61 10.75 11.45 10.59 10.17 9.43 9.91 9.53 8.45 7.92



CHAPTER 2. STUDY OF SOLAR RADIATION OVER ALGERIA 47

2 4 6 8 10 12
0.4

0.6

0.8

1

Months

S
un

sh
in

e 
fr

ac
tio

n

Algiers (36.71°)

2 4 6 8 10 12
5

10

15

Months

S
un

sh
in

e 
(h

ou
r)

Algiers (36.71°)

 

 
Insolation
day length

Figure 2.8: Sunshine fraction for Algiers.

We applied the same methodology to obtain the sunshine fraction for other locations. The
results for some stations are shown in the following figures.
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Figure 2.9: Sunshine fraction for some metrological stations in Algeria.
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The Curves described above allow us to have a preliminary idea of the distribution of solar
radiation in Algeria. According to these curves, we can distinguish three sunshine fraction
types in Algeria:

• The first type is found for stations number 1 to 35 situated in the north of the country,
including coastal sites and highlands from the east to the west of Algeria. These sites
are characterized by two main seasons (winter and summer) with a significant annual
change on coastal stations and even less on the highlands. The sunshine fraction varies
between 0.5 and 0.8. It is maximum in summer and minimum in winter.

• The second type is found at stations in the north and central Sahara (station number 35
to 49). The sunshine fraction can exceed 0.9 that it is higher than the northern values
and the curves are less fluctuated. In addition, the seasonal effect has little influence on
these sites.

• The third type is found for stations located in the south of the Sahara (number 50 to 54)
where insolation is changing almost inversely with the length of the astronomical day.
The sunshine fraction takes low values in summer (0.5 to 0.6) and higher in winter (0.8).
These sites are very specific to their geographical location and climatic characteristics.

2.4.4.1 Annual average sunshine across Algeria

The simulation results of the average annual sunshine and the sunshine fraction are shown in
Fig. 2.10 and Fig.2.11.

From these figures, the average annual sunshine fraction is between 0.55 and 0.75 in the
north of Algeria (latitude between 37 º and 34 º). For the sites in the northern and central
Sahara (latitude between 34 º and 26 º), it reaches values of 0.75 to 0.87. And, it falls to 0.7
to 0.6 in regions located at less than 24 ° latitudes (Hoggar and Tassili).
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Figure 2.10: Annual average sunshine hours and sunshine fraction for all ONM stations.
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Figure 2.11: Annual average sunshine hours and sunshine fraction for all ONM latitudes.

2.4.5 Sunshine maps in Algeria

Our objective is to determine the amount of solar radiation data in each point in Algeria.
However, in real world, it is impossible to get exhaustive values of data at every desired
point because of practical constraints. Thus, interpolation is important and fundamental to
graphing, analyzing and understanding of 2D data. Interpolation is a method of constructing
new data point within the range of a discrete set of known data points. Several methods
are proposed in the literature such as linear and nonlinear interpolation as well as other
complicated methods like principal analysis components and Kriging methods. In what follows,
we try to divide the land of Algeria into zones with similar energetic properties in order to
distinguish the similar zones in Algeria based on Kriging interpolation. At the end, a mapping
of Algeria for each month of the year is reached.

2.4.5.1 Sunshine maps in Algeria using Kriging method

The simulation results are shown in the following figures that represent the average monthly
sunshine maps for Algeria for 12 months of the year. The database used in the simulation is the
insolation hours from 1992 to 2002 for all the 56 stations. The maps are plotted using Surfer
software. Surfer is a full-function 3D visualization, contouring and surface modeling package, it
is used extensively for terrain modeling, bathymetric modeling, landscape visualization, surface
analysis, contour mapping, watershed and 3D surface mapping, gridding and volumetrics. It
uses different interpolation methods to plot the countour maps among them, the inversed
distance to power method , the modified Shepard’s method , the minimum curvature method,
the nearest neighbor method , the polynominal regression method, Kriging method...etc. In
this work, we are based on the Ordinary Kriging method that is used to interpolate the values of
a random field with an unobserved location from observations of its value at nearby locations.
The description of Kriging theory and its applications are given in detail by Delhomme (1978).
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Figure 2.12: Monthly average sunshine maps of Algeria for twelve months of the year.

From these figures, we can distinguish six energetic zones in Algeria:

• Zone 1 : extends over the coastal regions and eastern high plateaus ( stations N°:
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16,17,18,19,20,27,28,29,30,31). It is characterized by a low sunshine fraction whose its
distribution is not different during the year.

• Zone 2 : contains the central coastal regions ( stations N° : 9,10,11,12,13,14,24,26), it is
characterized by a small sunshine fraction, but a little high than zone 1, the distribution
is very different during the year. The summer months receive more solar energy than
the winter months.

• Zone 3 : it contains the coastal regions, western high plateaus and internal central re-
gions (stations N°: 1,2,3,4,5,6,7,8,15,21,22,23,25,32). It’s characterized by high sunshine
fraction (comparing with zone 1 and 2) with a different distribution during the year.

• Zone 4 : it contains the north of the Sahara ( stations N° : 33,34,35,36,37,38,39,40,41,42).
It’s characterized by high sunshine fraction with a small different distribution between
summer and winter months.

• Zone 5 : it represents the center of the Sahara (stations N°: 43,44,45,46,47,48,49,50,55,56).
It has the highest sunshine fraction comparing with other zones. It has a constant dis-
tribution during the year.

• Zone 6 : it represents the south of the Sahara (Hoggar and Tassili, Station N°: 51,52,53,54).
The effect of the seasons is reversed. The winter months have a high sunshine fraction
comparing with the summer months.

However, according to Table 2.3 that shows the variance and the standard deviation for the
spacial distribution of the 56 meteorological stations, we can note that Algeria has considerable
territory, which can not be reflect the reality of solar zones in Algeria.

From Table 2.3, we can see that the stations situated in the north of Algeria ( N° : 1-37,
39 ) have the lowest variance and standard deviation compared to the zone of the north and
center of sahara ( stations N° : 38, 40-48 , 56) and south of Sahara ( stations N° : 49-54 ).

The contour map for each region is reconstructed as shown in Fig. 2.13. We can see from
these figures that the average sunshine map is well constructed in the north of Algeria that
contains many meteorological stations with small distance between them compared to the
Sahara region that needs more installation of this meteorological stations.

Table 2.3: Variance and the standard deviation for the spacial distribution of the 56 meteoro-
logical stations

Distribution
Station N°: Longitude Latitude Average data
1-37, 39

Variance
9.80 2.4 0.39

38, 40-48, 56 19.90 5.74 0.16
49-54 42.69 24.9 2.8

1-37, 39
Standard deviation

3.13 1.54 0.54
38, 40-48 ,56 4.46 2.3 0.4

49-54 6.53 4.9 1.3
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(a) Station N°: 1-37,38

(b) Stations N° : 38, 40-48 , 56

(c) stations N° : 49-54

Figure 2.13: Average sunshine zoning map for each region

2.5 Conclusion

In this chapter, data measured in different regions and at different time scales were presented.
These data will develop models to describe fully and accurately the solar field in Algeria. The
analysis of seasonal variations of sunshine duration and sunshine fraction for the 56 locations
of Algeria showed that this country can be divided into six typical regions; these regions differ
from one to another by their climatic features. The results of this analysis can be used to
estimate or predict the monthly mean values of sunshine duration for Algeria. More generally,
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they could be used to evaluate the solar energy resources available in space and in time for
this country.
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Nomenclature

a, b Angstrom coefficients.

Cov Covariance function.

G Global radiation.

G0 Global radiation at the top of atmosphere.

Gd Diffuse radiation

L Correlation length.

N Number of locations.

Ny Number of the years.

rj The residue.

S Measured mean monthly sunshine.

S0 Day length.

v̂j Actual value.

ṽj The estimate.

V ar Variance function .

x̂j The unknown location.

wi Weights.

θz Sun zenith angle.

ξ Sunshine number.

σ” Standard deviation.
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Chapter 3

Estimation of solar radiation at
ground level

3.1 Introduction

Studying of solar radiation is essential to estimate its amount at ground level. In practice,
there are two sources of solar data; the first consists of the measured ground data available in
meteorological networks and radiometric solar stations. And, the other consists of extracting
solar data from digital satellite images. However, only a few stations measured irregularly the
amount solar radiation data. Hence, in this chapter, we present a description and classification
of some solar radiation estimation models based on ground measurements. Moreover, a satellite
image processing model is also discussed. The validity of these models will be judged by
comparing the obtained results by actually measured values of the available ground stations.

3.2 Classification of the radiometric models

Radiometric models are based on the exploitation of some ground measured parameters to
calculate the various components of solar radiation, particularly in areas where there are no
radiometric stations. Generally, these models are based on the main meteorological parame-
ters, such as ambient temperature, relative humidity, sunshine duration and some astronomical
parameters such as declination of the Sun, the astronomical day length, solar constant, vari-
ation of the distance between Earth and Sun and extraterrestrial radiation calculated on a
horizontal plane at the top of the atmosphere. Generally, we can classify the radiometric
models in four families: spectral models, semi-empirical models meteorological models and
physical models.

Spectral models are essentially the calculation of the spectral components of solar radia-
tion on the ground. They are based on the determination of transmission coefficients. They
depend on the knowing of the characteristics of certain atmospheric elements such as aerosols
and clouds.

Semi-empirical models have a local character and used to calculate the direct, diffuse and
global components. They use meteorological and geographical parameters as inputs. The limit

58
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of these models is the fact that they are applicable only in situations of clear sky.

Meteorological models calculate global radiation whatever the sky condition using directly
the solar data collected at ground stations. They have the advantage of generating solar radi-
ation data for different inclined surfaces.

Physical models consist of exploiting and processing satellite imagery. These models have
proven their efficiency to reconstruct hourly and daily cycles of solar radiation. They de-
pend on the data extracted from satellite images (clearness index, sky cases, cloud cover and
thickness. . . etc.) and global solar radiation received at the ground under clear sky.

3.3 Semi empirical models

3.3.1 Lacis and Hansen

Lacis and Hansen (1974) proposed a model to estimate the global horizontal solar radiation
as expressed in the following equation.

G = Isc cos θz

[(
0.647− ρ′s − α0

)
/(1− 0.0685ρ) + 0.353− αw

]
(3.1)

Where

α0 =
0.02118U0

1 + 0.042U0 + 3.23× 10−4U2
0

+
1.082U0

(1 + 138.6U0)
0.805 +

0.0658U0

1 + (103.6U0)
3 (3.2)

αω =
2.9Uω

(1 + 141.5Uω)0.635 + 5.925Uω
(3.3)

U0 is the thickness of condensable water corrected by the optical path of the radiation through
the atmosphere layer.

Uω = wma (3.4)

Where ma is the corrected air masses expressed by

ma = mr

(
P

1013

)0.75(273

T

)0.5

(3.5)

mr =
[
cos (θz) + 0.15(93.885− θz)−1.258

]−1
(3.6)

T represents the ambient temperature (°K) And P is the real pressure at ground level (mbar).
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3.3.2 Bird and Hulstrom model

This model is based on empirical representations of radiate transfer equations and attempts
to take into account the cumulative effects of aerosols, water vapour, ozone and other gases,
and Rayleigh (molecular) scattering upon sunlight reaching the Earth’s surface (Bird and
Hulstrom, 1981).

3.3.2.1 Direct solar radiation

The direct solar radiation on a horizontal surface is calculated by

I = 0.975Iscτrτgτoτwτa cos(θz) (3.7)

a) Absorption by ozone

τ0 = 1− α0 (3.8)

α0 is the ozone absorption factor given by,

α0 = 0.1611U0(1 + 139.48U0)
−0.3035 − 0.002715U0(1 + 0.044U0 + 0.0003U2

0 )
−1 (3.9)

U0 = lmr (3.10)

b) Absorption by water vapour

τw = 1− αw (3.11)

Where αw is the abortion water vapour factor given by,

αw = 2.4959.Uw

[
(1 + 79.034Uw)0.6828 + 6.385Uw

]−1
(3.12)

c) Absorption by gases

The transmission coefficient after the gas (CO2 and O2) absorption is expressed by,

τg = exp(−0.0127m0.26
a ) (3.13)
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d) Rayleigh diffusion

τr = exp
[
−0.0903m0.84

a

(
1 +ma −m1.01

a

)]
(3.14)

e) Aerosols diffusion

τa = exp
[
−k0.873a m0.9108

a

(
1 + ka − k0.7088a

)]
(3.15)

Where

ka = 0.2758kaλ/λ=0.38µm + 0.35kaλ/λ=0.5µm (3.16)

kaλ = βλ−α Represents the Mie scattering; expressed in Chapter 1.

3.3.2.2 Diffuse solar radiation

The diffuse radiation is equal to,

D = Dr +Da +Dm (3.17)

Where

• Dr is the diffuse radiation from the Rayleigh diffusion;

• Da is the diffuse radiation from the aerosols diffusion,

• Dmis the diffuse radiation from the phenomena of multi reflection between the ground
and the atmosphere.

a) Diffuse radiation from the Rayleigh diffusion

Dr = 0.79Isc cos(θz)τoτgτwτaa0.5(1− τr)/(1 +ma +m1.02
a ) (3.18)

And

τaa = 1− (1− w0)(1 +ma +m1.06
a )(1− τa) (3.19)

ω0 = 0.90 represents the unitary reflection coefficient, which depends on the type of the
aerosols in the atmosphere.

b) Diffuse radiation from the aerosols diffusion

Da = 0.79Isc cos(θz)τoτgτwτaaFc(1− τas)/(1 +ma +m1.02
a ) (3.20)
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τas is the dispersion coefficient in the atmosphere (we used in this model)

τas = τa/τaa (3.21)

c) Diffuse radiation from the phenomena of multi reflection between the ground
and the atmosphere

This type is the multiple reflections (most of the times) of the solar radiation between
ground and sky.

Dm = (I +Da +Dr)ρρ
′
a/(1− ρρ

′
a) (3.22)

I is the direct horizontal solar radiation, r is the ground albedo and ρa’ is the clear sky albedo
given by,

ρ
′
a = 0.0685 + (1− Fc)(1− τas) (3.23)

3.3.2.3 Global solar radiation

The global horizontal solar radiation is given by the following equation,

G = I +D = (I +Dr +Da)

(
1

1− ρρ′a

)
(3.24)

3.3.3 Davies et Hay model (Davies and HAY ,1978)

3.3.3.1 Direct solar radiation

The direct solar radiation on a horizontal surface is calculated by,

I = Isc(τ0τr − αw)τa cos(θz) (3.25)

a) Absorption by water vapour

αω =
2.9Uω

(1 + 141.5Uω)0.635 + 5.925Uω
(3.26)

b) Absorption by ozone

τ0 = 1− α0 (3.27)

α0 is the ozone absorption coefficient proposed by ( Lacis and Hansen,1974)

α0 =
0.02118U0

1 + 0.042U0 + 3.23× 10−4U2
0

+
1.082U0

(1 + 138.6U0)
0.805 +

0.0658U0

1 + (103.6U0)
3 (3.28)
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c) Rayleigh diffusion

τr = 0.972− 0.08262ma + 0.00933m2
a − 0.00095m2

a + 0.000437m4
a (3.29)

d) Aerosols diffusion

The transmission coefficients after the diffusion by aerosols is given by,

τa = (0.12445α− 0.0162) + (1.003− 0.125α) exp [−βma(1.089α+ 0.5123)] (3.30)

3.3.3.2 Diffuse solar radiation

As the last model, the diffuse radiation is given by,

D = Dr +Da +Dm (3.31)

a) Diffuse radiation from the Rayleigh diffusion

Dr = Iscτoτa(1− τr)0.5 cos θz (3.32)

b) Diffuse radiation from aerosols diffusion

Da = Isc(τoτa − αω)(Fcωo(1− τa)) cos θz (3.33)

w0 is the albedo dispersion of the atmosphere ( generally equal to 0.6 for urban and industrial
areas and 0.9 for agriculture and farming areas). Fc is the atmosphere dispersion coefficient
given Table 3.1

c) The diffuse radiation from the phenomena of multi reflection between the
ground and the atmosphere

Dm = (I +Da +Dr)ρρ
′
a/(1− ρρ

′
a) (3.34)

ρ
′
ais the clear sky albedo for a specified location given by,

ρ
′
a = 0.0685 + 0.17ω0(1− τ

′
a) (3.35)

Table 3.1: Atmosphere dispersion coefficient values.

θz(
◦) 0 10 20 30 40 50 60 70 80 85

Fc 0.92 0.92 0.9 0.9 0.9 0.85 0.78 0.68 0.6 0.5
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3.3.3.3 Global solar radiation

The global horizontal solar radiation is given by the following equation,

G = I +D = (I +Dr +Da)

(
1

1− ρρ′a

)
(3.36)

3.4 Inclined surface

3.4.1 Liu and Jordan model

Liu and Jordan (1960) proposed a model to estimate the amount of solar radiation at ground
level basing on the day number, the latitude and the high of the Sun.

3.4.1.1 Direct solar radiation

The expression of the direct solar radiation on titled surface is,

Ii = IRb (3.37)

• I is the direct solar radiation on a horizontal plane,

• Rb is the inclination factor given by,

Rb =
cos θi
cos θz

(3.38)

If the surface is oriented south then

Rb =
cos(φ− β′) cos δ cosω + sin(φ− β′) sin δ

cosφ cos δ cosω + sinφ sin δ
(3.39)

In a horizontal surface we have β’ = 0 and then the expression of the direct solar radia-
tion on horizontal surface became

Ii = I = A sin(h) exp

(
−1

C sin(h) + 2

)
(3.40)

3.4.1.2 Diffuse solar radiation

The diffuse solar radiation on titled surface is,

Di = D

(
1 + cosβ

′

2

)
(3.41)

For a horizontal surface we have Di = D

Di = D = B(sin(h))0.4 (3.42)
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Table 3.2: Coefficient A, B and C for the Lui and Jordan (1960) model.

Type of sky A B C
Clear sky 1300 87 6
medium polluted sky 1230 125 4
Polluted sky 1200 187 2.5

A, B and C are constants depend on the type of sky, as given in Table 3.2

3.4.1.3 Reflected solar radiation

The reflected solar radiation on inclined surface is given by this equation

Ri = (I +D)

(
1− cosβ

′

2

)
ρ (3.43)

3.4.1.4 Global solar radiation on inclined surface

The global solar radiation on inclined surface is equal to the sum of the direct, diffuse and
reflected radiation as expressed in the following equation,

G = IRb +D

(
1 + cosβ

′

2

)
+G

(
1− cosβ

′

2

)
ρ (3.44)

3.4.2 Temps et Coulson

In this model, based on the Lui and Jordan (1960) model, Temps and Coulson (1977) de-
veloped a new model taking into consideration the non-isotropic characters of the reflected
radiation from the ground, including maximum intensities near the Sun and the horizons, min-
imum intensities in the direction normal to that of the Sun. The diffuse radiation on inclined
surface is calculated by the following equation (Temps and Coulson, 1977),

Di(β, λ) = D

(
1 + cosβ

′

2

)[
1 + sin3

(
β

2

)]
+
[
1 + cos2(θi)sin

3(90− h)
]

(3.45)

3.5 Meteorological models

3.5.1 Angstrom model

Angstrom (1924) proposed a linear expression to estimate of the daily , monthly and annual
global solar radiation from the sunshine records as expressed in the following equation,

G

G0
= a+ b

(
S

S0

)
(3.46)
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Where, G and Gext are the daily global radiation received on a horizontal surface at ground
level and sunshine duration respectively, a and b are model parameters. The estimation of
Angstrom coefficients by the application of regression technique yields constant values as

b =

n∑
i=1

[(
G
G0

)
i
−
(
S
S0

)
i

] [(
G
G0

)
i−1
−
(
S
S0

)
i−1

]
√

n∑
i=1

[(
G
G0

)
i
−
(
S
S0

)
i

]2[(
G
G0

)
i−1
−
(
S
S0

)
i−1

]2 (3.47)

a =

(
G

G0

)
− b
(
S

S0

)
(3.48)

In our study, the coefficients a and b are taken from the work of Mefti and Bouroubi (1999)
as expressed in Table 3.3.

Moreover, Katiyar and Pandey (2013) showed the developed angstrom models, which use
higher order correlations to estimate the global solar radiation.

3.5.2 Garg model

Garg (1983) developed a model to estimate the average monthly solar radiation using a cor-
relation between relative humidity HR , ambient temperature T and sunshine fraction as
expressed in the following equation,

G = G0

(
0.14− 0.4

(
S

S0

)
− 0.0055Ha

)
(3.49)

Where

Ha = HR(4.7923 + 0.3647T + 0.005T 2 + 0.0003T 3) (3.50)

Table 3.3: a and b angstrom model parameters for Algeria (Mefti and Bouroubi,1999)

Location a b Validation
Algeries 0.49 0.45 Lat > 35.5°
Saida 0.41 0.55 33°<Lat < 35.5°
Bechar 0.5 0.23 31°<Lat < 33°
Béni Abbes 0.33 0.65 23°<Lat < 31°
Tamanresset 0.25 0.7 Lat <23°
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3.5.3 Hussain model

Basing on Garg (1983) model, Hussain (1984) proposed a model for estimating the global
solar radiation on horizontal surface using average monthly humidity and sunshine fraction as
follows,

G = G0

(
0.394− 0.364

(
S

S0

)
− 0.0035Ha

)
(3.51)

3.6 Average monthly diffuse solar radiation

The diffuse solar radiation is calculated using the following equation ,

D = H ∗KD (3.52)

H is the global horizontal solar radiation and KD is the diffuse fraction. Several methods were
proposed in literature to calculate the diffuse fraction among them,

3.6.1 Lieu and Jordan

Liu and Jordan (1960) proposed the first equation to calculate the diffuse fraction using the
clearness index for the Blue Hill Massachusetts location as follow,

KD = 1.39− 4.027Kt + 5.531K2
t − 3.108K3

t for 0.30 < Kt ≤ 0.70 (3.53)

3.6.2 Frutos model (Frutos et al. 1985)

KD =


0.92

0.77 + 1.93Kt − 6.86K2
t + 4.27K3

t

0.109
for


Kt < 0.166

0.166 ≤ Kt ≤ 0.8
Kt > 0.8

(3.54)

3.6.3 Page model

Page (1964) used the data of six locations between latitude 40°N and 40°S for calculating the
diffuse fraction as follows,

KD = 1− 1.13Kt (3.55)

3.7 Physical model

Satellite-derived solar radiation has become a valuable tool to quantify the solar irradiance at
ground level for a large area. Thus, derived hourly values prove to be at least as good as the
accuracy of interpolation from ground stations at a distance of 25 km (Zelenka et al. 1999).
Several algorithms and models have been developed during the last two decades for estimating
the solar irradiance at the Earth’s surface from satellite images (Gautier et al. 1980; Hay,
1993).
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Figure 3.1: Diagram of the GISTEL model.

3.7.1 GISTEL model

GISTEL is a satellite methodology based on a simple physical model. It is used to estimate
global solar irradiance from METEOSAT data. The adopted methodology has several steps
summarized in the diagram of Fig.3.1.

In this work we proposed an improved GISTEL model by using the fuzzy logic method to
obtain more precise results; it consists of the following steps,

3.7.1.1 Determination of the global solar radiation under clear sky

For the estimation of hourly solar radiation under a clear sky, the equation of the world orga-
nization of meteorology (W.M.O, 1981) is chosen as follows,

Gc = cor [1300− 57TL] (sin (hs))
(36+TL)/33 (3.56)

cor = 1 + 0.034 cos (0.986 (Nd − 3)) (3.57)

Where , hs is solar height, TL is the Linked turbidity factor that used to quantify the effect
of atmospheric components of solar radiation; the TL values generally vary from 2 (very pure
and dry sky) to 6 (polluted and humid sky). cor is the correction factor of the Sun-Earth
distance given by Eq. (3.57) and Nd is the number of the days of the year.
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3.7.1.2 Determination of the ground instantaneous reflection coefficients

Ground instantaneous reflection coefficients Rb(x, y, d, h) for each pixel (x, y) of the visible
MSG image of the day d and the hour h are given by Eq. (3.58). These coefficients represent
the reflection of solar radiation on the surface.

Rb(x, y, d, h) =
B(x, y, d, h)−Ba(x, y, d, h)

K.Gc(x, y, d, h).T (x, y, d, h)
(3.58)

Where, B(x, y, d, h) represents the brightness of the (x, y) pixel, Ba(x, y, d, h) the atmospheric
brightness recorded by the satellite above the sea by a clear sky. This brightness was considered
constant, and it is equal to 12 (Ben Djemaa and Delorme ,1992); K is the factor calibration
of the visible channel sensor equal to 0.514. T (x, y, d, h) is the transmission coefficient of the
direct radiation from the ground to the satellite. It is given by Eq. (3.59),

T =
(1390− 31TL)

1367
exp

[
− TL

12.6 sin(hv + 2)

]
(3.59)

Where hv is the height angle of the satellite, given by Eq. (3.60).

hv = arcsin

(
1.862 cos(ϕ) cos(φ)− 0.274√

3.41− cos(ϕ) cos(φ)

)
(3.60)

3.7.1.3 Determination of the clear and cloudy reference images

To determine the two clear and cloudy reference images, a sequence of images is taken over a
long period at 12 o’clock (generally, a period of one month). Taking the minimum values of
the reflection coefficients obtained from these sequence images, the clear sky reference image
can be obtained. On the other hand, the cloudy sky reference image is constructed by using
the greatest values of the reflection coefficient obtained using the same sequence of images.

3.7.1.4 Calculation of the clearness index using fuzzy logic

The clearness index Kt is calculated for each image by comparing pixel by pixel and hour
by hour the instantaneous reflection coefficients Rb with the two clear sky Rc and the cloudy
sky Rn reflection coefficients. According to this comparison, three types of skies can be
observed, namely clear sky, partially covered sky and completely covered sky (Ben Djemaa
and Delorme,1992), as expressed in Eq. (3.61)

Clear sky : Rb ≤ Rc : Kt = 1

Partially covered sky : Rc < Rb < Rn : Kt = 1− (1−K0)
(Rb−Rc)
(Rn−Rc)

(3.61)

Completely covered sky : Rb ≥ Rn : Kt = K0

Where K0 is the index by a cloudy sky equals to 0.2.
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Figure 3.2: Fuzzy logic membership function.

However, Eq.(3.61) deals with fixed sky cases ( only three ) and do not consider all types
of skies ( for example : the case between clear sky and partially cloudy sky ).Hence, to obtain
more precise results a fuzzy logic approach is proposed in this thesis. Fuzzy logic methodology
has the ability to translate human qualitative knowledge into formal algorithms; it deals
with reasoning that is approximate rather than fixed. It consists of using expert rules that
can sometimes produce a simple set of control for a dynamical system with less effort [ See
Appendix A.3]. Hence, three rules are introduced in this work to obtain logical values of the
clearness index Kt as expressed in Fig. 3.2.

3.7.1.5 Calculation of the instantaneous global solar radiation

The instantaneous global solar radiation G(x, y, d, h) for each pixel is obtained by multiplying
the clearness index Kt by the global solar radiation obtained under clear sky Gc(x, y, d, h). As
expressed in Eq. (3.62) as

G(x, y, d, h) = Kt ×Gc(x, y, d, h) (3.62)

3.8 Simulation results

In this part, we are interested to show the simulation results of the above-mentioned models
for estimating hourly global solar radiation data. For this purpose, two locations have been
chosen where the measured data are available. From the National Meteorological Office of
Algeria, we choose the site of Bouzereah, Algeria (Lat : 36.87° N, Lon : 3 ° E, Alt : 358 m )
that represents the north of Algeria and the site of Ghardaia ,Algeria (Lat: 32.4908° N, Lon :
3.6728° E, Alt: 467m) that locates in the south of Algeria. The performances of the simulated
models are evaluated using the root mean square error (RMSE) and normalized root mean
square error (NRMSE) expressed by the following equations,

RMSE =
[
< (Ii,predicted − Ii,measured)2 >

] 1
2 (3.63)

NRMSE =


[
< (Ii,predicted − Ii,measured)2 >

] 1
2

< Ii,measured >

 (3.64)
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RMSE and NRMSE provide information on the short-term performance of correlations by
allowing a term-by-term comparison of the actual deviation between the predicted and mea-
sured values. The model that has the lowest NRMSE was considered the best model.

a) Semi-empirical model

Semi empirical models are used widely to estimate hourly solar radiation, especially in
the case of clear sky. Hence, we compared the results of Lacis and Hansen (1974), Bird and
Hulstrom (1981), Davies and Hay (1978) models. We have selected four days (06-01-2008 /
05-04-2008/ 24-06-2008 / 30-10-2008) for Ghardaia , and two days for Bouzereah (29-04-2006
/ 05-08-2005 ).

The simulation results are shown in Fig.3.3 that represents the estimated hourly horizontal
global solar radiation using different models. In addition, Table 3.4 shows the NRMSE error
between measured and simulated solar radiation data using the mentioned models.
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Figure 3.3: Measured and simulated hourly horizontal global solar radiations using Davies and
Hay , Bird and Husltrom, and , Lacis and Hansen models for some days for the location of
Ghardaia and Bouzareah.

Table 3.4: NRMSE between measured and simulated solar radiation data using Lacis and
Hansen, Davis and Hay , and , Bird and Hulstrom models.

Models
Lacis and Davis and Bird and

Days Hansen Hoy Hulstrom Location

Direct solar radiation

06/01/2008 0.1683 0.1842
05/04/2008 0.0753 0.2934 Ghardaia
24/06/2008 0.2771 0.1413
30/10/2008 0.2784 0.0863

29/04/2006 0.2246 0.1189 Bouzareah
05/08/2005 0.107 0.0915

Diffuse solar radiation

06/01/2008 0.1947 0.0729
05/04/2008 0.3028 0.6195 Ghardaia
24/06/2008 0.6195 0.3028
30/10/2008 0.0729 0.1947

29/04/2006 0.3926 0.4955 Bouzareah
05/08/2005 0.2668 0.7309

Global solar radiation

06/01/2008 0.044 0.1457 0.1355
05/04/2008 0.0366 0.0871 0.0928 Ghardaia
24/06/2008 0.1471 0.052 0.0539
30/10/2008 0.1074 0.07 0.0552

29/04/2006 0.2415 0.1598 0.1555 Bouzareah
05/08/2005 0.1913 0.1034 0.105
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From Fig. 3.3 and Table 3.4, the three models are almost the same with the measured
hourly global horizontal solar radiation data. However, they represent a small NRMSE error
that depends on the location and the season. For the site of Ghardaia, which is characterised
by the dry climate for the whole year that increases the probability of sandstorms, which have
an influence on the turbidity. For the days of 06-01-2008 and 05-04-2008, Lacis and Hansen
model gives the best results and the lowest NRMSE comparing with Davis and Hay , and Bird
and Hulstrom models that is because these 2 days represent wet days ( high value of water
vapour) that influence the efficacy of other models. However , for days of 24-06-2008 and
30-10-2008, Lacis and Hansen model gives the highest NRMSE value comparing with other
model that is, these days are totally dry that can present sandstorms which affect on the
efficiency of Lacis and Hansen model.

For Bouzareah which located in the north of Algeria in front of the sea. That means the
weather is wet with the presence of high levels of water vapour.

b) Inclined surface models

In this part, two models are selected to calculate the inclined solar radiation from the
measured solar radiation on a horizontal surface. First, Liu and Jordan model is used to
estimate the amount of the inclined global solar radiation and second, Temps and Coulson
(1977) model is used for the inclined diffuse solar radiation estimation. Several days have
been tested for both models (Liu and Jordan: 06-01-2008 and 28-06-2008 for Ghardaia, and or
Temps and Coulson: 05-04-2008 for Ghardaia and 29-04-2006 for Bouzareah). The inclination
angle is equal to the latitude of the location. The simulation results are shown respectively in
Fig. 3.4 and Fig. 3.5.In addition, the NRMSE of the measured and estimated inclined data
are presented in Table 3.5 .
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Figure 3.4: Measured and simulated hourly inclined global solar radiation using Liu and Jordan
model.
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Figure 3.5: Measured and simulated diffuse inclined hourly global solar radiation using Temps
and Coulson model.

