REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE ABOU BEKR BELKAID-TLEMCEN FACULTE DES SCIENCES DEPARTEMENT DE PHYSIQUE

LABORATOIRE D'ETUDE ET PREDICTION DES MATERIAUX UNITE DE RECHERCHE MATERIAUX ET ENERGIES RENOUVELABLES

THESE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE DE TLEMCEN

Spécialité : Physique de la Matière Condensée et des Semi-conducteurs

Présentée par

M^{elle}. SAIDI Fatiha

La compréhension des mécanismes de formation des verres métalliques au voisinage des états intermétalliques

Soutenue le / / : devant le Jury formé de :

Pr. G.Merad Pr. H.I. Feraoun Pr. T.Sahraoui Pr. T.Grosdidier Pr. H.Aourag Président Examinateur Examinateur Examinateur Directeur de Thèse Université de Tlemcen Université de Tlemcen Université de Blida Université de Metz Université de Tlemcen

Remerciements

Je remercie ALLAH le Tout-puissant de m'avoir donner le courage, la volonté et la patience de mener à terme ce présent travail.

Je remercie tout d'abord ma mère, ma sœur et mes frères qui n'ont ménagé aucun effort pour la réussite de ce travail.

Je remercie aussi **Mr Ghouti MERAD** professeur à l'université de Tlemcen et Directeur du Laboratoire d'Etude et Prédiction des matériaux, de m'avoir accepté au sein de son laboratoire, et qui a bien voulu honorer de sa présence la présidence du jury.

Mes remerciements les plus chaleureux s'adressent à Melle Houda Imane FARAOUN Professeur de l'Université de Tlemcen, Mr Tahar SAHRAOUI Professeur à l'Université de Blida et à Mr Thierry GROSDIDIER Professeur à l'Université de Metz en France d'avoir accepter d'examiner ce travail et de faire partie de ce jury.

Mes remerciements vont aussi à mon Directeur de thèse **Hafid AOURAG** Professeur à l'université de Tlemcen, pour ces conseils qui m'ont été d'une grande utilité et d'une clairvoyance inouïe dans la rédaction de cette thèse.

Au sein du LEPM il me semble indispensable de faire un grand remerciement à mon collègue **Mostafa Kerim BENABADJI** pour son aide dans la simulation et pour sa collaboration bien sympathique dans les calculs ab inito des propriétés mécaniques des phases de Laves.

J'adresse mes remerciements les plus sincères à tout mes collègues et amis pour leur aide précieuse qui m'ont apporté, ainsi qu'à toutes les personnes qui ont contribué de près et de loin au bon déroulement et à la réussite de ce travail. Je dédie cette thèse à ma mère, son amour est pour moi l'un des piliers fondateurs de ce que je suis et de ce que je fais A la mémoire de mon père, à mes frères et ma sœur A ma famille et toutes les personnes qui me sont chères

Yous ne pouvez choisir ni comment mourir, ni quand. Mais vous pouvez décider de comment vous allez vivre. Maintenant.

Joan Baez

Table des matières

Introduction générale	01
-----------------------	----

Chapitre I: Etude bibliographique

I.1. Généralité sur les verres métalliques massifs	06
I.1.1. Généralité sur les verres et la structure amorphe	06
I.1.2. Deux descriptions de la structure des verres métalliques	09
I.1.2.1 Organisation en clusters	09
I.1.2.2 Description statistique du verre	11
I.1.3 Formation d'un verre métallique	11
I.1.3.1 Caractéristiques de l'état vitreux	12
I.1.3.2 Propriétés thermiques et thermodynamiques de l'état vitreux	13
I.1.4 Aspect cinétique de la vitrification	15
I.1.4.1 Aptitude à la vitrification (Glass Forming Ability GFA)	18
I.1.4.1.1 Température de transition vitreuse réduite T _{rg}	19
I.1.5 Les verres métalliques massifs	22
I.1.5.1 Critères de formation	23
I.1.5.2 Critères empiriques de formation	24
I.1.5.3 Eutectiques profonds	24
I.1.5.4 Critères post mortem	20
I.1.6 Propriétés et applications des verres métalliques	28
I.1.6.1 Propriétés des verres métalliques	28
I.1.6.1.1 Propriétés chimiques	28
I.1.6.1.2 Propriétés électriques	28
I.1.6.1.3 Propriétés magnétiques	29
I.1.6.1.4 Propriétés mécaniques des BMG	29
I.1.6.2 Domaines d'application des verres métalliques	30
I.1.7. Références	32
I.2 Généralités sur les phases de Laves	38
I.2.1 Introduction	38
I.2.2 Présentation de phases de Laves	39
I.2.3 Caractéristiques cristallographiques	4(
I.2.3.1 Structure de type $McCu_2(C15)$	4(
I.2.3.2 Structure de type $MgZn_2$ (14)	4
I.2.3.3 Structure de type $MgNi_2$ (C36)	42
I.2.3.4 Structure de type Ce Cu_2	4
I.2.4 Applications	4
I 3 Références	Δ^{\prime}

CHAPITRE II : Les techniques d'exploitation des données

II.1	Introductio	n ne	47 48
	II 3 Les al	po crithmes	49
			ر ب
	II.3.1	Les méthodes non- supervisées	49
	II.3.2	Les méthodes supervisées	49
	II.3.3	Les méthodes de réduction de données	50
	II.4 L'Ana	lyse en Composantes Principales	50
	II.4.1	Introduction	50
	II.4.2 II.4.3	Principe de l'analyse en composantes principales (ACP) Identification du modèle ACP	51 53
	II.4.4	Compression de données	56
	II.4.5	Détermination de la structure du modèle ACP	57
		II.4.5.1 Pourcentage cumulé de la variance totale (PCV)	58
		II.4.5.2 Moyenne des valeurs propres	59
	II.4.6	Conclusion	59
	II.5 La mé	thode des moindres carrées partiels (PLS)	59
	II.5.1	Introduction	59
	II.5.2	Intérêt de la régression PLS	60
	II.5.3	La méthode PLS linéaire	61
		II.5.3.1 Modèle de base	61
		II.5.3.2 La méthode	62
		II.5.3.2.1 Description de la K ^{ieme} étape	62
		II.5.3.2.2 Propriétés des composantes t ₁ ,, t _A	63
		II.5.3.2.3 Le modèle PLS	64
		II.5.3.2.4 Cas particuliers	64
		II.5.3.3 Interprétation du modèle PLS	65
	II.5.4	Choix du nombre de composantes PLS	65
		II.5.4.1 Le "FIT" ou "Critère d'Ajustement"	66
		II.5.4.2 Le "PRESS" ou "Critère de Validation Croisée"	66
		II.5.4.3 "Critère de Validation Externe" et Prédiction	67
	II.5.5	Les algorithmes PLS	67
	II.5.6	Conclusion	68
	II.5.7	Références	69

Chapitre III: Résultats et discussion

Liste des Figures

Chapitre I: Etude bibliographique

Figure [I-1] (a) Diagramme DSC du verre métallique $Pd_{40}Cu_{30}Ni_{10}P_{20}$, (b) Schéma desc					
	de la variation de la chaleur spécifique du cristal, liquide, liquide sous-refroidi				
	et du verre en fonction de la température	07			
Figure [I-2]	2] Comparaison schématique entre la structure cristalline(a) et amorphe(b)				
Figure [I-3]	Structure d'un verre métallique Ni81B19 obtenue par simulation en dynamique				
	moléculaire, montrant des clusters quasi-équivalents	10			
Figure [I-4]	Trois différentes configurations atomiques pour les verres métalliques	11			
Figure [I-5] Diagramme Volume spécifique Température de solidification du					
	liquide	12			
Figure [I-6]	Diagramme DSC d'un verre métallique	14			
Figure [I-7]	Schéma descriptif de la variation de la chaleur spécifique et de l'entropie d'un				
	alliage en fonction de la température	15			
Figure [I-8]	La viscosité en fonction de la température réduite lors de la solidification	16			
Figure [I-9]	La vitesse critique de trempe en fonction du rapport Tg/Tm et T_g/T_1				
Figure [I-10]	Diagramme représentant les vitesses critiques de trempe (RC) et les tailles				
	critiques (dmax) en fonction du rapport (Tg/Tm	21			
Figure [I-11]	Année pour laquelle a été atteint pour la première fois l'épaisseur maximale de				
	différents systèmes et compositions de verres métalliques dans leur état				
	amorphe	23			
Figure [I-12]	Illustration thermodynamique pour un système à 2 constituants	25			
Figure [I-13]	Thermogramme caractéristique d'un verre métallique	26			
Figure [I-14]	Corrélation entre le paramètre γ et la vitesse de trempe critique R_c pour				
	différents verres métalliques	27			
Figure [I-15]	Assemblage électromécanique de barres massives de l'alliage				
	$Zr_{65}Al_{7.5}Ni_{10}Cu_{7.5}Pd_{10}\dots$	28			
Figure [I-16]	Assemblage par procédé électromécanique de deux barres de verre				
	métalliques	30			
Figure [I-17]	Quelques objets commercialement disponibles qui exploitent certaines				
	propriétés attractives des verres métalliques (club de golf, transformateurs,				
	miroir, téléphone, clé USB et montre	31			

Figure [I-18]	Environnement de l'atome A dans les phases de Laves	39
Figure [I-19]	Structure type MgCu ₂	40
Figure [I-20]	Structure type MgZn ₂	41
Figure [I-21]	Structure type MgNi ₂ (C36)	42
Figure [I-22]	Structure type CeCu ₂	43
	Chapitre II. Les techniques d'exploitation des données	
Figure [II-1]	choix d'origine	52
Figure [II-2]	Déroulement d'une analyse en composantes principales	54
	Chapitre III: Résultats et discussions	
Figure [III-1]	Structures cristalline de phases de laves de types AB ₂ [C14 (a), C15 (b) et	
	C36(c)] et la structure orthorhombique CeCu ₂	73
Figure [III-2]	Graphe des observations «Score plot » pour les intermétalliques polaires	75
Figure [III-3]	Graphe des variables « Loading plot » pour les intermétalliques polaires,	
	chaque point correspond à une propriété	77
Figure [III-4]	Graphe de « Biplot » superposant les échantillons et les propriétés	78
Figure [III-5]	Variation de B en fonction de G pour les Phases de Laves calculées	79
Figure [III-6]	Graphe des observations (t_1,t_2) des intermétalliques polaires de type phase de	
	laves	80
Figure [III-7]	VIP pour les quartes premières composantes pour intermétalliques polaires	81
Figure [III-8]	Graphes des résidus et prédictions correspondant au variables B, G, E et	
	<i>B/G</i>	82
Figure [III-9]	Graphes de « Score Plot » pour les verres métalliques massifs de type Cu-Zr-	
	<i>Al</i>	89
Figure [III-10]	Graphes de « Score Plot » pour les verres métalliques massifs de type Zr-Ni-	
	<i>Al.</i>	90
Figure [III-11]	Graphes de « Score Plot » pour les verres métalliques massifs de type Co-B-	
	Si-(Ta-Nb)	90
Figure [III-13]	Graphes de « Score Plot » pour les verres métalliques massifs de type B-Ni-	
	Fe-Si-Ta	91
Figure [III-14]	Graphes de « Score Plot » pour les verres métalliques massifs à base de Ni	
		91
Figure [III-15]	Graphes de « Biplots » pour les BMG à base de Cu	93
Figure [III-16]	Graphes de « Biplots » pour les BMG à base de Al	95

Graphes de « Biplots » pour les BMG à base du Co	96
Graphes de « Biplots » pour les BMG de type B -Ni- Fe-Si- Ta	97
Graphes de « Biplots » pour les BMG à base de Ni	99
Graphes de « Loading plots » pour les différents BMG à base de Cu,Al, Co,	
BNiFeSiTa et à base du Ni respectivement	101
Graphe de « Biplot » pour les BMG à base de RE	102
Graphe de « Biplot » pour les BMG à base de Cu	103
Graphe de « Biplot » pour les BMG à base de Ti	103
Graphe de « Biplot » pour les BMG à base de Fe	104
Graphe de « Biplot » pour les BMG à base de Zr	104
Graphe de « Biplot » pour les BMG à base de Ni	105
Graphe de Biplot pour les BMGs avec grande GFA	108
	Graphes de « Biplots » pour les BMG à base du Co Graphes de « Biplots » pour les BMG de type B -Ni- Fe-Si- Ta Graphes de « Biplots » pour les BMG à base de Ni Graphes de « Loading plots » pour les différents BMG à base de Cu,Al, Co, BNiFeSiTa et à base du Ni respectivement Graphe de « Biplot » pour les BMG à base de RE Graphe de « Biplot » pour les BMG à base de Cu Graphe de « Biplot » pour les BMG à base de Ti Graphe de « Biplot » pour les BMG à base de Ti Graphe de « Biplot » pour les BMG à base de Ti Graphe de « Biplot » pour les BMG à base de Fe Graphe de « Biplot » pour les BMG à base de Fe Graphe de « Biplot » pour les BMG à base de Fe Graphe de « Biplot » pour les BMG à base de Zr Graphe de « Biplot » pour les BMG à base de Ni

Liste des tableaux

Chapitre I : Etude bibliographique			
Tableau [I.1] Liste des familles d'alliages de verres métalliques selon le métal de			
	base avec le diamètre critique supérieur obtenu dans chaque famille		
	et l'année de publication	. 08	
Tableau [I.2]	Données cristallographiques de la structure type MgCu ₂	41	
Tableau [I.3]	Données cristallographiques de la structure type MgZn ₂	42	
Tableau [I.4]	Données cristallographiques de la structure type MgNi ₂	43	
Tableau [I.5]	Données cristallographiques de la structure type CeCu ₂	44	
Chapitre III : Résultats et Discussion			
Tableau [III.1.1]	Base de données de différentes Intermétalliques polaires	74	
Tableau [III.1.2]	Fableau [III.1.2] Matrice des corrélations des intermétalliques polaires		
Tableau [III.1.3]	Tableau [III.1.3] Cosinus carrés des variables (intermétalliques polaires)		
Tableau [III.1.4]	Tableau [III.1.4] Paramètres thermiques T_g , T_x , T_m , T_l , et indicateur du GFA ΔTx ,		
	T_{g}/T_{m} , T_{g}/T_{b} , γ , d_{c} des BMGs de type Cu-Zr-Al	85	
Tableau [III.2.1]	bleau [III.2.1] Paramètres thermiques T_g , T_x , T_m , T_l , et indicateur du GFA ΔTx_s		
	$T_{g'}T_m, T_{g'}T_l, \gamma, d_c des BMGs de type Zr-Ni-Al$	85	
Tableau [III.2.3]	Tableau [III.2.3]Paramètres thermiques T_g , T_x , T_m , T_l , et indicateur du GFA ΔTx ,		
	T_{g}/T_{m} , T_{g}/T_{l} , γ , d_{c} des BMGs de type Co-B-Si-(Ta,Nb)	86	
Tableau [III.2.4]	Paramètres thermiques T_g , T_x , T_m , T_l , et indicateur du GFA ΔTx ,		
	T_{g}/T_{m} , T_{g}/T_{l} , γ , d_{c} des BMGs de type B-Ni-Fe-Si-Ta	87	
Tableau [III.2.5]	Paramètres thermiques T_g , T_x , T_m , T_l , et indicateur du GFA ΔTx ,	du GFA ΔTx ,	
	$T_{g'}T_m, T_{g'}T_l, \gamma, d_c des BMGs à base de Ni \dots$	88	
Tableau [III.2.6]	Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx ,	s thermiques T_g , T_x , T_m , T_b , et indicateurs du GFA ΔTx ,	
	$T_{g'}T_{m}$, $T_{g'}T_{l}$, γ , et d_{c} des BMGs à base de RE	114	
Tableau [III.2.7]	Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx ,		
	$T_{g}/T_{m}, T_{g}/T_{l}, \gamma, et d_{c} des BMGs à base de Cu$	114	

