Sommaire

Reme	rciem	ents							
Dédic	ace								
Somn	naire								
I isto	dos fi	THPAS							
Liste	dos to	bleeuv							
Intro	Introduction générale								
<u>1111 00</u>	ucuo	<u>II generale</u>	01						
Chap	itre I	: La conversion photovoltaïque	04						
IV. 1.	Intro	luction	05						
IV. 2.	Spectr	e solaire	05						
	I.3.1.	Qu'est-ce que la lumière ?	05						
	I.3.2.	Couleur et longueur d'onde	06						
IV. 3.	La co	nversion photovoltaïque	08						
	I.3.1.	Principe de la conversion Photoélectrique	08						
	I.3.2.	Modélisation électrique d'une cellule photovoltaïque	09						
	I.3.3.	Paramètres essentiels caractérisant les cellules photovoltaïques	10						
	a)	Courant de court-circuit	10						
	b)	Tension de circuit-ouvert	10						
	c)	La puissance caractéristique d'une cellule PV	11						
	d)	Facteur de forme	11						
	e)	Rendement de conversion d'énergie	11						
III.1.	Etat d	e l'art en technologies photovoltaïque	12						
	I.4.1.	Première génération	12						
	a)	Silicium monocristallin	12						
	b)	Le silicium polycristallin (multicristallin)	13						
	c)	Silicium en ruban (ribbon) autosupporté	14						
	I.4.2.	Deuxième génération : filière couches minces	15						
	a)	Silicium nanocristallin et amorphe	15						
	b)	Cellules à base de tellurure de cadmium CdTe	16						
	c)	Matériaux à base de séléniure de cuivre indium gallium	16						
	I.4.3.	Troisième génération	16						
	a)	Les cellules multijonctions	16						
	b)	Les cellules nanocristallines à colorant ou cellules de Grätzel	17						
	c)	Cellules organiques	17						
III. 5.	Concl	usion	19						
Référe	nces bi	bliographies du chapitre I	20						

<u>Chap</u>	<u>itre II : Généralité sur les alliages semiconducteurs</u>	21			
II.1.	Introduction	22			
II.2.	Structures cristallines	22			
II.3.	Alliages massifs	25			
II.4.	Classification des alliages semiconducteurs				
II.5.	Détermination de la structure des alliages par EXAFS				
II.6.	Alliages semiconducteurs ordonnés de longue portée				
II.7.	Elasticité dans les alliages				
II.8.	Transport				
II.9.	Conclusion	31			
Référ	Références bibliographies du chapitre II				
<u>Chap</u>	itre III:Application des alliages semiconducteurs en ingénierie de bandes	<u>s</u> 33			
III.1.	Introduction	34			
III.2.	Alliages binaires	34			
	III.2.1. Le silicium germanium (SiGe)	34			
	III.2.2. L'arséniure de gallium (GaAs)	36			
	III.2.3. Le tellurure de cadmium (CdTe)	36			
III.3.	Alliages ternaires	37			
	III.3.1. Antimoniures AlGaSb, GaInSb et AlInSb	37			
	III.3.2. Nitrures pour application photovoltaïque	38			
III.4.	Alliages quaternaires	39			
	III.4.1. Antimoniures AlGaInSb	39			
III.5.	Application des alliages semiconducteurs en photovoltaïque	40			
	III.5.1. Domaine spatial	40			
	III.5.2. Applications militaires	42			
	III.5.3. Habitation isolée	42			
III. 6.	Conclusion	43			
Références bibliographies du chapitre III44					

Chapitre IV:

Modé	lisation de	s couches d'alliages InGaN et SiGe en photovoltaïque	45				
IV. 1.	Introductio	n	46				
IV. 2.	Modélisatio	on des cellules solaires tandem à base de couches d'alliages InGaN	46				
	IV.2. 1.	Objectifs de la modélisation	46				
	IV.2. 2.	Modélisation du dispositif	47				
	IV.2.	2.1 À propos de AMPS-1D	47				
	IV.2.	2.2 Structure des cellules solaires simulées	49				
	IV.2.	2.3 Paramètres de la simulation	50				
	IV.2. 3.	Résultats et Discussions	52				
IV. 3.	Modélisatio	n des cellules solaires à base de couches d'alliages SiGe	54				
	IV.3. 1.	Objectifs de la modélisation	54				
	IV.3. 2.	Modélisation du dispositif	55				
	IV	V.3.2.1 Aperçu du logiciel PC1D					
	IV.3.2.2 Paramètres de la simulation						
	IV.3. 3.	Résultats et Discussions					
	IV.3.3.1 Influence de l'épaisseur et du taux de Ge sur le RQI						
	IV	7.3.3.2 Effet de l'épaisseur sur les performances de la cellule	60				
	IV	7.3.3.3 Effet du taux de Ge sur les paramètres de la cellule	62				
	IV	V.3.3.4 Influence de l'épaisseur, du taux de Ge sur le rendement	64				
III. 4.	Conclusion.		68				
Référe	ences bibliog	raphies du chapitre IV	69				
Conc	lusion géné	érale	71				

Liste des tableaux

- Tableau I-1 : Principales ondes connues avec leurs longueurs d'onde, leurs fréquences et leurs usages.
- Tableau
 I-2 : les différentes technologies photovoltaïques.
- **Tableau II-1 :** Structures cristallines, paramètres du réseau a, c/a, le rapport de liaison γ et las longueurs de liaisons d définies dans le texte pour les semi-conducteurs tétraédrique communs.
- **Tableau II-2 :** Rayons Covalents de Pauling (en Å).
- Tableau III-3 : Paramètres des atomes des cristaux de silicium et de germanium massifs.
- **Tableau VI-1 :** Paramètres du modèle utilisés dans le calcul de la mobilité des porteurs.
- **Tableau IV-2 :** paramètres de simulation des cellules solaires InGaN (SJ, DJ et TJ) à température ambiante (T=300K).
- Tableau IV-3 : Paramètres essentiels d'une cellule solaire à base de SiGe pour h=10 µm et 100 µm.
- Tableau IV-4 : Paramètres essentiels d'une cellule solaire à base de SiGe pour différent taux de germanium.
- **Tableau IV-5:** Résultats des simulations pour un courant de saturation J0=10⁻¹⁰ A/cm2 aux interfaces Si/SiGe, J0=0 A/cm2 aux interfaces Si/Si et J0=10⁻¹²A/cm2 aux interfaces Si/SiGe.