Table 3.5: NRMSE between measured and simulated solar radiation data using Lacis and
Hansen, Davis and Hay , and , Bird and Hulstrom models.

Days Model NRMSE Location

Inclined global radiation
06/01/2008

Liu and Jordan model
0.1534 Ghardaia

24/06/2008 0.0922 Ghardaia

Inclined Diffuse radiation
05/04/2008

Temps and Coulson model
0.1403 Ghardaia

29/04/2006 0.0965 Bouzareah

From Fig. 3.4, Fig. 3.5 and Table 3.5, it is clearly shown that the proposed models esti-
mate in a good way the measured inclined data. However, they may represent some limitations
because they depend on the physical mechanism of the atmospheric parameters.

c) Meteorological models

In this part, we used Angstrom (1924) , Garg (1983) and Hussain (1984) models to estimate
the monthly average daily global solar radiation. The results are compared with the measured
data for Ghardaia, 2002. The simulation results are shown in Fig.3.6. In addition, the NRMSE
error between measured data and the simulated data using the three models are presented in
Table 3.6. From these results, Garg model represents the best results with an NRMSE equal
to 0.0230 compared with Hussain model (NRMSE = 0.0888) and Angstrom model (NRMSE =
0.1478). Angstrom model represents the highest NRMSE value that depends strongly on the
empirical estimation of Angstrom parameters compared to Garg and Hussain models where
its parameters (temperature and humidity) can determine precisely.
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Figure 3.6: Measured and simulated monthly average daily global solar radiation using Garg,
Hussain and Angstrom models.

Table 3.6: Relative error and NRMSE between measured and simulated monthly average daily
global solar radiation using Garg, Hussain and Angstrom models.

Relative error NRMSE

Months 1 2 3 4 5 6 7 8 9 10 11 12

Models

Garg 0.92 0.74 5.37 3.35 0.45 0.9 0.94 2.44 0.1 1.43 0.12 1.02 0.023

Hussain 3.69 5.95 5.97 11.03 9.61 4.98 8.93 9.28 2.35 0.1 11.41 9.18 0.0888

Angstrom 10.1 11.1 18.5 13.9 13.7 10.8 12.6 10.7 10 11.4 10.5 11.2 0.1478

d) Physical models

The GISTEL methodology is presented in this part to estimate hourly solar radiation data
for different sky conditions. To perform the GISTEL model, two different approaches with
and without the fuzzy logic methods were used. We have chosen in our simulation two loca-
tions for validation purposes. For Ghardaia, the days of 22-11-2012 and 07-12-2012 and for
Bouzereah, the days of 26th March 2013 and 3rd April 2013. The visible satellite images are
taken from the Meteo Company B.V website: (http://www.sat24.com) as illustrated in Fig.3.7
which represents the satellite image for Algeria.
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1�

2�

Figure 3.7: Satellite image for Algeria.

The first step of GISTEL methodology consists of determining the two reference images.
For that, we used a sequence of images taken at 12 a.m. UTC for a period of one month. The
clear sky and overcast sky reference images are shown in Fig.3.8.

The next step consists of determining the relation between the clearness index and global
hourly solar radiation. Hence, visible images that represent sunny hours of the day are used
to estimate the amount of the solar radiation using Eq. (3.62). The simulation results of the
estimated hourly solar radiation using FL and without FL with the measured data are shown
in Fig.3.9

a b

Figure 3.8: a) clear sky reference image . b) Overcast sky reference image.
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Figure 3.9: Estimated hourly solar radiation using FL and without FL with the measured
data for Ghardaia and Bouzereah.

From Fig.3.9 we note that the simulated solar radiations are changed during the day; from
low values in sunrise and sunset to high values at noon that leads to the fact that results ob-
tained from the GISTEL model represent the real stat of a day. In addition, some fluctuations
can occur due to the presence of clouds. The variation of the solar radiations depends on the
clearness index Kt ; a clear day has a clearness index equal to 1, a cloudy day with Kt = 0.2
and a partially cloudy day between 0.2< Kt < 1. For more precise results, the clearness index
should be calculated for a sequence of days.

For the validation of the simulation results of the estimation of hourly horizontal global
solar radiation data with GISTEL model with and without the fuzzy logic model we calculated
the NRMSE as represented in Table 3.7.
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Table 3.7: NRMSE value of hourly solar radiation with and without FL.

NRMSE
Location Date Without FL With FL

Ghardaia
22 Nov. 2012 0.2466 0.2184
07 Dec. 2012 0.3408 0.2777

Bouzareah
26 Mar. 2013 0.2885 0.2185
03 Apr. 2013 0.2488 0.2072

From Table 3.7, it is clearly shown that the simulated models with the fuzzy logic model
are good enough, which represents an NRMSE error between 0.2 and 0.27 compared to the
measured solar radiation data for all locations. Moreover, the NRMSE of the simulated hourly
global horizontal solar radiation using the fuzzy logic method is lower than the simulated ones
without using it, leads to a conclusion that the GISTEL model with fuzzy logic method is
good for such similar problems.

3.9 Conclusion

The most important radiometric models are presented in this chapter. Semi-empirical models
are used to calculate the various components of solar radiation at ground level using as input
parameters: the astronomical, geographical and meteorological parameters. Meteorological
models calculate the global radiation at ground level from the monthly average insolation.
Physical models estimate the instantaneous solar radiation at ground level based on the data
extracted from satellite images. Semi empirical and meteorological models have the advantage
of being simple; they use mathematical equations not too heavy for the study of solar radiation
and the estimation of the incident solar energy. They can be applied to any region and any day
of the year. Nevertheless, the limitation of these models is that they are valid in situations
of clear sky (most of them). Indeed, these models are sensitive to climatic disturbances
such as sandstorms or clouds that significantly affect the estimate of the amount of incident
solar energy. Thus, the direct use of one or the other of these models in this case can lead
to erroneous values which can significantly impact the design of solar systems. However,
complementary approach based on satellite images is essential. It helps to estimate the amount
of solar radiation at any place in the world for all the sky cases (clear, partially cloudy and
cloudy). It gives the best results compared with other models. But, it depends strongly on
the satellite images which are not always available.

Another limitation of these models, which they take a lot of calculation time (for each hour
we need to resolve equations). For that, we will present in next chapter two novel long-term
forecasting models in order to predict the amount of solar radiation in the future.
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Nomenclature

B(x, y, d, h) Brightness of the pixel (x, y).

Ba(x, y, d, h) Atmospheric brightness.

Cor Correction factor of the Sun-Earth distance.

D Diffuse radiation.

Da Diffuse radiation from the aerosols diffusion.

Di Diffuse solar radiation on titled surface.

Dm Diffuse radiation from the phenomena of multi reflection between the Ground and
the atmosphere.

Dr Diffuse radiation from the Rayleigh diffusion.

Fc Dispersion coefficient in the atmosphere.

G Global solar radiation.

G(x, y, d, h) Instantaneous global solar radiation of the pixel (x, y).

HR Relative humidity. hs Solar height.

hv Height angle of the satellite.

I Direct horizontal solar radiation.

Ii Direct solar radiation on titled surface.

K Calibration factor of the visible channel sensor.

K0 Index by a cloudy sky.

KD Diffuse fraction.

Kt Clearness index.

kαλ Mie scattering.

ma Corrected air masses.

mr Relative air masses.

Nd Number of the days of the year.

NRMSE Normalized root mean square error .

RMSE Root mean square error.

P Reel pressure at ground level (mbar).
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Rb Inclination factor.

Rc Clear sky reflection coefficients.

Ri Reflected solar radiation on titled surface.

Rb(x, y, d, h) Ground instantaneous reflection coefficients of the pixel (x, y).

Rn Cloudy sky reflection coefficients.

T Ambient temperature (°K) .

T (x, y, d, h) Transmission coefficient of the pixel (x, y).

TL Linked turbidity factor.

U0 Thickness of condensable water.

α0 Ozone absorption factor .

αw Abortion water vapour factor.

ρ Ground albedo.

ρa’ Clear sky albedo.

τ0 Absorption by ozone.

τa Aerosols diffusion.

τg Absorption by gases.

τr Rayleigh diffusion.

τw Absorption by water vapour.
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Chapter 4

Forecasting of solar radiation at
ground level

4.1 Introduction

Solar energy is one of the most important renewable energies to generate electricity and meet
our everyday needs. PV systems are used to convert this energy to a DC electrical power.
However, sometimes it is not possible to estimate the PV system outputs in the long-term
because they depend strongly on the input parameters such as the amount of solar radiation
and temperature. Thus, solar radiation data should be measured continuously and accurately
over the long-term. Unfortunately, in most areas of the world, solar radiation measurements are
not easily available due to financial, technical or institutional limitations. Hence, forecasting
is known as a solution that is important for the integration of photovoltaic plants into an
electrical grid. Proper solar irradiance forecasting helps the grid operators to optimize their
electricity production and /or to reduce additional costs by preparing an appropriate strategy.
In this chapter, we present two forecasting methods to determine the amount of solar radiation
on the long-term.

4.2 Forecasting solar radiation background

Solar radiation time series is a sequence of time ordered data values, measured at fixed time
intervals. It analysis consists of determining the adequate model to represent the data for
use it in varying ways, depending on the application target such as forecasting hourly solar
radiation data. At first approximation, solar radiation time series presumes that past pattern
will appear in the future. Then, a mathematical model will be determined to predict future
values based on past values. However, forecasting solar radiation was known as a difficult
problem, especially on hourly and small basis, due to the non-linearity and complexity of
modelling of the solar radiation series (Zhang, 2003; André Luis et al., 2008; Wu and Chan,
2011). Hence, many studies had been conducted on this subject, such as stochastic models
(Boland, 2008; Wu and Chan, 2011) and neural network methods (Markham and Rakes, 1998;
Zhang et al., 1998; Mellit et al., 2009; Wu and Chan, 2011). These models treated the solar
radiation sequence as a time series; they used mathematical models in the modelling phase to
forecast future values.

83



CHAPTER 4. FORECASTING OF SOLAR RADIATION AT GROUND LEVEL 84

Classical linear time series models like autoregressive moving average (ARMA) modelling
(Box and Jenkins, 1970) have been widely used in modelling of linear time series (Wu and
Chan, 2011). The popularity of the ARMA model is due to its statistical properties as well
as the well-known Box–Jenkins methodology (Box and Jenkins, 1970). Even so, it was proven
that they are inadequate in the analysis and prediction of solar radiation due to the non-
stationarity (Box and Jenkins, 1970; Kwiatkowski et al., 1992; Wu and Chan, 2011) and
nonlinearity of the solar radiation time series, especially for cloudy sky (Zhang, 2003; André
Luis et al., 2008; Wu and Chan, 2011). In addition, stochastic models are based on the
probability estimation that needs a full identification of the mathematical function, leads
to a difficult forecasting of the solar radiation time series (Wu and Chan, 2011).Moreover,
global solar radiation time series is a dynamical system that depends on some meteorological
elements such as temperature, water vapour, suspend solids, cloud and water air condition
that can represent nonlinear characteristics ( Wu and Chan, 2011; Huang et al., 2013) .

To overcome this problem, nonlinear approaches, such as artificial neural networks (ANN),
were considered a powerful tool for forecasting similar time series (Zhang, 2003; Mellit et al.,
2009; Wu and Chan, 2011). The advantages of the ANN that is non-parametric. It does
not require the knowledge of the internal system parameters that offer a compact solution for
multiple variable problems (Denton, 1995; Markham and Rakes, 1998; Zhang, 2003,; Wu and
Chan, 2011). Nonlinear Autoregressive (NAR) neural networks are considered a good solution
for nonlinear time series forecasting. It is a simple multilayer perceptron neural network
(MLP) with some modification that used only the past values of the time series to forecast
future values. A good choice of the number of delays, neurons and training algorithm can
resolve the problem of the non-linearity of the solar radiation time series.

However, single models presented a big forecasting error (Wu and Chan, 2011). For exam-
ple, ARMA model showed good results for linear problems, but it could represent huge errors
in the nonlinear problems; also, the outliers made the prediction by NAR networks difficult
(Zhang, 2003; Diagne et al., 2009; Wu and Chan, 2011). Thus, hybrid methods combining
different models have been widely used in literature to improve the forecast performance (Wu
and Chan, 2011; Huang et al., 2013; Chen et al., 2013).

Pelikan et al. (1992), and Ginzburg and Horn (1994) proposed a model combining sev-
eral feed forward neural networks, improving the time series forecasting accuracy. Wedding
and Cios (1996) described a combining method using radial basis function networks and the
Box–Jenkins models. Luxhoj et al. (1996) presented a hybrid econometric and an ANN ap-
proach for sales forecasting. Zhang (2003) proposed a method using a hybrid combination
between ARMA and ANN models to predict time series, André Luis et al., (2008) used Zhang
(2003) model and adjusted the model on the midpoint and an interval range series in the
training set. Wu and Chan (2011) proposed a technique employing a combination of ARMA
and time delay neural network (TDNN) for one-step ahead prediction based on Zhang (2003)
model. In addition, many authors have already studied successfully the coupling between
ANN and different traditional computing technologies such as fuzzy logic, wavelet-based anal-
ysis and genetic algorithm methods (Mellit et al., 2009; Diagne et al., 2009; Boata and Gravila,
2012; Chen et al., 2013). However, most of those models presented limitations, especially in
long-term forecasting. In addition, no one of these methods will be capable of presenting
information about the behaviour of the solar radiation time series in the future. Hence, two
hybrid methods were presented in this chapter to overcome these problems.

First, a hybrid model of ARMA and NAR network for multi-step ahead prediction of solar
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radiation time series for better performance in long-term forecasting. And second, a hybrid
time series data mining (TSDM) and NAR neural network models for presenting information
about the behaviour of the solar radiation time series in the future that ensures the accuracy
of the forecasted model.

4.3 Forecasting hourly solar radiation using hybrid ARMA
and NAR models

This section introduces the adopted hybrid methodology for multi-hour ahead forecasting of
hourly global horizontal solar radiation time series as shown in Fig.4.1 It consists of three es-
sential stages. First, Autoregressive Moving Average (ARMA) model is used to predict future
values of the global solar radiation time series. However, because of the non- stationarity of
hourly solar radiation time series, a phase of detrending is needed to stationarize the radia-
tion data. Secondly, Nonlinear Autoregressive (NAR) neural network model is used for the
prediction purposes. A hybrid method combining ARMA and NAR is introduced to produce
better results taking into account the advantages of both models.
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Figure 4.1: Flowchart of the proposed hybrid ARMA and NAR neural network models.
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4.3.1 The ARMA model

ARMA model of order (p, q) can be viewed as linear filters for digital signal processing. It is
of the form,

xt =

p∑
i=1

φixt−i+et +

q∑
j

θjet−j (4.1)

Where, φi(i = 1 . . . p) and θj(j = 1 . . . q) are constants representing the autoregressive AR,
and the moving average MA parameters of order p, q, respectively. xt is the actual value and
et represents the Gaussian white noise with mean zero in time t. To find the parameters of
Eq. (4.1), the Box and Jenkins (1970) method is then applied as follows.

4.3.1.1 Stationnarization

Time series modelling and forecasting requires explicitly a stationary time series (Makridakis
et al., 1998; Voyant et al., 2013). The condition of stationarity (weakly- stationarity) implies
a stable series, which means that the mean µ(t) and the covariance cov(xt, xt+h) stay constant
over time, as expressed by the following equations,

E [xt] = µ(t) = µ (4.2)

cov [xt, xt+h] = E [(xt − µ)(xt+h − µ)] (4.3)

Moreover, a strict stationary series needs a time invariant joint distribution of any observa-
tion of the processes. In addition, modelling and analysis of time series of classical models
such as an ARMA model without testing the stationarity can present real practical problems
(Ineichen, 2008). Hence, several methods were demonstrated in literature to check stationar-
ity (non- stationarity). The most widely used one is the test of a unit root in the time series
(Dickey and Fuller, 1981; Kwiatkowski et al., 1992). A unit root test is a test for a specific type
of non- stationarity for autoregressive time series. The series is covariance stationary if and
only if all the roots of the characteristic polynomials are outside the unit circle in the complex
plane. In other words, if it exists a unit root, then the time series is not stationary. Otherwise,
it is stationary. The most widely used method for testing unit root is the Augmented Dicky
–Fuller (ADF) test (Dickey and Fuller, 1981), expressed by the following equation,

∆xt = α+ βt+ γ xt−1 +

p∑
j=1

(δt∆xt−j) + et (4.4)

Where, α is a constant called a drift, β is the coefficient on a time trend, p is the lag order
of the autoregressive process, γ is the coefficient presenting process root, δt represents the lag
operator and et represents an independent identically distributes residual term with mean zero
and variance σ2 = 0.
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The focus of testing is whether the coefficient g equals to zero, what means that the
original x1, x2, . . . xn process has a unit root. Hence, the null hypothesis of γ = 0 (random
walk process) was tested against the alternative hypothesis γ < 0 to obtain a stationary series.

The augmented Dickey–Fuller (ADF) statistic, used in the test, is a negative number. The
stronger reject of the null hypothesis needs more negative test. In our simulation and using
this stationarity test, we found that the solar radiation series is not stationary. Hence, a
stationnarization step is needed. A phase of detrending was introduced to obtain a stationary
series. In this phase, we simulated different models to fit the solar radiation time series. For
each model, the residual series between simulated series and the original series had been tested
using the ADF test. The most stationary series will be used in ARMA modelling. We have
used in this work, the Jain model (Baig et al., 1991; Kaplanis, 2006), Baig et al. (1991), Ka-
planis (2006), Kaplanis and Kaplani (2007), and high degree polynomial models were applied
to remove trends of the solar radiation series as follow.

a) The Jain model

Jain (Baig et al., 1991; Kaplanis, 2006) proposed a Gaussian function to fit the recorded
data and established the following relation for global radiation. Where,rt is the ratio of hourly
to daily global solar radiation, t is the true solar time in hours,md is the pick hour of the day
and σ” is the standard deviation of the Gaussian curve.

rt =
1

σ′′
√

2π
exp

[
(t−md)

2

2σ′′
2

]
(4.5)

To simplify the calculation of the σ” values, Jain proposed the following equation

σ
′′

= 0.461 + 0.192S0 (4.6)

Where, S0 is the day length.

b) The Baig model

The Baig et al. (1991) model modified Jain’s model to fit the recorded data during the
starting and ending periods of a given day. In this model, rt was estimated by,

rt =
1

2σ′′
√

2π

{
exp

[
−(t−md)

2

2σ′′
2

]
+ cos

[
180

(t−m)d
2

S0 − 1

]}
(4.7)

Several methods were found in the literature to estimate the standard deviation σ” using
recorded data (Kaplanis, 2006). Bevington (1969) mentioned that the determination of σ”does
not need any recorded data and it depends only on the day length, as expressed in Eq. (4.8),

σ
′′

= 0.246S0 (4.8)

The rt values are obtained to offer,
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It = rt.Hn (4.9)

Where, It is hourly solar radiation and Hn is the daily solar radiation data.

c) Kaplanis model

Kaplanis (2006) proposed another model for estimating hourly global solar radiation that
is,

rt = α
′
+ β

′
cos

(
cos(2π(t−md)

24

)
(4.10)

Where, α′ and β′ are parameters which have to be determined for any site and for any day
(Kaplanis, 2006). However, this model presented some drawback in the estimation of solar
radiation at noontime. Hence, Kaplanis and Kaplani (2007) proposed an improved model for
more accuracy as presented in the following equation,

rt = a+ b
e−µ(Nd)χ(t) cos(2π(t−md)/24)

e−µ(Nd)χ(t=md)
(4.11)

where, a’ and b’ are determined in the same way as Eq. (4.10), µ(Nd) is the solar beam
attenuation coefficient andχ(t) is the distance of the solar beam travels within the atmosphere
at time t.

d) High order polynomial model

This model is represented as follows,

It = a0t
0 + a1t

1 + a2t
2 + ...+ ant

n (4.12)

Nonlinear least squares regression analysis was used to fit Eq. (4.12) to the data for each hour
of the day to obtain the values of the regression constants a0, a1 . . . an for each month of the
year (Al-Sadah et al., 1990) . t represents the time.

4.3.1.2 Model identification

Model identification consists of specifying the appropriate structure, AR, MA or ARMA and
orders of the model (Box and Jenkins, 1970). Identification is sometimes done by looking at the
plots of the Autocorrelation function (ACF) and the Partial Autocorrelation function (PACF).

a) Autocorrelation

Measures the linear dependence or the correlation between xt and xt−k. (summarizes serial
dependence)
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ρk =
Cov(xt, xt−k)√
V ar(xt)V ar(xt−k)

=
Cov(xt, xt−k)

V ar(xt)
(4.13)

ρk =

n∑
t=k+1

(xt − x)(xt−k − x)

n∑
t=1

(xt − x)2
(4.14)

Where V ar(xt) = V ar(xt− k) for weakly stationarity process.

b) Partial Autocorrelation

Correlation between observations xt and xt+k after removing the linear relationship of all
observations in that fall between xt and xt+k.

xt = ϕ0,1 + ϕ1,1xt−1 + e1,t

xt = ϕ0,2 + ϕ1,2xt−1 + ϕ2,2xt−2 + e2,t (4.15)
xt = ϕ0,3 + ϕ1,3xt−1 + ϕ2,3xt−2 + ϕ3,3xt + e3,t
...

Each ϕp,q represent the lag-p of the PACF.

After determining the ACF and PACF functions, we can choose the (p, q) order of the
ARMA model, as expressed in Table 4.1,

Akaike’s Information Criterion (AIC) (Akaike, 1974) defined by Eq. (4.16), is another fac-
tor to decide ARMA (p, q) order. AIC provides a measure of the model quality by simulating
the situation where the model is tested on a different data set. According to Akaike’s theory,
the most accurate model has the smallest AIC.

AIC = log V +
2de
Ne

(4.16)

Where V is the loss function, de is the number of estimated parameters and Ne is the number
of values in the estimation data set.

Table 4.1: Different scenarios of choosing ARMA (p,q) parameters.

AR (p) MA (q) ARMA (p , q)
ACF Tails off Cuts off Tails off
PACF Cuts off Tails off Tails off
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4.3.1.3 Parameter estimation

Once the orders of ARMA model obtained, estimation of the model parameters is straight-
forward. The parameters are estimated using the maximum likelihood method (Box and
Jenkins, 1970). This method requires an assumption on the distribution of the random vec-
tor X = (X1, . . . , Xn)T . The estimates are usually found numerically using some iterative
numerical optimisation routine.

The last step of the ARMAmodel building is the diagnostic checking of the model adequacy.
The plotting of residuals examines the goodness of the obtained model.

4.3.2 The Nonlinear Autoregressive ( NAR) neural network model

Artificial neural network (ANN) is a class of neural network represented by a mathematical
model that is inspired by the biological nervous system; it is an intelligent system that has
the ability to recognize time series patterns and nonlinear characteristics [See Appendix A.2].
Hence, it has been widely used for modelling dynamic nonlinear time series (Haykin, 1998).
For that, various types of artificial neural networks were presented in literature among them
Multilayer Perceptron (MLP), where the neurons are grouped into an input layer, one or more
hidden layers and an output layer. Recurrent Neural Networks (RNN) such as layer recurrent
networks (Haykin, 1998), Time Delay Neural Networks (TDNN) (Haykin, 1998; Wu and Chan,
2011) and NAR (Chow and Leung, 1996; Markham and Rakes, 1998).

In RNN, the outputs of a dynamic system depend not only on the present inputs, but also
on the history of the systems stats and inputs. The NAR is a dynamic recurrent network
based on a linear autoregressive model with feedback connections, including several layers of
the network. The next value of the dependent output signal is regressed on previous values
of the output signal. That it is used in multi-step ahead time series forecasting. The NAR
model is based on the linear AR model, which is commonly used in time-series forecasting.
The defining equation for the NAR network is,

ŷ(t) = f(y(t− 1) + y(t− 2) + · · ·+ y(t− d)) (4.17)

f is a nonlinear function, where the future values depend only on regressed d earlier values of
the output signal. When using NAR network, the network performs only an one-step ahead
prediction after it has been trained. Therefore, we need to use the closed loop network to
perform a multi-step-ahead prediction and turn the network into a parallel configuration as
shown in Fig. 4.2.

The output of the closed loop NAR network is expressed as follows

ŷ(t+ p) = f(y(t− 1) + y(t− 2) + · · ·+ y(t− d)) (4.18)

Where p represents the forecasted steps in the future.
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Figure 4.2: Structure of NAR neural network.

In addition, the RNN are based on training algorithms that used to adjust the weight values
to get a desired output when certain inputs are given. Hence, various ways were presented to
let a neural network learn such as supervised training where the input-output set is defined,
and unsupervised learning that the output is undefined.

Back-propagation method is one of the most popular and widely used learning techniques
for training RNN. It consists of minimizing the global quadratic error between the network
output and the desired target by adjusting the weight values. The adjustment can be done
using several algorithms such as Levemberg-Marquardt (Levenberg, 1944; MacQueen, 1967),
Bayesian Regularization (MacKay, 1992) and scaled conjugate gradient (Moller, 1993) algo-
rithms. The latter one is selected to train larger networks. Once the network is trained using
the preselected inputs and outputs, all the synaptic weights are saved, and the network is
ready to be tested on the new input information. Since the NAR network is very similar to
a Multilayer Perceptron (MPL), a modified MLP neural network is applied in this work for
predicting purposes.

4.3.3 The Hybrid ARMA and NAR Model

ARMA model represented linear models and has achieved great popularity since the publi-
cation of Box and Jenkins (1970). However, this method may not be adequate for nonlinear
problems, contrary to the NAR networks that can solve the complexity of nonlinear systems.
However, no one of them can use for both linear and nonlinear problems (Zhang, 2003; André
Luis et al., 2008; Wu and Chan, 2011). Hence, the hybrid models were then applied taking
the advantages of both ARMA and NAR models. We can simply detect the nonlinearity in a
time series by using the surrogate data test for nonlinearity (Kugiumtzis, 2000). The hybrid
model proposed in this work is based on Zhang (2003) model. It is assumed that time series
is composed of a linear autocorrelation structure and a non-linear part,
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yt = Lt +Nt (4.19)

Where, Lt denotes the linear part and Nt denotes the nonlinear part. The proposed method by
Zhang (2003) consists of two stages. Firstly, ARMA model was used to predict future values
at time t noted L̂t. The residual series between the time series and linear ARMA model series
contains only nonlinear relationship. As expressed by the following equation,

vt = yt − L̂t (4.20)

Where, vt denote the residual at time t from the linear model.
Secondly, by modelling the residuals using NAR method, nonlinear relationships can be

discovered. With n input nodes, the NAR model for the residuals will be,

vt = f(vt−1, vt−2, ..., vt−n) + et (4.21)

Where, f is a nonlinear function determined by the neural network and et is the random error.
The forecasted series from Eq. (4.20) is denoted N̂t. Then the combined forecast will be
expressed by the next equation,

ŷt = L̂t + N̂t (4.22)

4.4 Forecasting hourly solar radiation using hybrid k-means
and NAR models

Stochastic models are based on the probability estimation that needs a full identification of
the mathematical function, leads to a difficult forecasting of the solar radiation time series
(Wu and Chan, 2011). Moreover, global solar radiation time series is a dynamical system
that depends on some meteorological elements such as temperature, water vapor, suspend
solids, cloud and water air condition that can represent nonlinear characteristics ( Wu and
Chan, 2011; Huang et al., 2013) . For that, we proposed a new hybrid method with the aim of
forecasting hourly solar radiation time series taking into account the dynamic behaviour of this
series. It based on the combination of one of the time series data mining technics namely the
unsupervised k -means clustering algorithm and the nonlinear autoregressive neural network.

Data mining is the identification of interesting structure in the data, where the structure
designates patterns of the data and relationships among regions of the data; it is a process
of grouping similar elements gathered closely using unsupervised clustering methods such as
k-means and c-means algorithms (Xu and Donald, 2005). Data mining techniques were used
in a wide variety of fields for prediction. For example, in stock prices, meteorological data,
customer behaviour, production control and other types of scientific data (Fu, 2011). Time
Series Data Mining (TSDM) methodology (Sandberg and Xu, 1997) which is a fundamental
contribution to the fields of time series analysis and data mining that allows a search, for
valuable information on nonlinear problems such as solar radiation time series (Liao et al,
2012).
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In addition , nonlinear autoregressive (NAR) approach, was considered a powerful tool
for forecasting similar time series and understand the nonlinear characteristics of the solar
radiation time series (Zhang, 2003; Mellit et al., 2009; Wu and Chan, 2011). Taking the
advantages of both methods, the k -means approach (MacQueen, 1967) for clustering the solar
radiation data to extract useful information and the NAR for forecasting purposes, a new
method is proposed that combines an unsupervised k-means clustering algorithm and nonlinear
autoregressive neural network.

At the first stage, the data obtained from the phase space reconstitution using Takens
theorem (Takens, 1981) were clustered using k -means algorithm; clustering is a process of
grouping an unlabelled set of examples into several clusters such that a similar pattern is
associated with every cluster. The motivation of using the k -means approach in this work is
due to its simplicity and also to the fact that the proposed methods do not require an advanced
clustering algorithm. However, one of the vital issues of the k-means algorithm is the choosing
of the appropriate number of clusters (Xu and Donald, 2005). Therefore, a silhouette function
proposed by (Rousseeuw, 1987; Lletí et al., 2004) was used to obtain the best number of
bunches.

At the second stage, the nonlinear autoregressive (NAR) neural network was applied for
forecasting the solar radiation time series trying different architecture to get the best net-
work structure. Combining those two methods presented better results for multi-step ahead
prediction in long-term forecasting.

4.4.1 Methodology

The methodology of hybrid k -means and NAR neural network is shown in Fig.4.3 and it
consists of the following steps,

1. Determine the minimum, appropriate, embedding dimension for phase space reconstruc-
tion for the time series (Kennel et al, 1992);

2. Identify regions of the reconstructed phase-space which has similar characteristics using
k -means clustering algorithm;

3. For each cluster, train different NAR neural network to generate regional predictor for
forecasting local regions;

4. Use the corresponding NAR neural network using different delay and neurons to generate
a global prediction for the time series;

5. Reconstructed phase-space of the obtained time series from step 4, then use the appro-
priate k -means method to cluster the data using the same parameters used in step 1 and
step 2;

6. To perform the forecast, assign each pattern from step 5 to the appropriate region
obtained from step 3 using as a criterion the Euclidean distance:

• If the Euclidean distance between each region and the assigned pattern is small, then it
is considered a better forecast, else return to step 4.
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Figure 4.3: Flowchart of the proposed hybrid k-means and NAR neural network.

4.4.2 Phase space reconstruction (determining an appropriate embedding
dimension)

Signals have been partitioned traditionally into two broadly defined classes, deterministic
signals and stochastic processes. This classification, however, overlooks another important
class of signals, known as chaotic signals that share attributes with both deterministic signals
and stochastic processes (as the solar radiation time series). Chaotic signal generally has a
very irregular waveform, but is generated by a deterministic mechanism.

One of the goals of time series analysis is to gain an understanding of the underlying
dynamical system. However, this is a complicated task since the time series gives incomplete
information about the dynamics. Only one variable is being measured in a time series, yet
a dynamical system is often represented mathematically by several differential or difference
equations. The task then becomes how to visualize the time series in such a way as to reveal
the dynamics in the full phase space of the system.
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Phase space reconstruction is devised using a delay coordinate embedding .From manipula-
tions of the time series, delay coordinate embedding’s allow to reconstruct vectors representing
the dynamics in the phase space. The approach of phase-space reconstruction consists of em-
bedding the time series into a higher-dimensional space to see the underlying dynamical system
(Kennel et al, 1992). The most widely used version of embedding is a time delay embedding
(Takens, 1981).