Tableau [III.2.8]	Paramètres thermiques T_{a} , T_{x} , T_{m} , T_{l} , et indicateurs du GFA ΛTx .			
	T/T T/T u at d dag DMC_{2} à base de Ti			
	$I_{g'}I_{m}, I_{g'}I_{b}, \gamma, et a_{c} aes BNIGS a base ae 11$			
Tableau [III.2.9]	Paramètres thermiques T_g , T_x , T_m , T_b , et indicateurs du GFA ΔTx ,			
	$T_g/T_m, T_g/T_l, \gamma, et d_c des BMGs à base de Fe$			
Tableau [III. 2.10]	Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx ,			
	T_g/T_m , T_g/T_b , γ , et d_c des BMGs à base de Zr	118		
Tableau [III.2.11]	Paramètres thermiques T_g , T_x , T_m , T_l , et indicateurs du GFA ΔTx ,			
	T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Ni	119		
Tableau [III.2.12]	Paramètres thermiques T_g , T_x , T_m , T_l , et indicateurs du GFA ΔTx ,			
	T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Mg	120		
Tableau [III.2.13]	Paramètres thermiques T_g , T_x , T_m , T_l , et indicateurs du GFA ΔTx ,			
	T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Pd	121		
Tableau [III.2.14]	Paramètres thermiques T_g , T_x , T_m , T_l , et indicateurs du GFA ΔTx ,			
	T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Ca	121		
Tableau [III.2.15]	Paramètres thermiques T_g , T_x , T_m , T_l , et indicateurs du GFA ΔTx ,			
	T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Hf	122		
Tableau [III.2.16]	Paramètres thermiques T_g , T_x , T_m , T_l , et indicateurs du GFA ΔTx ,			
	T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de La	122		
Tableau [III.2.17]	Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx ,			
	T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de La	124		
Tableau [III.2.18]	Les BMGs avec grande GFAs et leurs paramètres Tg/Tl , ΔTx et d_c			
	tirés à partir des Tableaux 1-5	107		

INTRODUCTION GENERALE

Pour la conception de matériaux, non seulement la création de données par le calcul ou l'expérience est importante, mais la façon d'analyser ces données de manière efficace et complète est également nécessaire. Certains des défis dans la conception de nouveaux matériaux comprennent la difficulté d'analyser de grandes quantités de données, la compréhension des corrélations et tendances entre les différentes propriétés, et l'utilisation de ces corrélations pour concevoir un matériau avec des propriétés désirées.

Cette étude vise à apporter des informations sur les critères de formation de verres métalliques massifs et les propriétés mécaniques des intermétalliques polaires de type phase de laves.

Dans le développement de nouveaux verres métalliques massifs (Bulk metallic Glass :BMG), il est essentiel de quantifier et éventuellement prédire l'aptitude de vitrification (Glass Formig Ability : GFA) d'un alliage multicomposant. De nombreux critères de GFA ont été proposés sur la base des caractéristiques de température mesurées par l'analyse thermique [2-3]. Parmi ces critères, la température de transition vitreuse réduite T_{rg} [1], la région du liquide surfondue ΔT_x et le paramètre γ [4-5] sont les plus largement utilisés, mais il est également connu qu'ils ne reflètent pas toujours les vrais GFA.

L'amorphisation d'un alliage à partir de l'état liquide consiste essentiellement à la suppression de la croissance cinétique de la nucléation à partir de l'état surfondue [6-7]. Une analyse différentielle calorimétrique d'un verre définie quarte températures importantes, la température de transition vitreuse T_g , la température de cristallisation T_x , la température de l'état surfondue [6-7].

De nombreux chercheurs ont tenté d'établir des relations entre les indicateurs de GFA et les températures caractéristiques. Turnbull [9] a montré l'importance de la température de transition vitreuse réduite $T_{rg} = T_g/T_m$ ou $T_{rg} = T_g/T_1$. Une grande valeur de T_{rg} conduirait à une vitesse critique de refroidissement inférieure, et une meilleure GFA. En outre, Lu et al[10] ont montré que le $T_{rg} = T_g/T_1$ est un meilleur indicateur de GFA par rapport à $T_{rg} = T_g/T_m$. Pour la plupart des alliages, la température de transition vitreuse T_g n'est pas sensible aux compositions de l'alliage, tandis que la température de liquidus T_1 change nettement avec le changement des compositions de l'alliage. Ainsi, le paramètre $T_{rg} = T_g/T_1$ présente une forte dépendance avec les compositions de l'alliage et il peut atteindre 0,66 jusqu'a 0,69 pour des BMG_s avec de grandes GFA, e.g. 0,69 pour $Ca_{65}Al_{35}$ [11]. Ce que nous allons confirmer par la suite de notre travail.

La région du liquide surfondue $\Delta T_x = T_x - T_g$ peut aussi indiquer la GFA [12]. Une grande valeur de ΔT_x signifie que la région du liquide surfondue reste stable sur une large gamme de températures sans cristallisation, et aurait une résistance élevée à la nucléation et la croissance de phases cristallines. Puisque la cristallisation est un processus concurrentiel par rapport à la formation du verre, un grand ΔT_x conduirait à une bonne GFA. Cette explication a été confirmée dans plusieurs systèmes d'alliages vitrifiables dans lesquels la région du liquide surfondue corrèle relativement bien avec les GFA_s. La région du liquide surfondu, ΔT_x est également connue pour être liée de façon linéaire au diamètre critique d_c des tiges amorphes [13-14].

Le paramètre $\gamma = T_g/(T_x + T_l)$ a été plus récemment proposé par Lu et Liu [15] montrant des corrélations satisfaisantes avec la GFA pour la plupart des systèmes de verres métalliques et même les verres d'oxydes.

L'évaluation directe de GFA est basée sur la vitesse de refroidissement critique ou la taille critique, dans certaines conditions de refroidissement et pour former l'état complètement vitreux. Le diamètre critique d_c des tiges vitreuses est généralement considéré comme une mesure de GFA.

Dans cette thèse nous tentons d'étudier ces différents paramètres et tirer le meilleur indicateur parmi eux. Cependant, la vitrification se produit prés des états intermétalliques. De ce fait, un calcul des propriétés physiques des intermétalliques s'avéra nécessaire.

Dans la deuxième partie on met l'accent sur une famille particulière de phases intermétalliques, les phases dites phases de Laves. Ces phases, forment le plus grand groupe de composés intermétalliques avec plus de 1400 composés, et possèdent la composition AB₂ idéale. La classe d'un composé intermétallique en tant que phases de Laves est purement basée sur la géométrie de la structure cristalline. Les phases de Laves cristallisent dans les trois types de structure : cubique MgCu₂ (C15), hexagonale MgZn₂ (C14) et hexagonale MgNi₂ (C36) [16-19]. Une structure orthorhombique où existe également un certain nombre de composés intermétalliques AB₂ sont observés, à savoir la structure du type CeCu₂.

Les phases de Laves ont suscité beaucoup d'intérêt dans la recherche fondamentale. En outre, dans la dernière décennie, de nombreux métallurgistes et ingénieurs ont étudié les transitions de phase dans ces matériaux afin d'améliorer les propriétés mécaniques et physiques. Ces composés sont pour la plupart polaires, favorisant une rigidité intrinsèque, et leurs structures plus compactes C14, C16 et C36 leur confèrent une ductilité appréciable qui leurs accordent des propriétés mécaniques très intéressantes faisant de ces matériaux de bons candidats pour une éventuelle application dans le domaine de l'aéronautique.

Un point subsiste toutefois, ces composés subissent souvent des transformations de phases, notamment depuis et vers la structure orthorhombique de type CeCu₂. L'évolution des propriétés mécaniques dans ces composés reste très faiblement étudiée vu qu'elle est coûteuse en temps et en moyen de calcul. Dans cette thèse nous projetons d'étudier les propriétés mécaniques de ces matériaux afin d'identifier des matériaux avec une grande dureté et rigidité et qui possèdent une ductilité appréciables et ceci sans faire de calculs ni expérience.

Le rôle de l'informatique des matériaux est omniprésent dans tous les aspects de la science des matériaux et de l'ingénierie. Les outils mathématiques basés sur les techniques du Datamining fournissent un grand moteur de recherche pour intégrer l'information en science des matériaux et accélérer les calculs et mettre en point la relation structure- propriété de manière robuste et rapide.

En utilisant une analyse multivariable, les données peuvent être examinées de sorte que les tendances et les corrélations deviennent évidentes. En plus, le nombre de propriétés exigées pour expliquer un système peut être réduit à un nombre minimum de sorte que le problème de créer des quantités suffisantes de données et d'analyser ces données soit réduit. L'analyse multivariable présentée ici est basée sur des résultats des propriétés thermiques et mécaniques des verres métalliques massifs et les intermétalliques de type phases de Laves respectivement [1].

Dans cette thèse, nous avons utilisé, les approches du datamining telles que l'analyse en composantes principales (ACP) et la régression (PLS) pour examiner les critères du GFA existants et tirer le meilleur indicateur, et étudier les propriétés mécaniques des intermétalliques polaires pour prédire des matériaux de grande dureté et rigidité. Le manuscrit de cette thèse est divisé en trois grands chapitres :

Le premier chapitre donne une synthèse bibliographique sur les notions générales des verres métalliques massifs et intermétalliques polaires de types phases de Laves, leurs classifications, leurs révolutions, leurs propriétés et performances, et un aperçu sur leurs applications.

Le deuxième chapitre présentera les deux techniques du Datamining, l'analyse en composantes principales (ACP) et la régression PLS (Partial Least Square). Un aperçu sur l'historique, le développement et le principe de ces méthodes est présenté.

Dans le chapitre trois nous présentons, les résultats liés au développement de nouvelles approches du Datamining, l'Analyse en composantes principales (ACP) et la régression (PLS), des techniques informatiques qui ont été appliqué sur les verres métalliques massifs et les intermétalliques polaires de type phase de Laves pour identifier le meilleur indicateur du GFA et prédire des matériaux durs et rigides.

Enfin, une conclusion générale récapitule les principaux résultats obtenus et propose des perspectives de travaux futurs.

Références

[1] Z.P. Lu, C.T. Liu, Glass Formation Criterion for Various Glass-Forming Systems, J. Phys. Rev. Lett. 91 (2003) 115505 (1–4).

[2] M.H. Cohen, D. Turnbull, Composition requirements for glass formation in metallic and ionic systems, J. Nature.189 (1961) 131.

[3] H.S. Chen, D. Turnbull, Thermal evidence of a glass transition in gold-silicon-germanium alloy, J. Chem. Phys, 48 (1968) 2560.

[4] H.S. Chen, D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses, J.Acta Metall. 17 (1969) 1021.

[5] D. Turnbull, Under what condition can a glass be formed, Contemp. Phys. 10 (1969) 473-88.

[6] Z.P.Lu, , Y. Li, S.C, Ng, Glass forming ability of La-Al-Ni-Cu and Pd-Si-Cu bulk glass forming alloys, J. Non-Cryst. Solids . 270 (2000) 103–114.

[7] B.C.Giessen, J. Hong, L. Kadacoff, D.E. Polk, R. Ray, and R. St. Amand. In Proceedings of Third International Conference on Rapidly Quenched Metals (RQIII), ed.

B. Cantor, London.Vol. I (1978) 249-260.

[8] K .Amiya, A. Inoue, Formation, Thermal Stability and Mechanical Properties of Ca-Based Bulk Glassy Alloys, J.Mater. Trans. 43(2002) 81–84.

 [9] A. Inoue, T. Zhang, T. Masumoto, Glass Transition Behavior of an Amorphous Pd₄₈Ni₃₂P₂₀ Alloy Produced by Mechanical Alloying, Mater. Trans. 31 (1990) 148-151.

[10] Y. Li, H. Jones, H.A. Davies, Determination of critical thickness for glass formation in new easy glass forming magnesium-base alloys by the wedge chill casting technique, J. Scr. Metall. Mater. 26 (1992)1371-1375.

[11] Lu Z.P, Liu C.T, A new glass forming ability criterion for bulk metallic glasses, J.Acta Mater. 50(2002) 3510-3512.

[12] L. Ericksson, E. Johansson, N.Kettaneh-wold, S. Wold, Multi and Megavariate Data analysis: principals, Applications, Umetrics Ab, Umea(2001).

[13] C.Suh, A.Rajagopalan, X.Li, and K.rajan, The application of Principal Component Analysis to materials science data, J. Data science Journal. 1(2002) 19-26.

[14] A.Krishnan, L.J. Williams, A.R.McIntosh, H.Abdi, Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review, J.NeuroImage. 56 (2011) 455–475.

[15] H. Zenasni, H. Aourag, S. R. Broderick, K. Rajan, Electronic structure prediction via data-mining the empirical pseudopotential method, J.Phys. Status Solidi B.(2009) 115-121.

[16] X. Nie, S. Lu, K. Wang, T. Chen, C. Niu, Mater. Sci. Eng. 85 (2009) 02.

[17] D.J. Thoma, K.A. Nibur, K.C. Chen, The effect of alloying on the properties of (Nb, Ti)
Cr< sub> 2</sub>< i> C</i> 15 Laves phasesMater. Sci. Eng. A 329 (2002) 408.

[18] H. Xu, X. Nie, Y. Du, S. Lu, K. Wang, Philos. First-principles study of structural and electronic properties of Laves phases structures YM_2 (M = Cu and Zn), Mag. Lett. 8 (2009) 465.

[19] J. Chao, Site preference of early transition metal elements in C15 NbCr2, Acta Mater. 55 (2007) 1599.

CHAPITRE I

ETUDE BIBLIOGRAPHIQUE

Ce chapitre décrit deux grandes familles de matériaux, les verres métalliques massifs et les intermétalliques polaires de type phase de laves.

Dans la première partie, nous allons rappeler l'histoire des verres métalliques massifs, leurs propriétés intéressantes et quelques applications de ces matériaux. Comme tous les autres matériaux amorphes (les polymères, les verres d'oxydes, ...) les verres métalliques possèdent une configuration unique, et donc des propriétés spécifiques, vu l'absence d'ordre à longue distance. Les verres métalliques massifs ont attiré une attention considérable au cours des dernières décennies, car ils ont des propriétés mécaniques élevées, une bonne résistance à la corrosion et une grande aptitude à la mise en forme à une température pas très élevée.

Dans la deuxième partie nous dévirons les phases binaires de Laves AB_2 qui constituent une famille riche de composés intermétalliques. Les phases de Laves présentent de très bonnes propriétés mécaniques en particulier une grande dureté et rigidité d'où l'intérêt de les étudier.

I.1 Généralité sur les verres métalliques massifs

I.1.1 Généralité sur les verres et la structure amorphe

Le verre a toujours été un élément de développement des techniques. Les verres naturels (obsidiennes) étaient jadis utilisés dans la confection des pointes de flèches. Au troisième millénaire avant J.-C., le verre apparaît sous forme d'émail recouvrant des poteries céramiques.

Le verre massif, sous forme de pâte de verre, fait son apparition en Mésopotamie, puis en Égypte. Les verres habituels sont des silicates, à base de silicium et d'oxygène. À la différence des verres d'oxyde classiques constitués de molécules de type SiO_2 , les verres métalliques sont principalement constitués d'atomes d'éléments métalliques.

Comme les verres classiques, les verres métalliques ne possèdent pas d'ordre à longue distance ou de structure cristalline. Leur structure possède un ordre chimique mais sans périodicité à longue distance, c'est à dire au-delà de deux ou trois distances interatomiques. Étant métalliques, ils ne sont pas transparents à la lumière. Si certaines propriétés des verres métalliques ne ressemblent pas beaucoup à celles des verres d'oxyde, elles sont néanmoins très différentes des métaux cristallins.