Liste des figures

- Figure I-1 : Décomposition de la lumière blanche par un prisme.
- Figure I-2 : électrique équivalent Schéma d'une cellule en silicium cristallin.
- Figure I-3 : Puissance maximum d'une cellule PV.
- **Figure I-4 :** Principe de croissance par solidification directionnelle du type Polix développé par EDF-PW.
- Figure I-5 : Procédés de production du silicium en ruban.
- Figure I-6 : vue schématique de la composition de la cellule à multijonction.
- Figure I-7 : Cellule souple à base de matériaux organiques (doc. Université de Linz, Autriche).
- Figure II-1 : Positions atomiques dans un cristal (a) zinc blende et (b) wurtzite (Sze, 1981).
- **Figure II-2 :** Spectre de diffraction X des alliages Ga_{1-x}In_xAs (Mikkelsen et Boyce, 1983).
- Figure II-3 : (a)Absorption en fonction de l'énergie du photon du seuil K de Ga à hω =10.37 keV dans le GaAs à 77K. (b) Oscillations EXAFS du seuil K de Ge, X(k), en fonction de k après renvoi de l'absorption arrière. (c) Transformation de Fourier de (b) dans l'espace réel. La fenêtre de transformation est 3.76-18 Å⁻¹, élargi par une Gaussienne d'une épaisseur de 0.7Å⁻¹(Mikkelsen et Boyce, 1983).
- Figure III-1 : Représentation schématique de la structure cristalline d'hétérostructures Si/SiGe.
- **Figure III-2 :** Variation de l'énergie du gap et du couplage spin-orbite en fonction de la composition d'alliage de $Al_{1-x} In_x Sb$.
- **Figure III-3 :** Variation du désaccord de maille des alliages $Al_x Ga_{1-x} Sb$, $Ga_{1-x} In_x Sb$ et $Al_x Ga_{1-x}$ Sb par rapport au substrat GaSb.
- Figure III-4: Variation de l'énergie du gap en fonction de la composition en Al pour des valeurs fixes en In.

- **Figure III-5:** désaccord de maille Al_xGa_{1-x-y}In_ySb /GaSb en fonction de x en Al à des valeurs fixes de y en In.
- **Figure III-6 :** image de l'agence spatiale japonaise (Jaxa), la sonde shizuku pour mission d'observer les modifications de l'environnement sur la terre.
- Figure III-7 : générateur thermoélectrique à radio-isotope utilisé pour alimenter des instruments sur la sonde cassani.
- Figure III-8 : exemple d'un Système d'équipement utilisé pour alimenter des stations isolées.
- Figure IV-1 : Logiciel AMPS 1D utilisé pour simuler les cellules solaires tandem à base de InGaN.
- Figure IV-2 : Structure schématique des cellules solaires InGaN : (a) SJ, (b) DJ, et (c) TJ.
- Figure IV-3 : Rendement (η), densité de courant de court-circuit (Jcc), voltage en circuit-ouvert (Vco) et facteur de forme (FF) des cellules solaires de InGaN, cercle : simple jonction (SJ), carré : double jonctions (DJ), triangle : triple jonction (TJ).
- Figure IV-4 : Coefficient d'absorption de l'alliage $In_xGa_{1-x}N$ en fonction du paramètre stochiométrique *x*.
- Figure IV-5 : Exploitation du spectre solaire AM0 par une photopile Si .
- Figure IV-6 : Coefficient d'absorption optique du silicium et du germanium.
- Figure IV-7 : Schéma de la cellule solaire simulée avec l'alliage Si_{1-x}Ge_x.
- **Figure IV-8 :** Schéma de la cellule simulée avec l'alliage Si_{1-x}Ge_x traité à l'interface.
- **Figure IV-9 :** Influence de l'épaisseur de la couche d'alliage SiGe sur le rendement quantique interne (RQI) de la cellule solaire.
- **Figure IV-10 :** Influence du taux de germanium x sur le rendement quantique interne (RQI) de la cellule solaire.
- **Figure IV-11 :** Influence de l'épaisseur de la couche d'alliage SiGe sur la caractéristique I-V d'une cellule solaire.
- **Figure IV-12:** Évolution de la puissance en fonction du voltage pour deux épaisseurs de cellules à bases de *SiGe*.
- Figure IV-13: Caractéristiques I-V des cellules solaires à base de SiGe pour différents taux de germanium.
- Figure IV-14 : Évolution de la puissance en fonction du voltage pour différents taux de germanium.
- **Figure IV-15 :** Rendement de conversion en fonction de l'épaisseur pour différents taux de germanium (échelle logarithmique).
- Figure IV-16 : Rendement de conversion en fonction de l'épaisseur pour différents taux de germanium (échelle linéaire).
- **Figure IV-17 :** les rendements d'une cellule solaire à base de SiGe traitée à l'interface (échelle logarithmique des longueurs).
- Figure IV-18 : les rendements d'une cellule solaire à base de SiGe traitée à l'interface (échelle linéaire des longueurs).