4.4.2.1 Time delay embedding

This method embeds a scalar time series x(ti) into m-dimensional space denoted X(ti), as
expressed in Eq. (4.23),

X(ti) = (x(ti), x(ti + τ), ..., x(ti + (m− 1)τ) (4.23)

Where, i = (1, 2, . . . ,M), τ is the delay time, m is the embedding dimension, and M is
the number of embedded points in the m-dimensional space gave by Eq. (4.24). N is the
total number of points in the time series and X(ti) is the embedded time series into an m-
dimensional space

M = N − (m− 1)τ (4.24)

Research shows that the reconstructed phase-space with appropriate m and τ has the same
quality of the original dynamical system. Several methods were presented in the literature
to provide an estimation of optimal embedding dimension and time delay for better phase
space reconstitution of the original time series (Takens, 1981; Kim et al., 1999; Ragulskis
and Lukoseviciute, 2009). In this work, the mutual information method proposed by Fraser
and Swinney (1986) is used to set the delay coordinates. This method is summarized as follows.

a) Determine of time delay (t)

The current methods to determine the time delay t include autocorrelation function and
the mutual information method. That can be used to analyse linear or nonlinear systems. The
description of this method will be discussed in what follows.

a.1) Mutual information method

a.1.1) Definition

Mutual information is a measure of the dependence between two variables. If the two
variables are independent, the mutual information between them is zero. If not, then they are
strongly dependent. The difference between mutual information and the correlation function is
that the first measures of the general dependence, while, the correlation function measures the
linear dependence, and mutual information is a better quantity than the correlation function
to measure the dependence. To understand how the mutual information method works. We
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have to introduce first the concept of entropy (Fraser and Swinney , 1986).

a.1.2) ENTROPY

The average amount of information gained from a measurement that specifies is defined to
be the entropy H(X), which is a measure of uncertainty of a random variable. With support
χ and probability mass function p(x) = Pr {X = x} , x ∈ χ , the entropy H(X) of a discrete
random variable X is defined by

H(X) = −
∑
x∈χ

p(x) log p(x) (4.25)

a.1.2.1) Joint entropy and conditional entropy

We have defined the entropy of a single random variable in the previous section. We now
extend the definition to a pair of random variables. There is nothing really new in this defi-
nition because (X,Y ) can be considered a single vector-valued random variable.

Definition : The joint entropy H(X,Y ) of a pair of discrete random variables (X,Y ) with
a joint distribution p(x, y) is defined as

H(X,Y ) = −
∑
x∈χ

∑
y∈γ

p(x, y) log p(x, y) (4.26)

We also define the conditional entropy of a random variable given another as the expected
value of the entropies of the conditional distributions, averaged over the conditioning random
variable.

Definition: the conditional entropy is defined as:

H(Y |X ) = −
∑
x∈χ

p(x)H(Y |X = x)

= −
∑
x∈χ

p(x)
∑
y∈γ

p(y |x) log p(y |x) (4.27)

= −
∑
x∈χ

∑
y∈γ

p(x, y) log p(y |x)

The naturalness of the definition of joint entropy and conditional entropy is exhibited by the
fact that the entropy of a pair of random variables is the entropy of one plus the conditional
entropy of the other.

Theorem : (Chain rule)

H(X,Y ) = H(X) +H(Y |X ) (4.28)
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a.1.3) Mutual information

Consider two random variables X and Y with a joint probability mass function p(x, y)
and marginal probability mass functions p(x) and p(y).The mutual information I(X,Y ) is the
relative entropy between the joint distribution and the product distribution:

I(X,Y ) =
∑
x∈χ

∑
y∈γ

p(x, y) log
p(x, y)

p(x)p(y)
(4.29)

The method of mutual information is a way to determine useful delay coordinates for plotting
attractors. The idea of delay coordinates is simple. If we can only observe one variable from
a system, X(t) and we want to reconstruct a higher-dimensional attractor, we can consider
(X(t), X(t+τ), . . . , X(t+nτ)) producing a (n+1) dimensional coordinate which can be plotted.
It is important to choose a good value for t, the delay. If the delay is too short, then X(t) is
very similar to X(t+ τ) and when plotted all the data stays near the line X(t) = X(t+ τ) .
If the delay is too long, then the coordinates are essentially independent and no information
can be gained from the plot.

The method of mutual information for finding the delay t was proposed by Fraser and
Swinney (1986). This method is expressed as follows,

• Calculate the mutual information of x(t) and x(t− τ) for given τ

I(x(t), x(t− τ)) =
∑
x∈χ

∑
y∈γ

p(x(t), x(t− τ)) log
p(x(t), x(t− τ))

p(x(t))p((t− τ))
(4.30)

• Draw the mutual information function I(t) for given τ ;

• The optimum time delay t is the first minimum of the mutual information function.

b) Determine of embedding dimension (m)

To determine the optimal embedding dimensionm, different methods such as the box–counting
dimension (Mandelbrot, 1967), false nearest neighbours (Kennel et al, 1992), small-window
solution (Kugiumtzis, 1996) and C–C methods (Kim et al., 1999) were proposed in literature.
We have chosen in our work the false nearest neighbour method because of its simple imple-
mentation and accuracy.

b.1) False nearest Neighbours method

It consists of learning how many dimensions are sufficient to embed a particular time
series (Kennel et al, 1992); for a given embedding dimension, this method determines the
nearest neighbour of every point in a given dimension, then checks to see if these are still close
neighbours in one higher dimension. The percentage of False Nearest Neighbours should drop
to zero when the appropriate embedding dimension has been achieved.
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Figure 4.4: An example of false nearest neighbours.

The following example explains the false nearest neighbour method. Consider Fig.4.4, each
of the points A, B, C and D in Fig.4.4 resides on a one-dimensional curve. Embedded in 2
dimensions, point C is the closest neighbour to point A. In a one-dimensional embedding,
point D is incorrectly identified as the nearest neighbour. Yet neither C nor D is the closest
neighbour to A on this curve. Only in three dimensions are there no self-crossings of this
curve, and point B is shown to be the nearest neighbour of A.

Points A, B, C, and D lie on a one-dimensional curve. In two dimensions, points A and
C appear to be nearest neighbours. In one dimension, point D appears to be the nearest
neighbour of A. In three dimensions the curve would not intersect itself, and it could be seen
that B is the nearest neighbour to A.

Explicitly, the original criteria for identification of false nearest neighbours are as follows:
Consider each vector (Ȳi) = (Xi, Xi+τ , Xi+2τ , . . . Xi+(m−1)τ ), in a delay coordinate em-

bedding of the time series with delay τ and embedding dimension m. Look for its nearest
neighbour (Ȳj) = (Xj , Xj+τ , Xj+2τ , . . . Xj+(m−1)τ ) . The nearest neighbour is determined by
finding the vector (Ȳj) in the embedding which minimizes the Euclidean distance expressed in
the following equation

Ri =
∥∥Yi − Yj∥∥ (4.31)

Now consider each of these vectors under a m+ 1 dimensional embedding;

Y
′
i = (Xi, Xi+τ , Xi+2τ , ..., Xi+(m−1)τ , Xi+mτ )

Y
′
j = (Xj , Xj+τ , Xj+2τ , ..., Xj+(m−1)τ , Xj+mτ ) (4.32)

In a (m+ 1)′dimensional embedding, these vectors are separated by the Euclidean distance,
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R
′
′i =

∥∥∥Y ′i − Y ′j ∥∥∥ (4.33)

The first criterion proposed by Kennel et Al. (1992) to identify a false nearest neighbour.

Criterion 1 √(
R
′
′i −R2′

′i

)
R2′
′i =

|Xi+mτ −Xj+mτ |
Rn

> RTOL (4.34)

Ttol is a unit less tolerance level for which Kennel et al. (1992) suggests a value of approx-
imately. This criterion is meant to measure if the relative increases in the distance between
two points when going from i to i + 1 dimension is large. A value 15 was suggested based
upon empirical studies of several systems, although values between 10 and 40 were consistently
acceptable.

Criterion 2
R
′
′i

RA
> ATOL (4.35)

This was introduced to compensate for the fact that portions of the attractor may be quite
sparse. In those regions, near neighbours are not actually close to each other. Here, RA is a
measure of the size of the attractor, for which Kennel et al.(1992) use the standard deviation
of the data,

RA =
√
< (x− < x >) > (4.36)

If either Eq.(4.34) or Eq. (4.35) hold (Ȳj), then is considered a false nearest neighbour of
(Ȳi) . The total number of false nearest neighbours is found, and the percentage of nearest
neighbours, out of all nearest neighbours, is measured. An appropriate embedding dimension
is one where the percentage of false nearest neighbours identified by either method falls to 0.

4.4.3 k-means algorithm

k-means is one of the quickest and simplest unsupervised learning algorithm to perform clus-
tering; the method consists of classifying a given data into fixed k clusters (MacQueen, 1967;
Spath, 1985). The main idea is to define k centroids for each cluster; those centroids should be
placed as much as possible far away from each other. In the first step, each point of the data
set is connected to the nearest cluster centroid by calculating the squared Euclidian distance
between data point xi(j) and the cluster centre cj , as expressed by Eq. (4.37)∥∥∥x(j)i − cj∥∥∥2 (4.37)
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Figure 4.5: Flowchart of k -means algorithm.

The second step consists of re-calculating the location of the new k centroid. Repeating
the first and second steps until the centroids no longer move produced a separation of the
objects into groups from which the objective function J expressed in Eq. (4.38) is minimized.

J =
k∑
j=1

n∑
i=1

∥∥∥x(j)i − cj∥∥∥2 (4.38)

A summary of k -means algorithm is shown in Fig. 4.5.

4.4.3.1 Selection of the number of clusters

The k -means algorithm is based on the selection of the optimum number of clusters (Spath,
1985; Xu and Donald, 2005). The choosing of many clusters does not necessarily imply having
a better quality of information. On the other hand, a small number of clusters produce unclear
results that could muddle the pattern recognition up.

The Silhouette function (Rousseeuw, 1987) expressed in Eq. (4.39) provides a measure of
the cluster separation that can be used for interpretation and validation of clustered data. The
motivation of using this technique that is simple to read, and provides a graphical represen-
tation that allows the testing of various sets of clusters. It consists of calculating the average
dissimilarity a(i) of the ith datum within the same cluster. This criterion can be interpreted
as how well-matched the ith datum to those clusters are assigned to it. The next step, is to
determine the average dissimilarity of the ith data with the data of another cluster. Then, the
lowest average is denoted by b(i) .

s(i) =
b(i)− a(i)

max {a(i), b(i)}
(4.39)
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From this equation, it is clearly shown that if s(i) is close to 1 then a(i) << b(i) , which means
that the values of a(i) are too small, which indicate that the ith datum is well matched for its
cluster. Furthermore, a large b(i) implies that ith datum is badly matched to its neighbouring
cluster. Thus, a s(i) close to 1 means that the datum is appropriately clustered. If s(i) is
close to minus one, then by the same logic, we can see that i would be more appropriate if
it is clustered in its neighbouring cluster. An s(i) near zero means that the datum is on the
border of two natural clusters.

A successful clustering has a high mean silhouette value s(i). Lletí et al. (2004) considered
a 0.6 silhouette value for all clusters as a good result. However, in real-time series, it is almost
impossible to achieve this. Hence, a compromise among silhouette plots and averages is used
to determine the natural number of clusters within data set.

4.5 Simulation results

Our goal of the simulation is to select the best model for multi-hour ahead forecasting of the
future values of hourly global solar radiation data, using two different hybrid models. To eval-
uate the quality of the proposed model, the root mean square error (RMSE) and normalized
root means square error (NRMSE) are chosen as the forecasting accuracy measures. Lewis
(1982) was considered that if the NRMSE values are between 0.2 and 0.5, the forecasted model
is considered good model. Wu and Chan (2011) , and Kostylev and Pavlovski (2011) found
that the best performing model on an hourly time scale had an NRMSE of 0.17 for mostly
clear days and 0.32 for mostly cloudy days. In addition, the R squared value gave by Eq.
(4.40) was used as metric to judge the goodness of the forecast.

R2 = 1−


n∑
i=1

(Ii,measured − Ii,predicted)2

n∑
i=1

(Ii,measured − Ii,measured)
2

 (4.40)

Moreover, an important task of the proposed method is chosen the proper training and testing
data set to avoid the overheating problem. Hence, the k -fold cross validation method (Kohavi,
1995) has been used to check the performances. In this method, the data set is divided into k
subsets, each time, one of the k subsets is used as the test set and the other k-1 subsets are
put together to form a training set. Then, the average error across all k trials is computed
until we reached the best training and testing data set (Klipp et al., 2008).

4.5.1 Forecasting using hybrid ARMA and NAR

We use in this part, hourly global horizontal solar radiation time series for the year of 2010 for
the site of Oran, Algeria (35.6911° N, 0.6417° W). The data were collected from the National
Meteorological Office of Algeria. We ignored data between 6:00 and 20:00 o’clock because
there is no solar radiation measured during this period.

Using the k -fold cross validation method the data are divided into two sets, training set
(from 1st January 2010 to 31st October 2010) that represent 4530 hours, and test data set
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(from 1st November 2010 to the 31st December 2010) that represent 915 hours (prediction
horizon) .The training data set is used exclusively for model development then the test sample
is used to evaluate the established model.

4.5.1.1 Stationnarization phase

In this phase, the trends obtained from Jain (Baig et al., 1991; Kaplanis, 2006), Baig et al.
(1991), Kaplanis (2006), Kaplanis and Kaplani (2007) and high degree polynomial models are
simulated against the measured data to find the suitable model for being used in the prediction
phase. For that, the monthly hourly average global solar radiation time series is then applied
to the site of Oran, 2010. Fig. 4.6 shows the monthly average hourly global horizontal solar
radiation of January 2010 in W/m2 against the estimated models. We ignored data between
6:00 and 20:00 o’clock because there is no solar radiation measured during this period.

For choosing the proper model, we have to check the stationarity of the series. Thus, the
Augmented Dickey and Fuller (ADF) test was applied to the residual series between measured
and simulated data from different models. If the test result is below the critical values that
means we should reject the null hypothesis and the time series is stationary. Otherwise, it is
not stationary. The statistical power is the probability tests to reject a false null hypothesis
(Dickey and Fuller, 1981). The test results are presented in Table 4.2.
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Figure 4.6: Comparison between the measured monthly average hourly global horizontal solar
radiation data of January 2010 from the site of Oran, Algeria, and the Jain (Baig et al., 1991;
Kaplanis, 2006), Baig et al. (1991), Kaplanis (2006), Kaplanis and Kaplani (2007) and 6
degree polynomial models.
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Table 4.2: ADF test test for the detrending models.

Detrending models Statistical power Significant level Test results Critical value
Jain’s model 0.0428 0.05 -2.0389 -1.958
Baig’s model 0.0126 0.05 -2.658 -1.958
S.Kaplanis (2006) model 0.0117 0.05 -2.6918 -1.958
Kaplanis and Kaplani (2007) model 0.0097 0.05 -3.4307 -1.958
6 degree polynomial model 0.001 0.05 -4.3232 -1.958

Table 4.3: The RMSE and NRMSE between actual data and the other different models.

Error (RMSE) Error (NRMSE)
Jain’s model 55.2255 0.149
Baigs’s model 42.8663 0.1146
S.Kaplanis(2006) model 37.1987 0.1013
Kaplanis and Kaplani (2007) model 22.581 0.0735
6 degree polynomial model 13.3939 0.0358

The performances of the five simulated models to predict monthly average hourly global
solar radiation from mean daily global solar radiation are evaluated using the root mean square
error (RMSE) and normalized root mean square error (NRMSE), The results of the statistical
comparison of the simulated models are presented in Table 4.3.

From Fig. 4.6 and Table 4.3, it is clearly shown that Jain’s model fits the monthly hourly
average global solar radiation series, but it presents a big NRMSE error versus other models
that equal to 0.1490 especially at the beginning and at the end of the series. Hence, since
Baig’s model is based on Jain’s model, it was used to overcome this error. However, it still
represents some lags with NRMSE equal to 0.1146.For the Kaplanis (2006) model, it used
a different method than Jain and Baig models, but still had a big NRMSE equal to 0.1013.
Using the improved approach by Kaplanis and Kaplani (2007), the NRMSE was reduced to
0.0735. The 6-degree polynomial model seems the best choice to fit the solar radiation time
series, which represents the lowest NRMSE error equal to 0.0358.

In addition, from the results of Table 4.2, we can see that the test results are below the
critical values. Therefore, the residual series of all those models was considered stationary.
The statistical power of 6-degree polynomial model is the highest one, which implies that the
residual series between this model and measured data has the lowest probability to incorporate
a unit root. Hence, it is considered the most stationary residual series.

Since higher degree polynomial model provided the best performance in both detrending
and fitting phases, we used this model for ARMA model in the detrending phase for predicting
future values.
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4.5.1.2 Forecasting phase

The hybrid ARMA-NAR method was applied to do the forecasting. First, ARMA model is
used for predicting hourly global solar radiation time series, then the residual between ARMA
and measured series is forecasted using NAR model. The obtained forecast is added to the
one of ARMA models.

In the detrending phase, we used a 6-degree polynomial model to get a stationary residual
series. From the autocorrelation, partial correlation and the AIC test of the residual series
we established that the ARMA (5, 7) is the suitable model to use it in the simulation. In
addition, different algorithms of training and sets of delays and neurons were tested in the
simulation of the nonlinear autoregressive neural network model. We found that the use of 31
delays and 10 neurons in the hidden layer with the Lavenberg-Marquardrt training method
gives the fastest convergence with the smallest forecasting error.

The simulation results of the hybrid model to forecast hourly global solar radiation for the
year of 2010 are presented in Fig. 4.7 (a); the blue line represents the measured hourly global
horizontal solar radiation and the red dot one is the forecasted series by the hybrid model. In
addition, Figs. 4.7 (b-c) represent the comparison results for the months of November 2010
and December 2010 respectively, and Fig.4.7 (d) for the first two weeks of November 2010.
The blue line represents measured data, and the red dot line is the forecasted data.
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(a) : Comparison between measured hourly global horizontal solar radiation data (from 1st

November 2010 to 31st December 2010) and the forecasted using hybrid model.
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(b) : Comparison between measured hourly global horizontal solar radiation (from 1st

November 2010 to the 30th November 2010) and forecasted by proposed model.
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(c) :Comparison between measured hourly global horizontal solar radiation (from 1st

December 2010 to the 31st December 2010) and forecasted by proposed model.
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(d) : Comparison between measured hourly global horizontal solar radiation (from 1st

November 2010 to the 14th November 2010) and forecasted by proposed model.

Figure 4.7: (a - d), Comparison between measured and forecasted solar radiation data for
different periods

The comparisons and performance of the forecasting hourly global horizontal time series
using a hybrid model have been evaluated by calculating the RMSE errors between the actual
data and forecasted one for the period of 1st November 2010 to 31st December 2010 (915
hour-step ahead).

Moreover, the quadratic error between measured and simulated hourly global solar radia-
tion using the proposed method is demonstrated in Fig. 4.8.
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Figure 4.8: The average of quadratic error between measured global horizontal solar radiation
(from 1stNovember to 31st December 2010) and the forecasted using hybrid model.
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Figure 4.9: The measured hourly global horizontal from (1st November 2010 to 31st December
2010) versus forecasted time series using the hybrid model.

In addition, Fig. 4.9 represents the measured time series versus the forecasted one.

From Figs. 4.7 (a-d), Fig. 4.8 and Fig.4.9 it is clearly shown that the hybrid model
forecasted in good manner the measured solar radiation time series. From Fig.4.7 (a), the
total RMSE is equal to 71.82 W/m2 and the NRMSE is 0.2103. With an R-squared value
equal to 0.9272. Nevertheless, we can ensure that the comparison between forecasted and
measured solar radiation time series presents some lag due to the presence of clouds.

4.5.2 Forecasting using hybrid k-means and NAR models

In this part, we are interested in multi-hour ahead forecasting of hourly global solar radiation
time series using a combination of clustering techniques and nonlinear autoregressive neural
networks. We use hourly solar radiation for Oran, 1996. The data were collected from the
National Meteorological Office of Algeria for the site of Oran. We used only the data from
sunrise to the sunset of the day. Using the k-fold cross validation method the data were divided
into two sets, training set (from 1st January 1996 to 31st October 1996) that represent 4530
hours, and test data set (from 1st November 1996 to the 31st December 1996) that represent
915 hours.

The first step in the analysis and prediction of this time series is the choice of an appropriate
time delay τ and the determination of the embedding dimension, m. To select τ an established
approach is to use the value that yields the first minimum of the mutual information function;
a time delay of 1 and an embedding dimension equal to 2 were found experimentally using
mutual information and false nearest neighbour methods to be the right choices for this time
series.

The next step is to apply the k -means algorithm for clustering high dimensional training
data set obtained from phase space reconstitution in the previous step. At each step, different
numbers of clusters were examined; the silhouette function was calculated for the determina-
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Figure 4.10: Silhouette values with 3 clusters for hourly global horizontal solar radiation data
for Oran, Algeria (from1st January 1996 to 31st October 1996).

tion of the right number of clusters. The metric used is the squared Euclidean distance. We
had plotted different silhouette functions for hourly global horizontal solar radiation with a
different number of clusters, and we established that the choosing of 3 clusters to be the best
choice as shown in Fig. 4.10.

From Fig.4.10, it is clearly shown that most of the mean silhouette values are high. How-
ever, it is nearly impossible to arrive at a value of 0.6 for all clusters and not having negative
values as the case of the second cluster. Thus, the appropriate number of clusters is usually
taken when the graphical representation provides satisfactory results that mean when most
of the silhouette values are high as expressed in Lletí et al. (2004). The obtained 3 cluster
groups the solar radiation time series into three categories, high values of solar radiation, which
represents the noon hours, medium values that represents the day hours from 9 to 11 o’clock
(or sky with medium clouds) and low solar radiation value, which represents hours of sunrise
and sunset (or the presence of clouds).

After that, the NAR method with different architectures was applied to generate local
predictor for each cluster that provides what we called regions for the three clusters in the
future ( these regions represent future windows for the forecasted data ).Then, the NAR
method with different time delay and neurons was applied to create a global predictor of the
data. The use of 25 delays with 13 neurons was found as the right choice for forecasting
purpose. A comparison between the centroids of the global forecasted series and centroids of
the regions can show the goodness of the forecast; the two centroids of each cluster region and
forecasted series should be near each other.

The results of phase space reconstitution of the forecasted regions and clusters for hourly
global horizontal solar radiation at time t and t+1 considering a time delay of 1 and embedding
dimension of 2 are presented in Fig.4.11.
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Figure 4.11: Space phase reconstitution for the forecasted regions and clusters of hourly global
horizontal solar radiation testing data (from 1st November 1996 to the 31st December 1996).

The plotted points represent the phase space of the solar radiation time series at time t
and t+1. We can visualize clearly the three kinds of clusters with low, medium and high solar
radiation values. In addition, most of the points of each forecast cluster are in the right regions,
the centroids are near each other, which means that the obtained forecast is acceptable.

The comparison between the forecasted hourly global horizontal solar radiation data tested
one is shown in Fig.4.12 (a). In addition, Figs. 4.12 (b-c) represent the comparison results
for the months of November 1996 and December 1996 respectively. The blue line represents
measured data, and the red one is the forecasted data.
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(a) : Comparison between measured hourly global horizontal solar radiation (from 1st

November 1996 to the 31st December 1996) and forecasted by proposed model.
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(b) : Comparison between measured hourly global horizontal solar radiation (from 1st

November 1996 to the 30st November 1996) and forecasted by proposed model.
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(c) : Comparison between measured hourly global horizontal solar radiation (from 1st
December 1996 to the 31st December 1996) and forecasted by the proposed model.

Figure 4.12: (a - c ) Comparison between measured and forecasted solar radiarion data using
hybrid k- means and NAR models.

Moreover, the performance of the forecasted hourly global horizontal time series has been
evaluated by calculating the RMSE errors between the actual data and forecasted one for the
period of 1st November 1996 to 31st December 1996. The quadratic error between measured
and simulated hourly global solar radiation using the proposed method are presented in Fig.
4.13. In addition, Fig. 4.14 represents the measured time series versus the forecasted one.



CHAPTER 4. FORECASTING OF SOLAR RADIATION AT GROUND LEVEL 111

0 100 200 300 400 500 600 700 800 900 1000
-200

0

200

400

600

800

1000

Measured hourly global solar radiation (Wh/m2)

F
or

ec
as

te
d 

ho
ur

ly
 g

lo
ba

l s
ol

ar
 r

ad
ia

tio
n 

(W
h/

m
2)

 

 
Measured solar radiation

Forecasted solar radiation

R squared value : 0.9330

Figure 4.14: The measured hourly global horizontal from (1st November 1996 to 31st December
1996) versus forecasted time series using the proposed model.
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Figure 4.13: The quadratic error between measured global horizontal solar radiation (from 1st

November to 31st December 1996) and the forecasted using the proposed model.

From Fig. 4.13, the total RMSE is equal to 64.34 Wh/m2 and the NRMSE is 0.2003,
which can be viewed as good forecasted values compared with an NRMSE equal to 0.3184 by
using the baseline ARMA model. In addition, from Fig. 4.14, the R-squared value is equal
to 0.9330. Most of the points of the forecasted and measured series are near each to other.
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However, it presents some lags due to the total covered days that present a lot of clouds.
Finally, from the simulation results, this methodology is conceived to be such a good method
to perform the forecast results.

4.6 Conclusion

In this chapter, we introduced two hybrid models for multi-step ahead forecasting of hourly
global horizontal solar radiation time. First, hybrid ARMA and NAR neural network was
used. According to the fact that solar radiation series has linear and nonlinear components,
the ARMA model was good to forecast the linear behaviour of the solar radiation time series.
Also, NAR network proved to be a suitable method to capture the non-linearity of the series.
But, no one of them was suitable to extract full characteristics of global solar radiation series.
Hence, the hybrid model is a good method to forecast such similar problems.

Second, a hybrid method based on the k-means clustering methods and NAR neural net-
works was used. The obtained experimental results showed that the clustering of the input
space is an important task to interpret the behaviour of the series. Moreover, identifying
forecasted regions using NAR network provides additional information about future patterns
that can simplify the analysis of the global forecast of the series. In addition, the proposed
method does not need a complicate clustering algorithm.

Hence, as a conclusion, the time series data mining method is considered such a good way
of forecasting such similar problems. Nevertheless, this method presents some limitations for
the total covered sky where the presence of clouds is heavy, also the calculation time, especially
in the preparation phase of the NAR network.

The next chapter will discuss the application of the obtained results on the stand- alone
PV systems sizing, estimation of the DC outputs and fault detection of the PV systems.
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Nomenclature

a(i) Average dissimilarity.

ACF Autocorrelation function .

PACF Partial Autocorrelation function.

AIC Akaike’s Information Criterion.

b(i) Lowest average dissimilarity.

cj Cluster centre.

Cov Covariance function.

de Number of estimated parameters.

et Gaussian white noise.

H(X) Entropy.

H(Y |X ) Conditional entropy.

Hn Daily solar radiation.

I(X,Y ) Mutual information.

It Hourly solar radiation.

J Objective function .

Lt Linear part of the time series.

L̂t Predicted series from linear part.

m Embedding dimension.

M Number of embedded points in the m-dimensional space.

MPL Multilayer Perceptron.

md Pick hour of the day.

Ne Number of values in the estimation data set.

Nt Nonlinear part of the time series

N̂t Forecasted series from nonlinear part.

p Lag order of the autoregressive process.

p(x) Probability mass function.

R2 R- squared value.
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RA Size of the attractor.

rt Ratio of hourly to daily global solar radiation.

s(i) Silhouette function.

t Time.

Ttol A unit less tolerance level.

V Loss function.

V ar Variance function

vt Residual at time t from the linear part of the time series.

X(ti) Embedded time series into an m-dimensional space.

x(ti) Scalar time series.

α Constant called a drift.

β Coefficient on a time trend.

γ Coefficient presenting process root.

δt Lag operator .

φI Autoregressive AR parameters.

θj Moving average MA parameters.

τ Delay time.

µ(t) Mean of a time series.

µ(N d ) Solar beam attenuation coefficient.

σ” Standard deviation of the Gaussian curve.

χ(t) Distance of the solar beam travels within the atmosphere at time t.
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Chapter 5

Applications for the PV systems

5.1 Introduction

Solar energy is used widely in two large categories; grid connected and stand-alone photovoltaic
(SAPV) systems. Recent applications in remote areas and space applications need a continuous
source of power. Stand-alone PV (SAPV) systems could assure this power if the optimal sizing
is reached especially in small scales. Hence, this chapter deals with the application of the
estimated and forecasted solar radiation to use them in the sizing of stand-alone PV systems .

5.2 Description of PV systems

PV systems are devised into two categories, grid connected systems and stand-alone systems.
The difference between these systems is that the first is connected to the grid and the other
is not as shown in Fig. 5.1.

Grid connected systems are interconnected with the network of power lines (the network
of cables through which electricity is transported from power stations to other places). It
consists of an inverter that converts the DC power produced from PV panels into AC power
injected into the grid. It can deliver the electricity to the network at any time when required.
In a grid connected system no battery or other storage is needed.

Stand-alone PV systems produce power independently of the grid utility. They are used
to supply electricity to a single system. They usually included with one or more batteries to
store the produced electricity. They are used widely in remote areas, water pumping, highway
lighting, weather stations, remote homes. . . etc.

5.3 Stand-alone PV system components

In this thesis, we are interested in the application of the proposed methods to the stand- alone
PV system. Hence, we present in what follows the principal parts of this system (panels,
battery and the load profile).

119
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Figure 5.1: Description of a PV system.

5.3.1 PV Panels

Solar cells represent the elementary power conversion unit. It converts the solar radiation
reaches the surface of the cell into electrical energy by the photovoltaic process. The equivalent
circuit of a double diodes PV cell is shown in Fig.5.2. It consists of two diodes in parallel with
a current source, and two resistors.

For extracting the DC output powers, the output currents and voltages of the PV systems
have been calculated using a double diode PV model as expressed in Eq. (5.1).

Rsh

Rs

ID2ID1

Iph

D2D1

V

Figure 5.2: Two diode PV cell model.
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Figure 5.3: Photovoltaic cells, modules, strings and arrays

I = Iph − I01
(

exp

(
V +RsI

n1Vt
− 1

))
− I02

(
exp

(
V +RsI

n2Vt
− 1

))
− V +RsI

Rsh
(5.1)

Where, Iph is the current generated by the incident light. I01, I02 are the reverse saturation
currents of the diodes D1 and D2 respectively.Vt is the thermal voltage. n1, n2 are the ideality
factors of diodes D1 and D2. Rsand Rsh are the series and shunt resistance respectively. V
and I are the output PV module voltage and current respectively.

Photovoltaic cells are modular. That is, one can be used to make a very small amount of
electricity, or many can be used together to make a large amount of electricity. A 10 centimetre
diameters PV cell can make about one Watt of power if the Sun is directly overhead and
the conditions are clear because each photovoltaic cell produces only about one-half volt of
electricity.

Cells are often mounted together in groups called modules. Each module holds about 40
photovoltaic cells, by being put into modules; the current from several cells can be combined.
PV cells can be strung together in a series of modules or strung together in a parallel placement
to increase the electrical output. When multiple PV cell modules are put together, they can
form an arrangement called an array or array field (Fig.5.3). Photovoltaic modules and arrays
produce direct current (DC) electricity. They can be connected in both series and parallel
electrical arrangements to produce any required voltage and current combination.

5.3.2 Batteries

Rechargeable batteries are widely used in stand-alone photovoltaic systems to store the DC
output power from the PV array surplus and supply the load in case of low renewable energy
production. The most common type used is regulated Lead–acid battery because of its low
cost, maintenance-free operation and high efficiency characteristics.