En général, quand un liquide est refroidi, atomes et molécules s'organisent en occupant des positions déterminées dans une maille, ce qui donne lieu à la formation de cristaux. La configuration des atomes dans le cristal diffère beaucoup de celle du liquide (désordonnée) et une germination doit avoir lieu pour initier la cristallisation. Or, la germination correspond à la création d'interface dont la formation constitue une barrière énergétique. Par contre, lors de la vitrification, les atomes du liquide restent dans un état désordonné avec un ordre chimique et topologique à courte distance.

D'un point de vue structural, les verres, matériaux non-cristallins, sont des substances amorphes aux rayons-X (sans pics de Bragg de diffraction). En outre, ils présentent une transition vitreuse, T_g (définie ultérieurement). Si un matériau non-cristallin présente une telle transition vitreuse, on dira qu'il s'agit d'un verre. Cette définition n'est pas aussi limpide qu'il y paraît, certains matériaux appelés verres ne présentent pas de T_g . C'est le cas de certains verres métalliques où il parvient que la température de cristallisation T_x soit inférieure ou égale à T_g , on ne pourra observer la transition vitreuse qui sera masquée par T_x . Néanmoins, nous admettrons cette dernière définition du verre.

Contrairement aux alliages cristallins, les verres sont dans un état solide thermodynamiquement métastable, puisque, chauffés à des températures relativement basses, un phénomène endothermique se produit. Il correspond à la transition vitreuse à T_g . Il est suivi par la cristallisation du verre (exothermique) à une température T_x puis par la fusion (endothermique) des produits formés lors de la cristallisation. Ces températures de transformation peuvent être observées en soumettant un échantillon de verre à l'analyse thermique différentielle (DSC) dont un diagramme type est présenté dans la figure [I-1] (a) pour le verre métallique $Pd_{40}Cu_{30}Ni_{10}P_{20}$.

Figure [I-1] : (a) Diagramme DSC du verre métallique Pd₄₀Cu₃₀Ni₁₀P₂₀,(b) Schéma descriptif de la variation de la chaleur spécifique du cristal, liquide, liquide sous-refroidi et du verre en fonction de la température.

Cette technique exploite le changement brusque de la chaleur spécifique des verres lors du passage à l'état liquide en absence de cristallisation comme le montre la figure [I-1] (b). Les verres métalliques peuvent être obtenus dans une grande gamme de compositions pour des systèmes d'alliages différents. Le premier verre rapporté est le Au₇₅Si₂₅ qui a été produit par l'hypertrempe du métal liquide [1]. Au début d'étude de verres métalliques, le choix des compositions et les procédures d'élaboration étaient tels que de hauts taux de refroidissement (de l'ordre de 105 à 106 degrés par seconde) étaient nécessaires pour l'obtention de l'état vitreux, à l'exception de quelques rares alliages à base de métaux nobles tels que Pd-Cu-Si [2] et Pd-Ni-P [3]. Durant les vingt dernières années, plusieurs familles d'alliages ont été développées pour lesquelles l'état vitreux est accessible à un taux de refroidissement relativement lent permettant d'augmenter les dimensions de l'échantillon et d'employer le terme de "Verres Métalliques Massifs" VMMs. Ces VMMs ont stimulé l'enthousiasme pour leur exploitation technologique. Le tableau suivant présente, à titre d'exemples, les principales familles d'alliages de verres métalliques en fonction du métal de base, du diamètre critique supérieur obtenu dans chaque famille et de l'année de publication :

Tableau [I.1] : Liste des familles d'alliages de verres métalliques selon le métal de base avec le diamètre critique supérieur obtenu dans chaque famille et l'année de publication

Métal de base	Diamètre critique [mm]	Composition [%at.]	Année	Reference
Al	1	Al ₈₆ Ni ₇ Y ₅ Co ₁ La ₁	2010	[4]
Ca	15	$Ca_{65}Mg_{15}Zn_{20}$	2004	[5]
Со	10	$Co_{48}Cr_{15}Mo_{14}Er_2C_{15}B_6$	2006	[6]
Cu	10	$Cu_{46}Zr_{42}Al_7Y_5$	2004	[7]
Cu		$Cu_{49}Hf_{42}Al_9$	2006	[8]
Fe	16	$Fe_{41}Co_7Cr_{15}Mo_{14}C_{15}B_6Y_2$	2005	[9]
Mg	25	$Mg_{54}Cu_{26.5}Ag_{8.5}Gd_{11}$	2005	[10]
Pd	72	$Pd_{40}Cu_{30}Ni_{10}P_{20}$	1997	[11]
Pt	20	$Pt_{42.5}Cu_{27}Ni_{9.5}P_{21}$	2004	[12]
Ti	14	$Ti_{40}Zr_{25}Cu_{12}Ni_{3}Be_{20}$	2005	[13]
Zr	25	Zr _{41.2} Ti1 _{3.8} Cu _{12.5} Ni ₁₀ Be _{22.5}	1993	[14]
Y	25	$Y_{36}Sc_{20}Al_{24}Co_{20}$	2003	[15]
La	11	$La_{62}Al_{15.7}Cu_{11.15}Ni_{11.15}$	2003	[16]
Au	5	$Au_{49}Ag_{5.5}Pd_{2.3}Cu_{26.9}Si_{16.3}$	2005	[17]

I.1.2 Deux descriptions de la structure des verres métalliques

Contrairement aux matériaux cristallins où les atomes s'arrangent au cours de refroidissement pour occuper des positions déterminées dans une maille et forment ainsi un cristal (voir figure I-2 (a)). Lors de la vitrification (formation de verre) les atomes restent dans un état désordonné, très semblable à un état liquide (voir figure I-2 (b)), avec un ordre chimique et topologique limité à quelques distances atomiques [18].

Figure [I-2] : Comparaison schématique entre la structure cristalline (a) et amorphe (b).

La structure des verres à courte distance n'est pas en réalité aléatoire car l'interaction chimique entre les éléments est déterminante. Il est communément admis actuellement dans la littérature que les verres sont constitués de clusters désorganisés les uns par rapport aux autres.

I.1.2.1 Organisation en clusters

Dès les années 60, Bernal a montré à partir de modélisations qu'un liquide monoatomique s'organise en clusters de forme et de taille variables. Ses calculs, qu'il a corrélés aux fonctions de distribution radiales obtenues par diffraction de rayons X et de neutrons, montrent que le liquide est d'autant plus structuré que la température approche celle du liquidus [19]. La structure du verre étant proche de celle du liquide grâce au refroidissement rapide, il paraît naturel que les alliages vitreux conservent une structuration à courte distance. De plus, la présence de ces groupements atomiques icosaédriques dans le liquide explique l'obstacle à la germination de cristaux lors de l'élaboration d'amorphes. Les clusters sont en effet incompatibles avec la structure d'un cristal et leur fraction augmente lors du refroidissement, principalement entre la température de fusion (T_f) et la température de transition vitreuse (T_g) [20]. Ainsi une composition favorisant la formation et le maintien de ces clusters aura une meilleure aptitude à la vitrification GFA (Glass Forming Ability).

Des simulations en dynamique moléculaire effectuées sur des composés binaires $Ni_{81}B_{19}$ [21] ont permis de corréler les modélisations de la structure en clusters avec des mesures en EXAFS au synchrotron (figure I-3).

Figure [I-3] : Structure d'un verre métallique Ni₈₁B₁₉ obtenue par simulation en dynamique moléculaire, montrant des clusters quasi-équivalents. Les liaisons atomiques Ni-B sont préférées aux liaisons Ni-Ni et B-B, les atomes de bore n'ayant aucun contact entre eux (en violet : B, en vert : Ni). [21].

Le rapport des rayons détermine le nombre d'atomes pouvant entourer l'atome central. La coordinence dans les verres métalliques varie typiquement de 8 à 20. Cela explique l'importance du choix des éléments et des proportions sur la stabilité et la densité des clusters, et donc sur les propriétés du verre. Les clusters ne sont pas identiques entre eux mais peuvent être considérés comme quasi-équivalents pour un matériau donné, en partie parce que leurs dimensions sont similaires. Le modèle des sphères dures ne peut donc pas modéliser correctement les verres à cause des interactions chimiques. Il n'est valable que pour les systèmes monoatomiques ou des systèmes avec des tailles atomiques comparables et un ordre à courte distance négligeable [21].

Ainsi, pour les compositions base-Zr de type métal-métal, la configuration atomique a un ordre à courte distance de type icosaédrique (figure I-4) avec, à longue distance, une configuration atomique aléatoire (sans motif périodique ni même quasi-périodique).

Figure [I-4] : Trois différentes configurations atomiques pour les verres métalliques. [60].

I.1.2.2 Description statistique du verre

Cette structure non ordonnée à longue distance donne une autre particularité aux verres métalliques : la présence d'un volume libre. Ce volume correspond à la différence entre le volume du verre et le volume que le même alliage aurait à l'état de densité maximale d'un verre, qui est un état idéal non atteignable (équation I.1).

$$x = \frac{V - \dot{V^*}}{V^*} \tag{I.1}$$

Où V est le volume du verre et V* le volume à l'état compact.

Ce volume libre a une très grande influence sur la mobilité des atomes dans le verre. Par exemple, une diminution de moins de 1% en volume induit l'accroissement de 5 ordres de grandeur de la viscosité [22].

I.1.3 Formation d'un verre métallique

La formation d'un verre métallique consiste à refroidir le métal fondu à une vitesse suffisamment rapide pour éviter toute cristallisation. La compréhension des aspects thermodynamique et cinétique de la cristallisation est donc essentielle pour comprendre la formation du verre.

I.1.3.1 Caractéristiques de l'état vitreux

Dans la formation de verres, il faut éviter la cristallisation, pour cela il est nécessaire de refroidir le liquide assez rapidement c'est-à-dire avec une vitesse de refroidissement (R_c) minimale qui dépend de la composition. La formation d'un verre devient un problème de stratégie[23].

Considérons le volume spécifique d'un alliage surfondu à l'état liquide. Son état est donné par le point "a" sur le diagramme V(T) de la figure [I-5]. Au cours du refroidissement, le volume diminue progressivement le long du segment "a-b-c" suivant le coefficient de dilatation/contraction thermique de l'état liquide où le point "b" correspond à Tl, température du liquidus. À cette température, une quantité de cristaux est thermodynamiquement en équilibre avec le liquide[24-25].

Figure [I-5] : Diagramme Volume spécifique Température de solidification du métal liquide

Pour une vitesse de refroidissement élevée et une bonne aptitude à l'amorphisation, la cristallisation par la germination homogène se produit si (i) il y a un grand nombre de germes présents dans la masse, combiné avec (ii) une vitesse de croissance cristalline suffisamment grande. Un rétrécissement du volume accompagne généralement la transformation du premier ordre qui est la cristallisation, et les cristaux formés continuent ensuite de refroidir le long de la ligne de contraction du cristal jusqu'au point "e"[26].

Si la cristallisation n'a pas eu lieu en dessous de Tl, principalement à cause d'une vitesse de refroidissement élevée, le liquide se trouve dans l'état hors équilibre dit

"sous-refroidi" le long du segment "b-c-f" qui est l'extrapolation de la ligne "a-b-c" et aucune discontinuité dans le diagramme V-T n'est observée. Avec le refroidissement, les atomes deviennent de moins en moins mobiles et la viscosité du système augmente rapidement. À une température suffisamment basse, les amas d'atomes ne peuvent plus se réarranger assez rapidement pour atteindre le volume spécifique Vl(T) fixé par le coefficient de dilatation/contraction thermique du liquide surfondu [27]. Alors la ligne V(T) fait un départ lisse de "b-c-f" et suit une ligne quasi droite (approximativement parallèle à la droite "d-e") jusqu'au point "g" pour un refroidissement rapide, ou jusqu'à "h" pour un refroidissement relativement lent. La matière dans la partie quasi droite de la ligne Vv(T) correspond à l'état vitreux[28].

La région entre le début de déviation de la courbe du volume spécifique Vl(T) du liquide sous-refroidi et l'achèvement à l'état solide vitreux Vv(T) est celle de la « région de transition vitreuse ». On doit souligner que dans la mesure où la transition vitreuse n'est pas du premier ordre, V(T) ne montre pas de discontinuité au cours du refroidissement et la température fictive en dessous de laquelle la structure du liquide sous-refroidi est gelée en verre est obtenue par l'intersection de l'extrapolation des courbes Vl(T) et Vv(T).

Le début de la région vitreuse dépend de la vitesse de refroidissement. Un refroidissement relativement lent permet à la structure de s'arranger pour que le volume spécifique suive "b-c-f" un peu plus loin, d'où le fait que le verre au point "h" aurait un volume inférieur (une densité atomique plus élevée) et une température fictive inférieure à celle d'un verre refroidi rapidement au point "g"[29].

I.1.3.2 Propriétés thermiques et thermodynamiques de l'état vitreux

Nous avons vu dans le paragraphe précédent que le verre n'est qu'un liquide qui a perdu les degrés de translation de ses constituants et que la transformation du liquide en verre métallique passe par deux températures caractéristiques, la température de fusion T_1 et la température fictive T_f . En revanche, lorsque l'on chauffe un verre métallique à partir de la température ambiante jusqu'à la fusion, un autre comportement est observé [30].

Avec la dilatation thermique pendant le chauffage, le volume spécifique du système évolue suivant la ligne $V_v(T)$ du solide vitreux [31-32]. En fonction de la vitesse de chauffage, cette dilatation du volume permet un réarrangement géométrique et topologique (appelé la « relaxation structurale ») vers un état solide plus stable et qui se manifeste par l'abaissement du volume spécifique pour rejoindre la ligne $V_l(T)$ du liquide sous-refroidi à une certaine « température de transition vitreuse » T_g . Aux $T > T_g$, les atomes retrouvent leur liberté de

translation et le matériau devient visqueux. Avec le démarrage de la cristallisation à Tx, le volume spécifique recommence à baisser vers celui de l'état cristallin ainsi que la mobilité atomique, jusqu'à l'élimination totale de la phase amorphe remplacée par un ou plusieurs réseaux ordonnés. À partir de cette étape, le volume suit de segment "e-d" jusqu'à la fusion (Figure I.5).

Pratiquement, la technique de l'analyse thermique différentielle est utilisée pour examiner les transformations au cours du chauffage. Un phénomène endothermique correspondant à la transition vitreuse se produit à $T_g[33]$. Ce phénomène correspond à une augmentation de la chaleur spécifique $\Delta C_P = C_{Pl} - C_{PV}$ où C_{pl} et C_{pv} sont les chaleurs spécifiques du liquide et du verre respectivement, et la forme exacte de la transition dépend de la vitesse de chauffage [34]. À plus haute température (T_x) intervient un phénomène exothermique qui correspond à la cristallisation (Figure 1.5). L'intervalle en température entre la transition vitreuse à T_g et la cristallisation à T_x est appelé la « région du liquide surfondu » ΔT_x .

Figure [I.6] : Diagramme DSC d'un verre métallique

Pour un alliage amorphe, les valeurs de la température fictive T_f et de la température de transition vitreuse T_g sont fonction de la vitesse de refroidissement et de chauffage respectivement et on peut imaginer qu'elles sont très proches pour la même vitesse dans les sens opposés. Dans la suite de cette thèse, nous allons confondre les deux termes et T_g , la température de transition vitreuse, sera celle qui désignera la transition vitreuse pour les cycles de refroidissement/chauffage.

Lorsque que les cinétiques le permettent, une transition du premier ordre s'effectue à température constante. La cristallisation, comme la fusion, est une transition de phase du

Ch I. Etude bibliographique | 15

premier ordre, traduite par une discontinuité des grandeurs thermodynamiques telles que le volume V, l'entropie S et l'enthalpie H. Par contre, le changement de ces variables est continu à la température de transition vitreuse (changement des pentes à T_g), et ce sont les dérivées des grandeurs thermodynamiques qui subissent une discontinuité à T_g (Figure I-7) [35] telles $1 (\partial V)$

que la dilatation thermique $\propto_{th} = -\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{P'}$, la chaleur spécifique $C_p = T \left(\frac{\partial S}{\partial t}\right)_P = \left(\frac{\partial H}{\partial T}\right)_P$ et la compressibilité $B = -\frac{1}{V} \left(\frac{\partial V}{\partial P}\right)_T$

Figure [I.7] : Schéma descriptif de la variation de la chaleur spécifique et de l'entropie d'un alliage en fonction de la température [35]

La métastabilité est un état rendu stable cinétiquement mais pas thermodynamiquement. L'état vitreux est un exemple de la métastabilité puisqu'à la température ambiante, la transformation vers l'état stable (cristallisation) est pratiquement non observable. À plus hautes températures, la vitesse de transformation de phase est augmentée et le verre se transforme en cristal.

I.1.4 Aspect cinétique de la vitrification

Expérimentalement, le paramètre clef de la formation du verre métallique est la viscosité η ou son inverse, la mobilité atomique. Comme le montre le schéma de la figure [I-8], à l'état liquide, la viscosité d'un métal a des valeurs inférieures à l'unité. Lorsque l'alliage fondu est trempé pour éviter la cristallisation, la viscosité augmente rapidement en dessous de T_{l} .

Figure [1.8] : La viscosité en fonction de la température réduite lors de la solidification

À des températures près de T_g , la configuration atomique devient gelée (accompagné de la baisse d'entropie configurationnelle) à cause de la haute viscosité qui empêche le réarrangement structural. Cette transition vitreuse d'origine cinétique se manifeste par un changement discontinu des pentes de courbes de contraction thermique et une discontinuité de la pente logarithmique de la viscosité $\eta(T)$ dans la figure [I-8]. Les atomes n'ont alors plus le temps de se réarranger, ils restent dans une structure atomique correspondant à celle du liquide figé par la trempe à T_g . Cet état vitreux non-relaxé appelé «verre isoconfigurationnel » correspond à une densité atomique et un taux de défauts et de volume libre caractéristique de son état de liquide sous-refroidi.

La viscosité η et le coefficient de diffusion atomique D(T) sont liés par la relation de Stokes-Einstein $D = \frac{K_BT}{3\pi\eta l}$, où 1 est le diamètre atomique moyen et k_B la constante de Boltzmann. Davies [36] a donné une expression de la fréquence de germination du cristal Iv par unité de volume à l'état stationnaire (pour un temps transitoire de formation du germe négligeable). Dans cette expression la fréquence est le produit d'un terme thermodynamique qui dépend de la probabilité d'une fluctuation pour vaincre la barrière de germination pour atteindre la taille critique et d'un terme cinétique qui dépend de la diffusion atomique (et ainsi de la viscosité) :

$$I_V = \frac{A_V}{\eta(t)} \exp\left(-\frac{\Delta G^*}{K_B T}\right) = A'_V D(T) \exp\left(-\frac{\Delta G^*}{K_B T}\right)$$
(I. 2)

Le paramètre Av est une constante de l'ordre de 1032 Pa.s/(m3.s). En outre, comme dans l'équation (I.2), $\Delta G^* = \frac{16}{3} \pi \sigma_{LC}^3 / (\Delta g(T))^2$ est la barrière de germination pour former un germe sphérique, Δg étant la variation d'énergie libre de Gibbs (par unité de volume cristallisée) et

 $\sigma_{\rm LC}$ l'énergie d'interface entre le liquide et le germe. La dépendance thermique de Δg peut être approchée par une fonction de sous-refroidissement, c.-à-d., $\Delta g(T) \approx \Delta H_f(T_l - T)/T_l$ où ΔH_f est l'enthalpie molaire de fusion.

La viscosité du liquide est communément décrite par une modification de la relation de Vogel-Fulcher-Tamman (VFT) [37],

$$\eta(T) = \eta_0 \exp\left(\frac{\delta T_0}{T - T_0}\right) \tag{I. 3}$$

où δ est le paramètre de fragilité ($1 \le \delta \le 100$), T0 la température de VFT, et η_0 une constante inversement proportionnelle au volume molaire du liquide. Physiquement, T₀ est la température où la viscosité deviendrait infinie. La fragilité décrit le degré de la déviation de la viscosité d'un liquide sous-refroidi à un comportement d'Arrhenius. Un liquide est dit "fragile" pour $\delta < 10$ et "fort" pour $\delta > 20$. Les liquides forts ont une viscosité d'équilibre plus élevée et montrent une variation de type Arrhenius avec la température.

La température du liquidus, la température de VFT et la fragilité influencent considérablement les cinétiques de la germination de phases cristallines. En utilisant les abréviations $T_r=T/T_1$, $Tr_0=T_0/T_1$ (la température de VFT réduite) et $A = 16\pi\sigma^3/(3K_BT_1\Delta H^2)$, le taux de germination homogène du cristal devient :

$$I_{V} = \frac{A_{V}}{\eta_{0}} \exp\left(-\frac{D^{*}T_{r0}}{Tr - T_{r0}}\right) \exp\left(-\frac{A}{T_{r}(1 - T_{r})^{2}}\right)$$
(I. 4)

Le premier terme exponentiel décroît rapidement avec le sous-refroidissement dans la gamme $Tr_0 < T_r < 1$ pendant que le deuxième terme exponentiel croît dans la même gamme. Donc, le taux de germination maximal se produit au sous-refroidissement intermédiaire. D'après l'équation (I. 4), le taux de germination est plus faible pour les valeurs plus élevées de la température de VFT réduite. Turnbull [39], utilisant l'approximation $T_g = T_0$ et la température de transition vitreuse réduite $T_{rg} = T_{0r}$ trouve que la fréquence de la germination homogène devient faible pour $T_{rg} \ge \frac{2}{3}$. Les mesures de la viscosité sur les verres métalliques massifs [38] montrent que la température de VFT est substantiellement plus petite et elle atteint, par exemple pour le $Zr_{41}Ti_{14}Cu_{12}Ni_{10}Be_{23}$ (Vit1), seulement 60% de la température de transition vitreuse. Le paramètre de fragilité est approximativement 20 et la viscosité à T_1 est de l'ordre de 1 Pa.s. Cette valeur est mille fois plus grande que celle des métaux liquides purs. L'application de la théorie de Turnbull aux plus grandes valeurs de δ ($\delta \approx 5$ [39]) montre que la formation du verre métallique peut être accomplie pour $T_{rg} \approx 0.6$. Un comportement type "liquide fort" dans un verre métallique réduit le taux de germination et de croissance des cristaux, et donc contribue grandement à l'aptitude à l'amorphisation.

En résumé, les paramètres importants qui améliorent la formation du verre sont un ratio élevé de la température de transition vitreuse divisée par la température du liquidus, une haute viscosité d'équilibre avec un comportement de liquide fort et un plus grand nombre d'éléments composants qui diffèrent en dimension atomique et structure électronique. Cela nous amène à présenter les différents critères proposés pour l'aptitude à l'amorphisation.

I.1.4.1 Aptitude à la vitrification (Glass Forming Ability GFA)

Nous avons vu que, du point de vue technologique, il est impossible de vitrifier un métal pur. En effet, tous les verres métalliques connus sont constitués de deux ou trois éléments au minimum. Dans les années 1970-2000, deux indicateurs de la GFA étaient couramment utilisés [40, 41] :

 $\Delta T_x (= T_x - T_g)$ et $T_{rg} (= T_g/T_l)$ où T_g est la température de transition vitreuse, T_x celle de cristallisation et T_l celle de fusion (liquidus).

Cependant, avec le développement de nouvelles compositions de verres métalliques, les deux indicateurs montrent des corrélations peu satisfaisantes [42-43]. En observant une variation de volume quasi-nulle lors de la cristallisation des liquides amorphisables, Yavari a démontré l'importance de la grande compacité de l'alliage liquide pour les cinétiques de l'amorphisation : un petit changement de volume lors de la solidification est une propriété générale des alliages ayant une bonne GFA [42-43].

Par ailleurs, Desré [44] a évalué l'influence du nombre de constituants sur la cristallisation en calculant la probabilité d'existence de fluctuations de composition nécessaires pour la germination. La probabilité pour que ces fluctuations se produisent est réduite d'un facteur 10avec l'ajout d'un nouveau constituant.

De son côté, Inoue [45] a proposé trois critères pour la formation d'un verre métallique :

- 4 L'alliage polyconstitué doit être composé d'au moins trois éléments.
- Les principaux éléments doivent avoir une différence de taille atomique au-delà de 12%.
- 4 Les principaux éléments doivent avoir une enthalpie de mélange négative.

Ces critères, Bien qu'ils soient empiriques et basés sur un grand nombre de données expérimentales, peuvent être associés à différents aspects théoriques. Thermodynamiquement, pour avoir une meilleure GFA, il faut que la transformation liquide-cristal possède une énergie libre motrice faiblement négative. Le deuxième principe de la thermodynamique formule cette énergie par $\Delta G(T) = \Delta H(T) - T \cdot \Delta S(T)$, ce qui nécessite une enthalpie de

fusion ΔH faible et une entropie de fusion ΔS élevée. La formule de l'entropie de Boltzmann $S = K_B \ln \Omega_E$, où K_B est la constante de Boltzmann et Ω_E le nombre d'états microscopiques, prouve que la multiplication de constituants de l'alliage fait augmenter le terme entropique et, par conséquent baisse l'énergie libre de transformation en valeur absolue. Par ailleurs, la multiplication de constituants de tailles différentes augmente la compacité de la structure amorphe et diminue le terme enthalpique [42].À son tour, une chaleur de mélange négative produit un ordre chimique à courte distance [46].

La combinaison d'une grande différence de taille atomique et d'une chaleur de mélange négative favorise la formation d'amas (clusters) moins mobiles et donc augmente la viscosité, réduit la diffusivité et enfin facilite la vitrification.

I.1.4.1.1 <u>Température de transition vitreuse réduite T_{rg}</u>

Les alliages métalliques, dont la formation du verre se produit plus facilement, sont ceux qui présentent un ou plusieurs eutectiques profonds, ou une diminution substantielle de l'étape et de liquidus (T_1) avec augmentation du pourcentage de soluté, a un plateau sur lequel T_1 est plus basse en comparaison avec le point de fusion [47].

Bien qu'il existe de nombreuses valeurs de Trg rapportés dans la littérature, elles sont calculées en se basant sur deux équations T_g/T_1 et T_g/T_m . Selon Lu et al. Al. [48] le paramètre T_g/T_1 indique mieux la GFA que celui calculé à partir de T_g/T_m qui présente une faible corrélation avec la GFA, ce que nous allons confirmer par la suite de notre travail.

Dans leur étude, plusieurs verres métalliques massifs à base de Zr, La, Mg, Pd et RE (éléments des terres rares) ont été produit, en utilisant des analyses thermiques leur T_g , T_m (température de solidus) et T_1 (température de liquidus) sont bien déterminées. Par conséquent, lorsque T_{rg} est calculée sur la base de T_g / T_m , ce dernier augmente constamment la vitesse de refroidissement critique qui au début montre une tendance décroissante. Cependant, lorsque T_{rg} est calculé sur la base T_g / T_1 une augmentation du T_{rg} est toujours accompagnée par une diminution de la vitesse critique de refroidissement. Cela provient principalement de la plus grande dépendance de T_1 à la composition tant dit que T_g et T_m sont moins dépendants à la composition. Pour les alliages à base de Mg ce comportement est montré dans la figure [I-9].

Figure [I-9] : La vitesse critique de trempe en fonction du rapport T_g/T_m et T_g/T_1 [48]

Le rapport T_g/T_1 se pose également de l'exigence que la viscosité doit être grande à des températures entre le point de fusion et T_g . La viscosité à T_g étant constante[49], plus le rapport de T_g/T_1 est élevé plus la viscosité sera élevée et donc plus R_c est petit. Les tailles critiques et les vitesses critiques de trempes (R_c) en fonction du rapport T_{rg} (T_g/T_m) sont représentées dans la figure ci dessous [6-12].

Figure [I-10] : Diagramme représentant les vitesses critiques de trempe (R_C) et les tailles critiques (d_{max}) en fonction du rapport (T_g/T_m). En bleu (en bas) sont représentés les verres métalliques possédant les meilleures aptitudes à la vitrification. En vert sont représentés à titre comparatif les verres oxydes, tandis qu'en jaune (en haut) sont représentés les alliages amorphes possédant des aptitudes plus faibles. Diagramme tiré de la réf. [50].

La figure [I-10] présente quelques verres métalliques courants en fonction de leur température réduite de transition vitreuse (T_{g}/T_m où T_g et T_m représente respectivement les températures de transition vitreuse et de fusion). Ce graphique montre la corrélation entre la vitesse critique de trempe, et la taille maximum de l'échantillon qu'il est possible de fabriquer amorphe (à 100 %). Ainsi, les verres métalliques qui ne peuvent être élaborés qu'avec des vitesses de trempe supérieures ou égales à 104-105 K/s, sont obtenus sous forme de rubans d'une épaisseur maximum de quelques dizaines de microns. A l'opposé, les verres métalliques, et plus encore les verres oxydes qui peuvent être trempés avec des cinétiques de refroidissement plus faibles, de l'ordre de 1 K/s et moins, sont obtenus amorphes avec des tailles critiques allant jusqu'à plusieurs centimètres d'épaisseur. Comme le montre la figure, il existe, une multitude de compositions vitrifiables, mais leur aptitude à la vitrification, c'est-à-dire la taille critique ou la vitesse critique de trempe avec laquelle ces alliages peuvent être obtenus amorphes, dépend fortement de la composition. Le lecteur peut constater, que les vitesses critiques de trempe varient de 10-1 à 107 K/s selon l'alliage, ce qui représente une variation de 8 ordres de grandeur entre les alliages facilement vitrifiables et ceux présentant une mauvaise aptitude. De plus, pour un même système, l'aptitude à la vitrification dépend fortement de la fraction molaire des éléments le composant. Ainsi, le binaire *Cu-Zr* ne peut être obtenu amorphe que dans un domaine de compositions peuvent être obtenues sous forme massive (*CuxZr100, x* = 48-66 % atomique [52]). Il est visible de manière générale, que seuls quelques systèmes particuliers peuvent être obtenus amorphes dans un domaine de vitrification.

Il est donc évident qu'il ne suffit pas de tremper un liquide pour obtenir un verre, une méthode prédictive, de présélection et de sélection, pour guider l'expérimentateur dans la conception d'alliages vitrifiables est nécessaire.

I.1.5 Les verres métalliques massifs

<u>Historique:</u>

En 1959, Duwez et Klement ont démontré pour la première fois la possibilité d'obtenir un alliage métallique amorphe par trempe rapide à partir de l'état liquide [53]. Ils ont ainsi obtenu le premier verre métallique à partir d'un alliage binaire Au-Si, d'une épaisseur de 10 mm grâce à une vitesse de refroidissement supérieure à 108 K.s⁻¹. Ces techniques de trempe sur roue ne permettaient alors de produire que des rubans d'épaisseurs très faibles.

Ce n'est que plusieurs années plus tard que des compositions ternaires, à base de palladium (Pd-Si-Ag, Pd-Si-Cu et Pd-Si-Au), ont été développées avec des vitesses critiques de refroidissement < 103 K.s⁻¹ [54]. Le début des années 1990 fut un tournant dans l'élaboration des verres métalliques massifs avec le développement de nombreuses nouvelles compositions. L'équipe d'Akihisa Inoue, de l'université de Tohoku, a largement contribué à la découverte de nombreux systèmes amorphisables, avec entre autres dans l'ordre chronologique : les bases Magnésium [55], les bases Zirconium [56], les bases Fer [57] ou encore les bases Palladium [58]. Pour ces systèmes, les vitesses critiques de trempe ont pu être abaissées à 0,1 K.s⁻¹et cet abaissement a permis d'augmenter considérablement les diamètres critiques maximaux des

échantillons (jusqu'à plusieurs centimètres comme on peut le voir sur la figure [I-11]). En 1992, Johnson et Peker ont développé un verre métallique massif de composition $Zr_{41,2}Ti_{13,8}Cu_{12,5}Ni_{10}Be_{22,5}$, connu sous le nom de «Vitreloy 1», le premier à avoir été commercialisé 1 [59]. Plus récemment de nouvelles compositions ont vu le jour comme les bases Cuivre et Titane (figure I-11).