Although the battery installation cost is relatively low compared to that of PVs, the lifetime
cost of the battery is greatly increased because of limited service time (Posadillo and Lopez
Luque, 2008). The expected battery lifetime is reduced if there is low PV energy availability
for prolonged periods or improper charging control, both resulting in a low battery state of
charge (SOC) levels for a long time periods. The overall system cost can be reduced by the
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use of proper battery charging/discharging control techniques (MPPT), which achieve high
battery SOC and, consequently, longer lifetime.

5.3.3 Maximum Power Point Tracking (MPPT)

The MPPT control (Maximum Power Point Tracking) is a functional component of a PV
system; it allows the optimal operating point of the PV generator, in different conditions.
Whether analogical or digital control, the control principle is the same; it is based on an
automatic variation of the duty cycle α to the appropriate value, in order to exploit the
maximum power output of PV generator. Many MPPT algorithms have been developed by
researchers around the world such as Perturb and observe, incremental conductance, fuzzy
logic, neural network . . . etc. (Eltawil and Zhao, 2013; Kamarzaman and Tan, 2014).

5.4 Optimal sizing of stand-alone PV systems

Accurate sizing is one of the most important aspects to take into consideration when designing
a (SAPV) system; it consists of finding the best compromise between the reliability and the
cost that the system (PV panels and batteries) can feed the load at any time. Several methods
were proposed in literature for obtaining the optimal sizing based on the concept of the loss
of load probability (LLP). LLP is a parameter used to characterize the system design. It
is defined as the relationship between the energy deficit and the energy demand, as referred
to the load. In statistical terms, the LLP value refers to the probability that the system
will be unable to meet load demands (Posadillo and Lopez Luque, 2008). The main reason
of this failure is the stochastic characteristics of the solar radiation that affect the sizing
process. Kaplani and Kaplanis (2012), Chen (2012) and Cabral et al. (2010) improved that
the fluctuation observed in the daily solar radiation affects highly the reliability of the PV
system sizing. Hence, it is an important task to study earlier the dynamic behaviour of the
solar radiation time series before any sizing processes. In addition, the failures can occur due
to losses in the cables, in the battery storage, the ageing of the components, the degradation
of the PV panel’s performance and the charge / discharge effects of the batteries.

Several methods were demonstrated in literature to calculate the sizing parameters for a
constant LLP (Khatib et al., 2013). Among them, intuitive methods (Charma et al., 1995;
Sidrach-de-Cardona and Mora Lopez, 1998), where the size of the system is taken in such a way
to ensure the load demand without gives a relation between the number of panels, batteries
and the LLP. Analytical methods (Barra et al., 1984; Bartoli et al. ,1984; Hontoria et al.,
2005), based on the graphical information obtained from of the iso-probability curves, and
the numerical methods (Ambrosone et al. 1985; Egido and Lorenzo, 1992; Mellit,2010) which
based on a detailed simulation of the PV system in small scales ( daily, hourly. . . etc.). In the
numerical methods, the produced energy from the PV generator and the stat of the charge of
the batteries are calculated at each time t. The advantages of the numerical methods are the
precision and the simplicity of choosing different elements of the system (Egido and Lorenzo,
1992; Mellit, 2010; Posadillo and Lopez Luque, 2008; Lucio et al. 2012). Several algorithms
had been proposed in literature to calculate LLP values based on numerical methods. They
are based on the measured monthly or daily solar radiation data over a long time, taking into
account the worst month of the year (Egido and Lorenzo, 1992; Posadillo and Lopez Luque,
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2008; Lucio et al. 2012). However, they present major drawbacks as the length and non-
occurrence of the used solar radiation data (only in daily or monthly basis), where the most
of solar radiation applications need hourly solar radiation data Posadillo and Lopez Luque,
2008; Labed and Lorenzo, 2004; Lorenzo and Narvarte, 2000) . In addition, choosing of the
worst month in the year does not give all the information on the dynamic characteristics
of the measured solar radiation (maybe it exists bad weather outside the worst month) that
limited the importance of the sizing in daily basis. For that, we proposed a modified numerical
algorithm based only on the classified hourly solar radiation using a clustering algorithm for
obtaining the lowest solar radiation data over a one-year period that ensures the optimal sizing
in hourly basis. The novelty of the proposed method compared to other methods presented in
the literature (Posadillo and Lopez Luque, 2008; Khatib et al., 2013; Fadaee and Radzi, 2012;
Sidrach-de-Cardona and Mora Lopez, 1998; Barra et al., 1984; Bartoli et al. ,1984; Hontoria et
al., 2005; Ambrosone et al. 1985; Egido and Lorenzo, 1992; Mellit,2010; Lucio et al. 2012),is
that assure first, the full identification of the dynamic characteristics of hourly solar radiation
time series, and second, the optimal sizing of the system is guaranteed in small scales by using
only one year hourly solar radiation data.

At first stage, time series data mining was applied to hourly solar radiation data. It consists
of grouping similar elements into clusters that have the same characteristics (Liao et al., 2012;
Sandberg and Xu, 1997). For this purpose, several methods were proposed in literature based
on unsupervised clustering methods such as k -means and fuzzy c–means (FCM) algorithm
(MacQueen, 1967; Xu, 2005; Dunn, 1974; Bezdek, 1981; Takens, 1981). We have chosen
in this work the FCM algorithm which based on the fuzzy method that gives good results.
Before that, phase space reconstruction is needed to overcome the nonlinearity of the solar
radiation data. The motivation of using the FCM algorithm that it is a powerful tool which
presents more precise results comparing with k -means algorithm (Mingoti and Lima, 2006).
Nevertheless, it depends strongly on the initialization parameters (initial number of clusters),
Hence, the sub-clustering method (Chiu, 1994) was used to decide the right number of clusters.

In the second phase, the low solar radiation data obtained from the clustering processes
are used to determine the iso-probability curves using the numerical method. For each hour,
the LLP is calculated and compared to the desired LLP (1% in our example). After that, an
economic study of the system is achieved by minimizing the total cost of the system to get
satisfactory results (Wissem et al., 2012; Hongxing et al., 2009; Dufo-Lopez et al., 2011) . We
used the genetic algorithm (GA) method as optimizing technique for the search of the optimal
solution. Finally, a general decision is selected that insured the minimization of an objective
function that guaranteed the minimum cost of the pairs of panels and batteries which give a
LLP equal to 1% for a desired hourly load is reached.

5.4.1 Methodology

We will present in this work a basic configuration for optimal sizing of the stand-alone PV sys-
tems based on hourly global solar radiation time series classification and the genetic algorithm
for the economic cost optimization as shown in the flowchart in Fig. 5.4.
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Figure 5.4: Flowchart of the proposed hybrid k-means and NAR methodology.

The developed methodology consists of the following steps:
Step 1 : Classification phase;

• Reconstruction of the phase space of hourly global solar radiation by determining the
optimal embedding dimension,

• Classification of hourly global solar radiation using fuzzy c-means clustering algorithm.

Step 2 : Sizing phase (iso-reliability curves);

• Calculating of the stand-alone PV system dimensional parameters, the capacity of the
PV panel array CA and the capacity of the storage system CS ;
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• Estimation of the loss of load probability LLP (plotting of the iso-reliability lines).

Step 3 : Economic optimization phase;

• Initialize the cost of the components (PV panels, Batteries, other costs. . . etc.),

• Finding the minimum system costs versus optimal system reliability using the GA opti-
mization method.

5.4.1.1 Classification phase : fuzzy c –means clustering algorithm

The FCM algorithm introduced by Dunn (1974) and modified by Bezdek (1981) is used widely
in the clustering methods. It consists of separating the data point into c clusters with respect
to some given criterion for the optimization of an objective function. However, due to the
presence of nonlinearity in some time series such as hourly global solar radiation time series,
it is more useful to represent the time series in higher-dimensional space to understand the
underlying dynamical of the system (MacQueen, 1967). Hence, phase space reconstruction
[presented in chapter 4] was used to simplify the analysis of the time series.

After determining the optimal embedding dimension, the reconstructed phase space of the
solar radiation data is clustered using the fuzzy c-means algorithm. In this method, as in the
fuzzy logic approach, each point belongs to a cluster with some degree of belonging defined
by a membership grade. The FCM algorithm minimizes an objective function JFCM that
calculated the weighted within-group sum of squared errors as expressed in Eq. (5.2)

JFCM =
n∑
k=1

c∑
i=1

(uik)
qd2 (xk, vi) (5.2)

Where, n is the length of the data, c is the number of clusters defined by the c-means algorithm,
uik is the degree of membership of xk in the ith cluster, q is a weighting exponent on each
fuzzy membership, it is a real number greater than 1 ( typically q =2 (Chiu,2012) ), X =
(x1, x2, . . . , xn) is the data in the m-dimensional vector space, vi is the centre of the cluster i,
d2(xk, vi) is the distance measured between data xk and cluster centrevi.

The summary of the FCM algorithm is illustrated by the following steps (Dunn,1974;
Bezdek , 1981),

(1) Initialize the values c, q and the error ε ;

(2) Initialize the cluster centre matrix V (t=0) =
[
v
(t=0)
i

]
and the membership matrix

U (t=0) =
[
u
(t=0)
ik

]
;

(3) Increase the time t and calculate the new c cluster centres V (t) ;

V (t) =

n∑
k=1

(
(uik)

(t)
)q
xk

n∑
k=1

(
(uik)

(t)
)q (5.3)
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(4) Calculate the new membership values U (t+1);

U (t+1) =
[
u
(t+1)
ik

] 1
c∑
j=1

(
dik
djk

)2/(q−1) (5.4)

Where , dik = ‖xk − vi‖and 1 ≤ k ≤ n , 1 ≤ i ≤ c;

(5) If
∥∥U (t) − U (t+1)

∥∥ < ε stop. Otherwise, increase t and go to step (3).

The FCM algorithm depends strongly on the position of the initialization points. Hence,
an important task in the FCM algorithm is choosing the correct number of clusters to avoid
the problem of falling in a local minimum. Several techniques are proposed in the literature
to solve this problem, such as sub-clustering method (Chiu, 1994) and mountain method
proposed in (Yager and Filev , 1994). In this study, we used the sub-clustering technique to
decide the number of clusters. This method is an iterative process which supposed that each
point is a potential cluster centre according to its location to other data points. The algorithm
is summarized as follows (Chiu, 1994) :

• Choose a point that has the probability to be the highest potential cluster centre;

• Delete all the points which are inside the radius of the first cluster centre (the radius is
defined by the neighbourhoods of the centre), and recalculate the potential of the other
points to determine the next cluster centre;

• Repeat this step until all the data are within the radius of a cluster centre.

5.4.1.2 The sizing phase (iso-probability curves)

Sizing of the stand-alone PV systems consists of determine the reliability performance based
on two dimensional parameters, the PV generator capacity CA which means the number of
loads fed only by the PV array and the battery storage capacity CS indicates the number of
days (hours) where the batteries are fully charged and with no energy income could feed the
load (the hours where the load is supplied only by the batteries and not from the PV array)
(Khatib, 2013; Jakhrani et al., 2012; Posadillo and Lopez Luque, 2008). These two parameters
are defined by the following equations,

CA =
ηtAGHgβi

Lt
(5.5)

Where AG is the used PV array area in (m2), Hgβi is the global mean hourly solar radiation
received on inclined surface in (Wh/m2). Lt is the load value at time t in (W) and ηt is the
total panels’ efficiency gave by the following equation,

ηt = ηp(1−B.(Tc − Tr)) (5.6)

Where, ηp is the efficiency of a solar cell at a referenced solar radiation (i.e. 1000 W/m2), B
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is the temperature coefficient is between (0.004-0.006), Tc is the cell temperature in °C and Tr
is the reference temperature of the panel (generally equal to 25 °C with air mass AM= 1.5).

CS =
CU
Lt

(5.7)

CU = NbVBCBDOD (5.8)

Where, CU is the maximum battery useful capacity in (Wh), Nb is the number of batteries,
VB is voltage for the unity of storage, CB is the nominal battery capacity in (Ah) and DOD
is the maximum depth of discharge.

The objective of the sizing is the measure of the degree of the reliability in which the system
(photovoltaic generator plus batteries) can supply the load demand at any time t. For that,
the load loss of probability LLP defined as the ratio between the energy deficit and energy
demand for a specified load during the total operation time of the installation as expressed in
the following equation

LLP =

´
t

Energy deficit
´
t

Energy demand
(5.9)

At each time t, the numerical method is applied to each configuration (panels and batteries) in
an iterative way until the desired LLP is obtained. Once this task is completed, the parame-
ters are saved and the reliability condition is reached. The summary of the modified algorithm
based on numerical methods (Egido and Lorenzo, 1992; Mellit, 2010) is given by the following
steps,

Step 1 : Initialization of the data;

LLP ← 0.01 , Lt ←Load at time t , Err ← 10−4, ηt ←the panels’ efficiency, LLPs ← 0.01,
Hgβi ←the classified hourly solar radiation data on inclined surface (lowest hourly solar radi-
ation obtained from the fuzzy c-means algorithm ), CS ← 1.

Step 2 : Calculate the useful PV array area AG and the maximum useful battery capacity
Cu;

SOC ← 0, EAux ← 0, AG = CALt
ηtHgβi

, CU = CSLt.

Step 3 : calculate the state of the charge of the battery at the time t.

SOCt = min

(
SOCt−1 +

ηtAGHgβi

CU
; 1

)
(5.10)

The energy supplied by the auxiliary generator EAUX , keep the battery fully charged if the
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load requirements is bigger than the energy stored in the batteries, that

SOCt ≥
1

CS
⇒ EAuxt = 0

SOCt ≤
1

CS
⇒ EAuxt = (1− SOCt).Lt.CS and SOCt = 1 (5.11)

The LLP value is calculated over the number of available hours by the following equation,

LLP =

Nt∑
t=1

EAuxt

Nt∑
t=1

Lt

(5.12)

Step 4 : if LLP > LLPs then CA ← CA + 0.05 and go to step 5; Otherwise CA ← CA − 0.05
and go to step 5.

Step 5 : if (ABS(LLP − LLPs)) > Err go to step 3; else, go to the next step.

Step 6 : saving pairs CA, CS .

Step 7: if the values of CA, CS are changes go to step 2; otherwise stop.

5.4.1.3 System Cost optimization

In the economic study, we are interesting to minimize the total cost of the stand- alone PV
system. Thus, the Genetic Algorithm (GA) optimization method was used to select the best
configuration for selecting the lowest cost. After the determination of the output power as well
as the dimensional parameters CA and CS (number of panels and batteries) for a specified
LLP value, it remains the calculation of the actualized total cost Ct of the system by the
following equation (Wissem et al., 2012; Hongxing et al., 2009; Dufo-Lopez et al. ,2011; Avril,
2010)

Ct = AfCc + Cm + Cr (5.13)

Where, AF is the actualization factor expressed by,

Af =
Ar

(1− (1 +Ar)
−LF )

(5.14)

Ar is the actualization rate; it is equal to 8% for this kind of system (Wissem et al., 2012).
LF represents the system lifetime (lifetime of the panels, generally 25 years).
Cc is the total components cost defined by,

Cc = NpCp +NbCb + Ca (5.15)
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where, Cp, Cp, Cb, Np and Nb,are the prices and the numbers of panels and batteries respec-
tively. Ca represents the additional costs include the cost of civil work, the command system
and cable costs.

The maintenance cost Cm is given by,

Cm = Cm(1).(1 + Ef )LF (5.16)

Cm(1) is the maintenance cost of one year, Ef is the annual expansion factor is equal generally
to 1.5%.

The total replacement cost Cr of the system is determined as follow,

Cr = Cr′ .Rf (5.17)

Where, Cr is the system cost and Rf is the replacement factor given by,

Rf =
Ar

((1 +Ar)
nb − 1)

(5.18)

Where, nb is the battery lifetime.

After the determination of the cost objective function, the next step consists of applying the
GA for the minimization of the cost function. The GA is an artificial intelligence method used
for the optimization problems based on the natural genetic that mimics biological evolution [
See Appendix A.4].

5.5 Results and discussion

In this section, we will discuss the obtained results from application of solar radiation. Namely,
the results of sizing stand-alone PV systems, estimation of output DC parameters and faults
detection.

5.5.1 Sizing of stand-alone PV systems

Our goal of the simulation is to minimize the total cost of the stand-alone PV system while
ensuring the desired reliability in hourly scale during the day with a variable load requirement
during a day. Three load profiles have been chosen in the simulation phase as expressed in
Fig. 5.5.

The methodology consists of selecting the lowest values of the solar radiation during one
year period and trying different sets of panels and batteries to find the best configurations.
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Figure 5.5: Different load profiles.

The technical characteristics and costs of panels, batteries and other components are listed
in Tables 5.(1-3),

Table 5.1: Characteristics of the used photovoltaic panels.

Type Power (W) Dimension(mm) Cell type ( η) Price($)

Monocrystalline Polycrystalline

1.CHSM6610P 250 1626×994×45 15.2 248

2. ZJP-260W 260 1956×992×36 13.4 208

3. Panasonic HIT power240 240 1579×798×35 21.6 545

4. GH_M_003 260 1956×992×36 17 336

Table 5.2: Characteristics of the used batteries.

Type Nominal capacity(AH) Voltage(V) Price($)
1.UB4D AGM 200 12 345
2.PVX-1040T 104 12 282
3.Trojan J305G 315 12 253
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Table 5.3: Characteristics of the other used components

Other components
Array installation cost ($/Wp) (0.6$/Wp)
Array life 25 Years
Battery life 10 years
Annual operation & maintenance cost 1% of initial capital cost
Civil work cost 20% of initial capital cost
Other costs 10% of initial capital cost

5.5.1.1 Solar radiation classification using the FCM algorithm

The first phase of the proposed methodology is the choice of the global inclined hourly solar
radiation data. We had collected these data from the national meteorological station in Algeria
for the site of Ghardaia (longitude: 32.4833° N, latitude: 3.6667° E) for the year of 2012 with
an inclination angle equal to 32°. Firstly, and using the FCM algorithm, the lowest hourly solar
radiation data set was selected for use it in the sizing phase. The phase space reconstruction
of hourly solar radiation was reached using the time delay embedding method. We found that
a time delay of one and embedding dimension equal to two to be the suitable choice for the
reconstructed phase space.

Next, the FCM algorithm is applied to the results obtained from the last step. Using the
sub-clustering method, we found that the number of clusters is 3. The simulation results of
the reconstructed phase space as well as the three subsets obtained from the FCM clustering
algorithm of the solar radiation are shown in Fig.5.6 and Fig.5.7 respectively.
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Figure 5.6: Space phase reconstitution of hourly global inclined solar radiation ( Ghardaia,
2012 ).
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Figure 5.7: Clustered hourly global inclined solar radiation using FCM algorithm.

Fig.5.6 represents the reconstructed phase space of the inclined hourly solar radiation at
time t and t+1. And, Fig.5.7 represents the amount of solar radiation in Wh/m2 of the
resulted clusters. From these figures it is clearly shown that the solar radiation time series had
been grouped into three clusters, high values solar radiation (cluster N°3) which represent the
sunny hours of the year (or noon hours during clear sky days), medium solar radiation values
(cluster N°2) that represent the hours for partly cloudy skies (or hours from 9 AM to 11 AM
and from 2 PM to 4 PM) and low solar radiation data (cluster N°1) that illustrate the case
of cloudy skies (or the hours of sunshine and sunset). From these results it is clearly shown
that cluster N°1 is the most appropriate to use it in the sizing phase because it represents the
lowest hourly solar radiation values during the year.

5.5.1.2 Reliability sizing curves ( iso-reliability curves)

In the second stage, the numerical method is applied to the obtained solar radiation data from
the previous step to get the iso-probability curves for a specific reliability level. The results are
given in Figs. 5.8 (a-c). They represent the number of panels against the number of batteries
for a constant LLP equal to 1% for the load profile N°1.
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(a) : Sizing curve of the four type of panels for the battery type 1 for a LLP =1%.
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(b) : Sizing curve of the four type of panels for the battery type 2 for a LLP =1%.
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(c) : Sizing curve of the four type of panels for the battery type 3 for a LLP =1%.

Figure 5.8: (a - c ) Sizing curve of the diffrent type of panels and batteries.

From these figures, it is clearly indicated that the panel type 3 gives the best results. It
ensures the desired LLP compares with other type of panels. In addition, we can discover that
the surface (dimension) of panels has an influence on the obtained results, more the surface is
high more the number of panels is low (in the case of constant efficiency). Moreover, comparing
the results that have the same surface of the panels (type 2 and 4), we discover that the type
4 gives better results; that it’s because of the efficiency of the panel type 4 which is higher
than the one of type 2. Furthermore, comparing the types of batteries for a specified type of
panels (such as comparing the results of panels type 3 with the three types of batteries), we
can see clearly that the battery type 3 gives the best results. This is because that the nominal
capacity of battery type 3 is the higher one.

However, these conclusions do not reflect the goodness of the results, especially the eco-
nomic point of view. A good technical choice that insures the desired LLP value does not
imply that it is the lowest cost comparing with other configurations. Hence, an additional
economic study is discussed to choose the optimal one.

5.5.1.3 Economic optimization with GA

After the technical study, it is more useful to calculate the cost of each pair (panels and bat-
teries) basing on the actualized total cost for choosing the best configuration. Hence, we have
compared the configuration already studies in the previous step. The simulation results are
represented in Fig.5.9 (a-c) that expresses the total cost of the system for each type of panels
and batteries.
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(a) : Total system cost versus the number of panels and batteries for the four types of panels
and the battery type 1.
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(c) : Total system cost versus the number of panels and batteries for the four types of panels
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Figure 5.9: Total system cost versus the number of panels and batteries.

From these figures, it is clearly shown that the panel type 2 gives the lowest cost values for
each type of batteries. Contrary to the results obtained from the sizing curves which indicate
that the panels type 3 is the best choice.

Moreover, to determine the best optimal solution that ensures the best configuration of the
system, the GA optimizing method is applied to the obtained results. For each type of panels
and batteries, the total cost of the system was calculated. Then, the lowest value between
them is chosen to be the best values. The comparison between all the results obtained from
GA for each type of panels and batteries as illustrated in Table 5.4.

From Table 4, the battery type 1 shows the lowest configuration comparing with other
batteries. In addition, the use of eight panels of type 2 and 1 battery of type 1 is considered
the optimal configuration of the systems that give the lowest cost values which insure also a
desired LLP for the load profile N°1.

Table 5.4: The total cost results obtained from the GA optimization for all types of panels
and batteries.

Batteries Panels
Type1 Type2 Type3 Type4

Type 1 : Cost, (Nb ,Np) 1737 $, (1, 8) 1706 $, (1, 8) 1824 $, (1, 6) 1804 $, (1, 8)
Type 2 : Cost, (Nb ,Np) 1756 $, (2, 8) 1724 $, (2, 8) 1845 $, (2, 6) 1985 $, (2, 8)
Type 3 : Cost, (Nb , Np) 1716 $, (1, 8) 1714 $, (1, 9) 1801 $, (1, 6) 1749 $, (1, 7)



CHAPTER 5. APPLICATIONS FOR THE PV SYSTEMS 137

5 10 15 20 25 30
10

20

30

40

Number of Batteries

N
um

be
r 

of
 p

an
el

s

 

 
(Nb, Np) for load profile N° 2

(Nb, Np) for load profile N° 3

  Nb=5 ; Np= 19

  Nb=2 ; Np= 25

Figure 5.10: Sizing curve of the panel type 2 and the battery type 1 for a LLP =1% and the
load profile N°2 and N°3.

In the same way, we have applied the proposed methodology for the load profiles N°2
(highest consummation during the night) and N°3 (highest consummation during the day).
We found that the use of the panel number 2 with the battery number 1 give the best results.
The simulation results are shown in Fig. 5.10 which represents the number of panels against
the number of batteries for a constant LLP equal to 1% for load profile N°2 ( black line ) and
N°3 ( red dot line).

The last step is comparing the optimal sizing parameters (panels and batteries ) for show-
ing the importance of installing PV systems in the south of Algeria. Hence, we have simulated
the proposed algorithm for two different climatic regions in Algeria (Oran : north, Ghardaia
: south ). The load profile N°1 was selected for both locations for a desired LLP=1%. The
simulation results of the number of panels against a number of panels for Ghardaia (in red)
and Oran (in blue) are shown in Fig. 5.11.

From this figure, it is clearly shown that the number of panels used in Ghardaia is less
than Oran. Precisely, the number of panels used for Oran equal to 1.2 the number used for
Ghardaia which means that the installation of stand-alone PV system in the south of Algeria
are more suitable than their installation in the north.
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Figure 5.11: Sizing curve ( LLP = 1% ; load profile N°1) for Ghardaia and Oran.

5.6 Conclusion

The models presented in previous chapters can be used in multiple applications such as sizing
of stand-alone PV systems. From the results of the stand-alone sizing we can note clearly that
the sizing in hourly is more efficacious and give better results that in a daily basis. Moreover,
we discover that the centre of the Algerian Sahara is the most suitable place to install PV
system contrary to the north of the country. Finally, the proposed models to estimate and
forecast solar radiation give good results when they used in some useful applications in the
field of PV systems.



CHAPTER 5. APPLICATIONS FOR THE PV SYSTEMS 139

Nomenclature

Af Actualization factor.

Ag Used photovoltaic array area, m2.

Ar Actualization rate.

B Temperature coefficient.

c Number of clusters.

CA Capacity of the photovoltaic panel array.

CB Nominal battery capacity, Ah.

Cb Price of the battery, $.

Cc Total components cost, $.

Cm Maintenance cost, $.

Cm(1) Maintenance cost of one year, $.

Cp Price of one panel, $.

Cr Total replacement cost, $.

Cr’ System cost, $.

CS Capacity of the storage system.

Ct Actualized total cost, $.

CU Maximum battery useful capacity, Wh.

d Standard deviation.

d2(xk, vi) Distance measure between data and cluster centre.

DOD Maximum depth of discharge.

EAUX Auxiliary generator.

Ef Annual expansion factor.

Err Error.

FCM Fuzzy c –means.

GA Genetic algorithm.

Hgβi Hourly global solar radiation received on inclined surface, Wh/m2.

Hgβi Mean hourly global solar radiation received on inclined surface, Wh/m2.
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I Output PV module current.

I01, I02 Reverse saturation currents of the diodes D1 and D2 respectively.

Iph Current generated by the incident light.

JFCM Objective function.

LF System life time, year.

LLP Load of loss probability.

LLPs Desired LLP.

Lt Load at time t, W.

MPPT Maximum Peak Power Tracking.

n1, n2 Ideality factors of diodes D1 and D2.

nb Battery life time, year.

Nb Number of batteries.

Np Number of panels.

q Weighting exponent on each fuzzy membership.

Rf Replacement factor.

Rss Series resistance.

Rsh Shunt resistance.

SAPV Stand-alone photovoltaic systems .

SOC State of charge.

Tc Cell temperature, °C.

Tr Reference temperature of the panel, °C.

U(t) Membership matrix.

uik Degree of membership.

V Output PV module voltage.

V (t) Cluster centre matrix.

VB Voltage for the unit of storage, V.

vi Centre of the ith cluster .

Vt Thermal voltage.
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ε Small error.

ηp Efficiency of a solar cell at a referenced solar radiation.

η. Total panels efficiency.

τ Delay time.
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General conclusion and perspectives

Various applications of thermal energy systems and photovoltaic conversion of solar energy re-
quire a detailed study of solar radiation received at ground level. Any investigation in the field
of solar energy needs adequate and proper information on the evolution of the solar radiation
during a given period for a specific geographical location. Evaluation of solar radiation is used
to simulate the behaviour of the solar energy systems. Thus, it is an important task to give
accurate models in order to guarantee the optimal functioning of any solar energy system. At
the top of the atmosphere, the solar radiation can be predicted with great accuracy since it
mainly depends on geographical and astronomical parameters. On the ground, the prediction
is more difficult due to the interaction of the direct solar radiation in the atmosphere in the
presence of aerosols, water vapor, cloud and other surfaces. Therefore, this influence must
be determined by studying of the components of sunlight as well as the data measured at
ground radiometric stations. However, the density of meteorological network is low across the
countries over the world. Taking the example of Algeria, with an area of 2,381,741 km2, less
than 60 radiometric stations give information about sunshine duration and less than 6 stations
give information about the amount of solar radiation. Hence, theoretical methods are used to
estimate the incident solar energy in the areas where there are no measurements. The data
obtained is used in different applications such as optimal sizing PV systems.

In this thesis, we proposed a range of models and algorithms for estimating and forecasting
solar radiation using geographical, astronomical and meteorological parameters as well as the
measured data in order to use them in some useful applications in the field of solar energy.
Some of these models are proposed in the literature by various scientific researche and proven
to be valid for several locations in the world. And, other models are proposed in this thesis
as original scientific papers, namely in the estimation of solar radiation using a novel satellite
image approach (based on GISTEL model), forecasting using two new hybrid models (ARMA
and NAR models, k -means and NAR models) and some applications such as sizing of stand-
alone PV systems, fault detections and estimation of the outputs of the PV systems. These
models are tested for the territory of Algeria, where there are some measured solar radiation
data collected in some locations (Ghardaia, Bouzareah and Oran). The comparison is made
generally between measured and simulated data by these models.

Before that, the solar zones of the country were made by applying the Kriging interpolation
method for the monthly sunshine duration measured at 56 meteorological stations for 10 years.
It allowed us to extract from these two information: the amount of sunshine received at a site
and its evolution during the year. This, helps to distinguish six energetic zones in Algeria.

Secondly, we show the possibility to study the evolution of various astronomical parame-
ters (declination, height, solar azimuth, sunrise and sunset ...), and solar components (direct,
diffuse and global) received on any day with a collecting area of any location, whether hori-
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zontal or inclined by simply entering data (day, month, geographical settings and sometimes
some weather parameters). A comparative study has been elaborated to the different models
for estimating the amount of solar radiation. Semi-empirical models and meteorological show
good accuracy in clear sky weather. However, they are limited in the case of cloudy sky.
Physical models, which based on satellite image processing (improved GISTEL model), give
good results in cloudy sky conditions compared with other models.

In addition, we present in this thesis two novel forecasting models based on hybrid method-
ology. First, we introduced a hybrid model that combined both ARMA and NAR models for
multi-step ahead forecasting of hourly global horizontal solar radiation time. Combining linear
and nonlinear components of any solar radiation time series seem to be the best method for
forecasting such similar problems. Second, we presented a time series forecasting methodology
based on hybrid k-means and NAR models. The obtained experimental results showed that
the clustering is quite good to interpret the behaviour of the series. It gives some information
about the future regions and the behaviour of the forecasted time series using NAR model.
Both of the two hybrid methods are novel. However, they may need some heavy calculation.

Finally, we apply the developed models for sizing stand-alone photovoltaic systems. We
have proved using a novel algorithm the importance of sizing in our PV system application,
especially in the economic point of view. We found that it would be more appropriate to use
hourly solar radiation data rather than daily data for optimal sizing. In addition, we showed
that southern Algeria is very favourable compared to the north by the nature of its solar
resources for the implementation of photovoltaic power plants. Moreover, the outputs of a PV
system can be determined by using the obtained forecasted series of the proposed models in
this thesis. In addition, other applications can be studied based on the developed model such
as fault detection in PV array, which is improved to be simple and useful using only input
solar radiation data and other simple calculation algorithms.

In conclusion, the goal of this thesis is reached. This work represents an important ad-
vance in the understanding and effective use of solar radiation modelling for the sustainable
exploitation of the huge solar potential in the Algerian Sahara. However, the actual outcome
of this great goal requires broad consultation involving politicians, industrialists and scientists.

Perspectives

The future of renewable energies will be part of our life. Climate change concerns high prices of
fossil fuels and increasing political support are driving renewable energy prospects. This thesis
is considered a powerful support for each research in the field of solar radiation quantification;
it gives a detailed description of several models of solar radiation studying from the top of
the atmosphere to the ground level. The results obtained from it can be used in solar power
generators ranging from small standalone to large grid-connected systems.

Future works can improve the results of this thesis. Testing other models, whether for
estimation or forecasting could be the complementary part of this thesis. Other satellite
approaches can be used as comparative studies with the GISTEL model used in our thesis.
In addition, hybrid model showed a good utility and accuracy. Hence, future works can test
other hybrid methods combining classical and artificial intelligence techniques for best results.
Moreover, we applied our results only on stand-alone PV systems. Other works can apply
the proposed models in grid connected systems. There are many applications of the models
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studied in this thesis. We choose only two of them (fault detection and estimation of PV
system outputs) and future researchers can test other types of applications. In fact, two PhD
thesis are proposed which based on the quantification of solar radiation. The first one is the
monitoring of PV systems based on the estimation of solar radiation. And, the second is
testing the MPPT technics of PV systems under shadow. Moreover, the practical part of this
thesis already begins in the laboratory of the University of Laghouat, that use essentially the
model elaborated in order to obtain optimal and efficacy PV system installation.



Appendix A

A.1 Artificial Intelligence Techniques

(AI) is defined as the study and design of intelligent agents. An intelligent agent is an au-
tonomous entity that perceives its environment, directs its activity toward achieving goals
and takes actions that maximize its chances of success. AI methods are highly successful in
dealing with incomplete or uncertain input data. Most important, they are often capable to
solve problems where the existing dependencies are too complex or insufficiently known to be
programed in a traditional, rigid manner. There are several approaches developed in AI such
as: Genetic Algorithms (GA), Expert Systems (ES), Artificial Neural Networks (ANN), Fuzzy
Logic (FL), and some hybrid systems that combine the above techniques. Several approaches
for forecasting solar irradiance at different time horizon based on AI techniques have been
reported. These approaches can be categorized in three groups:

• The models in the first group estimate solar irradiance based on meteorological param-
eters;

• The second group includes models which predict the actual solar irradiance based on
past observed data;

• Models from the third group combine the defining approaches of the first and second
group.

A.2 Artificial neural networks

One type of network sees the nodes as ‘artificial neurons’. These are called artificial neural
networks (ANNs). An artificial neuron is a computational model inspired in the natural
neurons. Natural neurons receive signals through synapses located on the dendrites or the
membrane of the neuron. When the signals received are strong enough (surpasses a certain
threshold), the neuron is activated and emits a signal through the axon. This signal might be
sent to another synapse, and might activate other neurons.

The complexity of real neurons is highly abstracted when modelling artificial neurons.
These basically consist of inputs (like synapses), which are multiplied by weights (strength of
the respective signals), and then computed by a mathematical function which determines the
activation of the neuron. Another function (which may be the identity) computes the output
of the artificial neuron (sometimes in dependence of a certain threshold). ANNs combine
artificial neurons in order to process information.
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Figure A.1: Natural neuron.

Figure A.2: Artificial neuron.

Output = Activationfunction
(∑

inputs ∗ weights
)

Using mathematical notation, the output of a neuron can be written as follows

y = f

(
b+

∑
i

wixi

)
(A.1)

Here, b is the bias for the neuron. The bias input to the neuron algorithm is an offset value
that helps the signal to exceed the activation function’s threshold.
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A.2.1 Activation Function

The activation function, denoted f(v) , defines the output of the neuron in terms of the local
field v. Three basic types of activation functions are as follow:

a) Threshold Function (or Heaviside Function)

A neuron employing this type of activation function is normally called McCulloch-Pitts
model. The model has an all-or-none property.

f(v) =

{
1 if v ≥ 0

0 if v < 0
(A.2)

b) Piecewise-Linear Function

This form of activation function may be viewed as an approximation to a non-linear am-
plifier. The following definition assumes the amplification factor in the linear region is unity.

f(v) =


1 if v ≥ 1/2

v if −1/2 < v < 1/2

0 if v < −1/2

(A.3)

c) Sigmoid Function

This is the most common form of activation function used in artificial neural networks. An
example of a sigmoid function is the logistic function, defined by:

f(v) =
1

1 + exp(−av)
(A.4)

Where a > 0 is the slope parameter. In the limit as a → ∞, the sigmoid function simply
becomes the threshold function. However, unlike the threshold function, the sigmoid function
is continuously differentiable (differentiability is an important feature when it comes to network
learning).

A.2.2 Architectures of Neural Networks

a) Single-Layer Feed-Forward Networks

The simplest form of a layered network, consisting of an input layer of source nodes that
project onto an output layer of neurons. The network is strictly feed forward, no cycles of the
information are allowed. Fig.A.3 shows an example of this type of network. The designation
of single-layer refers to the output layer of neurons; the input layer is not counted since no
computation is performed there.
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Output layer 
of neurons

Input layer 
of source 

nodes

Figure A.3: Single-Layer Feed-Forward Neural Network.

b) Multi-Layer Feed-Forward Networks

The Multi-Layer Perceptron (MLP) extends the Perceptron model with hidden layers be-
tween input and output layers. It is a feed-forward network, typically trained with back-
propagation. Conceptually, the MLP architecture consists of an input layer, one or more
hidden layers of neurons with non-linear activation functions and the output layer. Hidden
layers are not exposed to input vectors, as input and output layers are. A MLP network is
illustrated in Fig.A.4.

c) Recurrent Networks

A recurrent neural network has a similar architecture to that of a multi-layer feed-forward
neural network, but contains at least one feedback loop. This could be self-feedback, a situation

Figure A.4: Example of a MLP network
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where the output of a neuron is fed-back into its own input, or the output of a neuron could
be fed to the inputs of one or more neurons in the same or preceding layers.

A.2.3 Learning

A crucial part of the working of a neural network is the learning step. There are various
ways to let a network learn, for example, supervised training (show the network the right
output to an input), reinforcement learning (giving the network feedback on its given output)
or unsupervised learning (the network can learn what is good and bad all by itself).

A.2.3.1 Back-propagation

Back-propagation has been, by far, the most popular and widely used learning technique for
training ANN. The goal of the training process is to obtain a desired output when certain
inputs are given. Since the error is the difference between the actual output y(k) and the
desired output yd(k), the error depends on the weights wij , and we need to adjust the weights
in order to minimize the global quadratic error ε. We can define the error function for the
output of each neuron:

ε = (yd(k)− y(k))2 (A.5)

We take the square of the difference between the output and the desired target because it
will be always positive, and because it will be greater if the difference is big, and lesser if the
difference is small. The error of the network will simply be the sum of the errors of all the
neurons in the output layer

ε =
1

2

∑
k

(yd(k)− y(k))2 (A.6)

The back propagation algorithm now calculates how the error depends on the output, in-
puts, and weights. After we find this, we can adjust the weights using the method of gradient
descendent

∆wij = −α ∂ε

∂wij
(A.7)

This formula can be interpreted in the following way: the adjustment of each weight wij will
be the negative of a constant a multiplied by the dependence of the i previous weight on the
error of the network, which is the derivative of e in respect to wij .we use this until we find
appropriate weights (the error is minimal) in the layer m.

∆wmij = −α1

2

∂

∂wmij

(∑
k

(
yd(k)− ym+1(k)

) (
yd(k)− ym+1(k)

))
(A.8)

= −α
∑
k

(
yd(k)− ym+1(k)

) ∂ym+1(k)

∂wmij
(A.9)
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With

∂ym+1(k)

∂wlij
=

∂

∂wm+1
ij

fm+1(xm+1(k)) (A.10)

xm+1(k) =
∑
ij

wm+1
ij ymij (k) (A.11)

We obtain

∆wmij = α
∑
k

(
yd(k)− ym+1(k)

)
wm+1
ij f (m+1)′(xm+1(k))fm

′
(xmij (k))ym−1ij (k) (A.12)

Now we introduce the elementary error :

δm+1(k) =
(
yd(k)− ym+1(k)

)
f (m+1)′(xm+1(k))

∆wmij = α
∑
k

δm+1ymij (A.13)

Generally we have :

δm(k) =

{∑
k

δm+1(k)wm+1
ij (k)

}
fm
′
(xmij (k)) (A.14)

And

∆wmij = α
∑
k

(yd(k)− ym(k))fm
′
(xmij (k))ym−1ij (k) (A.15)

A summary of the technique is given below:

• Feed the MLP with a training sample;

• Compare the output to the desired output from that sample and calculate the error in
each neuron (this is the local error);

• The local error is assumed to be caused by the neurons of the previous level, pro-
portionally to the weight value of each neuron connection arriving to the level under
investigation;

• Adjust the weights arriving to each neuron to minimize the local error;

• Repeat the steps above to the previous level (backwards) using as error the neurons’
contribution to the local error of the previous step.
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A.3 Fuzzy Logic

In classical logic, every proposition must either be True or False, excluding the middle. Fuzzy
logic ( FL) introduced in 1965 by Zadeh is designed to allow computers to make use of the
distinctions among data with shades of grey. That means it studies the middle between the
True and False. The main advantage of fuzzy logic is their ability to describe the knowledge
in a descriptive human-like manner as simple logical rules using linguistic variables only.

A.3.1 Fuzzy logic concept

The Fuzzy logic is based on three essential steps as shown in Fig.A.5.

A.3.1.1 Fuzzification

It is a coding process that consists of converting numerical values of a linguistic variable into
a membership function value.

a. Linguistic variables

Linguistic variables are the input or output variables of the system whose values are words
or sentences from a natural language, instead of numerical values. A linguistic variable is
generally decomposed into a set of linguistic terms. For example, let the sky be linguistic the
variable which represents the sky cases. To qualify the sky, terms such as “ clear” , “cloudy” ,
“partially” cloudy are used in real life. These are the linguistic values of the sky. Each member
of this decomposition is called a linguistic term and can cover a portion of the overall values
of the day case.

b. Membership Functions

Membership functions are used in the fuzzification and defuzzification steps of a FL, to
map the non-fuzzy input values to fuzzy linguistic terms and vice versa. A membership func-

Inference

Rules

Fuzzification Defuzzification 

Fuzzy input set Fuzzy output set

Inputs Outputs

Figure A.5: Fuzzy logic concept.
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µA(x)

x

Triangular

µA(x)

x
Trapezoidal

µA(x)

x

Gaussian

Figure A.6: Different forms of the membership function.

tion is used to quantify a linguistic term. It can be defined as follows. If X is a collection of
objects, the associated fuzzy set A is defined as

A ≡ {(x, µA(x)) : x ∈ X} (A.16)

Where, µA(x) is the membership function showing the degree of affiliation of the element x
to the fuzzy set A. Different forms of the membership function are used in literature, among
them, triangular, trapezoidal, and Gaussian shapes as shown in Fig. A.6. In addition, one
value can belong to multiple sets at the same time.

A.3.1.2 Inference rules

In fuzzy logic, the output variables are controlled by a rule base between different member-
ship functions. Generally, these rules expressed in the form of IF-THEN rule. The following
example shows how this rule is worked. Let x the membership function values of the fuzzy
set A (the linguistic terms of A areA1 and A2) and y the membership function values of
the fuzzy set B ( the linguistic terms of B are B1 and B2) . And let z the resulting com-
mand associated with the output fuzzy set C (the linguistic terms of C are C1, C2, C3 and C4).

The construction of the fuzzy rules can be expressed as follows,

• Rule 1: IF x is A1 And y is B1 Then z is C1

OR

• Rule 2: IF x is A2 And y is B1 Then z is C2

OR

• Rule 3: IF x is A1 And y is B2 Then z is C3

OR

• Rule 4: IF x is A2 And y is B2 Then m is C4

- The fuzzy operator AND is used in the computation in the conclusion between two
membership functions.

- The fuzzy operator OR is used between all the rules to obtain the final result.

-The set of rules is called rule matrix.
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a. Operations on Fuzzy Sets

To build a fuzzy set theory, some logical operation ( such as And, Or, and complement)
between the elements of the sets must be defined through the membership functions as follow

Fuzzy intersection (AND)

µA∩B(x) = min (µA(x), µB(x)) , ∀x ∈ X (A.17)

Fuzzy intersection (OR)

µA∪B(x) = max (µA(x), µB(x)) , ∀x ∈ X (A.18)

Fuzzy complement (NON)

µA = 1− µA(x), ∀x ∈ X (A.19)

A.3.1.3 Deffuzification

This is the decoding phase, which consists of converting the output fuzzy set results from the
inference process into a crisp (numerical) values. Several defuzzification methods are proposed
in the literature. The most popular is the centre of gravity method. It is expressed by the
following equation

y =

∑
i
ci
´
µyi(x)dx∑

i

´
µyi(x)dx

(A.20)

ci is the centre of the membership function (generally, the value of the variable x where
the membership function reaches its peak) and the integral

´
µyi (x) dx represents the surface

under the membership function µyi(x) corresponding to the attribute i of the output linguistic
variable y.
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A.4 Genetic algorithms

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary
ideas of natural selection and genetics. The basic techniques of the GAs are designed to
simulate processes in natural systems necessary for evolution. GAs offer a new and powerful
approach to the optimization problems, and their use is made possible by the increasing
availability of high performance computers at relatively low costs.

The main idea of GAs is the optimization of an objective function. The Algorithm starts
with a set of solutions (represented by chromosomes) called a population. Each candidate
solution has a set of properties (its chromosomes or genotype) which can be mutated and
altered. Solutions from one population are taken and used to form a new population. This is
motivated by a hope that the new population will be better than the old one.

The steps of the GA are shown in Fig. A.7, and summarized as follow,

1. Initialization: initial randomly the individuals as parents from the current population
to produce children for the next generation.

2. Selection: using a fitness function (objective function) which indicates the quality of
the represented solution, a selection of the new generation was achieved based on the
optimum fitness function values of the current individuals.

3. Crossover and mutation: in this step, a pair of parents was selected to generate new
children solutions, which share many characteristics of their parents due to the crossover
and mutation of the chromosomes of the parents. During the processes, each new child
has a new pair of parents until a new population of solutions of the proper size is
generated.

4. Generalization : the generalization process is repeated until the optimum solution is
reached.

Generation of initial individuals

Calculate fitness (objective function)

Perform selection

Check convergence

Crossover Mutation

End

Figure A.7: The principle structure of the GA method.
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In this paper, we review our work for forecasting hourly global horizontal solar radiation based on the
combination of unsupervised k-means clustering algorithm and artificial neural networks (ANN).
k-Means algorithm focused on extracting useful information from the data with the aim of modeling
the time series behavior and find patterns of the input space by clustering the data. On the other hand,
nonlinear autoregressive (NAR) neural networks are powerful computational models for modeling and
forecasting nonlinear time series. Taking the advantage of both methods, a new method was proposed
combining k-means algorithm and NAR network to provide better forecasting results.
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1. Introduction

The generation of the energy in our modern industrialized soci-
ety is still mainly based on a very limited resource. Some projec-
tions show that the global energy demands will almost triple by
2050 [10]. Thus, the search for alternative energy resources has be-
come an important issue for our time. Solar energy is becoming a
very attractive solution since it is considered an essentially inex-
haustible and broadly available energy.

For an efficient conversion and utilization of solar power, solar
radiation data should be measured continuously and accurately
over the long-term. However, the measurement of solar radiation
is not available for all countries in the world due to some technical
and fiscal limitations. Hence, several studies were proposed in the
literature to find mathematical and physical models to estimate
and forecast the amount of solar radiations such as stochastic pre-
diction models based on time series methods [14,36,39,40] and
artificial neural network approaches [11,2,4].

Classical linear time series models like autoregressive moving
average modeling [3] have been widely used in modeling of linear
time series [36]. Even so, it was proven that they are inadequate in
the analysis and prediction of solar radiation due to the non-
stationary and nonlinearity of the solar radiation time series, espe-
cially for cloudy sky [39,1,36]. In addition, stochastic models are
based on the probability estimation that needs a full identification
of the mathematical function, leads to a difficult forecasting of the

solar radiation time series [36]. Moreover, global solar radiation
time series is a dynamical system that depends on some meteoro-
logical elements such as temperature, water vapor, suspend solids,
cloud and water air condition that can represent nonlinear charac-
teristics [36,12,38] .

To overcome this problem, nonlinear approaches, such as artifi-
cial neural networks (ANN) was considered a powerful tool for
forecasting similar time series [39,28,36]. The advantages of the
ANN that it does not require the knowledge of the internal system
parameters that offer a compact solution for multiple variable
problems [11,2,36,4]. However, single models presented a big fore-
casting error [36]. Thus, hybrid methods combining different mod-
els have been widely used in the literature to improve the forecast
performance [36,12,5]. Nevertheless, no one of those methods will
be capable of presenting information about the behavior of the so-
lar radiation time series in the future. Hence, it was used the Time
Series Data Mining (TSDM) methodology [33] which is a funda-
mental contribution to the fields of time series analysis and data
mining that allows a search, for valuable information on nonlinear
problems such as solar radiation time series [21].

Data mining is the identification of interesting structure in the
data, where the structure designates patterns of the data and rela-
tionships among regions of the data; it is a process of grouping
similar elements gathered closely using unsupervised clustering
methods such as k-means and c-means algorithms [37]. Data min-
ing techniques were used in a wide variety of fields for prediction.
For example, in stock prices, meteorological data, customer behav-
ior, production control and other types of scientific data [9].

Taking the two advantages of both methods, the k-means ap-
proach [25] for clustering the solar radiation data to extract useful
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information and the ANN for forecasting purposes, a new method
was proposed in this paper that combines an unsupervised k-
means clustering algorithm and nonlinear autoregressive neural
network.

At the first stage, the data obtained from the phase space recon-
stitution using Takens theorem [35] were clustered using k-mean
algorithm; clustering is a process of grouping an unlabelled set of
examples into several clusters such that a similar pattern is associ-
ated with every cluster. The motivation of using the k-means
approach in this paper is due to its simplicity and also to the fact
that the proposed methods do not require an advanced clustering
algorithm. However, one of the vital issues of the k-means algo-
rithm is the choosing of the appropriate number of clusters [37].
Therefore, a silhouette function proposed by [32,23] was used to
obtain the best number of bunches.

At the second stage, the nonlinear autoregressive (NAR) neural
network that is a multilayer perceptron neural network (MLP) with
some modification was applied for forecasting the solar radiation
time series trying different architecture to get the best network
structure. Combining those two methods presented better results
for multi-step ahead prediction in long term forecasting.

The remaining part of this paper is organized as follows. Section
2 presented the methodology used in this work for forecasting the
solar radiation time series using time series data mining technique,
a background of space phase reconstitution, k-means clustering
algorithm and NAR network methods were also viewed. In Section
3, we simulated the forecasting results of the proposed method and
comparing the results with the measured ones. The last section
was devoted to the conclusion and discussion of future works.

2. Methodology

A time series is a collection of time ordered observations x(ti),
each one being entered at a specific time t called a period [30].

Modeling and forecasting of the time series are an importation task
to extract useful information from the data [7]. Hence, in this pa-
per, a proposed method that relies on principles of time series
analysis, unsupervised clustering, artificial neural networks and
evolutionary optimization methods were proposed as presented
in Fig. 1. The methodology can be outlined in the following steps:

(1) Determine the minimum, appropriate, embedding dimen-
sion for phase space reconstruction for the time series [15];

(2) Identify regions of the reconstructed phase-space which has
similar characteristics using k-means clustering algorithm;

(3) For each cluster train different NAR neural network to gener-
ate regional predictor for forecasting local regions;

(4) Use the corresponding NAR neural network using different
delay and neurons to generate a global prediction for the
time series;

(5) Reconstructed phase-space of the obtained time series from
step 4, then use the appropriate k-means method to cluster
the data using the same parameters used in step 1 and step
2;

(6) To perform the forecast, assign each pattern from step 5 to
the appropriate region obtained from step 3 using as a crite-
rion the Euclidean distance:
- If the Euclidean distance between each region and the
assigned pattern is small, then it was considered a better
forecast, else return to step 4.

2.1. Determining an appropriate embedding dimension

Phase space reconstruction provides a simplified, multidimen-
sional representation of a nonlinear time series that simplifies fur-
ther analysis. The approach of phase-space reconstruction consists
of embedding the time series into a higher-dimensional space to
see the underlying dynamical system [15]. The most widely used
version of embedding is a time delay embedding [35]. This method

Fig. 1. The proposed methodology for time series data mining forecasting.

562 K. Benmouiza, A. Cheknane / Energy Conversion and Management 75 (2013) 561–569



embeds a scalar time series x(ti) into a m-dimensional space de-
noted X(ti), as expressed in the following equation,

XðtiÞ ¼ ðxðtiÞ; xðti þ sÞ; � � � ; xðti þ ðm� 1ÞsÞ ð1Þ

where i ¼ ð1;2; . . . ;MÞ, s is the delay time, m is the embedding
dimension, and M is the number of embedded points in the
m-dimensional space given by Eq. (2). N is the total number of
points of the time series and XðtiÞ is the embedded time series into
an m-dimensional space.

M ¼ N � ðm� 1Þs ð2Þ

Several methods were presented in the literature to provide an
estimation of optimal embedding dimension and time delay for
better phase space reconstitution of the original time series
[35,16,31]. In this paper, the mutual information method proposed
by Fraser and Swinney [8] was used to set the delay coordinates.
This method is summarized as follows,

– Calculating of the mutual information IðxðtÞ; xðt � sÞÞ of x(t) and
xðt � sÞ for a given s as expressed in the following equation,

IðxðtÞ; xðt � sÞÞ ¼
X
x2v

X
y2c

pðxðtÞ; xðt � sÞÞ

� log
pðxðtÞ; xðt � sÞÞ
pðxðtÞÞpððt � sÞÞ ð3Þ

p(x(t), x(t � s)), is the joint probability mass function for the
marginal probability mass functions x(t) and x(t � s).

- Drawing of the mutual information function I(t) for given s,
- The optimum time delay s is the first minimum of the mutual

information function.

A small value of the delay leads to a x(t) very similar to xðt þ sÞ
then all the data stay near one other. On other hands, big delay
leads to an independent coordinates and no information can be
gained from the plotted data.

To determine the optimal embedding dimension m, different
methods such as the box-counting dimension [26], false nearest
neighbors [15], small-window solution [18] and C–C methods
[16] were proposed in the literature.

In this paper, false nearest model was employed because of sim-
ple implementation and accuracy. It consists of learning how many
dimensions are sufficient to embed a particular time series [15];
for a given embedding dimension, this method determines the
nearest neighbor of every point in a given dimension, then checks
to see if these are still close neighbors in one higher dimension. The
percentage of False Nearest Neighbors should drop to 0 when the
appropriate embedding dimension has been achieved.

2.2. k-Means algorithm

k-Means is one of the quickest and simplest unsupervised learn-
ing algorithms to perform clustering; the method consists of clas-
sifying a given data into fixed k clusters [25,34]. The main idea is to
define k centroids for each cluster; those centroids should be
placed as much as possible far away from each other. In first step,
each point of the data set is connected to the nearest cluster cen-
troid by calculating the squared Euclidian distance between data
point xðjÞi and the cluster centre c

j
, as expressed by the following

equation

kxðjÞi � cjk2 ð4Þ

The second step consists of re-calculating the location of the
new k centroid. Repeating the first and second steps until the cen-
troids no longer move produced a separation of the objects into
groups from which the objective function J expressed in Eq. (5) is
minimized.

J ¼
Xk

j¼1

Xn

i¼1

kxðjÞi � cjk2 ð5Þ

A summary of k-means algorithm is shown in Fig. 2,

2.2.1. Selection of the number of clusters
The k-means algorithm is based on the selection of the opti-

mum number of clusters [34,37]. The choosing of many clusters
does not necessarily imply having a better quality of information.
On the other hand, a small number of clusters produce unclear re-
sults that could muddle the pattern recognition up.

The Silhouette function [32] expressed in Eq. (6) provides a
measure of the cluster separation that can be used for the interpre-
tation and validation of clustered data. The motivation of using this
technique that is simple to read, and provides a graphical represen-
tation that allows the testing of various sets of clusters. It consists
of calculating the average dissimilarity a (i) of the ith data within
the same cluster. This criterion can be interpreted as how well-
matched the ith data to those clusters are assigned to it. The next
step, is to determine the average dissimilarity of the ith data with
the data of another cluster, then the lowest average is denoted by
b(i).

sðiÞ ¼ bðiÞ � aðiÞ
maxfaðiÞ; bðiÞg ð6Þ

From this equation, it is clearly shown that if s(i) is close to 1
then a(i)� b(i), which means that the values of a(i) are too small,
which indicate that the ith data is well matched for its cluster. Fur-
thermore, a large b(i) implies that i is badly matched to its neigh-
boring cluster. Thus, a s(i) close to 1 means that the datum is
appropriately clustered. If s(i) is close to minus one, then by the
same logic, we can see that i would be more appropriate if it was
clustered in its neighboring cluster. An s(i) near zeromeans that
the datum is on the border of two natural clusters.

A successful clustering has a high mean silhouette value s(i).
Lletí et al. [23] considered a 0.6 silhouette value for all clusters
as a good result. However, in real-time series, it is almost impossi-
ble to achieve this. Hence, a compromise among silhouette plots
and averages was used to determine the natural number of clusters
within a data set.

2.3. Nonlinear autoregressive neural network (NAR)

Artificial neural network (ANN) is a class of neural network rep-
resented by a mathematical model that is inspired by the biological
nervous system; it is an intelligent system that has the ability to
recognize time series patterns and nonlinear characteristics.Fig. 2. k-Means clustering algorithm.
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Hence, it has been widely used for modeling dynamic nonlinear
time series [13,22].

ANN combines artificial neurons to process information; it is
made up by simple neurons that are connected in a network by
weighted links. Each input is multiplied by those weights that
computed by a mathematical function which defines the activation
of the neuron. Another activation function computes the output of
the artificial neuron that depends on a certain threshold.

Using mathematical notation, the output of a neuron can be
written as the following equation,

y ¼ f bþ
X

i

wixi

 !
ð7Þ

here b is the bias for the neuron; the bias input to the neuron
algorithm is an offset value that helps the signal to exceed the acti-
vation function’s threshold. f is the activation function, w

i
are the

weights, x
i
are the inputs and y represents the output.

Various types of artificial neural networks were presented in
literature among them Multi-Layer Perceptron (MLP), where the
neurons are grouped into an input layer, one or more hidden layers
and an output layer. Recurrent Neural Networks (RNN) such as
layer recurrent networks [13], Time Delay Neural Networks
(TDNN) [13,36] and NAR [6,27]. In RNN, the outputs of a dynamic
system depend not only on the present inputs, but also on the his-
tory of the states systems and the inputs. The NAR is a recurrent
dynamic network based on a linear autoregressive model with
feedback connections, including several layers of the network. It
is commonly used in multi-step ahead time series forecasting; it
uses past values of the actual time series to predict next values
as determined by the following equation,

ŷðtÞ ¼ f yðt � 1Þ þ yðt � 2Þ þ � � � þ yðt � dÞð Þ ð8Þ

f is a nonlinear function, where the future values depend only
on regressed d previous values of the output signal as shown in
Fig. 3. The combined history of the inputs and outputs of the sys-
tem forms an intermediate inputs vector to be shown in the neural
network model that could be any of the standard feed forward neu-
ral networks like MLP networks.

In addition, the RNN are based on training algorithms that used
to adjust the weight values to get a desired output when certain in-
puts are given. Hence, various ways were presented to let a neural
network learn such as supervised training where the input–output
set is defined, and unsupervised learning that the output is
undefined.

Back-propagation method is one of the most popular and
widely used learning techniques for training RNN. It consists of
minimizing the global quadratic error between the network output

and the desired target by adjusting the weight values. The adjust-
ment can be done using several algorithms such as Levemberg–
Marquardt [19,25], Bayesian Regularization [24] and scaled
conjugate gradient [29] algorithms. The latter one was selected
to train larger networks. Once the network is trained using the
preselected inputs and outputs, all the synaptic weights are saved,
and the network is ready to be tested on the new input informa-
tion. Since the NAR network is very similar to a Multilayer Percep-
tron (MPL), a modified MLP neural network was applied in this
paper for predicting purposes.

3. Simulation results

In our simulation, we are interested in multi-hour ahead fore-
casting of the hourly global solar radiation time series using a com-
bination of clustering techniques and nonlinear autoregressive
neural networks. Hence, two global horizontal solar radiation time
series were selected in this paper for simulation purposes. In all
cases, the evaluation of the accuracy of the prediction methodology
is accomplished by calculating the root mean square error (RMSE)
expressed by Eq. (9) and the normalized root mean square error
(NRMSE) given by Eq. (10),

RMSE ¼ < ðIi;predicted � Ii;measuredÞ2 >
h i1

2 ð9Þ

NRMSE ¼
< ðIi;predicted � Ii;measuredÞ2 >
h i1

2

< Ii;measured >

0
B@

1
CA ð10Þ

RMSE and NRMSE provide information on the short-term per-
formance of the correlations by allowing a term-by-term compar-
ison of the actual difference between the predicted and measured
values. An NRMSE value between 0.2 and 0.5 was considered by
Lewis [20] to be as a good prediction model. Kostylev and Pavlovski
[17] found that the best performing model on an hourly time scale
had an NRMSE of 0.17 for mostly clear days and 0.32 for mostly
cloudy days. Furthermore, Wu and Chan [36] found that the
NRMSE error will be big in the case of cloudy skies.

In addition, a comparison between the introduced naïve autore-
gressive and moving average (ARMA) predictors was used to eval-
uate the goodness of the proposed method. ARMA model has been
widely used in papers for forecasting solar radiation time series
[36]. It consists of modeling a time series of its past values, as
expressed in the following equation,

xt ¼
Xp

i¼1

uixt�i þ et þ
Xq

j

hjet�j ð11Þ

Fig. 3. Structure of NAR network.
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where /i(i = 1. . .p) and hj(j = 1. . .q) are the constants representing
the autoregressive AR, and the moving average MA parameters of
order p, q, respectively. x

t
is the actual value and e

t
represents the

Gaussian white noise with the mean zero in time t. The Box Jenkins
methodology [3] was used to define the parameters of Eq. (11).

First, the average monthly global horizontal solar radiation time
series between the years 1994 to 1996 was used. This time series
takes the average of solar radiation for each hour during a month.
The data were compiled from the National Meteorological Office of
Algeria for the site of Oran, as shown in Fig. 4. The data set was di-
vided into two samples of training data (from January 1994 to June
1996) and testing data (from July 1996 to December 1996), the
training data set was used exclusively for model development then
the test sample was used to evaluate the established model.

The first step in the analysis and prediction of this time series is
the choice of an appropriate time delay, s and the determination of
the embedding dimension, m. To select s an established approach
is to use the value that yields the first minimum of the mutual
information function; a time delay of 1 and an embedding dimen-
sion equal to 2 were used in the simulation.

The next step is to apply the k-means algorithm for clustering
the high dimensional training data set obtained from phase space
reconstitution in the previous step. At each step, different numbers
of clusters were examined; the silhouette function was calculated
for the determination of the right number of clusters. The metric
used was squared Euclidean distance. We had plotted difference
silhouette functions for the average monthly global horizontal so-
lar radiation with a different number of clusters, and we estab-
lished that the choosing of three clusters to be the best choice as
shown in Fig. 5.

From Fig. 5, it is clearly shown that the most of the mean silhou-
ette values are high. However, it is nearly impossible to arrive at a
value of 0.6 for all clusters and not having negative values as the
case of the first cluster. Thus, the appropriate number of clusters
is usually taken when the graphical representation provides satis-
factory results that mean when most of the silhouette values are
high as expressed in Lletí et al. [23].

The obtained three cluster groups the solar radiation time series
into three categories, high values of solar radiation which repre-
sent the noon hours, medium values that represent the day hours
from 9 to 11 o’clock (or sky with medium clouds) and low solar
radiation values, which represent hours of sunrise and sunset (or
the presence of clouds).