Figure [I.11] : Année pour laquelle a été atteint pour la première fois l'épaisseur maximale de différents systèmes et compositions de verres métalliques dans leur état amorphe[49].

I.1.5.1 Critères de formation

De nombreuses études empiriques ont été menées dans différents systèmes donnant des verres métalliques afin d'obtenir des verres dans des dimensions de plus en plus importantes et afin de comprendre quels sont les paramètres influents pour l'obtention d'amorphes. La capacité d'un alliage a former un verre (Glass Forming Ability : GFA) peut être donnée par la vitesse critique de refroidissement du liquide permettant d'obtenir une structure amorphe : R_c . Cette vitesse est directement liée au diamètre maximum de phase amorphe que l'on peut obtenir dans une composition : D_c . Cette mesure est habituellement
faite par diffraction de rayons X sur des échantillons obtenus dans des moules de diamètres croissants ou a l'aide d'une lingotière conique.

I.1.5.2 Critères empiriques de formation

De ces études systématiques, un certain nombre de lois empiriques peut être avance dans le but de gêner la cristallisation d'un alliage lors de sa solidification. Inoue en dégage trois [60] :

- ✓ Des systèmes à plusieurs composants, au moins trois
- ✓ Une différence de rayons atomiques d'au moins 12% entre les constituants principaux
- ✓ Une enthalpie de mélange négative entre les constituants principaux

A ces trois règles a longtemps été associe le fait de produire des compositions proches d'eutectiques profonds afin d'obtenir un liquide stable à la plus basse température possible et donc présentant la mobilité atomique la plus faible possible. Mais depuis peu, il a été observé que les compositions les plus intéressantes dans un système donné ne sont pas forcement les plus proches de l'eutectique, suggérant que ce paramètre n'est pas à considérer de façon isolée [61].

I.1.5.3 Eutectiques profonds

Il a été montré expérimentalement que les valeurs de T_g changent lentement avec le contenant de soluté. D'autre part, la température de liquidus (T_l) d'un alliage diminue généralement avec l'augmentation de la teneur du soluté dans la plupart des alliages. Mais, il ya certains diagrammes de phases dans lesquels les courbes de liquidus baisse très fortement avec la teneur en soluté.

Un alliage qui présent une température eutectique qui est sensiblement inférieure du point de fusion des composants individuels est appelé eutectique « Profond ». Dans ce cas, la valeur du T_{rg} (= T_g/T_l) autour de la composition de l'eutectique profond est une forte fonction de la composition de l'alliage et présente la valeur la plus élevée de la composition eutectique. Par conséquent, il devrait être possible de tremper cette composition d'alliage facilement dans l'état vitreux. En revanche, si la température de liquidus d'un alliage diminue lentement avec la teneur en soluté, la valeur T_{rg} à la composition eutectique ne peut pas être élevé[62].

Figure [I-12]: Illustration thermodynamique pour un système à 2 constituants.

Un certain nombre de diagrammes de phases binaires, par exemple (Au-Si, Pt-Si et Fe-B) montrent que la variation de T_1 a une composition similaire avec celle du système Pd-Si. Par conséquent, un alliage à la composition eutectique, en particulier s'il s'agit d'un eutectique profond, sera plus facile à former une phase vitreuse dans un alliage [63].

Ce critère empirique a été le plus utile dans l'identification des compositions vitrifiables dans les systèmes binaires et ternaires dans les premières années de la recherche. Même si ce critère peut également être utilisé pour identifier la composition des alliages pour former des BMGs, il faut savoir que les diagrammes de phase pour des systèmes d'alliages multi composants ne sont pas disponibles. Une façon de surmonter ce manque d'informations est de rechercher la survenance de la réaction eutectique dans les diagrammes de phases des constituants binaires et ternaires. Si des réactions eutectiques se

produisent dans ces systèmes, il est probable (mais pas nécessairement) que ces réactions eutectiques vont ainsi se produire dans les systèmes d'alliages multicomposants.

I.1.5.4 Critères post mortem

A partir du thermo gramme d'un verre métallique mesuré par DSC, il est possible d'extraire un certain nombre de températures caractéristiques. On relève la température de transition vitreuse T_g , la température du premier pic de cristallisation T_x , la température de solidus et de liquidus T_s et T_l (Figure I-13).

Figure [I-13] : Thermogramme caractéristique d'un verre métallique.

A partir de ces températures, plusieurs critères ont été développés afin de quantifier la capacité d'amorphisation du verre obtenu. Néanmoins, le calcul de ces indices de GFA nécessite de pouvoir mesurer les températures, et donc d'être en mesure de produire un verre. Ils n'ont donc aucun caractère prédictif mais permettent de se confronter avec plus ou moins de succès aux valeurs de D_c obtenues.

Un de ces critères le plus utilisé est la température de transition vitreuse réduite $T_{rg}=T_g/T_l$ introduit par Turnbull [64]. Ce paramètre est lié aux taux de germinations homogènes dans un liquide en surfusion et il est classiquement admis que les verres présentant un T_{rg} proche de 2/3 ont une grande capacité à former un verre. Plus T_{rg} est grand, plus T_g est proche de T_l , et donc plus la viscosité du liquide entrant en surfusion est grande.

La cristallisation est ainsi gênée et il est possible d'utiliser des vitesses de trempe plus modestes menant à l'obtention de phase amorphe dans de plus grandes dimensions.

Un deuxième critère très employé est donné par l'étendue de l'intervalle de transition vitreuse $\Delta T = T_x - T_g$. Ce parametre représente qualitativement la capacité d'un verre à résister à la cristallisation. Plus ΔT est grand plus un verre est stable vis-a-vis de la cristallisation aussi bien lorsqu'il est chauffé dans son domaine de transition vitreuse que lors d'une trempe depuis le liquide. La possibilité d'avoir un large ΔT permet aussi de pouvoir travailler aisément dans le domaine de liquide surfondu sans générer de cristallisation dans le verre.

Partant de l'observation que ces deux précédents critères de GFA sont parfois en désaccord en fonction des systèmes étudiés, Lu et al. ont propose récemment un nouveau critère [65]. Le paramètre $\gamma = T_x / (T_g + T_l)$ est introduit en s'appuyant sur le fait qu'un "bon" verre doit à la fois présenter une forte résistance à la dévitrification et une forte résistance à la cristallisation lors de la trempe du liquide surfondu. En analysant les données disponibles dans la littérature sur une large gamme de verres métalliques massifs, ils montrent que leur nouveau paramètre est en accord avec les vitesses critiques de trempe R_c (Figure I-14). Ils montrent aussi que dans certains systèmes leur paramètre est plus apte à décrire fidèlement la capacité d'amorphisation que le T_{rg} ou le ΔT . C'est notamment le cas dans des bases Pd ou du verre Mg₆₅Cu₂₅Gd₁₀ pour lequel le R_c estimé à 1K/s est en accord avec un γ proche de 0.41 selon la Figure [I-14] [66-65].

Figure [I-14]: Corrélation entre le paramètre γ et la vitesse de trempe critique R_c pour différents verres métalliques [65]

I.1.6 Propriétés et applications des verres métalliques

I.1.6.1 Propriétés des verres métalliques

I.1.6.1.1 Propriétés chimiques

La particularité de l'homogénéité chimique et de l'absence des joints de grains dans les alliages métalliques amorphes dote ces alliages d'une résistance élevée à la corrosion. Cette qualité rajoutée à une haute dureté constitue une combinaison de propriétés très intéressantes dans un métal avec des applications potentielles des verres métalliques dans le domaine biomédical [68,69]. Cependant, cette résistance est très influencée par la composition chimique de l'alliage [70, 71].

I.1.6.1.2 Propriétés électriques

La résistivité des matériaux amorphes est plus élevée que celle des matériaux cristallins et plus proche de celle des métaux liquide. À la température ambiante, les valeurs sont généralement de l'ordre de 100-300 $\mu\Omega$.cm [72] (10 $\mu\Omega$.cm pour le fer pur). La résistivité à basse température est également importante.

Le coefficient de température est faible, souvent inférieur à 10–4 K–1. Cela est attribué à la diffusion des électrons de conduction par les atomes dans la structure désordonnée.

Certaines compositions présentent un coefficient de température négatif [73]. L'exploitation de la résistivité importante des verres métalliques permet son assemblage par effet Joule (Figure I-15) sans cristallisation [74]. Ce procédé est prometteur au niveau industriel en permettant la réalisation de formes complexes.

Figure [I-15] : Assemblage électromécanique de barres massives de l'alliage Zr₆₅Al_{7.5}Ni₁₀Cu_{7.5}Pd₁₀ [74]

I.1.6.1.3 Propriétés magnétiques

Un domaine d'application très exploité est celui des propriétés magnétiques des verres métalliques. Généralement, les verres métalliques contenant entre 70 et 90 % de métaux de transition (Fe, Co, et Ni) sont ferromagnétiques doux avec des températures de Curie supérieures à la température ambiante.

En l'absence de réseau cristallin, on peut supposer qu'il n'y a pas d'anisotropie magnétique dans ces alliages amorphes. Cependant, en raison des conditions de préparation, les rubans de ces alliages ont toujours une anisotropie plus ou moins locale. Cette anisotropie peut être réduite par simple traitement thermique, ou orientée par traitement thermique sous champ ou sous contrainte [75, 76]. En l'absence de joints de grains et de précipités et avec une anisotropie magnétique très réduite (des perméabilités élevées), ces matériaux soumis à des champs magnétiques alternatifs produisent des pertes faibles et sont utilisés comme circuits magnétiques dans de nombreuses applications [77]. Ce ferromagnétisme doux fait que ces verres métalliques sont également très utilisés comme capteurs ultrasensibles.

I.1.6.1.4 Propriétés mécaniques des BMG

Les verres métalliques disposent d'une combinaison unique de très haute résistance (presque le double de celle des matériaux cristallins disponibles), de bonne ténacité et une dureté élevée, accompagnée d'une forte élasticité (2%). Bréchet et al [78], dans leurs travaux sur la sélection des matériaux basée sur les indices d'Ashby, ont montré que les verres métalliques réunissent un ensemble de bons indices liés surtout à leur résistance spécifique élevée tel que sy 2/E, sy 2/Er, sy 2/(Ea), sy 2/3/r (sy est la contrainte limite d'élasticité, r est la densité et a est le coefficient de dilatation thermique). Ces indices (ou critères) ont été liés à différents champs d'applications tel que matériaux de ressort, d'optique, d'écriture, matrices, outils et matériaux de découpage etc. [79]. Récemment, Ashby et Greer [80] ont présenté des cartes de sélection des matériaux, rassemblant plus que 1500 types de matériaux y compris les verres métalliques, basées sur différents indices de performance d'Ashby. Ils montrent que les verres métalliques occupent des positions bien distinctes tirées de leurs travaux.

Ceci étant, la présence d'une large région de liquide surfondu dans laquelle la déformation se fait par écoulement visqueux Newtonien facilite la mise en forme des verres métalliques. Ceci constitue un avantage économique car il peut permettre d'éviter le coût associé à l'usinage à des températures bien inférieures à T_f. Cette plage de superplasticité a été également exploitée

pour l'accomplissement de nombreuses applications telles que l'assemblage, la soudure (voir figure I-16)

L'absence de défauts (absence de joints de grains) et l'homogénéité chimique des verres métalliques lui confèrent une bonne résistance à la corrosion.

Figure [I-16] : Assemblage par procédé électromécanique de deux barres de verre métalliques [81].

I.1.6.2 Domaines d'application des verres métalliques

Les verres métalliques sont aujourd'hui utilisés dans de nombreux domaines ; il se trouve cependant qu'ils sont « nés » au départ sans application. En réalité, les applications pour lesquelles ces matériaux sont aujourd'hui utilisés sont apparues a posteriori, au fur et à mesure que des propriétés nouvelles ont été mises en évidence. Ces matériaux sont à vrai dire toujours dans une période d'incubation, puisque toutes leurs propriétés n'ont pas encore été complètement explorées. Certains verres métalliques sont néanmoins, aujourd'hui déjà commercialement exploités (figure I-17) [82].

A titre d'exemples, nous pouvons citer l'utilisation de ces derniers dans la fabrication de clubs de golf, de raquettes de tennis, de battes de baseball, mais aussi de ressorts pour des pistons de soupapes utilisés dans l'industrie automobile. Il est important dans ce type d'applications que le matériau puisse emmagasiner et restituer un maximum d'énergie élastique dans un volume minimal. Un matériau est considéré comme performant si son rapport σ_E^2/E est grand. Dans le cas des verres métalliques, le rapport σ_E^2/E est plus grand que pour les autres matériaux existants.

Les verres métalliques sont aussi exploités pour la fabrication de transformateurs, d'aimants doux, de têtes de lecture pour disques magnétiques, ou d'antivols, car ils présentent des champs coercitifs faibles, des perméabilités fortes, et globalement, de faibles pertes énergétiques durant le cycle aimantation/désaimantation.

Enfin, leur aspect brillant et leur bonne dureté en font d'excellents matériaux pour la fabrication de miroirs de projecteur, ou d'« objets-bijoux » qui nécessitent une bonne qualité de surface et un poli parfait. Nous citerons par exemple leur utilisation dans la fabrication des cadrans de montres, des bijoux, des boîtiers de téléphones portables, ou de clés USB.

Figure [I-17] : Quelques objets commercialement disponibles qui exploitent certaines propriétés attractives des verres métalliques (club de golf, transformateurs, miroir, téléphone, clé USB et montre.

Le lecteur pourra se reporter à la littérature pour de plus amples informations concernant d'autres applications possibles des verres métalliques [83, 84, 85].

Références

[1] Klement, W., R.H. Willens, and P. Duwez, Non-crystalline structure in solidified goldsilicon alloys, Nature. 187(1960) 869-870.

[2] Chen, H.S. and D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses. Acta Materialia, 17(1969) 1021-1031.

[3] Chen, H.S., Thermodynamic considerations on formation and stability of metallic glasses. Acta Metallurgica, 22(1974) 1505-1511.

[4] Yang, B.J., et al., Developing aluminum-based bulk metallic glasses, Philosophical Magazine. 90(2010) 3215-3231.

[5] Park, E.S. and D.H. Kim, Formation of Ca-Mg-Zn bulk glassy alloy by casting into coneshaped copper mold, Journal of Materials Research. 19(2004) 685-688.

[6] Men, H., S.J. Pang, and T. Zhang, Effect of Er doping on glass-forming ability of Co₅₀Cr₁₅Mo₁₄C15B₆ alloy, Journal of Materials Research. 21(2006) 958-961.

[7] Xu, D.H., G. Duan, and W.L. Johnson, Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper, Physical Review Letters. 92(2004) 245-504.

[8] Jia, P., et al., A new Cu-Hf-Al ternary bulk metallic glass with high glass forming ability and ductility, Scripta Materialia. 54(2006) 2165-2168.

[9] Shen, J., et al., Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Applied Physics Letters, 86(2005) 151-907.

[10] Ma, H., et al., Discovering inch-diameter metallic glasses in three-dimensional composition space, Applied Physics Letters. 87(2005) 181-915.

[11] Inoue, A., N. Nishiyama, and H. Kimura, Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter, Materials Transactions Jim. 38(1997) 179-183.

[12] Schroers, J. and W.L. Johnson, Highly processable bulk metallic glass-forming alloys in the Pt- Co-Ni-Cu-P system, Applied Physics Letters. 84(2004) 3666-3668.

[13] Guoa, F.Q., et al., Ductile titanium-based glassy alloy ingots, Applied Physics Letters. 86(2005) 901-907.

[14] Peker, A. and W.L. Johnson, A highly processable metallic glass Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10.0}Be_{22.5}, Applied Physics Letters. 63(1993) 2342-2344.