After that, the NAR method with different architectures was ap-
plied to generate local predictor for each cluster that provides what
we called regions for the three clusters in the future, which give
more information about the doings of the global forecast of the
time series in the future.

Second step consists of getting a global forecast of the hourly
global solar radiation time series using different parameters of

the NAR network. Using the same number of clusters and embed-
ding parameters, a phase space of this forecasted series was used. A
comparison between the centroids of the global forecasted series
and centroids of the regions can show the goodness of the forecast;
the two centroids of each cluster region and forecasted series
should be near each other.

The results were shown in Fig. 6 which represents the phase
space of the clustered regions presented by the sign of (+), and
forecasted clusters represented by dots. According to Eq. (1), the
plotted points represent the phase space of the solar radiation time
series at time t and t + 1, that can visualize clearly the three kinds
of clusters with low, medium and high solar radiation values. From
this figure, it was shown that the most of the points of each fore-
casted cluster belonging to the appropriate regions. In addition,
the centroids are close to each cluster that means that the fore-
casted series is quite good compared with the measured one.

Moreover, Fig. 7(a) shows the comparison results of the tested
time series and forecasted one by the technique of k-means
approach and NAR network and Fig. 7(b) represents the forecasted
results using the ARMA model. The blue line is representing the
testing monthly global horizontal solar radiation series between
July 1996 to December 1996, and the red dot line is the forecasted
series.

It’s clearly shown that the forecasted series using the proposed
method is virtually the same as the tested on with an RMSE equal
to 60.24 W h/m2 and NRMSE equal to 0.1985, which it was consid-
ered as a good forecast value compared to ARMA model that repre-
sents an NRMSE equal to 0.3078.

To understand more how this technique is working, we plotted
a phase space of the hourly global horizontal solar radiation time
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Fig. 4. Measured monthly global horizontal solar radiation data for Oran, Algeria.

0 0.2 0.4 0.6 0.8 1

1

2

3

Silhouette Value

C
lu

st
er

Fig. 5. Silhouette values with three clusters for the monthly horizontal solar
radiation data for Oran, Algeria (from January 1994 to June 1996).
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Fig. 6. Space phase reconstitution for forecasted regions and clusters of the
monthly global horizontal solar radiation testing data (from July 1996 to December
1996).
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series at time t and t + 1, but with wrong NAR network parameters,
as shown in Fig. 8. It can observe from this figure that the points of
the clusters are mixed with each other. In addition, the centroids
are too far from each other, especially for the cluster 2 and 3, lead-
ing to the fact that the obtained forecast is not good comparing by
the test one as shown in Fig. 9, which represented the forecasted
average monthly global solar radiation series in red and the tested
series in blue, representing an NRMSE error equals to 0.5532 that is
not good forecast value.

In the same way, we used this methodology for more
complicated solar radiation time series that provides forecasts at
one-hour time step, which used widely in a lot of solar radiation
application. Hence, an hourly global horizontal solar radiation time
series for the year of 1996 was then applied.

The data were collected from the National Meteorological Office
of Algeria for the site of Oran. We used only the data from sunrise

to the sunset of the day. The data were divided into two sets, train-
ing set (from 1st January 1996 to 31st October 1996) that represent
4530 h, and test data set (from 1st November 1996 to the 31st
December 1996) that represent 915 h. An example of one month
from each season were shown in Figs. 10(a)–(d) that represent
the hourly global horizontal solar radiation for months of January,
April, July and October 1996 respectively.

A phase space reconstitution with time delay of 1 and embed-
ding dimension equal to 2 were found experimentally using
mutual information and false nearest neighbor methods to be the
right choices for this time series. In addition, a plotting of the
silhouette function with a different number of clusters was tested.
We established that the use of three clusters to be the appropriate
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Fig. 7a. Comparison between measured monthly global horizontal solar radiation
data (from July 1996 to December 1996), and forecasted by the proposed model.
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Fig. 7b. Comparison between measured monthly global horizontal solar radiation
data (from July 1996 to December 1996), and forecasted by ARMA model.
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Fig. 8. Space phase reconstitution for forecasted regions and clusters of the
monthly global horizontal solar radiation testing data (from July 1996 to December
1996) using wrong parameters.
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Fig. 9. Comparison between measured monthly global horizontal solar radiation
data (from July 1996 to December 1996), and forecasted by proposed model using
wrong parameters.
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Fig. 10a. Measured hourly global horizontal solar radiation time series for January
1996.
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Fig. 10b. Measured hourly global horizontal solar radiation time series for April
1996.
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choice as represented in Fig. 11, which represented the silhouette
function of the hourly global horizontal solar radiation time series.
It is clearly shown that the three clusters are well separated with
the most of the points are above 0.6, except some negative ones
in the second cluster that we can consider to be normal for such
nonlinear time series.

For calculating the hourly global solar radiation time series, the
k-means algorithm was then applied to clustering the training
data. A local predictor was applied for obtaining future regions;
those regions represent future windows for the forecasted data.
Then, the NAR method with different time delay and neurons
was applied to create global predictor of the data. The use of 25 de-
lays with 13 neurons was found as the right choice for forecasting
purpose. The results of phase space reconstitution of the forecasted
regions and clusters for the hourly global horizontal solar radiation

at time t and t + 1 considering a time delay of 1 and embedding
dimension of 2 was presented in Fig. 12.

From Fig. 12, the most of the points of each forecast cluster are
in the right regions, the centroids are near each other, which mean
that the obtained forecast is acceptable. The comparison between
the forecasted hourly global horizontal solar radiation data and
the tested data is shown in Fig. 13(a).

In addition, Figs. 13(b) and (c) represent the comparison results
for the months of November 1996 and December 1996 respec-
tively. The blue line represents measured data, and the red one is
the forecasted data.

Moreover, the performance of the forecasted hourly global hor-
izontal time series has been evaluated by calculating the RMSE er-
rors between the actual data and forecasted one for the period of
1st November 1996 to 31st December 1996. The quadratic error
between measured and simulated hourly global solar radiation
using the proposed method was presented in Fig. 14. In addition,
Fig. 15 represents the measured time series versus the forecasted
time series.

From Fig. 14, the total RMSE was equal to 64.34 W h/m2 and the
NRMSE was 0.2003, which can be viewed as good forecasted values
compared with an NRMSE equal to 0.3184 by using the baseline
ARMA model.

In addition, from Fig. 15, the R squared value calculated by Eq.
(12) is equal to 0.9330. The most of the points of the forecasted
and measured series are near each to other. However, it presents
some lags due to the total covered days that present a lot of clouds.
Finally, from the simulation results, this methodology was con-
ceived to be such a good method to perform the forecast results.1st Jul. 50 100 150 200 250 300 350 400 31 Jul.
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Fig. 10c. Measured hourly global horizontal solar radiation time series for July
1996.
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Fig. 10d. Measured hourly global horizontal solar radiation time series for October
1996.
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Fig. 11. Silhouette values with 3 clusters for the hourly global horizontal solar
radiation data for Oran, Algeria (from 1st January 1996 to 31st October 1996).
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Fig. 12. Space phase reconstitution for the forecasted regions and clusters of the
hourly global horizontal solar radiation testing data (from 1st November 1996 to
the 31st December 1996).

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

Time (hours )

H
ou

rly
 g

lo
ba

l h
or

iz
on

ta
l s

ol
ar

Measured solar radiation
Forecasted solar radiation

 ra
di

at
io

n 
(W

h/
m

2)

Fig. 13a. Comparison between measured hourly global horizontal solar radiation
(from 1st November 1996 to the 31st December 1996) and forecasted by the
proposed model.
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4. Conclusion

In this paper, we presented a time series forecasting methodol-
ogy based on the clustering methods and artificial neural networks.
The methodology consists of three essential stages. First, phase
space reconstitution of the hourly global solar radiation time series
was reached by finding the appropriate time delay using mutual
information method, and the minimum embedding dimension is
defined using false nearest neighbor method. Secondly, the
unsupervised k-means clustering algorithm was then applied for
grouping the input data into k clusters, which have similar charac-
teristics. For choosing of the right number of clusters, the silhou-
ette plot which represents a graphical representation of the
separation of the heads of each cluster from another one was then
used. Subsequently, a different NAR neural network was prepared
on each cluster to act as a local predictor for the corresponding
subspace of the input space. In addition, another NAR network
was used to act as a global predictor for the solar radiation time
series. The methodology was applied to generate multi-step ahead
forecasts for the hourly global horizontal solar radiation time
series. The obtained experimental results showed that the cluster-
ing of the input space is an important task to interpret the behavior
of the series. Moreover, identifying forecasted regions using NAR
network provides additional information about future patterns
that can simplify the analysis of the global forecast of the series.
In addition, the proposed method does not need a complicate
clustering algorithm. Hence, as a conclusion of this work, the time
series data mining method was considered such a good way of
forecasting such similar problems. Nevertheless, this method
presents some limitations for the total covered sky where the pres-
ence of clouds is heavy, also the calculation time, especially in the
preparation phase of the NAR network. Hence, future works, will
be focused on testing different clustering algorithms and different
artificial neural networks to improve the forecasting performance
that improves the reliability in the case of covered sky.
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Abstract This paper aims to introduce an approach for multi-
hour forecasting (915 h ahead) of hourly global horizontal
solar radiation time series and forecasting of a small-scale
solar radiation database (30- and 1-s scales) for a period of
1 day (47,000 s ahead) using commonly and available mea-
sured meteorological solar radiation. Three methods are con-
sidered in this study. First, autoregressive–moving-average
(ARMA) model is used to predict future values of the global
solar radiation time series. However, because of the non-
stationarity of solar radiation time series, a phase of detrending
is needed to stationarize the irradiation data; a 6-degree poly-
nomial model is found to be the most stationary one. Second-
ly, due to the nonlinearity presented in solar radiation time
series, a nonlinear autoregressive (NAR) neural network mod-
el is used for prediction purposes. Taking into account the
advantages of both models, the goodness of ARMA for linear
problems and NAR for nonlinear problems, a hybrid method
combining ARMA and NAR is introduced to produce better
results. The validation process for the site of Ghardaia in
Algaria shows that the hybrid model gives a normalized root
mean square error (NRMSE) equals to 0.2034 compared to a

NRMSE equal to 0.2634 for NAR model and 0.3241 for
ARMA model.

1 Introduction

Solar energy is one of the most important renewable energies
to generate electricity and meet our everyday needs. PV sys-
tems are used to convert this energy to a DC electrical power.
However, sometimes it is not possible to estimate the PV
system outputs in long-term because they depend strongly
on the input parameters such as the amount of solar radiation
and temperature. Thus, the solar radiation data should be mea-
sured continuously and accurately over the long-term. Unfor-
tunately, in most areas of the world, solar radiation measure-
ments are not easily available due to financial, technical, or
institutional limitations. Therefore, many studies have carried
out to develop methods to estimate the amount of the solar
radiation (Zhang et al. 1998; Zhang 2003; Kaplanis 2006;
Kaplanis and Kaplani 2007; Boland 2008; Wu and Chan
2011; Pandey and Soupir 2012; Badescu et al. 2013). In ad-
dition, forecasting of solar radiation is important for the inte-
gration of photovoltaic plants into an electrical grid. Proper
solar irradiance forecasting helps the grid operators to opti-
mize their electricity production and /or to reduce additional
costs by preparing an appropriate strategy (Diagne et al.
2009). Forecasts of solar radiation can be either in short or
long term. Forecasts for the near future can be done using
relatively simple procedures with a good accuracy. In the other
side, forecasts for the far future need more complicated
models. This is known as a difficult problem, due to the
non-linearity and complexity of modeling of the solar radia-
tion series (Zhang 2003; André Luis et al. 2008; Wu and Chan
2011; Mellit et al. 2013; Khatib et al. 2012; Peled and
Appelbaum 2013). Hence, many studies have been conducted
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on this subject such as stochastic models (Boland 2008; Wu
and Chan 2011) and neural network methods (Markham and
Rakes 1998; Zhang et al. 1998; Mihalakakou et al 2000;
Mellit et al. 2009; Wu and Chan 2011). These models treated
the solar radiation sequence as a time series; they used
mathematical models in the modeling phase to forecast
future values.

The autoregressive–moving-average (ARMA) model is
commonly used in time series prediction, the popularity of
the ARMA model is due to its statistical properties as well
as the well-known Box–Jenkins methodology (Box and
Jenkins 1970). However, ARMA model requires a stationary
time series, while most real-time series are not stationary (Box
and Jenkins 1970; Kwiatkowski et al. 1992; Wu and Chan
2011). We found using the augmented Dickey–Fuller (ADF)
test (Dickey and Fuller 1981) that the solar radiation time
series is not stationary. Hence, we need a detrending phase
tomake the time series stationary (Wu and Chan 2011). There-
fore, Jain model (Baig et al. 1991; Kaplanis 2006), Baig et al.
(1991), Kaplanis (2006), Kaplanis and Kaplani (2007), and
high-degree polynomial models are tested in this paper to
remove the trends of the solar radiation series. A test of sta-
tionarity of the residual series using the ADF test was applied
to get the best model to use it in the simulation. The choice of
the suitable order of ARMA model is reached using autocor-
relation and partial correlation of the residual series as well as
the Akaike Information Criterion (AIC) (Akaike 1974).

On the other hand, time series prediction using neural net-
work approach is non-parametric, in the sense that it is not
necessary to know any information about the process that
generates the signal (Denton 1995; Markham and Rakes
1998; Zhang 2003). Among them, nonlinear autoregressive
(NAR) neural networks which used only the past values of
the time series to forecast future values. A good choice of the
number of delays, neurons, and training algorithm can resolve
the problem of the non-linearity of the time series.

However, both ARMA and NAR models present limita-
tions in the forecasting phase. ARMA model shows good
results for linear problems, but it could represent huge errors
in the nonlinear problems; also, the outliers made the predic-
tion by NAR networks difficult (Zhang 2003; Diagne et al.
2009; Wu and Chan 2011). Hence, hybrid models are pro-
posed taking the advantages of the two models to provide
better prediction results. Pelikan et al. (1992), and Ginzburg
and Horn (1994) proposed a model combining several feed
forward neural networks, improving the time series forecast-
ing accuracy. Wedding and Cios (1996) described a combin-
ing method using radial basis function networks and the Box–
Jenkins models. Luxhoj et al. (1996) presented a hybrid
econometric and an ANN approach for sales forecasting.
Zhang (2003) proposed a method using a hybrid combination
between ARMA and ANN models to predict time series,
André Luis et al. (2008) used Zhang (2003) model and

adjusted the model on the midpoint and an interval range
series in the training set. Wu and Chan (2011) proposed a
technique employing a combination of ARMA and time delay
neural network (TDNN) for one-step ahead prediction based
on Zhang (2003) model. In addition, many authors have al-
ready studied successfully the coupling between ANN and
different traditional computing technologies such as fuzzy
logic, wavelet-based analysis (Peled and Appelbaum 2013)
and genetic algorithm methods (Mellit et al. 2009; Diagne
et al. 2009; Boata and Gravila 2012; Chen et al. 2013). How-
ever, most of these models present limitations especially in
long-term forecasting. Hence, in this paper, we propose a hy-
brid model of ARMA and NAR network for multi-step ahead
prediction of solar radiation time series for better performance
in long-term forecasting.

The follow-up of this paper is organized as follows. In
Section 2, we present the proposed methodology as well as
backgrounds of the ARMA, NAR, and the hybrid models. A
comparison between the detrending models to get the most
stationary series is also seen. In Section 3, we have presented
the data used in the simulation and comparison results. In
Section 4, we simulate the forecasting results of the hybrid
model and compared themwith other models. The last section
is devoted to the conclusion and discussion of future works.

2 Background

This section introduces the adopted methodology in this paper
as shown in Fig. 1. It consists of forecasting hourly solar
radiation using hybrid ARMA and NAR neural network mod-
el. Also, a review of ARMA, NAR, and the proposed hybrid
model is discussed.

2.1 The ARMA model

ARMAmodel of order (p, q) can be viewed as linear filters for
digital signal processing. It is of the form,

xt ¼
Xp
i¼1

ϕixt−i þ et þ
Xq

j

θ jet− j ð1Þ

where, ϕi(i=1…p) and θ j(j=1…q) are constants representing
the autoregressive AR, and the moving average MA parame-
ters of order p, q, respectively. xt is the actual value and et
represents the Gaussian white noise with mean zero in time
t. To find the parameters of Eq. (1), the Box and Jenkins
(1970) method is applied as expressed in what follows.

2.1.1 Stationarization

Time series modeling and forecasting requires explicitly a
stationary time series (Makridakis et al. 1998; Voyant et al.
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2013). The condition of stationarity (weakly stationarity) im-
plies a stable series. Which means that the mean μ (t) and the
covariance cov(xt,xt+h) stay constant over time, as expressed
by the following equations:

Ε xt½ � ¼ μ tð Þ ¼ μ: ð2Þ
cov xt; xtþhb c ¼ Ε xt−μð Þ xtþh−μð Þb c ð3Þ

Moreover, a strict stationary series needs a time in-
variant joint distribution of any observation of the pro-
cesses. In addition, modeling and analysis of time series
of classical models such as ARMA model without test-
ing the stationarity can present real practical problems
(Ineichen 2008).

Hence, several methods are demonstrated in the liter-
ature to check the stationarity (non-stationarity). The
most widely used one is the test of a unit root in the
time series (Dickey and Fuller 1981; Kwiatkowski et al.
1992). A unit root test is a test for a specific type of
non-stationarity for autoregressive time series. The se-
ries is covariance stationary if and only if all the roots
of the characteristic polynomials are outside the unit
circle in the complex plane. In other words, if it exists
a unit root, then the time series is not stationary. Oth-
erwise, it is stationary.

The most widely used method to test unit root is the ADF
test (Dickey and Fuller 1981), expressed by the following
equation,

Δxt ¼ αþ βt þ γ xt−1 þ
Xp
j¼1

δtΔxt− j
� �þ et ð4Þ

where, α is a constant called a drift, β is the coefficient on a
time trend, p is the lag order autoregressive process, γ is the
coefficient presenting process root, δt represent the lag opera-
tor and et represents an independent identically distributes
residual term with mean zero and variance σ2=0.

The focus of testing is whether the coefficient γ equals to
zero, what means that the original x1, x2, …xn process has a
unit root. Hence, the null hypothesis of γ=0 (random walk
process) is tested against the alternative hypothesis γ<0 to
obtain a stationary series.

The ADF statistic, used in the test, is a negative number.
The stronger reject of the null hypothesis needs more negative
test. In our simulation and using this stationarity test, we found
that the solar radiation series is not stationary. Hence, a
stationarization step is needed. A phase of detrending is intro-
duced to obtain a stationary series. In this phase, we simulated
different models to fit the solar radiation time series. For each
model, the residual series between simulated series and the

No

Yes

Is it

adequat ?

Forecastingusing 

ARMA model

Modifymodel

Residual series 

NAR architecture

(Delay, neurons)

Forecasted Residual 

series by NAR model

Forecasted series:

Evaluate the 

forecast: NRMSE 

/R squared value 

Read data: 

Is it

Stationary ?

Stationarization

(Detrending 

phase)

ARMA model 

identification

ARMA model 

estimation

Yes

No

Forecasting phase

Fig. 1 The flowchart of the
proposed methodology

Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models



original series had been tested using the ADF test. The most
stationary series will be used in ARMA modeling. In this
paper, the Jain model (Baig et al. 1991; Kaplanis 2006), Baig
et al. (1991), Kaplanis (2006), Kaplanis and Kaplani (2007)
and high-degree polynomial models are applied to remove
trends of the solar radiation series as follow.

The Jain model The Jain model (Baig et al. 1991; Kaplanis
2006) proposed a Gaussian function to fit the recorded data
and established the following relation for global irradiation.

Where, rt is the ratio of hourly to daily global solar radia-
tion, t is the true solar time in hours,m is the time of pick solar
radiation hour of the day, and σ is the standard deviation of the
Gaussian curve.

rt ¼ 1

σ
ffiffiffiffiffiffi
2π

p exp
t−mð Þ2
2σ2

" #
ð5Þ

The Baigmodel The Baig et al. (1991) model modified Jain’s
model to fit the recorded data during the starting and ending
periods of a given day. In this model, rt was estimated by:

rt ¼ 1

2σ
ffiffiffiffiffiffi
2π

p exp −
t−mð Þ2
2σ2

" #
þ cos 180

t−mð Þ2
S0−1

" #( )
ð6Þ

where, S0 is the length of the day (from sunrise to sunset), nj is
the number of the day at the site with latitude φ. δ is the sun
declination.

S0 ¼ 2

15
cos−1 −tan φð Þtan δð Þ½ � ð7Þ

Several methods are found in the literature to estimate the
standard deviation σ using recorded data (Kaplanis 2006).
Bevington (1969) mentioned that the determination of σ does
not need any recorded data and it depends only on the day
length, as expressed in Eq. (8):

σ ¼ 0:246S0 ð8Þ

The rt values are obtained to offer:

I t ¼ rt⋅Hn ð9Þ
Where, It is hourly solar radiation and Hn is the daily global
solar radiation data.

Kaplanis model Kaplanis (2006) proposed another model to
estimate hourly global solar radiation that is:

rt ¼ αþ β cos
cos 2π t−mð Þð

24

� �
ð10Þ

where, α and β are parameters which have to be determined
for any site and for any day (Kaplanis 2006). However, this

model presented some drawback in the estimation of solar
radiation at noontime. Hence, Kaplanis and Kaplani (2007)
proposed an improved model for more accuracy as presented
in the following equation:

rt ¼ aþ b
e−μ n jð Þχ tð Þcos 2π t−mð Þ=24ð Þ

e−μ n jð Þχ t¼mð Þ ð11Þ

Where, a and b are determined in the same way as Eq. (10),
μ(nj) is the solar beam attenuation coefficient and χ(t) is the
distance of the solar beam travels within the atmosphere at
time t.

High-order polynomial model This model is represented as
follows:

I t ¼ a0h
0 þ a1h

1 þ a2h
2 þ…þ anh

n ð12Þ

Least squares regression analysis was used to fit Eq. (12) to
the data for each hour of the day to obtain the values of the
regression constants a0, a1 … an for each month of the year
and h is the time (Al-Sadah et al. 1990).

The trends obtained from these models are simulated
against the measured data to find the suitable model to
be used in the prediction phase. For that, the monthly
average hourly global solar radiation time series is then
applied. The data are collected from the National Mete-
orological Office (ONM) of Algeria for the site of Oran
(35.6911° N, 0.6417° W). Figure 2 shows the monthly
average hourly global horizontal solar radiation of Jan-
uary 2010 in watt per square meter against the estimat-
ed models. We ignored data between 6:00 and 20:00
o’clock because there is no solar radiation measured
during this period.

To choose the proper model, we have to check the station-
arity of the series. Thus, the ADF test is applied to the residual
series between measured and simulated data from different
models. If the test result is below the critical values that means
we should reject the null hypothesis and the time series is
stationary.

Otherwise, it is not stationary. The statistical power is
the probability tests to reject a false null hypothesis
(Dickey and Fuller 1981). The test results are presented
in Table 1. The performances of the five simulated
models to predict monthly average hourly global solar
radiation from mean daily global solar radiation are
evaluated using the root mean square error (RMSE)
and normalized root mean square error (NRMSE),

RMSE ¼ I i;predicted−I i;measured
� �2D Eh i1

2 ð13Þ

RMSE and NRMSE provide information in the short-term
performance of correlations by allowing a term-by-term com-
parison of the actual deviation between the predicted and
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measured values. The model that has the lowest NRMSE is
considered the best model.

NRMSE ¼
I i;predicted−I i;measured
� �2D Eh i1

2

I i;measured
� �

0B@
1CA ð14Þ

The results of the statistical comparison of the simulated
models are presented in Table 2,

From Fig. 2 and Table 2, it is clearly shown that
Jain’s model fits the monthly average hourly global so-
lar radiation series, but it presents a big NRMSE error
versus other models that equal to 0.1490 especially at
the beginning and at the end of the series. Hence, since
the Baig’s model is based on Jain’s model, it was used
to overcome this error. However, it still represents some
lags with NRMSE equal to 0.1146.

For the Kaplanis (2006) model, it used a different method
than Jain and Baig models, but still had a big NRMSE equal to
0.1013. Using the improved approach by Kaplanis and
Kaplani (2007), the NRMSE is reduced to 0.0735. The 6-
degree polynomial model seems the best choice to fit the solar
radiation time series, which represents the lowest NRMSE
error equal to 0.0358.

In addition, from the results of Table 1, we can see that the
test results are below the critical values. Therefore, the resid-
ual series of all these models is considered stationary. The
statistical power of 6-degree polynomial model is the highest
one, which implies that the residual series between this model
and measured data has the lowest probability to incorporate a
unit root. Hence, it is considered the most stationary residual
series.

Since higher degree polynomial model provides the best
performance in both detrending and fitting phases, we used
this model for ARMA model in the detrending phase to pre-
dict future values.

2.1.2 Model identification

Model identification consists of specifying the appropri-
ate structure, AR, MA, or ARMA and orders of the
model (Box and Jenkins 1970). Identification is some-
times done by looking at the plots of the autocorrelation
function (ACF) and the partial autocorrelation function
(PACF). After determining the ACF and PACF func-
tions, we can choose the (p,q) order of the ARMA
model, as expressed in Table 3,
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Fig. 2 Comparison between the
measured monthly average hourly
global horizontal solar radiation
data of January 2010 for the site
of Oran, Algeria, and the Jain
(Baig et al. 1991; Kaplanis 2006),
Baig et al. (1991), Kaplanis
(2006), Kaplanis and Kaplani
(2007), and 6-degree polynomial
models

Table 1 The ADF test for the detrending models

Detrending models Statistical
power

Significant
level

Test results Critical
value

Jain’s model 0.0428 0.05 −2.0389 −1.9580
Baig’s model 0.0126 0.05 −2.6580 −1.9580
Kaplanis (2006) model 0.0117 0.05 −2.6918 −1.9580
Kaplanis and Kaplani
(2007) model

0.0097 0.05 −3.4307 −1.9580

6-Degree polynomial
model

0.001 0.05 −4.3232 −1.9580

Table 2 The RMSE and NRMSE between actual data and the other
different models

Error (RMSE) Error (NRMSE)

Jain’s model 55.2255 0.1490

Baig’s model 42.8663 0.1146

Kaplanis (2006) model 37.1987 0.1013

Kaplanis and Kaplani (2007) model 22.5810 0.0735

6-degree polynomial model 13.3939 0.0358

Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models



Akaike’s Information Criterion (AIC) (Akaike 1974) de-
fined by Eq. (15), is another factor to decide ARMA (p,q)
order. AIC provides a measure of the model quality by simu-
lating the situation where the model is tested on a different
data set. According to Akaike's theory, the most accurate mod-
el has the smallest AIC.

AIC ¼ logV þ 2d

N
ð15Þ

Where V is the loss function, d is the number of estimated
parameters and N is the number of values in the estimation
data set.

2.1.3 Parameter estimation

Once the orders of ARMA model obtained, estimation
of the model parameters is straightforward. The param-
eters are estimated using maximum likelihood method
(Box and Jenkins 1970). The last step of the ARMA
model building is the diagnostic checking of the model
adequacy. The plotting of residuals examines the good-
ness of the obtained model.

2.2 The nonlinear autoregressive (NAR) model

Recurrent neural networks have been widely used for
modeling of nonlinear dynamical systems (Haykin
1998; Ljung 1998). Among various types of the recur-
rent neural networks, time delay neural networks
(TDNN) (Haykin 1998; Wu and Chan 2011), layer

recurrent networks (Haykin 1998) and NAR (Markham
and Rakes 1998; Chow and Leung 1996). TDNN is a
straightforward dynamic network that consists of a feed-
forward network with a tapped delay line at the input
layer which the dynamics appear only in the input layer
of a static multilayer feed-forward network. However,
the NAR is a dynamic recurrent network, with feedback
connections including several layers of the network. The
next value of the dependent output signal is regressed
on previous values of the output signal. The main ad-
vantage of using the NAR network comparing with the
TDNN is that the input to the feed-forward network is
more accurate which, provide more precise result for
multi-step ahead prediction.

The NAR model is based on the linear AR model, which is
commonly used in time-series forecasting. The defining equa-
tion for the NAR network is:

by tð Þ ¼ f y t−1ð Þ þ y t−2ð Þ þ⋯þ y t−dð Þð Þ ð16Þ
f is a nonlinear function, where the future values depend only
on regressed d earlier values of the output signal as expressed
in Fig. 3.

When using NAR network, the network performs only a
one-step ahead prediction after it has been trained. Therefore,
we need to use the closed loop network to perform a multi-
step-ahead prediction and turn the network into a parallel con-
figuration. The output of the closed loop NAR network is
expressed as follows:

by t þ pð Þ ¼ f y t−1ð Þ þ y t−2ð Þ þ⋯þ y t−dð Þð Þ ð17Þ
where p represents the forecasted steps in the future.

A crucial part of a neural network working is the training
step. Because of the very similarity structure between NAR
network and the Multilayer Perceptron (MLP), the back prop-
agation method with some modification is then applied; train-
ing typically starts with random weights on its synapses. It is
exposed to a training set of input data. The output of the

Table 3 Different scenarios of choosing ARMA (p,q) parameters

AR (p) MA (q) ARMA (p, q)

ACF Tails off Cuts off Tails off

PACF Cuts off Tails off Tails off

Input layer Hiddenlayer

b0b2

b1Neuron 1

Neuron 2

yt-1

yt-2

wn0

win

nf

b

0fnf

yt-n

z-n

z-1

z-1

nf

bn
Neuronn

Output layerFig. 3 Structure of NAR network
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Fig. 4 a Comparison between
measured hourly global
horizontal solar radiation data
(from 1 November 2010 to 31
December 2010) and the
forecasted using hybrid model. b
Comparison between measured
hourly global horizontal solar
radiation (from 1 November 2010
to the 30 November 2010) and
forecasted by proposed model. c
Comparison between measured
hourly global horizontal solar
radiation (from 1 December 2010
to the 31 December 2010) and
forecasted by proposed model. d
Comparison between measured
hourly global horizontal solar
radiation (from 1 November 2010
to the 14 November 2010) and
forecasted by proposed model
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network is compared to the example (supervised training) and
a learning procedure alters the network interconnections
(weights).

Several training algorithms available in the literature, algo-
rithms such as the Levenberg-Marquardt (Levenberg 1944;
MacQueen 1967), and Bayesian Regularization (MacKay
1992), proved to be too computationally intensive to train
larger networks. After a heuristic search, the scaled conjugate
gradient algorithm presented in Moller (1993) is selected to
train larger networks. Once the network is trained using the
preselected inputs and outputs, all the synaptic weights are
frozen and the network is ready to be tested on the new input
information.

2.3 The hybrid model

ARMA model represented linear models and has
achieved great popularity since the publication of Box

and Jenkins (1970). However, this method may not be
adequate for nonlinear problems, contrary of the NAR
networks that can solve the complexity of nonlinear
systems. However, not one of them can use for both
linear and nonlinear problems (Zhang 2003; André Luis
et al. 2008; Wu and Chan 2011). Hence, a hybrid
models is applied taking the advantages of both ARMA
and NAR models. We can simply detect the nonlinearity
in a time series by using the surrogate data test for
nonlinearity (Kugiumtzis 2000). The proposed hybrid
model in this work is based on Zhang (2003) model.
It is assumed that time series is composed of a linear
autocorrelation structure and a non-linear part:

yt ¼ Lt þ Nt ð18Þ
where, Lt denotes the linear part and Nt denotes the nonlinear
part. The proposed method by Zhang (2003) consists of two
stages. Firstly, ARMA model is used to predict future values
at time t noted . The residual series between the time series and
linear ARMA model series contains only nonlinear relation-
ship. As expressed by the following equation:

vt ¼ yt−bLt ð19Þ
where, vt denote the residual at time t from the linear model.
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Table 4 The RMSE and NRMSE error for the site of Ghardaia, 2012;
London, 2005; and Almeria, 2012

Location
and year

Training/
testing
data set

ARMA
(p,q) order

NRMSE

ARMA
model

NAR
model

Hybrid
model

Ghardaia, 2012 (6222/1655) (4,6) 0.3241 0.2634 0.2034

London, 2005 (3816/1068) (3,5) 0.3338 0.2862 0.2154

Almeria, 2010 (7196/1564) (6,5) 0.3001 0.2313 0.1910
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Secondly, by modeling the residuals using NAR
method, nonlinear relationships can be discovered.

With n input nodes, the NAR model for the residuals
will be:

vt ¼ f vt−1; vt−2;…; vt−nð Þ þ et ð20Þ
where, f is a nonlinear function determined by the
neural network and et is the random error. The fore-
casted series from Eq. (20) is denoted . Then the com-
bined forecast will be expressed by the next equation:

byt ¼ bLt þ bNt ð21Þ

In our simulation, we noted that the residual series vt is
often a random process that makes difficulties in the predic-
tion of future values. The use of a 1D interpolation of vt can
solve this problem. Interpolation is a method of constructing
new data point within a range of known data points. The
obtained series of interpolation is then used to be forecasted
by the NAR network.

3 Data selection

Our goal of the simulation is to select the best model
for multi-hour ahead forecasting of the future values of
hourly global solar radiation data. To evaluate the qual-
ity of the proposed model, the root mean square error
(RMSE) and normalized root means square error
(NRMSE) are chosen as the forecasting accuracy mea-
sures. Lewis (1982) considered that if the NRMSE
values are between 0.2 and 0.5, the forecasted model
is considered good model. Wu and Chan (2011) and
Kostylev and Pavlovski (2011) found that the best
performing model on an hourly time scale had an
NRMSE of 0.17 for mostly clear days and 0.32 for
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forecasted time series using hybrid model for the site of London, 2005
c The measured test hourly global horizontal from versus forecasted time
series using hybrid model for the site of Almeria, 2010

Table 5 Comparison between the NRMSE of the forecasting models
taken from Wu and Chan (2011)) and Huang et al. (2013) and the
proposed ARMA + NAR model

Models NRMSE

ARMA + TDNN (Wu and Chan 2011) 0.3

vs. ARMA + NAR 0.1835

CARDS (Huang et al. 2013) 0.165

vs. ARMA + NAR 0.1339

R

Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models



mostly cloudy days. In addition, the R-squared value
gave by Eq. (22) is used as metric to judge the good-
ness of the forecast.

R2 ¼ 1−

Xn
i¼1

I i;measured−I i;predicted
� �2

Xn
i¼1

I i;measured−I i;measured

� �2
0BBBB@

1CCCCA ð22Þ

Moreover, an important task of the proposed method is
chosen the proper training and testing data set to avoid
the over fitting problem. Hence, the k-fold cross valida-
tion method (Kohavi 1995) has been used to check the
performances. In this method, the data set is divided
into k subsets, each time, one of the k subsets is used
as the test set and the other k−1 subsets are put togeth-
er to form a training set. Then, the average error across
all k trials is computed until we reached the best train-
ing and testing data set (Klipp et al. 2008).

In the simulation phase, we tested several hourly
global horizontal solar radiation time series in this work
for different climatic locations in the world. From the
National Meteorological Office of Algeria, we choose
the site of Oran, Algeria (35.6911° N, 0.6417° W) for
the year of 2010 and the site of Ghardaia, Algeria
(32.4908° N, 3.6728° E) for the year of 2012. From
the Soda service website (http://www.soda-is.com/eng/
index.html), the site of London, England (51.5171° N,
0 .1062° W) fo r t he yea r o f 2005 and f rom
GeoModelSolar S.R.O. (data calculated from Meteosat
MSG and MFG satellite data (2012 EUMETSAT) and
data (2012 ECMWF and NOAA) by SolarGIS method)
the site of Almeria, Spain (36.8300° N, 2.4300° W) for
the year of 2010.

In addition, to evaluate the performance of the proposed
methodology to forecast hourly solar radiation against the
methods presented in literature, a comparison part between
ARMA and NAR approach and other methods is needed.
For that, two models that based in hybrid methodology are

4th Feb. 2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 9th Feb.

100

200

300

400

500

600

700

Time ( each one step represents 30 second)

 g
lo

b
al

 h
o
ri

zo
n
ta

l 
so

la
r 

ra
d
ia

ti
o
n
 (

W
/m

2
)Fig. 8 The measured 30-s global

horizontal solar radiation (from 4
February 2005 to 9 February
2005) for the site of Oran, Algeria

0 500 1000 1500 2000 2500 2880
0

100

200

300

400

500

600

700

800

Time ( each one step represents 30 second )

G
lo

b
a

l 
h

o
ri

z
o

n
ta

l 
so

la
r 

ra
d

ia
ti

o
n

 (
W

/m
2

)

Forecasted data

Measured data

Fig. 9 The measured test 30-s
global horizontal solar radiation
(9 February 2005) versus
forecasted series using hybrid
model for the site of Oran, Algeria

K. Benmouiza, A. Cheknane



selected. First, the hybrid model (ARMA and TDNN) pro-
posed by Wu and Chan (2011). In this method, Al-Sadah
et al. (1990) model is used to fit the monthly mean solar
radiation series. Moreover, the hybrid model of ARMAwith
TDNN is selected for the forecasting purpose. Secondly, we
have chosen the model developed by Huang et al. (2013), a
coupled autoregressive and dynamical system (CARDS)
model is used to forecast the solar radiation. In addition, the
Fourier series is used to fit the solar radiation time series.

For the comparison between the method of this paper and
other models, we used the same sample data used in Wu and
Chan (2011) (Singapore, 2010; testing day: 2 February) and
Huang et al. (2013) (Mildura, 2001; testing day: 25 January) .

4 Results and discussion

The first time series used in the simulation is for the site of
Oran, Algeria (35.6911° N, 0.6417° W) for the year of 2010.
We ignored data between 5:00 and 21:00 o’clock because
there is no solar radiation measured during this period. Using
the k-fold cross validation method the data are divided into

two sets, training set (from 1 January 2010 to 31 October
2010) that represent 4,530 h, and test data set (from 1 Novem-
ber 2010 to the 31 December 2010) that represent 915 h (pre-
diction horizon) . The training data set is used exclusively for
model development then the test sample is used to evaluate the
established model.

The hybrid ARMA-NAR method is applied to do the fore-
casting. First, ARMA model is used to predict hourly global
solar radiation time series, then the residual between ARMA
and measured series is forecasted using NAR model. The
obtained forecast is added to the one of ARMA models.

In the detrending phase, we used a 6-degree polynomial
model to get a stationary residual series. From the autocorre-
lation, partial correlation, and the AIC test of the residual
series, we established that the ARMA (5, 7) is the suitable
model to use it in the simulation.

In addition, different algorithms of training and sets
of delays and neurons were tested experimentally in the
simulation of the nonlinear autoregressive neural net-
work model.

We found that the use of 31 delays and 10 neurons
in the hidden layer with the Levenberg-Marquardt
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training method gives the fastest convergence with the
smallest forecasting error.

The simulation results of the hybrid model to forecast hour-
ly global solar radiation for the year of 2010 are presented in
Fig. 4a; the blue line represents the measured hourly global
horizontal solar radiation and the red dot one is the forecasted
series by hybrid model. In addition, Fig. 4b–c represents the
comparison results for the months of November 2010 and
December 2010, respectively, and Fig. 4d for the first 2 weeks
of November 2010. The blue line represents measured data,
and the red dot line is the forecasted data.

The comparisons and performance of the forecasting hour-
ly global horizontal time series using a hybrid model have
been evaluated by calculating the RMSE errors between the
actual data and forecasted one for the period of 1 November
2010 to 31 December 2010 (915-h-step ahead).

Moreover, the quadratic error expressed in Eq.(23) between
measured and simulated hourly global solar radiation
using the proposed method is demonstrated in Fig. 5.

In addition, Fig. 6 represents the measured time series
versus the forecasted one.

err ¼ I i;predicted−I i;measured
� �2

n

 !
ð23Þ

Where err is the quadratic error and n is the number of
simples.

From Figs. 4a–d, 5, and 6 it was clearly shown that the
hybrid model forecasted in good manner the measured solar
radiation time series. From Fig. 4a, the total RMSE is equal to
71.82 W/m2 and the NRMSE is 0.2103. With an R-squared
value equal to 0.9272. Nevertheless, we can ensure that the
comparison between forecasted and measured solar radiation
time series presents some lag due to the presence of clouds.

In a same manner, we applied the hybrid method for the
sites of Ghardaia (2012), London (2005), and Almeria (2010).
The results of the k-fold cross validation as well as the RMSE
and NRMSE errors between the measured and forecasted
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series are represented in Table 4. Moreover, the simulation
results of the proposed hybrid model versus measured hourly
solar radiation for the sites of Ghardaia, London, and Almeria
are shown in Fig. 7a–c, respectively.

From the results of Fig. 7a–c and Table 5, the hybrid model
is considered the suitable method to forecast such similar
problems. The NRMSE error had the lowest values comparing
with single ARMA and NAR models. In addition, the R-
squared value was found to be high for all tested locations.

The above-mentioned models are simulated based on hour-
ly scales. However, the uncertainty of solar radiation time
series increases in small scales (less than 1 min time step).
Hence, it is an important task to test the proposed hybrid
model in small scales. For that, two small step solar radiation
data are used . First, a sequence of 30-s solar radiation data for
the site of Oran, Algeria (from 4 February to 9 February) was
used as shown in Fig. 8. The data are divided into training
dataset (from 4 February to 8 February) and testing dataset (9
February) (Fig. 9).

And second, a sequence of 1-s solar radiation data for a
desert zone in Sohar, Oman (From 1 March to 7 March 2013)
is used as shown in Fig. 10. We ignored the data between 19
o’clock and 6 o’clock because there is no solar radiation data
measurement in this period. In addition, data are divided into
training dataset (from 1 March to 6 March) and testing dataset
(9 February).

The simulation results of the forecasted data comparedwith
measured data are shown in Fig. 9. (Oran, Algeria) and Fig. 11
(Sohar, Oman). From Fig. 9, it is clearly shown that the hybrid
model is good with an NRMSE equal to 0.1935. In addition,
from Fig. 11 the hybrid model forecast in good manner with
an NRMSE equal to 0.1767. However, forecasted data repre-
sent some fluctuations compared with measured data that are
because it simulated in small scales, which reduce the fore-
casting accuracy.

4.1 Comparison with other models

For the comparison between the method of this paper and
other models, we used the same sample data used in Wu and
Chan (2011) (Singapore, 2010; testing day: 2 February) and
Huang et al. (2013) (Mildura, 2001; testing day: 25 January) .

Figures 12 and 13 show the simulation between the
forecasting results using the ARMA and NAR method
and other models. According to these figures and results
of Table 5 we can see that the hybrid model provides
better results with an NRMSE equal to 0.1835 against
an average NRMSE of 0.3 for ARMA and TDNN mod-
el, and NRMSE of 0.1339 compared with the best
NRMSE of the CARDS model that equals to 0.165.
Finally, these results show the robustness and the accu-
racy of the proposed method in this paper.

5 Conclusion

In this paper, we introduced a hybrid model for multi-step
ahead forecasting of hourly global horizontal solar radiation
time. Firstly, ARMA model is applied to a stationary residual
series that obtained from a detrending phase, the ADF test is
used to choose the most stationary residual series. We con-
cluded that the high polynomial degree fitting gives better
results. Secondly, the NAR model is applied for the forecast-
ing purpose that gives satisfactory results than the ARMA
model. However, it takes much calculation time than the first
model. The last approach is based on a hybrid method that
combined both ARMA and NAR models. According to the
fact that solar radiation series has linear and nonlinear compo-
nents, the ARMA model was good to forecast the linear be-
havior of the solar radiation time series. Also, NAR network
proved to be a suitable method to capture the non-linearity of
the series. But, no one of them was suitable to extract full
characteristics of global solar radiation series. Hence, as a
conclusion of this works, the hybrid model is a good method
to forecast such similar problems.

However, those models present a limitation in the forecast-
ing in extremely bad weather condition, thus future works will
be focused to test other hybrid models that can improve the
reliability for the very cloudy sky.
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a b s t r a c t

In this paper, we present a new approach for detecting the faults in the photovoltaic systems based on the
satellite image approach for estimating solar radiation data and DC output power calculations for detect-
ing the failures. At first stage, the estimation of the hourly global horizontal solar radiation data has been
evaluated by using the GISTEL (Gisement solaire par télédetection: Solar Radiation by Teledectection)
model improved by the fuzzy logic technique. Thus, the results were compared with the ground solar
radiation measurements. On the other hand, the comparison between the simulated and measured out-
put DC powers was reached to find the nature of the faults in the PV array.

The results showed a good accuracy and the simple implementation of the proposed approach. The
estimation of the hourly solar radiation presents an NRMSE <0.22 using GISTEL model improved by fuzzy
logic comparing with the estimation without fuzzy logic with an NRMSE = 0.2885 for clear sky and
NRMSE = 0.2852 comparing with NRMSE = 0.3121 for cloudy sky.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Solar energy is one of the most important renewable energies
for generating electricity and meeting our daily needs. However,
the efficiency of the photovoltaic (PV) panels was considered low
[1] due to financial and technical problems that can increase the
installation cost. Hence, the methods for estimating the amount
of the solar radiation and monitoring of the PV systems become
very important tasks [2]. To ensure a proper monitoring of photo-
voltaic plants, it is necessary to adopt specific techniques related
with the type and accuracy of the information provided as well
as their prices [3]. The measurement of the solar irradiation is
one of those techniques. To this end, different ways were proposed
in the literature to estimate the solar radiation data; such as
ground models [4–6] and satellite image processing models
[7–10]. In addition, several studies have been carried out on the
detection of different failures in PV systems [11–15].

The results from these models showed that the optimal deter-
mination of the solar radiation estimation models, and failure

detection techniques lead to an efficient PV system. Drews et al.
[12] developed a procedure to detect failures in grid connected
PV systems based on the average hourly solar radiation satellite
data using Heliosat method and PV simulation. Firth et al. [13]
have used empirical models for failure detection in PV systems.
However, these methods based on the average solar radiation data,
where in this paper we proposed a satellite approach model to get
the hourly solar radiation. In addition, Chouder and Silvestre [14]
have present an automatic supervision and faults detection of PV
systems based on capture losses and the analysis of several param-
eters such as thermal losses and miscellaneous losses that compli-
cate the procedure and increase the calculation time. And
generally, those methods used complicated algorithms and mathe-
matical models, and sometimes provide bad results. For this pur-
pose, we had proposed in this paper a new simple method based
on the extraction of the hourly global horizontal solar radiation
data from satellite images for a specific location combined with
an algorithm for detecting the faults in the PV system.

The precision of the estimated solar radiation is necessary to
improve the performance of the proposed model, for that, the GIS-
TEL (Gisement Solaire par Télé detection) proposed by [16] was
used. It consists of the processing of the Meteosat second genera-
tion images MSG-2. An algorithm based on a relationship between
the clearness indexes determined from the Meteosat images and
the global solar irradiation received on the ground under clear

http://dx.doi.org/10.1016/j.enconman.2014.01.030
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sky was used. Moreover, a hybrid model was proposed in this pa-
per that combined the basic method of GISTEL and the fuzzy logic
approach in order to obtain more precise results.

Second, for detecting the failures in the PV array, we have pro-
posed a procedure based on the analysis of the measured and sim-
ulated DC output powers. The DC powers are used here leading to
the fact that the failure detection algorithm deals only with the DC
part of the PV system. The next step consists in the determination
of the current and the voltage ratios that indicates the nature of the
faults. Moreover, the proposed method allows the determination of
the false detection of failures. The evaluation of the proposed
method was reached using the root mean square error RMSE and
normalized root mean square NRMSE errors.

The remaining part of this paper is organized as follows. Sec-
tion 2 presented the methodology used in this work for the detec-
tion of failures in PV systems; a background of the GISTEL model
has been viewed. In addition, the mechanisms of detection of the
faults have also been shown. In Section 3, we had simulated the re-
sults obtained from the GISTEL model and compared them to the
measured solar radiation data. Moreover, a comparison between
the simulated results of the proposed approach and the obtained
ones in the case of the absence of failure in the PV array has been
also carried out. The last section is devoted to the conclusion and
discussion of future works.

2. Methodology

The detecting of failures in PV arrays was known as an impor-
tant task for optimal sizing of the PV system to get the maximum
of output power [14,17]. The failures in the PV system augment the
power losses in the case of the presence of faults [18]. Hence, in
this work, a proposed simulation method based on the Matlab/
Simulink environment has been used for detecting the faults. This
method consists of two main parts. First, the GISTEL model was ap-
plied to estimate the hourly horizontal global solar radiation time
series, and then the obtained results were compared to the

measured ones. At the second stage, a comparison of the output
power from GISTEL and the measured data were used to detect
the failures. The proposed method was presented in Fig. 1.

2.1. GISTEL model

GISTEL is a satellite methodology based on a simple physical
model. It is used to estimate global solar irradiance from Meteosat
data. The adopted methodology has several steps that we have
summarized by the diagram of Fig. 2.

1. For estimating the global solar radiation (Gc) under a clear
sky, the world organization of meteorology (W.M.O.) [19]
model given by Eq. (1) is used; this model depends on
the solar height (hs) and the linked turbidity factor (TL)
used to quantify the effect of atmospheric components of
solar radiation, the TL values generally vary from 2 (very
pure and dry sky) to 6 (polluted and humid sky).

Gc ¼ cor½1300� 57TL�ðsinðhsÞÞð36þTLÞ=33 ð1Þ

where cor is the correction factor of the earth–sun distance
given by Eq. (2) and nj is the number of the days of the year.

cor ¼ 1þ 0:034 cosð0:986ðnj� 3ÞÞ ð2Þ

2. The ground instantaneous reflection coefficients Rib(x, y, d,
h) for each pixel (x, y) of the visible MSG image of the day d
and the hour h are given by Eq. (3). Those coefficients rep-
resent the reflection of solar radiation on the surface.

Ribðx; y;d;hÞ ¼ Biðx; y;d; hÞ � Biaðx; y;d;hÞ
K � Gcðx; y; d;hÞ � Tiðx; y;d; hÞ ð3Þ

where Bi (x, y, d, h) represents the brightness of the (x, y)
pixel, Bia (x, y, d, h) the atmospheric brightness recorded
by the satellite above the sea by a clear sky. This brightness
was considered constant, and it is equal to 12 [9]; K is the
factor calibration of the visible channel sensor equal to
0.514. Ti (x, y, d, h) is the transmission coefficient of the di-
rect irradiation from the ground to the satellite. It is given
by Eq. (4),

Ti ¼ ð1390� 31TLÞ
1367

exp � TL

12:6 sinðhv þ 2Þ

� �
ð4Þ

where hv is the height angle of the satellite, given by Eq. (5).

hv ¼ arcsin
1:862 cosðuÞ cosðhÞ � 0:274ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:41� cosðuÞ cosðhÞ
p

 !
ð5Þ

h and u are respectively the latitude and the longitude.
3. For determining the two clear and cloudy reference images,

a sequence of images was taken over long period at 12 h
UTC. Taking the minimum values of the reflection coeffi-
cients obtained from those sequence images, the clear sky
reference image can be obtained. On the other hand, the
cloudy sky reference image is constructed by using the
greatest values of the reflection coefficient obtained using
the same sequence of images.

4. The clearness index kt is calculated for each image by com-
paring pixel by pixel and hour by hour the instantaneous
reflection coefficients Rib with the two clear sky Rc and
the cloudy sky Rn reflection coefficients. According to this
comparison three types of skies can be observed namely
clear sky, partially covered sky and completely covered
sky [9], as expressed in Eq. (6)

Simulated solar 
radiation by 

GISTEL

Measured solar 
radiation

Output simulated 
power Psim

Output measured 
power Pmeas

Psim-d<Pmeas<Psim+d

Fault free 
operation 
error signal=0

Failure in 
operation 
error signal=1

Calculation 
of : Rc &Rv 

Rc >1

Partial shading

-Faulty modules              
in string
-False alarm

Rv >1Faults string

False

False

Altitude Longitude Day& hour

True

False

Fig. 1. Flowchart of the fault detection procedure.
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Clear sky : Rib � Rc : kt ¼ 1

Partially covered sky : Rc < Rib < Rn : kt ¼ 1� ð1� K0Þ
ðRib� RcÞ
ðRn� RcÞ

Completely covered sky : Rib � Rn : kt ¼ K0

ð6Þ

where K0 is the index by a cloudy sky equals to 0.2. How-
ever, for obtaining more precise results a fuzzy logic ap-
proach is proposed in this paper. Fuzzy logic methodology
has the ability to translate human qualitative knowledge
into formal algorithms; it deals with reasoning that is
approximate rather than fixed. It consists of using expert
rules that can sometimes produce a simple set of control
for a dynamical system with less effort. Hence, three rules
are introduced in this work to obtain logical values of the
clearness index kt as expressed in Fig. 3.

5. Finally the instantaneous global solar radiation Gi (x, y, d, h)
for each pixel is obtained by multiplying the clearness
index kt by the global solar radiation obtained under clear
sky Gc (x, y, d, h). As expressed in Eq. (7) as

Giðx; y; d;hÞ ¼ kt � Gcðx; y; d;hÞ ð7Þ

2.2. Detection of the faults

For extracting the DC output powers, the output currents and
voltages of the PV systems have been calculated using a double
diode PV model as expressed in Eq. (8).

I ¼ Iph � I01 exp
V þ RsI

n1Vt
� 1

� �� �
� I02 exp

V þ RsI
n2Vt

� 1
� �� �

� V þ RsI
Rsh

ð8Þ

where Iph is the current generated by the incident light. I01, I02 are
the reverse saturation currents of the diodes D1 and D2 respec-
tively. Vt is the thermal voltage. n1, n2 are the ideality factors of
diodes D1 and D2. Rs and Rsh are the series and shunt resistance
respectively. V and I are the output PV module voltage and current
respectively. Fig. 4 represents the used electrical model of PV sys-
tem with two diodes.

From Eq. (8), the simulated Psim and measured Pmeas powers are
given by Eqs. (9) and (10) respectively. The measurements of volt-
ages and currents have been made respectively using electronic
Amperemeter and Voltmeter.

Pmeas ¼ Vmeas � Imeas ð9Þ

Psim ¼ Vsim � Isim ð10Þ

The detection of faults is based on the comparison between Psim

and Pmeas. However, due to the calculation errors between simu-
lated and measured outputs, upper and lower boundaries have
been established as given by Eq. (11). This equation allows the
determination whether the measured DC output power is inside
the predetermined boundaries or outside of them. If yes, then no
failure is detected. Otherwise, a failure in the PV system can be
occurred.

Psim � 2d < Pmeas < Psim þ 2d ð11Þ

where d is the standard deviation calculated from simulated output
DC powers for clear sky.

The next step consists of calculating the current and the voltage
ratios given by Eqs. (12) and (13) respectively [14].

Rc ¼
IPV sim

IPV meas
ð12Þ

Calculation of 
ground 

instantaneous 
reflection coefficient 

Determination of the 
two reference images 
(clear and cloudy sky)

Clearness index 
kt

Determination of 
hourly global solar 

radiation Gi

End

Start

Read visible 
satellite images

Clear sky model
Gc

Latitude

Longitude 

Day and hour

Fig. 2. The different steps of the GISTEL model.

Fig. 3. Fuzzy logic membership functions.

Rsh

Rs

ID2ID1

Iph

D2D1

V

Fig. 4. The electrical model of PV system with double diodes.
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Rv ¼
VPV sim

VPV meas
ð13Þ

From the analysis of RC and Rv ratios, the failure can be deter-
mined as expressed in Fig. 1. If the measured output DC power is
outside the lower and upper boundaries a failure due to faults
may be observed in the PV array. The nature of the failure was
determined by the calculation, first, the values of Rc. And second,
the values of Rv. If both Rc and Rv are bigger that 1, then the nature
of faults is the shadowing. Otherwise, other types of failures were
determined like string faults.

3. Simulation results and discussion

In our simulation we are interested in detecting the faults in a
PV array. Hence, two phases are applied. First, the estimation of
hourly global solar radiation time series was determined using GIS-
TEL model. On the other hand, a PV system formed by 2 strings
with 4 PV panels in each one, which delivers a power equal to
600 Wp for DC output power calculation was then used. For the
estimation of the hourly solar radiation different day that repre-
sent the stat of the sky (clear, partially cloudy and cloudy) have
been used. However; just one day is used to detect faults (generally
the clearest sky day).

In order to perform the GISTEL methodology, two different ap-
proaches with and without the fuzzy logic methods were used. We
had chosen in our simulation two locations for validation purposes.
First, two random days for the locations were selected, the first
ones are from the site of Bouzareah in Algeria (36.78� N, 3� E) for
the days of 3rd of February 2013 and the 26th of February 2013;
the data were collected from the National Meteorological Office
(ONM) of Algeria. The second location is for Almeria in Spain
(36.84� N, 2.4� W); the data were collected from the GeoModel
Solar S.R.O., M. Marecka 3, Bratislava, Slovakia for the days of
15th February 2011 and the 20th February 2011. Moreover, the
satellite images for each hour were obtained from the Meteo
Company B.V website: (http://www.sat24.com) for both locations
of Bouzereah and Almeria.

Figs. 5–8 show the simulation results of the hourly global hor-
izontal solar radiation time series of the above-mentioned loca-
tions; in all figures the blue line3 represents the measured hourly
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Fig. 5. Measured and simulated of the hourly global horizontal solar radiation with
FL and without FL method for the day of 3rd March 2013 for the site of Bouzerah,
Algeria.
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Fig. 6. Measured and simulated of the hourly global horizontal solar radiation with
FL and without FL method for the day of 26th March 2013 for the site of Bouzerah,
Algeria.
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Fig. 7. Measured and simulated of the hourly global horizontal solar radiation with
FL and without FL method for the day of 15th February 2011 for the site of Almeria,
Spain.
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Fig. 8. Measured and simulated of the hourly global horizontal solar radiation with
FL and without FL method for the day of 20th February 2011 for the site of Almeria,
Spain.

3 For interpretation of color in Figs. 1 and 5–8, the reader is referred to the web
version of this article.
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solar radiation data, the red dot line present the simulated data
using the fuzzy logic approach and the green dot line presents the
simulated data without fuzzy logic method.

In addition, for comparing the simulation of the hourly horizon-
tal global solar radiation by the mentioned methods, the RMSE and
NRMSE represented in Eqs. (14) and (15) were used to judge the
validity of the models.

RMSE ¼ 1
n

Xn

i¼1

ðIi;predicted � Ii;measuredÞ2
" #1

2

ð14Þ

NRMSE ¼
1
n

Pn
i¼1ðIi;predicted � Ii;measuredÞ2

h i1
2

1
n

Pn
i¼1ðIi;measuredÞ

0
B@

1
CA ð15Þ

From Figs. 5–8, we note that the simulated solar radiations are
changed during the day; from low values in sunrise and sunset to
high values at noon that leads to the fact that the results obtained
from the GISTEL model were representing the real stat of a day. In
addition, some fluctuations can be occurring due to the presence of
clouds.

The variation of the solar radiations depends on the clearness
index it; a clear day has a clearness index equal to 1, a cloudy
day with kt = 0.2 and a partially cloudy day between 0.2 < kt < 1.

For the validation of the simulation results of the estimation of
hourly horizontal global solar radiation data with GISTEL model
with the fuzzy logic model and without it, the RMSE and the
NRMSE represented in Table 1 were used.

From Table 1, it is clearly shown that the simulated models with
the fuzzy logic model are good enough, that represents an NRMSE
error between 0.2 and 0.28 comparing to the measured solar radi-
ation data for all locations. Moreover, from Table 1, the NRMSE of
the simulated hourly horizontal global solar radiation using the
fuzzy logic method is lower than the simulated ones without use
it, leads to a conclusion that the GISTEL model with the fuzzy logic
method is good for such similar problems.

After determining the global solar radiation time series, we
move onto the detection of the failures in the PV system. Thus,
the simulation consists of two steps. First, the simulation PV sys-
tem outputs without faults and second with faults.

3.1. PV outputs without faults

In this stage, we have simulated the outputs of the system with-
out any faults to present the normal functioning of the proposed
method. Hence, the output powers for the simulated solar radia-
tion data from GISTEL model and measured one for the day of
26th March 2011 for the site of Bouzereah Algeria were calculated
as shown in Fig. 9.

From Fig. 9 it is clearly shown that the measured and simulated
output DC powers are near each other, which mean that the GISTEL
model can be used to calculate the output power.

Next, to show the correct functionality of the PV array (no
detection of fault), the upper and lower boundaries of the

simulated output DC power expressed in Eq. (11) were calculated.
The results are shown in Fig. 10. Those two boundaries plotted in
red line can be used to indicate fault detection of failures; any out-
put DC power outside the upper and lower boundary is considered
as a fault.

Moreover, the values of the current and voltage ratios were sim-
ulated in Fig. 11. The blue line represents the current ratio and the
red one represents the voltage ratio. Those two ratios indicate the
nature of the failure as shown in Fig. 1. If the Rc and Rv values are
near to 1, then no fault is detected. Else, the faults can be occurred.

3.2. PV system outputs with shading faults

This step consists of showing how the fault can be detected
using just the DC output powers simulated and measured. Hence,
the same day was used in the simulation, but with the presence

Table 1
The RMSE and NRMSE between actual data and simulated data with and without fuzzy logic method (FL) method.

Date Error (RMSE) Error (NRMSE)

With FL Without FL With FL Without FL

Bouzereah (Algeria) 26 March 2013 52.8788 69.8051 0.2185 0.2885
03 April 2013 52.9886 63.6144 0.2072 0.2488

Almeria (Spain) 15 February 2011 23.3158 25.5123 0.2852 0.3121
20 February 2011 36.9515 49.0828 0.2407 0.3197
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Fig. 9. Measured and simulated PV output DC power without faults.
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Fig. 10. Output DC powers evolution between lower and upper boundaries without
faults.
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of shadow (buildings and trees etc.) in the period from 8 o’clock to
10 o’clock as shown in Figs. 12 and 13.

From Figs. 12 and 13, the measured DC output power is outside
upper and lower boundaries between 8 o’clock and 10 o’clock. This
shows clearly the presence of faults in the PV array. Next, to know
the nature of this fault, the current and voltage ratios have been
simulated as shown in Fig. 14.

The simulated values of RC and RV are bigger than 1 between the
period from 8 o’clock to 10 o’clock. Moreover, using the propped
method from Fig. 1, we have both RC and RV above 1 that means
that the nature of the fault is the shadow.

3.3. PV system outputs with string faults

The occurrence of constant faults in PV system indicates the
existence of a problem in the strings. The simulated output DC
power is very less than the measured one. As illustrated in Fig. 15.
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Fig. 11. Evolution of current and voltage ratios without faults.
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Fig. 12. Measured and simulated PV output DC power with faults between of 8
o’clock and 10 o’clock.
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Fig. 13. Output DC powers evolution between lower and upper boundaries with
faults.
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Fig. 14. Evolution of current and voltage ratios with faults.
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Fig. 15. Measured and simulated PV output DC power with a constant string faults.
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Fig. 16 shows the deviation of the measured output DC power
out of the upper and lower boundaries, that indicate the existence
of losses in the PV system plant. In addition, Fig. 17 shows the evo-
lution of current and voltage ratios with a constant string faults.

The current ratio is bigger than one and the value of the voltage
ratio is equal to 1 which means that the fault is in the string as
illustrated in the flowchart of Fig. 1.