[15] Guo, F.Q., S.J. Poon, and G.J. Shiflet, Metallic glass ingots based on yttrium, Applied Physics Letters. 83(2003) 2575-2577.

[16] Tan, H., et al., Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni) pseudo ternary system, Acta Materialia. 51(2003) 4551-4561.

[17] Schroers, J., et al., Gold based bulk metallic glass, Applied Physics Letters. 87(2005) 061912.

[18] Elliott S.R 'Physics of Amorphous Materials', Longman Scienti & Technical, Essex 74(1990).

[19] Bernal, J.D., A geometrical approach to the structure of liquids, Nature. 183 (1959) 141-147.

[20] Greer, A.L., Metallic glasses...on the threshold, Materials today. 12 (2009) 14-22.

[21] Sheng H.W., W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Atomic packing and short-tomedium range ordre in metallic glasses, Nature. 439 (2006) 419-425.

[22] Taub, A.I., F. Spaepen, The kinetics of structural relaxation of a metallic glass, Scripta metallurgica. 28 (1980) 1781-1788.

[23] Abraham, F.F., Homogeneous nucleation theory. Academic Press, New York and London, 1974.

[24] Turnbull, D., Formation of crystal nuclei in liquid metals, Journal of Applied Physics. 21(1950) 1022–1028.

[25] Gebert, A., J. Eckert, and L. Schultz, Effect of oxygen on phase formation and thermal stability of slowly cooled Zr₆₅Al_{7.5}Cu_{7.5}Ni₁₀ metallic glass, Acta Materialia. 46(1998) 5475-5482.

[26] Duhamel, C., et al., Influence of fluxing in the preparation of bulk Fe-based glassy alloys, Journal of Alloys and Compounds. 483(2009) 243-246.

[27] Kolmogorov, A.N., A statistical theory for the recrystallization of metals, Akad. nauk SSSR, Izv., Ser. Matem. 1(1937) 355.

[28] Avrami, M., Kinetics of phase change, Journal of chemical physics. 7; 8; 9 (1939; 1940; 1941) 1103; 212; 177.

[29] Davies, H.A., J. Aucote, and J.B. Hull, The kinetics of formation and stabilities of metallic glasses, Scripta Metallurgica. 8(1974) 1179-1189.

[30] Uhlmann, D.R., A kinetic treatment of glass formation, Journal of Non-Crystalline Solids. 7(1972) 337-348.

[31] Loffler, J.F., J. Schroers, and W.L. Johnson, Time-temperature-transformation diagram and microstructures of bulk glass forming $Pd_{40}Cu_{30}Ni_{10}P_{20}$, Applied Physics Letters. 77(2000) 681-683.

[32] Yavari, A.R., P. Hicter, and P. Desre, The effect of fusion volume on the kinetics of formation of metallic glasses by liquid-quenching, Journal De Chimie Physique Et De Physico-Chimie Biologique. 79(1982) 579-582.

[33] Turnbull, D., The undercooling of liquids, Scientific American. 212(1965) 38-46.

[34] Vandenbeukel, A. and J. Sietsma, The glass-transition as a free-volume related kinetic phenomenon, Acta Metallurgica Et Materialia. 38(1990) 383-389.

[35] Clavaguera, N. and M.T. Clavaguera-Mora, Critical cooling rate vs. reduced glass transition: Scaling factors and master curves, Bulk Metallic Glasses. 554(1999) 237-242.

[36] Davies, H.A., The formation of metallic glasses, Phys. Chem. Glasses. 17(1976)159-173.

[37] Angell, C.A., Formation of glasses from liquids and biopolymers, Science. 267(1995) 1924-1935.

[38] Busch, R., E. Bakke, and W.L. Johnson, Viscosity of the supercooled liquid and relaxation at the glass transition of the $Zr_{46.75}Ti_{8.25}Cu_{7.5}Ni_{10}Be_{27.5}$ bulk metallic glass forming alloy, Acta Materialia. 46(1998) 4725-4732.

[39] Chen, H.S. and D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses, Acta Materialia. 17(1969) 1021-1031.

[40] Turnbull, D., Under what conditions can a glass be formed, Contemporary Physics. 10(1969) 473-488.

[41] Davies, H.A. and B.G. Lewis, Generalized kinetic approach to metallic glass formation, Scripta Metallurgica. 9(1975) 1107-1112.

[42] Yavari, A.R., Small volume change on melting as a new criterion for easy formation of metallic glasses, Physics Letters A. 95(1983) 165-168.

[43] Yavari, A.R., J.L. Uriarte, and A. Inoue, Volume effects in amorphisation by rapid solidification and solid state reaction and in bulk glass-forming alloys, Mechanically Alloyed, Metastable and Nanocrystalline Materials. 269(1998) 533-540.

[44] Desre, P.J., On the effect of the number of components on glass-forming ability of alloys from the liquid state: Application to the new generation of multicomponent bulk glasses, Materials Transactions Jim. 38(1997) 583-588.

[45] Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia. 48(2000) 279-306.

[46] Sommer, F., Association model for the description of the thermodynamic functions of liquid alloys, Basic concepts. Zeitschrift Fur Metallkunde. 73(1982) 72-76.

[47] H.A Davies in "Amorphous Metallic Alloys" Edited by F.E. Luborsky, Butterworths Monographs in Materials. 1983.

[48] Z.P. Lu, Y. Li, S.C. Ng, Reduced glass transition temperature and glass forming ability of bulk glass forming alloys, Journal of Non-Crystalline Solids. 270 (2000) 103-114.

[49] F. Jörg Löffer, Intermetallics. 11 (2003) 529-540.

[50] Souza C.A.C., May J.E., Machado A.T., Tachard A.L.R., Bidoia E.D., Preparation of Fe– Cr–P–Co amorphous alloys by electrodeposition, Surface & Coatings Technology. 190 (2005)
75.

[51] Lee S.W., Huh M.Y., Fleury E., Lee J.-C., Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys , Acta Materialia. 54 (2006) 349.

[52] Xu D., Lohwongwatana, B., Duan G., Johnson W.L., Garland C., Acta Materialia. 52 (2004) 2621.

[53] W. Klement, R.H. Willens, and P.O.L. Duwez. Non-crystalline structure in solidified Gold-Silicon alloys, Nature. 187(1960) 869-870,

[54] H.S. Chen. Thermodynamic considerations on formation and stability of metallic glasses, Acta Metallurgica. 22(1974) 1505-1511.

[55] A. Inoue, K. Ohtera, K. Kita, and T. Masumoto. New amorphous Mg-Ce-Ni alloys with high strength and good ductility, Japanese Journal of Applied Physics 2 – Letters. 27 (1988) 2248-2251.

[56] A. Inoue, T. Zhang, and T. Masumoto. Zr-Al-Ni amorphous-alloys with high glass transition temperature and signi_cant supercooled liquid region, Materials Transactions JIM. 31 (1990) 177-183.

[57] A. Inoue, T. Zhang, T. Itoi, and A. Takeuchi. New Fe-Co-Ni-Zr-B amorphous alloys with wide supercooled liquid regions and good soft magnetic properties, Materials Transactions JIM. 38 (, 1997) 359-362.

[58] A. Inoue. Mechanical properties of Zr-based bulk glassy alloys containing nanoscalecompound particles, Intermetallics. 8 (2000) 455-468.

[59] A. Peker and W.L. Johnson. A highly processable metallic-glass Zr_{41:2}Ti_{13:8}Cu_{12:5}Ni₁₀Be_{22:5}, Applied Physics Letters. 63 (1993)2342-2344.

[60] A. Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia. 48 (2000) 279-306.

[61] H. Ma, E. Ma and J. Xu, A new Mg₆₅Cu_{7.5}Ni_{7.5}Zn₅Ag₅Y₁₀ bulk metallic glass with strong glass-forming ability, J. Mater. Res. 10 (2003) 2288-2291.

[62] C. Suryanarayana A. Inoue " bulk metallic glasses" International Standard Book Number-13: 978-1-4200-8597-6 (Ebook-PDF).

[63] Chen, H.S.. The influence of structure on electrical resistivities of Pd–Au– Si and Au-Ge-Si glass forming alloys, Solid State Commun. 33(1980)915–919.

[64] D. Turnbull, Under what conditions can a glass be formed, Contemp. Phys. 10 (1969) 473-488.

[65] Z.P. Lu and C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater. 50 (2002) 3501-3512

[66] Z.P. Lu and C.T. Liu, Comments on "Fabrication of ternary Mg–Cu–Gd bulk metallic glass with high glass-forming ability under air atmosphere, J. Mater. Res. 19 (2003) 427-428.

[67] H. Men and D.H. Kim, Fabrication of ternary Mg–Cu–Gd bulk metallic glass with high glass-forming ability under air atmosphere, J. Mater. Res. 18 (2003) 1502- 1504.

[68] Zhu, S.L., et al., A new Ti-based bulk glassy alloy with potential for biomedical application. Materials Science and Engineering a-Structural Materials Properties, Microstructure and Processing. 459(2007) 233-237.

[69] Lutanie, E., Innovative metallic glass shows promise for bone surgery Biomaterials, Materials Today. 12(2009) 12.

[70] Bhatnagar, A.K., et al., Changes in resistivity behavior of metallic-glass Fe70Ni12B16Si2 due to molybdenum substitution for nickel, Journal of Applied Physics. 76(1994) 6107-6109.

[71] Pardo, A., et al., Influence of chromium additions on corrosion resistance of $Co_{73.5}Si_{13.5}B_9Nb_3Cu_1$ metallic glass in marine environment, British Corrosion Journal. 37(2002) 69-75.

[72] Nagel, S.R., Thermoelectric power and resistivity in a metallic glass, Physical Review Letters. 41(1978) 990-993.

[73] Yong, L., et al., Superconductivity and negative temperature coefficient of the resistivity of bulk metallic glass $Zr_{46.75}Ti_{8.25}Cu_{7.5}Ni_{10}Be_{27.5}$, Acta Physica Sinica. 53(2004) 844-849.

[74] Yavari, A.R., M.F. Oliveira, and F.W.J. Botta, Shaping of bulk metallic glasses by simultaneous application of electrical current and low stress, Mat. Res. Soc. Symp. Proc. 644(2001) 12-20.

[75] Nielsen, O.V. and H.J.V. Nielsen, Magnetic-anisotropy in $Co_{73}Mo_2Si_{15}B_{10}$ and $(Co_{0.89}Fe_{0.11})_{72}Mo_3Si_{15}B_{10}$ metallic glasses, induced by stress-annealing, Journal of Magnetism and Magnetic Materials. 22(1980) 21-24.

[76] Nielsen, O.V., et al., Magnetic-anisotropy in $(Fe,Co)_{75}Si_{15}B_{10}$ and $(Fe_{0.11}Co_{0.89})_{72}Mo_3Si_{15}B_{10}$ metallic-glass ribbons, induced by constant stress and constant strain annealing, Journal of Magnetism and Magnetic Materials. 36(1983) 73-80.

[77] Inoue, A. and N. Nishiyama, New bulk metallic glasses for applications as magneticsensing, chemical, and structural materials, Mrs Bulletin. 32(2007) 651-658.

[78] Bréchet Y, Landru D, Journées Franco-Espagnoles des Nouveaux Matériaux. Grenoble 1997.

[79] Salimon A.I, Ashby M.F., Bréchet Y, Greer A.L, Mater. Sci. Eng. 385 (2004) 375–377.

[80] Kumar G, Desai. A, Bulk metallic glasses: The smaller the better, J;Advanced Materials. 23(2011) 461-476.

[81] Yavari A.R, de Oliveira M.F, Botta F.W. Supercooled Liquid, Bulk Glassy and Nanocrystalline States of Alloys , J, MRS Symp.Proc. 644 (2001) 12-20.

[82] Ashby M.F., Greer A.L., in Viewpoint Set on Mechanical Behavior of Metallic Glasses, Scripta Materialia. 54 (2006) 321.

[83] Inoue A., Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia. 48 (2000) 279.

[84] Inoue A., Takeuchi A., Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys, Materials and Science Engineering. 16 (2004) 375-377.

[85] Wang W.H., Dong C., Shek C.H., Bulk metallic glasses, Materials and Science Engineering . 44 (2004) 45.

I.2.1 Introduction

Lorsque deux éléments A et B sont miscibles en toutes proportions et forment une solution solide continue pour certains domaines de concentration, il peut se former des surstructures. Les composés A₃B, AB, AB₃ sont des exemples de ces nouvelles phases. Le nom de phases intermédiaires est plutôt réservé à celles qui possèdent une structure différente de celle des métaux de base ou des solutions solides terminales. On parle de composé intermétallique lorsque la phase intermédiaire n'existe qu'à l'état ordonné. Ces composés ont un caractère métallique plus ou moins marqué. Leur stabilité dépend de différents facteurs : facteur de valence (ou de concentration électronique), facteur de taille, facteur électrochimique (différence d'électronégativité). La prédominance de ces facteurs permet de classer les phases intermédiaires : phases de Hume Rothery (la structure de certains alliages dépend du nombre d'électrons par atome des composants), phases de Laves, et composés semi-métalliques (composés d'un métal avec un élément des sous-groupes B, ou présence des atomes interstitiels H, B, C, N, O en solution d'insertion dans un métal).

Ces composés présentent des propriétés intéressantes pour de nombreuses applications. Les composés intermétalliques sous forme de particules dispersées dans une matrice métallique (phénomène de précipitation) modifient de façon notable les propriétés de cette matrice. De nombreux alliages sont durcis par précipitation : précipitation des carbures (aciers spéciaux), des composés intermétalliques (alliages légers, aciers à hautes performances). Les eutectiques contrôlés possèdent de remarquables propriétés mécaniques : ce sont des composés intermétalliques sous forme de longues baguettes ou de grandes lamelles, régulièrement disposées parallèlement à une même direction, dans une matrice plus ductile (principe du renforcement par fibres). Les composés à grande maille ont souvent une très grande dureté, accompagnée d'une fragilité très marquée [1].

Les intermétalliques polaires de type phases Laves quant à eux présentent une bonne dureté, la différence d'électronégativité entre les éléments leurs confèrent une bonne rigidité intrinsèque, et l'arrangement atomique compacte est à l'origine d'une ductilité appréciable.

I.2.2 Présentation des phases de Laves

Ces composés intermétalliques ont été découverts par James Friauf en 1927 [2]. Fritz Laves a étudié leur structure d'une manière exhaustive dans les années 30 [3]. Leur appellation dérive donc des noms de ces deux chercheurs : « les phases de Friauf Laves » ou généralement « les phases de Laves ». Ces phases sont caractérisées par un mélange en proportion spécifique de deux éléments métalliques, ce qui les distingue des intermétalliques conventionnels. Elles représentent des structures compactes ordonnées avec comme formule chimique AB₂ pour les composés stœchiométriques et un rapport idéal des rayons $r_A/r_B =$ $(3/2)^{1/2}$. Ces phases cristallisent dans une structure cubique ou hexagonale selon le rapport des rayons atomiques et des concentrations en électrons 5d [4]. Ils existent trois structures type: MgCu₂ (C15), MgZn₂ (C14) ou MgNi₂ (C36) [5-8]. Ces structures sont caractérisées par des polyèdres de coordination identiques pour l'atome A appelés polyèdres de FRIAUF.

Figure [I-18]: Environnement de l'atome A dans les phases de Laves [9]

Les trois structures peuvent être décrites comme un empilement de ces polyèdres ou empilement de couches identiques et décalées selon abcabc pour la structure MgCu₂ (C15) abab pour la structure MgZn₂ (C14) et abacabac pour la structure MgNi₂ (C36) [10]. Ces plans sont parallèles aux plans (111) de la structure cubique (C15) et parallèles aux plans (001) des structures hexagonales (C36, C14). De nombreuses substitutions par des éléments réduisant ou augmentant le volume de maille sont possibles formant ainsi une très grande famille structurale des phases de Laves. Dans ce qui suit sont décrites les trois structures type de phases de Laves.