4. Conclusion

In this paper, we proposed a new approach for detecting the
failures in the photovoltaic systems, based on the output DC power
analysis considering the amount of the solar radiation. The meth-
odology used in this work consists, firstly on the estimation of
the hourly global horizontal solar radiation data using a modified
GISTEL model. The objective of this approach is the processing of
the visible satellite images by calculating the transmission coeffi-
cients for each pixel of the image. A comparison between those
coefficients and the ones obtained from the clear, partial and to-
tally cover sky have been reached, which allows determining the
clearness index that used for the estimation of the hourly solar
radiation. In addition, a combination of the base GISTEL model
and a fuzzy logic approach was used in this model in order to ob-
tain more precise results. At the second stage, we have proposed a
simple algorithm that can be used for detecting the faults in the PV
systems. The calculation of the DC output powers for both mea-
sured and simulated PV systems allow detecting the faults. More-
over, the calculation of the ratios between simulated and measured
voltages and currents lead to an identification of the type of faults

in the PV array. The obtained experimental results showed the
accuracy of this approach. In addition, the proposed method does
not need a complicate calculation and based only on few input
parameters.

References

[1] Kim JM, Dutta PS. Optical efficiency–concentration ratio trade-off for a flat
panel photovoltaic system with diffuser type concentrator. Sol Energy Mater
Sol Cells 2012;103:35–40.

[2] Huld T, Muller R, Gambardella A. A new solar radiation database for estimating
PV performance in Europe and Africa. Sol Energy 2012;86:1803–15.

[3] Ismail MS, Moghavvemi M, Mahlia TMI. Characterization of PV panel and
global optimization of its model parameters using genetic algorithm. Energy
Convers Manage 2013;73:10–25.

[4] Badescu V, Gueymard C, Cheval S, Oprea C, Baciu M, Dumitrescu A, et al.
Accuracy analysis for fifty-four clear-sky solar radiation models using routine
hourly global irradiance measurements in Romania. Renew Energy
2013;55:85–103.

[5] David M, Lauret P, Boland J. Evaluating tilted plane models for solar radiation
using comprehensive testing procedures, at a southern hemisphere location.
Renew Energy 2013;51:124–31.

[6] Hove T, Manyumbu E. Estimates of the Linke turbidity factor over Zimbabwe
using ground-measured clear-sky global solar radiation and sunshine records
based on a modified ESRA clear-sky model approach. Renew Energy
2013;52:190–6.

[7] Pillot B, Muselli M, Poggi P, Haurant P, Hared I. Solar energy potential atlas for
planning energy system off-grid electrification. Energy Convers Manage
2013;69:131–47.

[8] Cano D, Monget JM, Albuisson M, Guillard H, Regas N, Wald L. A method for the
determination of the global solar radiation from meteorological satellite data.
Sol Energy 1986;37:31–9.

[9] Ben Djemaa A, Delorme C. A comparison between one year of daily global
irradiation from ground-based measurements versus METEOSAT images from
seven locations in Tunisia. Sol Energy 1992;5:325–33.

[10] Mefti A, Adane A, Delorme C. Estimation of solar irradiance using Wefax and
high resolution Meteosat images. World Renewable Energy congress VI;
2000.

[11] Stellbogen D. Use of PV circuit simulation for fault detection in PV array fields.
In: Proceedings of the 23rd IEEE photovoltaic specialists conference. 1302-7;
1993.

[12] Drews A, De Keizer AC, Beyer HG, Lorenz E, Betcke J, van Sark WGJHM, et al.
Monitoring and remote failure detection of grid-connected PV systems based
on satellite observations. Sol Energy 2007;81:548–64.

[13] Firth SK, Lomas KJ, Rees SJ. A simple model of PV system performance and its
use in fault detection. Sol Energy 2010;84:624–35.

[14] Chouder A, Silvestre S. Automatic supervision and fault detection of PV
systems based on power losses analysis. Energy Convers Manage
2010;51:1929–37.

[15] Mukai T, Kawamoto S, Ueda Y, Saijo M, Abe N. Residential PV system users
perception of profitability, reliability, and failure risk: an empirical survey in a
local Japanese municipality. Energy Policy 2011;39:5440–8.

[16] Delorme C, Gallo A, Olivieri J. Quick use of Wefax images from Meteosat to
determine daily solar radiation in France. Sol Energy 1992;3:191–7.

[17] Gokmen N, Karatepe E, Silvestre S, Celik B, P Ortega P. An efficient fault
diagnosis method for PV systems based on operating voltage-window. Energy
Convers Manage 2013;73:350–60.

[18] Solórzano J, Egido MA. Automatic fault diagnosis in PV systems with
distributed MPPT. Energy Convers Manage 2013;76:925–34.

[19] W.M.O. Meteorological aspects of the utilization of solar radiation as an energy
source. Technical note W.M.O. vol. 172; 1981. p. 57–85.

5 7 9 11 13 15 17 19
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (hours)

C
ur

re
nt

 a
nd

 v
ol

ta
ge

 ra
tio

s

Rv
Rc

Fig. 17. Evolution of current and voltage ratios with a constant string faults.

304 M. Tadj et al. / Energy Conversion and Management 80 (2014) 298–304



An innovative method based on satellite image analysis
to check fault in a PV system lead–acid battery

Mohammed Tadj a,1, Khalil Benmouiza b, Ali Cheknane a,⇑
a Laboratoire des Semi-conducteurs et Matériaux Fonctionnels, Université Amar Telidji de Laghouat, BP 37G, Laghouat 03000, Algérie
b Department of Physics, Faculty of Science, Abou Bekr Belkaid University, Tlemcen BP 119, Tlemcen 13000, Algeria

a r t i c l e i n f o

Article history:
Received 3 March 2014
Received in revised form 20 June 2014
Accepted 21 June 2014
Available online 18 July 2014

Keywords:
Lead–acid battery
Estimation of solar radiation
GISTEL model
Faults checking
PV systems

a b s t r a c t

Batteries are an important part in photovoltaic systems. They ensure reliability and good-
operation of the overall PV system. In this paper, we proposed a method based on the esti-
mation of the solar radiation to check the faults that occur in the lead–acid batteries. At
first, the GISTEL (Gisement solaire par télédetection: Solar Radiation by Teledetection)
model is chosen as a satellite image approach to estimate the hourly global solar radiation.
Secondly, the estimated data are selected as input to check the faults of the lead–acid bat-
tery. A simple and effective method is developed to detect the internal resistance effect as
well as the overcharging problem during the charging and discharging cycles. The experi-
mental results show the easiness of the proposed method that possesses a good accuracy.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The growing demand of energy in our life requires renewable solutions apart from the limited fossil energies. In addition,
the negative effect of the traditional sources of energy that polluted the atmosphere leads us to search new environment-
friendly solutions such as solar and wind energy. Solar energy is more and more used to generate electricity by converting
solar radiation into useful DC power using PV panels. Nevertheless, the efficiency of panels is considered low due to financial
and technical problems [16]. Hence, the optimal monitoring of PV systems is needed that depend strongly on the estimated
solar radiation and checking the failures in the devices of PV systems such as panels, batteries and converters. In this view,
we proceeded to study the effect of the losses in batteries to ensure the optimal operation of PV systems. For that, the esti-
mation of solar radiation is considered to be an essential part in the PV system monitoring. Different methods were proposed
in the literature to estimate the solar radiation data such as ground models [2,10,6] or the satellite images processing
approaches [3,13,17]. Nevertheless, ground models are not effective because of the lack of the measured solar radiation.
Hence, we have chosen in this paper the satellite methods due to their performances and accuracy. The GISTEL (Gisement
solaire par télédetection) model is one of the most succeeded satellite methods to extract the solar radiation [18,15]. The
first version of the GISTEL model was developed by Cano et al. [7]. The satellite images used in the GISTEL model provide
an estimation of the solar radiation for any location around the world. The advantages of the GISTEL model are that it
depends only on the satellite images and some parameters such as longitude, latitude and link turbidity. In addition, the
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good operation of the batteries represents a very important task in the PV system monitoring [12,11,22]. Moreover, a peri-
odical check of the state of the batteries, especially the lead–acid ones, can give information about the operation state of the
PV systems. On the other hand, the results from the models to estimate the solar radiation are complex and require a lot of
calculation time. Different methods were presented in literature to monitor the losses in PV system batteries. McKenna et al.
[14] have studied the economic and environmental impact of the use of lead–acid batteries in grid-connected PV systems.
Tsang and Chan [20] have explained the equivalent DC resistances of Lithium ion battery cells of several health conditions
during charging mode under different temperatures and they have established the relationships between the equivalent DC
resistance, health condition and operating temperature. However, those papers have studied the SOC of the battery without
taking into consideration the solar radiation as an important input. Moreover, they presented complicated methods to detect
faults in PV systems.

For these reasons, we propose, firstly, the GISTEL methodology improved by fuzzy logic technic as a satellite images
approach to estimate the amount of the solar radiation. The GISTEL model is a physical approach that used real visible images
to extract the solar radiation. These data have an important effect on the output of PV systems; a good estimation of the solar
radiation data leads to an efficient PV system.

Secondly, the monitoring of the lead–acid solar battery requires to check it and to identify the failures in real-time. In this
paper, we have chosen to test the effect of the battery internal resistance and the overcharging case in the floating diet. The
variation of the internal resistance of the battery has negative impacts in the PV system efficiency as well as in the battery
lifetime.

Hence, in this work, we intend to show the effects of an increase of the internal resistance and of the degradation of the
storage unit capacity through the introduction of the battery internal resistance. Moreover, the second effect to be checked is
the overcharging of the battery and its effects on the PV system performances as an overcharging cause a decrease of the
water level in the lead–acid battery which results into degradation of the internal plates of the battery. In this study, the
method is not developed to supervise PV plants, just small stand-alone applications where the cost of communications,
as well as electronics for the measurements is not justified.

The follow up of this paper is organized as follows. Section 2 presents a background of the GISTEL model. In Section 3, we
show the methodology used in this work to check the failures in PV system battery. In Section 4, we have simulated the
results obtained from the GISTEL model and compared them to the measured solar radiation data. Moreover, the simulated
results of the proposed approach in the case of the absence of failure in the PV system battery have been also carried out. The
last section is devoted to the conclusion and discussion of future work.

2. Methodology

The identification of losses in PV systems presents a big task to achieve the desired output. For that, we are interested in
detecting failures in the storage unit that causes a decrease in the efficiency of the PV system [9]. In this work, a proposed
simulation method based on the Matlab/Simulink environment has been used to detect the faults in the batteries. The GISTEL
method was first applied for the estimation of solar radiation data, based on the extracted satellite images. Secondly, these
data were introduced into the PV array to produce the output power. After that, this energy was stored in batteries to ensure
the autonomy of the PV system. The third stage consists in studying the behavior of the storage unit under different situa-
tions. The proposed structure presented in Fig. 1.

2.1. GISTEL model

In the previous paper by the authors of this study [18] the GISTEL model is defined as a satellite methodology based on a
simple physical model. It is used to estimate global solar irradiance from METEOSAT data. The adopted methodology has
several steps that we have summarized in the diagram of Fig. 2.

Estimation of solar 
radiation

Satellite approach 

(GISTEL method)

PV 

Array

Load

Storage unit

(Battery)

Latitude

Longitude

Day and hour

Fig. 1. Flowchart of the proposed methodology.
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1. To estimate the global solar radiation (Gc) under a clear sky, the world organization of meteorology (W.M.O.) [21] model
given by Eq. (1) is used; this model depends on the solar height (hs) and the linked turbidity factor (TL) used to quantify
the effect of atmospheric components of solar radiation, the TL values generally vary from 2 (very pure and dry sky) to 6
(polluted and humid sky).

Gc ¼ cor½1300� 57TL�ðsinðhsÞÞð36þTLÞ=33 ð1Þ

where cor is the correction factor of the earth–sun distance given by Eq. (2) and nj is the number of the days of the year.

cor ¼ 1þ 0:034 cosð0:986ðnj� 3ÞÞ ð2Þ

2. The ground instantaneous reflection coefficients Rib(x, y, d, h) for each pixel (x, y) of the visible MSG image of the day d
and the hour h are given by Eq. (3). Those coefficients represent the reflection of solar radiation on the surface.

Ribðx; y;d; hÞ ¼ Biðx; y; d;hÞ � Biaðx; y; d;hÞ
K � Gcðx; y;d; hÞ � Tiðx; y;d;hÞ ð3Þ

where Bi(x, y, d, h) represents the brightness of the (x, y) pixel, Bia(x, y, d, h) the atmospheric brightness recorded by the satel-
lite above the sea by a clear sky. This brightness was considered constant, and it is equal to 12 [4]; K is the factor calibration
of the visible channel sensor equal to 0.514. Ti(x, y, d, h) is the transmission coefficient of the direct irradiation from the
ground to the satellite. It is given by Eq. (4),

Ti ¼ ð1390� 31TLÞ
1367

exp � TL

12:6 sinðhv þ 2Þ

� �
ð4Þ

where hv is the height angle of the satellite, given by Eq. (5).

hv ¼ arcsin
1:862 cosðuÞ cosðhÞ � 0:274ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:41� cosðuÞ cosðhÞ
p

 !
ð5Þ

h and u are respectively the latitude and the longitude.
3. To determine the two clear and cloudy reference images, a sequence of images was taken over a long period at 12 h UTC.

Taking the minimum values of the reflection coefficients obtained from those sequence images, the clear sky reference
image can be obtained. On the other hand, the cloudy sky reference image is constructed by using the greatest values
of the reflection coefficient obtained using the same sequence of images.

4. The clearness index kt is calculated for each image by comparing pixel by pixel and hour by hour the instantaneous reflec-
tion coefficients Rib with the two clear sky Rc and the cloudy sky Rn reflection coefficients. According to this comparison
three types of skies can be observed namely clear sky, partially covered sky and completely covered sky [4], as expressed
in Eq. (6).

� Clear sky : Rib 6 Rc : kt ¼ 1
� Partially covered sky : Rc < Rib < Rn : kt ¼ 1� ð1� K0Þ ðRib�RcÞ

ðRn�RcÞ

� Completely covered sky : Rib P Rn : kt ¼ K0

ð6Þ

Calculation of ground 
instantaneous reflection 

coefficient Rib

Determination of the two 
reference images (clear 

and cloudy sky)
Clearness index kt

Determination of hourly 
global solar radiation Gi

End

Start

Read visible 
satellite images

Clear sky model
Gc

Latitude θ

Day and hour

Fig. 2. The different steps of the GISTEL model.
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where K0 is the index by a cloudy sky equals to 0.2. However, for obtaining more precise results a fuzzy logic approach is
proposed in this paper. Fuzzy logic methodology has the ability to translate human qualitative knowledge into formal algo-
rithms; it deals with reasoning that is approximate rather than fixed. It consists of using expert rules that can sometimes
produce a simple set of control for a dynamical system with less effort. Hence, three rules are introduced in this work to
obtain logical values of the clearness index kt as expressed in Fig. 3.
5. Finally the instantaneous global solar radiation Gi(x, y, d, h) for each pixel is obtained by multiplying the clearness index kt

by the global solar radiation obtained under clear sky Gc(x, y, d, h). As expressed in Eq. (7) as

Giðx; y;d; hÞ ¼ kt � Gcðx; y;d; hÞ ð7Þ

3. PV system modeling

3.1. Modeling of PV array

To obtain the DC output powers, the output current and voltage of the PV array has been calculated using a double diode
PV model as expressed in Eq. (8) [1,8].

I ¼ Iph � I01 exp
V þ RsI

n1Vt
� 1

� �� �
� I02 exp

V þ RsI
n2Vt

� 1
� �� �

� V þ RsI
Rsh

ð8Þ

where Iph is the current generated by the incident light. I01, I02 are the reverse saturation currents of the diodes D1 and D2
respectively. Vt is the thermal voltage. n1, n2 are the ideality factors of diodes D1 and D2. Rs and Rsh are the series and shunt
resistance respectively. V and I are the output PV module voltage and current respectively.

3.2. Storage unit model

The battery used in this work is a lead acid battery with 12 V of voltage and 104 A h of capacity; it is expressed by the
following equation [19]:

Charge model (i* < 0):

f ðit; i�; i; ExpÞ ¼ E0 � K
Q

it � 0:1Q
i� � K

Q
Q � it

it þ Laplace�1 ExpðsÞ
SelðsÞ �

1
s

� �
ð9Þ

Discharge model (i* > 0):

f ðit; i�; i; ExpÞ ¼ E0 � K
Q

Q � it
i� � K

Q
Q � it

it þ Laplace�1 ExpðsÞ
SelðsÞ � 0

� �
ð10Þ

where E0 is the constant voltage (V); Exp(s) is the exponential zone dynamics (V); Sel(s) represents the battery mode.
Sel(s) = 1 during battery charging, Sel(s) = 0 during battery discharge; K is the polarization resistance (Ohm); i* is the low fre-
quency current dynamic (A); i is the battery current (A); it is the extracted capacity (A h); Q is the maximum battery capacity
(A h).

4. Simulation results and discussion

The objective of this work is the identification of faults in the PV system battery. For that, we used in the simulation a PV
system with four panels (two panels in series with two branches) that represent a 300 Wp as total output power. The char-
acteristics of the PV panels are given in Table 1. The objective is the extraction of the solar radiation data via satellite images
using GISTEL model and use this data for the identification of failure in the battery that allowed minimizing the losses in the
PV system.

Fig. 3. Fuzzy logic membership functions.
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In the first step, the satellite approach (GISTEL model) was improved using the fuzzy logic method. The obtained data
from GISTEL model using FL and without FL were compared with the measured data. For the validation purpose, we have
chosen three locations. First, in Algeria (Bouzareah 36.78�N, 3�E) for the days of 3rd of February 2013 and the 26th of
February 2013 and (Ghardaia 32.48�N, 3.66�E) for the days of 22nd November 2012 and the 7th of December 2012; the data
were collected from the National Meteorological Office (ONM) of Algeria. The third location is Almeria in Spain (36.84�N,
2.4�W) the data were collected from the GeoModel Solar S.R.O., M. Marecka 3, Bratislava, Slovakia for the days of 15th
February 2011 and the 20th February 2011. Moreover, the satellite images for each hour were obtained from the Meteo Com-
pany B.V website: (http://www.sat24.com) for all locations of Bouzereah and Ghardaia in Algeria and Almeria in Spain.

The simulation results are shown in Figs. 4–9 that represents the hourly global horizontal solar radiation time series for
the three locations; the blue3 line represents the measured data, the red dot line indicate the simulation data improved by FL
(fuzzy logic) technic and the green dot one presents the simulated data without FL method. The RMSE and NRMSE were used to
give a value for our validation. Eqs. (11) and (12) represent the RMSE and NRMSE respectively [5]:

RMSE ¼ 1
n

Xn

i¼1

Ii;predicted � Ii;measured
� �2

" #1
2

ð11Þ

NRMSE ¼
1
n

Pn
i¼1 Ii;predicted � Ii;measured

� �2
h i1

2

1
n

Pn
i¼1ðIi;measuredÞ

0
B@

1
CA ð12Þ

Table 1
The solar panel parameters.

Parameters Values

Maximum power (Pmax) 75 W
Maximum power voltage (Vmpp) 21.68 V
Maximum power current (Impp) 3.33 A
Open circuit voltage (Voc) 21.40 V
Short circuit current (Isc) 3.69 A
Max system voltage 1000 V
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Fig. 4. Measured and simulated of the hourly global horizontal solar radiation with FL and without FL method for the day of 3rd March 2013 for the site of
Bouzerah, Algeria.

3 For interpretation of color in Figs. 4–9 and 12–15, the reader is referred to the web version of this article.
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In Figs. 4–9, we observed that the simulation solar radiation data are changed from low values in sunrise and sunset to
high ones at noon. The simulation of hourly solar radiation using FL is almost the same as the measured data. Moreover; the
occurrence of fluctuations indicates the passage of clouds.

Table 1 represents the RMSE and the NRMSE error of simulation results with and without FL technic for the three
locations.

From Table 2, the simulation results of GISTEL model with FL represent good values of an NRMSE error between 0.2 and
0.28 comparing with the measured solar radiation data and the estimation without FL for all locations. For that, the GISTEL
model with fuzzy logic method represents a good improvement for the estimation of hourly horizontal global solar radiation
by satellite images.

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

Time (hours)

H
ou

rly
 h

or
iz

on
ta

l g
lo

ba
l s

ol
ar

 ra
di

at
io

n 
(W

/m
2 )

Simulated data using Fuzzy logic
measured data
Simulated data without Fuzzy logic

Fig. 5. Measured and simulated of the hourly global horizontal solar radiation with FL and without FL method for the day of 26th March 2013 for the site of
Bouzerah, Algeria.
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Fig. 6. Measured and simulated of the hourly global horizontal solar radiation with FL and without FL method for the day of 22nd November 2012 for the
site of Ghardaia, Algeria.
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The second step consists in identifying the failures in the storage unit (battery) as failures related to the internal resis-
tance and the overcharging. We indicate that the lead–acid battery works in floating mode between 90% and 100% of state
of charge (SOC).

4.1. PV system battery without faults

To check the failures in the PV system battery we used one sunny day for one location to realize our tests. For that, we
have chosen the 5th June 2012 for the location of Ghardaia in Algeria. The GISTEL method supplies the PV array by the solar
radiation requirements. The output of the PV array is connected to the storage unit and to the variable load. The storage part
is used to feed the load at any time of the day. Hence, it is necessary to assure a good performance of the batteries. A good
checking of battery means a long lifetime and little period of maintenance that leads to optimize the cost of PV systems. A PV
system battery especially lead–acid type needs a special treatment and control of water level. In other hand, the simulation
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Fig. 7. Measured and simulated of the hourly global horizontal solar radiation with FL and without FL method for the day of 7th December 2012 for the site
of Ghardaia, Algeria.
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Fig. 8. Measured and simulated of the hourly global horizontal solar radiation with FL and without FL method for the day of 15th February 2011 for the site
of Almeria, Spain.
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results of a PV system battery without faults are considered as a reference for the other simulation results. For that, Fig. 10
represents the battery voltage fixed at 15 V the maximum value and Fig. 11 represents the battery state of charge (SOC)
without any faults.
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Fig. 9. Measured and simulated of the hourly global horizontal solar radiation with FL and without FL method for the day of 20th February 2011 for the site
of Almeria, Spain.

Table 2
The RMSE and NRMSE between actual data and simulated data with and without fuzzy logic method (FL) method.

Date Error (RMSE) Error (NRMSE)

With FL Without FL With FL Without FL

Bouzereaha (Algeria) 26 March 2013 52.8788 69.8051 0.2185 0.2885
03 April 2013 52.9886 63.6144 0.2072 0.2488

Ghardaia (Algeria) 22 November 2012 53.8455 69.9921 0.2285 0.2981
07 December 2012 54.2156 64.3654 0.2181 0.2584

Almeria (Spain) 15 February 2011 23.3158 25.5123 0.2852 0.3121
20 February 2011 36.9515 49.0828 0.2407 0.3197
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Fig. 10. Lead–acid battery voltage.
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From Fig. 10 the battery voltage during charge mode does not exceed the fixed value 15 V for all tested cycles. But in the
last cycle, the voltage was decreased depending on solar radiation at the sunset. We suppose it as an ideal curve or a refer-
ence result of a sunny typical day.

Fig. 11 explains the state of charge (SOC) of the PV system battery with two and half cycles that used for testing the bat-
tery performances. The first cycle was slowly charged due to the small values of solar radiation (case of the sunrise). The
same effect was occurred at the sunset period (the battery in the charging mode was slowly increased).

4.2. The effect of the internal resistance in the PV system battery

In this stage, we have used two different values of the battery’s internal resistance for checking the effect of the internal
resistance in the behavior of the PV system battery. Hence, we have increased firstly the internal resistance of the PV system
battery that equals to 1 Ohm by +100% of its initial value and secondly, by +200% of its ideal value.
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Fig. 11. Lead–acid battery state of charge (SOC).
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Fig. 12. Lead–acid battery voltage with different internal resistance values.
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Fig. 12 represents the battery voltage under different values of the internal resistance, the blue line is the battery voltage
at the initial internal resistance; the red line explains the voltage result under +100% of the initial value of the battery’s inter-
nal resistance and the green line one represents the battery voltage output introduces +200% of the ideal internal resistance.
We observed a big exceed in voltage at charge and discharge cases due to the increasing of the battery’s internal resistance.
An augmentation of the internal resistance with +100% gives high voltage than the initial voltage values. Moreover, the
increasing of the internal resistances with +200% gives more voltage than the first case. Hence, and depending on Ohm’s
law, each increasing of the internal resistance of the battery lead us to an increase of the battery voltage.

Fig. 13 explains the SOC of the solar battery, when the blue curve is the SOC with the ordinary value of internal resistance,
the red line represents the SOC cycles with +100% of initial worth of internal resistance and the green line is the SOC with
+200% of ideal value of battery’s internal resistance. The simulation results have the some input of the solar radiation (GISTEL
the satellite method) but the effect of the battery’s internal resistance prevented the curves to follow the references. The
battery’s internal resistance effect has a negative impact on the PV system efficiency. For that; it should be respect the
maintenance period and well monitored the storage unit.

0 2 4 6 8 10 12 14
70

75

80

85

90

95

100

105

110

Time (hours)

SO
C

 (%
)

SOC with initial internal resistance

SOC with +100% of initial internal resistance

SOC with +200% of initial internal resistance

Fig. 13. Lead–acid battery state of charge (SOC) with different internal resistance values.
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4.3. The effect of the overcharging in the PV system battery

In order to show the negative impact of overcharging in the battery lifetime, we studied the behavior of battery after it is
fully charged (arrived at the maximum point of SOC and voltage).

Fig. 14 represents the battery voltage under overcharging effect. The blue line is the battery voltage without any effect
that means the reference curve, and the red line is the voltage under overcharging impact. The overcharging effect caused
a gap in the allure of the voltage (red line) compared with the reference curve (blue line). These results show a very big deg-
radation at the level of the battery construction that effects its life time.

In addition, Fig. 15 shows the curves of the SOC of the solar battery under the overcharging effect. The blue line is the ideal
allure of SOC, and the red one represents the SOC curve under overcharging impact. From this figure, we note a gap between
the reference curve and the curve under overcharge effect that causes a decreasing in the level of water in the PV system
battery. Hence, the operator should be careful about the occurrence of this problem which results the degradation at the
internal plates of the lead–acid battery. For that, the monitoring part is an important task to assure the PV system lifetime
planned by the constructor.

5. Conclusion

In this paper, we proposed an approach for identifying the losses in the photovoltaic systems batteries, based on checking
the lead–acid battery through the estimation of the solar radiation. The methodology used in this work consists, firstly on the
estimation of the hourly global solar radiation data using an improved GISTEL model. The objective of this approach is to
process the visible satellite images by calculating the transmission coefficients for each pixel of the image. A comparison
between those coefficients and the ones obtained from the clear, partial and totally cloudy sky has been achieved; this allows
determining the clearness index that is used for the estimation of the hourly global solar radiation. In addition, a combina-
tion of the base GISTEL model and a FL technic was used in this model in order to obtain more precise results. At the second
stage, we have tested the battery to check the losses in the PV system. Hence, we review our work to study the internal resis-
tances and the overcharging effects in the PV system battery. The detection of the battery faults guaranteed the PV system
efficiency. Moreover, combining the estimation of the solar radiation by GISTEL model as the PV system input with the bat-
tery checking operation represents a good improvement in the case of a PV systems monitoring. The obtained experimental
results showed the accuracy of this approach. In addition, the proposed method does not need a complicate calculation and is
based on a few input parameters only.
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Abstract 

Algeria is an interesting country for the exploitation of solar energy; it has a considerable territory of solar 

energy, so it is a major interest for a country like ours to estimate this type of energy to identify possible and 

effective means that used in a policy context of energy of the country. The optimal sizing of photovoltaic 

systems is very important, especially in an economic point of view, it allows to design an efficient system, 

avoiding load losses while minimizing the cost of installation, this can be done by using data of solar radiation 

as well as insolation levels. Therefore, it is important to carry out the quantification of solar data on the 

Algerian territory. For that, and throughout this thesis, we will try to develop physical and empirical models 

for estimating and forecasting hourly, daily and monthly solar radiation data from multiple sources (insolation 

and radiation), these models will be applied and tested for different climatic regions of Algeria. At the end, a 

map of solar radiation zoning will be established. The application to the sizing of photovoltaic system will 

show that the results in an hourly scale are more precise than a daily scale especially for the performance of 

the photovoltaic system. 

Keywords: Quantification, solar radiation, solar maps, stochastic models, neural networks, sizing.  

 

Résumé 

L’Algérie est un pays potentiellement intéressant pour l’exploitation de l’énergie solaire. En effet, son 

territoire  dispose d’un gisement solaire considérable.  Il est donc d’intérêt majeur, pour un pays comme le 

nôtre, de pouvoir estimer les potentialités offertes par ce type d’énergie afin d’identifier les moyens possibles 

et efficaces de s’en servir dans une perspective de politique énergétique du pays. Le dimensionnement optimal 

des systèmes photovoltaïques est très important surtout du point de vue économique. Il permet de concevoir un 

système performant, évitant les pertes de charge trop fréquentes tout en minimisant le coût de l’installation. Il 

s’effectue en utilisant les données de l’irradiation solaire globale du moins le moins ensoleillé. Par conséquent 

il est utile  de procéder à la quantification des données solaires sur le territoire algérien. Tout au long de ce 

travail de thèse, nous essayerons de mettre au point des modèles semi empiriques et physiques pour estimer et 

prédire les données solaires à l’échelle horaire, journalière et mensuelle à partir de données multi sources 

(insolation et irradiation). Cette quantification du gisement solaire se fera pour différentes régions climatiques 

de l’Algérie. Enfin, une cartographie du gisement solaire algérien sera établie. En outre, nous présenterons une 

application  portant sur un dimensionnement des systèmes photovoltaïques à l’échelle horaire. Le 

dimensionnement envisagé est qualifié plus précis que dans le cas où ce dernier est effectué à une échelle 

journalière. 

 
Mots-clés: Quantification, rayonnement solaire, cartographie, modèles stochastiques, réseaux de neurones, 

dimensionnement. 

 

 ملخص

 
 هاته مساحت كبيرة تحت الطاقت الشمسيت. لرلك يعتبر استغلالالجزائر منطقت جد هامت لاستغلال الطاقت الشمسيت وذلك لاحتىائها علً  تعتبر

 الطاقة فً سٌاسة تستخدم فً سٌاق والفعالة التً الوسائل الممكنة وذلك لتحدٌدالطاقة  هذا النوع من لتقدٌر مثل بلدنا لبلدالطاقت مصلحت كبري 

مع تجنب الاقتصادٌة, حٌث أنها تسمح بتصمٌم نظام فعال الاختٌار الامثل والمتكامل للأنظمة الضوئٌة مهم جدا خصوصا من الناحٌة  .البلاد
وساعات السطوع الشمسً. لذلك هنالك خسائر الحمل والتقلٌل من كلفة التركٌب. ٌمكن القٌام بهذا عن طرٌق استخدام بٌانات الاشعاع الشمسً 

. من أجل هذا و من خلال العمل المطروح سنحاول تطوٌر النماذج النظرٌة والفٌزٌائٌة ة كبرى لدراسة الكمٌة لهاته البٌانات فً الجزائراهمٌ
)الاشعاع وساعات السطوع  الشهري بدراسة عدة مصادر متنوعة بٌانات الاشعاع الشمسً  على المستوى الساعً, الٌومً ولتقدٌر وتنبأ 

تطبٌق هاته النماذج واختبارها فً عدة مناطق فً الجزائر. فً نهاٌة هذا العمل سٌتم انشاء خرٌطة حرارٌة وذلك لتقسٌم مناطق  سٌتم. الشمسً(
. النتائج المتحصل علٌها فً تصمٌم الانظمة الضوئٌة بٌنت أن الدراسة على المستوى الساعً تعتبر جد مهمة  فً البلاد الاشعاع الشمسً
  المستوى الٌومً.للنظام مقارنة مع 
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