I.2.3 Caractéristiques cristallographiques

Le polymorphisme rencontré dans la structure des phases de Laves est fascinant. La compréhension de leurs caractéristiques structurales est importante pour l'explication de leurs propriétés physiques. En effet, la différentiation de la structure C14 de C15 provient seulement de la séquence d'empilement compact des sphères atomiques. Ainsi, la transformation d'une structure en une autre est possible pour certaines phases, notamment par voie thermique. Exposons brièvement la structure de ces phases :

I.2.3.1 Structure de type MgCu₂ (C15)

La structure type C15 est cubique à face centrées C.F.C. Il y a 8 motifs AB_2 par maille. Les atomes A occupent les sommets et les centres des faces de la maille formant ainsi un réseau de type diamant. Les atomes B s'arrangent en tétraèdres, joints entre eux par les sommets (Figure [I-19]).

Figure[I-19]: Structure type MgCu₂ [11]

Les positions atomiques sont données dans le tableau [I.2] en description centrosymétrique (l'origine est placée au centre de symétrie c'est-à-dire décalée de 1/8, 1/8, 1/8 par rapport à la figure [I-18]). Pour chaque atome sont donnés la position du site dans la notation de wickoff, les coordonnées atomiques et le taux d'occupation ramené à une unité pour une occupation complète du site.

Structure type : MgCu ₂ (C15)				
Paramètre de la maille : a=b=c= 6,990 Å				
Groupe d'espace : F d -3 m				
Atome	Site	X	У	Z
Α	8a	1/8	1/8	1/8
В	16d	1/2	1/2	1/2

Tableau [I.2]: Données cristallographiques de la structure type MgCu₂

I.2.3.2 Structure de type MgZn₂ (C14)

La structure type C14 forme un réseau hexagonal possédant 4 motifs par maille. Les atomes B s'arrangent en tétraèdres. Ces derniers sont alternativement joints par les bases et par les sommets (Figure [I-20]). Les positions atomiques idéales correspondant à cette structure sont consignées dans le tableau [I.3]).

Figure [1.20]: Structure type MgZn₂ [12]

Structure type : MgZn ₂ (C14) Paramètre de la maille : a=b= 5,2 Å, c= 8,6 Å					
					Groupe d'espace : P6 ₃ /mmc
Atome	Site	X	У	Z	
А	4f	1/3	2/3	1/16	
B1	2a	0	0	0	
B2	6h	-1/6	2/3	1/4	

Tableau [1.3]: Données cristallographiques de la structure type MgZn₂

I.2.3.3 Structure de type MgNi₂ (C36)

Cette structure est une combinaison des deux précédentes. Le réseau est hexagonal avec une maille doublée selon l'axe c par rapport à la structure C14. On retrouve les chaines des tétraèdres qui existent dans la structure C14 mais ces chaines ne sont pas infinies et sont décalées les unes par rapport aux autres, voir Figure [I-21].

Figure [I-21]: Structure type MgNi₂ (C36) [12]

Structure type : MgNi ₂ (C36)					
Paramètre de la maille : a=b= 4,8 Å, c= 15,8 Å Groupe d'espace : P6 ₃ /mmc					
A1	4e	0	0	1/6	
A2	4f	1/3	2/3	-1/6	
B1	4f	1/3	2/3	1/8	
B2	6g	1/2	0	0	
B3	6h	1/6	1/3	1/4	

Tableau [I.4]: Données cristallographiques de la structure type MgNi₂

I.2.3.4 Structure de type CeCu₂

La structure orthorhombique CeCu₂ de groupe spatial Imma peut être considéré comme un empilement compact tridimensionnel. La maille primitive contient deux unités de formule; il y a trois paramètres de position atomique qui ne sont pas fixés par la symétrie (z_{Ce} , y_{Cu} , z_{Cu}).

Les phases de type $CeCu_2$ existent principalement dans les composés où le facteur dominant semble être le grand rapport de rayon atomique r_A/r_B , (exp. CaZn2 : $r_{Ca}/r_{Zn}=1.33$, publiées par J. C. Slater avec une approximation de 0.12Å [13]).

Figure [I-22]: Structure type CeCu₂

Structure type : CeCu ₂ Paramètre de la maille : a=4,43 Å, b= 7,05 Å, c= 7,45 Å					
Atome	Site	X	У	Z	
Ce	4 ^e	0	1/4	0.5377	
Cu	8h	0	0.0510	0.1648	

Tableau [1.5]: Données cristallographiques de la structure type CeCu₂ [14]

I.2.4 Applications

Le champ d'investigation le plus courant actuellement est l'application de ces phases pour le stockage de l'hydrogène [14,15]. Ainsi, ces intermétalliques présentent des caractéristiques cinétiques d'absorption et de désorption relativement favorables.

Autre que le stockage de l'hydrogène, les phases de Laves présentent de très bonnes propriétés mécaniques [16]. Par exemple, des recherches en cours visent sur l'utilisation des couches minces des phases de Laves dans les turbines des métaux des moteurs d'avion, les turbines à gaz, ou les turbines de l'industrie marine (couches de revêtement) afin d'améliorer leur résistance mécanique [17].

Le revêtement se fait sur des superalliages qui sont des matériaux métalliques destinés à des usages à haute température comme les zones chaudes des turbines à gaz ou des turboréacteurs. Ils permettent notamment des gains de rendement en offrant la possibilité à ces systèmes de fonctionner à des températures plus élevées, ainsi qu'en leurs conférant une ductilité appréciable et une rigidité intrinsèque qui est dû à la polarité des liaisons chimiques existantes.

Références

[1] M. Adel F. Al Alam, « Modélisation au sein de la DFT des propriétés des structures électronique et magnétique et de liaison chimique des Hydrures d'Intermétalliques » ; thèse du doctorat soutenue 26 juin 2009.

[2] (a) J. B. Friauf, The crystal structures of two intermetallic compounds, J. Am. Chem. Soc. 49 (1927) 3107; (b) J. B. Friauf, Structural and electronic properties of the Laves phase based on rare earth type BaM_2 (M = Rh, Pd, Pt) ,Phys. Rev. 29 (1927) 34.

[3] F. Laves et H. Witte, Binary Laves phases AB2 is a rich family of intermetallic compounds, Metallwirt. 14 (1935) 645.

[4] R.P. Elliot, W. Rostocker, The occurrence of Laves-type phases, J. Transactions of American Society for Metal 50 (1958) 617.

[5] F. Laves, K. Lohberg, Nachr.Gottinger Akad. Wiss., The Crystal Structure of Intermetallic Compounds with the Formula. AB2, Math. Phys. Kl. IV Neue Folge .16 (1932) 59.

[6] F. Laves, H. Witte, Preparation, phase stability and structure of the C36 Laves phase $Nb_{1-x}Co_{2+x}$. Metallwirt . 14 (1935) 645.

[7] J.B. Friauf, The crystal structures of two intermetallic compounds, Journal of the American Chemical Society 49 (1927) 3107.

[8] J.B. Friauf, Structural and electronic properties of the Laves phase based on rare earth type BaM_2 (M = Rh, Pd, Pt), Physical. Review. 29 (1927) 34.

[9] J.M. Joubert, Thèse de doctorat, Université de Paris Sud (1995).

[10] D.G. Westlake, Application of a geometric model to the hydrides of FeTi, J. Less-Common Met. 90 (1983) 251.

[11] A.E. Dwight, Ferromagnetism in Fe₂Sc with the Hexagonal MgZn₂-Type Structure, Trans. ASM 53. (1961) 479.

[12] J.L.C. Daams, P. Villars, J. H. N. Van Vucht, Atlas of Crystal Structure Types for Intermetallic Phases, ASM International (1991).

[13] J. C. Slater, « *Atomic Radii in Crystals* », Journal of Chemical Physics, 41(1964)3199

[14] K. Young J. Nei T. Ouchi M.A. Fetcenko, Phase abundances in AB_2 metal hydride alloys and their correlations to various, J. Alloys and Compounds. 509 (2011) 2277-2284.

[15] X. Liu, K. Asano, N. Terashita et E. Akiba, Hydrogenation of C14 Laves phase alloy: CaLi ₂, J. Hydrogen Energ. 34 (2009) 1472.

[16] X.-Q. Chen, W. Wolf, R. Podloucky, P. Rogl et M. Marsman, Ab initio study of structural stability, elastic, vibrational, and electronic properties of TiPd, J.Phys. Rev. 72 (2005) 054440.

[17] *S. Milenkovic et M. Palm*, Microstructure and mechanical properties of directionally solidified Fe–Al–Nb eutectic ,Intermetallics . 16 (2008) 1212.

CHAPITRE II

LES TECHNIQUES D'EXPLOITATION DES DONNEES D_{ans} ce chapitre, nous allons présenter les techniques du datamining utilisées pour

l'étude des deux familles de matériaux cités auparavant.

L'Analyse en composante principale(PCA) et la régression (PLS) deux techniques statistiques qui vont être utilisés pour étudier les propriétés mécaniques et thermiques des intermétalliques polaires de type phases de lave et les verres métalliques massifs respectivement.

II.1 Introduction

L'exploitation de données, aussi connue sous le nom fouille de données, datamining (forage de données) ou encore Extraction de Connaissances (ECD en français, KDD en anglais), a pour objet l'extraction d'un savoir ou d'une connaissance à partir de grandes quantités de données, par des méthodes automatiques ou semi- automatiques.

Le Datamining étant un processus d'extraction de connaissances valide et exploitable à partir de volumes de données même de tailles considérables, il a vocation à être utilisé dans un environnement professionnel et se distingue de l'analyse de données et des techniques de la statistique par les point suivants :

✤ Contrairement aux méthodes statistiques, le Datamining ne nécessite jamais que l'on établisse une hypothèse de départ qu'il s'agira de vérifier. C'est à partir des données elles mêmes que se dégageront les corrélations intéressantes, l'algorithme n'étant là que pour les découvrir et non pour les établir. Le Datamining se situe à la croisé des statistiques, de l'intelligence artificielle et des bases de données.

✤ Les connaissances extraites par le Datamining ont vocation à être intégrées dans le schéma organisationnel de l'entreprise ou de l'entité considérée. Le Datamining impose donc d'être capable d'utiliser de manière opérationnelle les résultats des analyses effectuées, souvent dans des détails très courts. Le processus d'analyse doit permettre à l'organisation réactivité très importante.

✤ Les données traitées sont issues des systèmes de stockage en place dans l'organisation et sont ainsi hétérogènes, multiples, plus ou moins structurées. Pour résumer ce sont des données dont la raison d'être n'est a priori pas l'analyse. Cela impose de disposer de systèmes performants de préparation ou de manipulation de données.

Le Datamining se propose donc de transformer en information, en connaissance, de grand volumes de données qui peuvent être stockées de manières diverses dans des bases de données relationnelles ou dans un (ou plusieurs) entrepôt de données, mais qui peuvent aussi être récupérées de sources riches plus ou mois structurées comme Internet, ou encore en temps réel. Lorsque la source n'est pas directement un entrepôt de données, il s'agira très souvent de construire une base de données dédié à l'analyse et aux analystes. Cela suppose bien entendu d'avoir à sa disposition une palette d'outils de gestion de données.

II.2 Principe

Le Datamining est un processus d'analyse dont l'approche est différente de celle utilisée en statistique. Cette dernière présuppose en général que l'on se fixe une hypothèse que les données vont nous permettre ou non de confirmer. Au contraire, Le Datamining adopte une démarche beaucoup plus empirique et essaye ainsi de faire émerger, à partir des données brutes des hypothèses que l'expérimentateur peut ne pas soupçonner, et donc il aura à valider la pertinence.

Le datamining tente alors de réaliser un arbitrage entre validité scientifique, interprétabilité des résultats et facilité d'utilisation.

Plus qu'une théorie normalisée, le datamining est un processus d'extraction de connaissances en suivant les étapes principales suivantes :

- > Formaliser un problème que l'organisation cherche à résoudre en terme de données.
- > Préparer les donnes en vue des traitements et utilisations futur.
- Modéliser les données en leur appliquant des algorithmes d'analyses.
- > Evaluer et valider les connaissances ainsi extraites des analyses.

Bien sur ce processus n'est pas linéaire, il se veut cyclique, le Datamining participant dès lors à une rationalisation avancée du stockage de l'information et des données. Autrement dit, le Datamining ne consiste pas en une succession d'études mais doit bien permettre de capitaliser des connaissances acquises sous forme de connaissances explicites, donc de structurer les contenus nécessaires à l'ingénierie de connaissances. Le Datamining se propose alors d'utiliser un ensemble d'algorithmes issus de disciplines scientifiques diverses (statistiques, intelligence artificielle, base de données) pour construire des modèles à partir de données, c'est-à-dire trouver des schémas « intéressants » (des 'patterns' ou motifs de conception en français) selon des critères fixés au départ, extraire de ces données un maximum de connaissances utiles.

II.3 Les algorithmes

Résoudre une problématique avec un processus de Datamining impose généralement l'utilisation d'un grand nombre de méthodes et algorithmes différents. On peut distinguer 3 grandes familles d'algorithme :

- Les méthodes non- supervisées.
- Les méthodes supervisées.
- Les méthodes de réduction de données.

II.3.1 Les méthodes non- supervisées

Elles permettent de travailler sur un ensemble de données dans lequel aucune des données ou des variables à disposition n'a d'importance particulière par rapport aux autres, c'est-à-dire un ensemble de données dans lequel aucune variable n'est considérée individuellement comme la cible, l'objectif de l'analyse. On les utilise par exemple pour dégager d'un ensemble d'individus des groupes homogènes (typologie), pour réaliser de la compression d'information.

On peut citer quelques techniques disponibles pour ces méthodes :

- Techniques à base de Réseau neurones : réseau de kohonen, le réseaux Hebbienx...
- Techniques utilisées classiquement dans le monde des statistques : classification ascendante hiérarchique, k-means et les nuées dynamiques (Recherche des plus proches voisins), les classifications mixtes (Birch...), les classifications relationnelles...

II.3.2 Les méthodes supervisées

Leur raison d'être est d'expliquer et/ou de prévoir un ou plusieurs phénomènes observables et effectivement mesurés. Concrètement, elles vont s'intéresser à une ou plusieurs variables de la base de données définies comme étant les cibles de l'analyse.

Voici une liste non exhaustive de techniques disponibles :

- Techniques à base d'arbres de décision (arbre de décision).
- Techniques statistiques de Régressions linéaires et non linéaires au sens large : Régression linéaire, Régression linéaire multiple, Régression logistique binaire ou multinomiale, Analyse discriminante linéaire ou quadratique, modèle linéaire généralisé ; régression PLS, régression non paramétriques...
- Techniques à base de Réseaux de neurones : perceptron mono ou multicouche avec ou sans rétropropagation des erreurs, les réseaux à fonction radiales de base.....
- Techniques à base d'algorithme génétique.
- Techniques à base d'Inférence bayésienne (Réseau bayésien).

II.3.3 Les méthodes de réduction de données

Elles permettent de réduire un ensemble de données volumineux à un ensemble de taille plus réduite, épuré ce que l'on considéra comme de l'information non pertinente ou non signifiante, comme du bruit. Elles sont ainsi très souvent, mais pas systématiquement, utilisées en amont des techniques supervisées ou non supervisées. Elles sont notamment très complémentaires des techniques non supervisées classiquement utilisées dans le domaine des statistiques.

- Technique d'Analyse factorielle : analyse en composante principale, analyse factorielle des correspondances, analyse des correspondances multiples, analyses factorielles (maximum de vraisemblable, moindre carrés pondérés, avec ou sans rotation orthogonale ou oblique)....
- Techniques de positionnement : positionnement multidimensionnel.....

II.4 L'Analyse en Composantes Principales

II.4.1 Introduction

L'analyse en composantes principales ("*Principal Component Analysis*"), en abrégé ACP, est une technique descriptive permettant d'étudier les relations qui existent entre les variables, sans tenir compte, a priori, d'une quelconque structure [2-3], son utilisation pour l'exploitation des données remonte au début du siècle dernier. Elle est principalement issue des travaux de psychologues américains [Pearson 1901], [Spearman 1904] [4-12].

L'ACP propose, à partir d'un tableau rectangulaire de données comportant les valeurs de p variables quantitatives pour n unités (appelées aussi individus), des représentations

géométriques de ces unités et de ces variables. Ces données peuvent être issues d'une procédure d'échantillonnage ou bien de l'observation d'une population toute entière. Les représentations des individus permettent de voir s'il existe une structure, non connue a priori, sur cet ensemble d'individus [1]. De façon analogue, les représentations des variables permettent d'étudier les structures de liaisons linéaires sur l'ensemble des variables considérées. Ainsi, on cherchera si l'on peut distinguer des groupes dans l'ensemble des unités en regardant quelles sont les unités qui se ressemblent, celles qui se distinguent des autres, etc. Pour les variables, on cherchera quelles sont celles qui sont très corrélées entre elles, celles qui, au contraire ne sont pas corrélées aux autres, etc.

Le but de l' ACP est d'identifier la structure de dépendance entre des observations multivariables, afin d'obtenir une description ou une représentation compacte de ces dernières. L'idée de base de l'ACP est de réduire la dimension de la matrice des données, en retenant le plus possible les variations présentes dans le jeu des données de départ. Cette réduction ne sera possible que si les variables initiales ne sont pas indépendantes et ont des coefficients de corrélation entre elles non nuls. Ces variables initiales sont transformées en de nouvelles variables, appelés composantes principales. Elles sont obtenues par combinaisons linéaires des précédentes et sont ordonnées et non corrélées entre elles [4].

L'analyse en composantes principales cherche à identifier les vecteurs propres orthonormaux et les valeurs propres de la matrice de dispersion des variables originelles. Les vecteurs propres orthonormaux sont utilisés pour construire les composantes principales et les valeurs propres sont les variances des composantes principales correspondantes [2].

II.4.2 Principe de l'analyse en composantes principales (ACP)

Dans le cadre de cette thèse, nous aborderons l'ACP comme une technique de réduction des données et d'identification de la structure de dépendance corrélative d'une distribution multidimensionnelle de données, dans l'optique d'une représentation compacte de celle -ci.

Du point de vue géométrique l' ACP consiste à effectuer une certaine rotation du repère des variables autour de leurs valeurs moyennes. Cette rotation transforme les n variables corrélées en ℓ variables non corrélées. Notons que ce sont justement ces variables transformées que l'on a nommé les composantes principales [6].

Choix d'origine:

Figure [II-1]: choix d'origine

Le point o correspondant au vecteur de coordonnées toutes nulles n'est pas forcément une origine satisfaisante, car si les coordonnées des points du nuage des individus sont grandes, le nuage est éloigné de cette origine. Il apparaît plus judicieux de choisir une origine liée au nuage lui-même : le centre de gravité du nuage (Fig II-1) [6-7].

Pour l'ACP on choisit de donner le même poids à tous les individus. Le centre de gravité G du nuage des individus est alors le point dont les coordonnées sont les valeurs moyennes des variables [7].

En effet, lorsqu'il existe des corrélations entre les *m* variables descriptives d'une distribution de données, la dimension *m* de l'espace des données excède le nombre ℓ de variables caractéristiques réellement nécessaires pour décrire ces données. En statistique, *m* est appelée dimension superficielle des données tandis que ℓ désigne leur dimension intrinsèque. Plus fortes sont les corrélations entre variables descriptives des données, plus petit est le nombre de variables caractéristiques utiles à leur représentation.

Suivant ces observations, les *m* variables descriptives apparaissent comme des fonctions des ℓ variables caractéristiques, encore appelées variables latentes ou facteurs. L'ACP traditionnelle vise à identifier ces fonctions par une transformation linéaire. Cette transformation est déterminée de telle sorte que la distribution des données puisse être décrite à partir d'un nombre réduit de variables caractéristiques. En d'autres termes, la transformation

est destinée à réduire la dimension de représentation des données tout en préservant au mieux l'information qu'elles véhiculent [8].

Considérons un vecteur de données aléatoire $\mathbf{x}=[\mathbf{x}_1,...,\mathbf{x}_m]^T \in \mathfrak{R}^m$ à moyenne nulle et à matrice de covariance ou d'auto-corrélation :

$$\Sigma = \frac{1}{m-1} x \cdot x^T \in \mathfrak{R}^{m \times m}$$
(II.1)

En analyse en composantes principales, un vecteur caractéristique $\mathbf{t} \in \mathfrak{R}^{\ell}$ ($\ell \leq m$) est associé à chaque vecteur de données \mathbf{x} dont il optimise la représentation au sens de la minimisation de l'erreur d'estimation de \mathbf{x} ou la maximisation de la variance de t. Les vecteurs \mathbf{t} et \mathbf{x} sont liés par une transformation linéaire $\mathbf{t} = P^T \cdot \mathbf{x}$, où la matrice de transformation $P \in \mathfrak{R}^{m \times \ell}$ vérifie la condition d'orthogonalité $P \cdot P^T = I_{\ell}$. Les colonnes de la matrice P forment les vecteurs de base orthonormés d'un sous-espace \mathfrak{R}^n de représentation réduite des données. La transformation linéaire s'apparente ainsi à une transformation de projection de l'espace des données à m dimensions vers un sous-espace orthogonal à ℓ dimensions [9].

Les composantes t_j , avec $(j=1,..., \ell)$ du vecteur caractéristique **t** représentent les composantes projetées du vecteur de données **x** dans ce sous-espace.

Au sens de l'ACP, la projection P est optimale si l'erreur quadratique d'estimation des vecteurs de données \mathbf{x} est minimale. Ainsi, la minimisation de l'erreur quadratique d'estimation de \mathbf{x} est équivalente à la maximisation de la variance des projections t_j des données [7-8].

Le problème de l'ACP, considéré sous l'angle de la maximisation de la variance de projection des données, est celui de la détermination des vecteurs propres de la matrice de covariance Σ .

II.4.3 Identification du modèle ACP

Soit x (k) = $[x_1, \ldots, x_m]^T$ un vecteur d'observations de *m* variables aléatoires. On notera \bar{x} le vecteur correspondant à la moyenne des observations de **x** et Σ la matrice de covariance de ces m observations. L'estimation des paramètres du modèle ACP se résume en une estimation des valeurs et vecteurs propres de la matrice de covariance Σ . Puisque la matrice de covariance Σ est carrée de dimension $m \times m$ et symétrique, on peut, selon l'algèbre linéaire, vérifier une relation de type :

$$P^{T}\Sigma P = L \tag{II.2}$$

Où L est une matrice diagonale et P est une matrice orthonormale [9]. Les éléments diagonaux de L = { $\lambda_1, \ldots, \lambda_m$ } sont les valeurs propres de la matrice de covariance Σ alors que les vecteurs colonnes de $P = [p_1, p_2, \ldots, p_m]$ sont les vecteurs propres de Σ .

Les valeurs propres λ_i peuvent être obtenues par la solution de l'équation caractéristique

$$Det\left(\Sigma - \lambda \cdot I\right) = 0 \tag{II.3}$$

Où Det (.) est le déterminant d'une matrice carrée.

Pour les *m* valeurs propres. Connaissant les valeurs propres λ_i , on peut déduire les vecteurs propres de la matrice de covariance par la solution de :

$$(\Sigma - \lambda_i I) P_i = 0 \tag{II.4}$$

Nous pouvons alors écrire :

$$\sum p_i = p_i \lambda_i , i = 1, \dots, m$$
 (II.5)

Les *m* vecteurs propres unitaires p_i de la matrice de covariance Σ représentent les *m* directions orthogonales de l'espace des données suivant lesquelles les variances des projections t_i des données sont maximales (fig II.1).

Figure [II-2] : Déroulement d'une analyse en composantes principales. (a) Distribution d'entrée. (b) Centrage et réduction de cette distribution. (c) Les deux axes principaux, correspondant aux vecteurs propres de la matrice de covariance de la distribution [8].

Dans cet espace engendré par les vecteurs propres, les composantes principales t_i du vecteur de données x sont définies par :

$$t_i = p_i^T x = x^T p i \tag{II.6}$$

Celles-ci sont dénommées composantes principales et sont statistiquement non corrélées.

La transposition matricielle des relations de projection de type (II.6) fournit l'expression analytique de l'analyse en composantes principales du vecteur de données **x** :

$$t = P^T x \tag{II.7}$$

où P^T représente la matrice de projection optimale des données au sens de l'analyse en composantes principales [7-9].

Les nouvelles variables t_i ont évidemment une moyenne nulle et elles possèdent une variance donnée par λ_i (valeur propre de Σ).

Les vecteurs de colonnes p_i de **P** sont orthonormaux car ils sont orthogonaux et de modules unitaires $||p||^2 = p^T \cdot p = 1$ (fig II-1). Donc, si l'on utilise ces vecteurs pour obtenir les composantes principales, tel que montré à l'équation (II.6), on obtiendra des composantes principales qui ne seront pas corrélées et de variances égales aux valeurs propres de la matrice de covariance Σ .

Enfin, nous soulignons que l'on peut avoir une mesure de variabilité expliquée par chacune des composantes principales en utilisant les vecteurs transformés selon [10] :

$$\operatorname{var}\{t_i\} = p_i^T \sum p_i = \lambda_i, i = 1, \dots, m$$
(II.8)

L'équation (II.8) révèle que les valeurs propres de la matrice de covariance Σ représentent les variances des projections t_i des données sur les directions représentées par les vecteurs propres p_i (i = 1, ..., m) et peuvent être utilisées pour indiquer le pourcentage de la variabilité des caractéristiques représentées par chacune des composantes principales.

En conclusion, la direction suivant laquelle la variance de la projection du vecteur de données x est maximale, est représentée par le vecteur propre p_i correspondant à la valeur propre maximale λ_i . Le second axe factoriel rend la variance maximale tout en étant orthogonal au premier. De façon plus générale [11], le sous-espace vectoriel de dimension ℓ qui assure une dispersion maximale des observations est défini par une base orthonormée

formée des ℓ vecteurs propres correspondant aux ℓ plus grandes valeurs propres de la matrice Σ .

II.4.4 Compression de données

L'intérêt pratique de l'analyse en composantes principales réside dans la réduction de dimension de représentation de données ou plus simplement la compression de données. En effet, cette technique permet de caractériser les directions orthogonales d'un espace de données porteuses du maximum d'information au sens de la maximisation des variances de projections. L'amplitude des valeurs propres de la matrice de covariance Σ des données quantifie pour chacune de ces directions la quantité d'information encodée [12].

Dénotons par λ_1 , ..., λ_m les *m* valeurs propres non négatives de la matrice de covariance Σ vérifiant $\lambda_1 > \lambda_2 > ... > \lambda_m$. La direction de l'espace des données matérialisée par le vecteur propre p_1 associé à la plus grande valeur propre λ_1 est la plus riche d'information. Inversement, la direction de vecteur propre directeur p_m associé à la plus petite valeur propre λ_m est celle qui présente le minimum d'information [8].

Rappelons que tout vecteur de données x peut être représenté par la combinaison linéaire des *m* vecteurs propres *pi* (*i* = 1, . . ., *m*) de la matrice de covariance Σ , pondérés par les composantes principales $t_i = p_i^T x$. L'estimation d'un vecteur de données **x** à partir de son vecteur de composantes principales associé **t** est triviale. Il suffit pour cela de multiplier à droite chacun des membres de l'équation (II.7) par *P*, il en découle :

$$X = Pt = \sum_{i=1}^{m} t_i p_i$$
(II.9)

Il est donc possible de réduire la dimension de la représentation des données en ne retenant de l'expansion (II.9) que les termes $t_j p_j$ ($j=1,..., \ell$) associés aux ℓ (< m) plus grandes valeurs propres λ_j . L'estimation \hat{x} d'un vecteur de données x est alors décrite par l'expression réduite [13] :

$$\widehat{x} = \sum_{j=1}^{\ell} t_j p_j = \sum_{j=1}^{\ell} (p_j^T x) p_j$$
(II.10)

Les données sont ainsi encodées par l'intermédiaire des ℓ composantes principales t_1, \ldots, t_{ℓ} présentant les plus fortes variances, en comparaison des *m* valeurs descriptives x_1, \ldots, x_m initialement requises.

▷ **Remarque :** les valeurs propres n'interviennent pas directement dans la représentation réduite des données. Leur utilité se limite à la sélection des ℓ composantes principales pertinentes dont elles reflètent les variances respectives.

La perte d'information induite par la réduction de dimension de représentation de chaque vecteur de données \mathbf{x} est mesurée par la différence \mathbf{e} entre ses représentations exactes (II.9) et approchée (II.10) :

$$e = x - \hat{x} = \sum_{i=\ell+1}^{m} t_i p_i \tag{II.11}$$

Les $(m - \ell)$ composantes principales t_i $(i = \ell + 1, ..., m)$ à partir desquelles l'erreur de reconstruction **e** d'un vecteur de données est évaluée, sont associées aux plus faibles valeurs propres. Il est par conséquence bien évident que la compression des données préserve d'autant mieux l'information qu'elles véhiculent que ces valeurs propres sont de faibles valeurs. La somme des $m - \ell$ valeurs propres minimales quantifie par ailleurs la perte d'information quadratique évaluée en moyenne sur l'ensemble des données.

$$\varepsilon \left[e^{T} e \right] = \sum_{i=\ell+1}^{m} Var \left[t_{i} \right]$$
(II.12)

Les ℓ vecteurs propres p_1, \ldots, p_{ℓ} intervenant dans la réduction de dimension de représentation des données sont dénommés vecteurs principaux. Ils caractérisent le sous-espace de projection optimale des données qualifié de sous-espace principal [1-7].

II.4.5 Détermination de la structure du modèle ACP

L'analyse en composantes principales recherche une approximation de la matrice initiale des données X par une matrice de rang inférieur issue d'une décomposition en valeurs singulières. La question qui se pose alors, et qui a été largement débattue dans la littérature, concerne le choix du nombre de composantes principales qui doit être retenu. De nombreuses règles sont proposées pour déterminer le nombre de composantes à retenir, [14-15-16], La plupart de ces méthodes sont heuristiques et donnent un nombre de composantes subjectif.

Toutefois, dans le cadre de l'application de l'ACP à la réduction des échantillons, le nombre de composantes a un impact significatif sur la phase finale de classification. Si peu de composantes sont utilisées, on risque de perdre des informations contenues dans les données de départ en projetant certaines échantillons dans le sous-espace des résidus et donc avoir des erreurs de modélisation, ce qui provoque une mauvaise caractérisation. Si par contre beaucoup de composantes sont utilisées, il y a risque d'avoir des composantes retenues (les composantes correspondantes aux valeurs propres les plus faibles parmi celles retenues dans le modèle) qui sont porteuses de redondance, ce qui est indésirable.

Dans leurs travaux de recherche, Qin et al [17] ont proposé une technique basée sur la variance de l'erreur de reconstruction des mesures, ce critère permet de prendre en compte la notion de redondance entre les variables.

On retrouve dans la littérature plusieurs critères utilisant différentes techniques pour la détermination du nombre de composantes principales, nous allons présenter deux critères heuristiques utilisés pour la réduction de dimension.

II.4.5.1 Pourcentage cumulé de la variance totale (PCV)

L'idée de base de cette approche est que chaque composante principale est représentative d'une portion de la variance des mesures de l'information étudiée. Les valeurs propres de la matrice de corrélation sont des mesures de cette variance et peuvent donc être utilisées dans la sélection du nombre de composantes principales [14]. Pour le choix de ℓ , il faut choisir le pourcentage de la variance totale qu'on veut conserver. Le nombre de composantes est alors le plus petit nombre pris de telle sorte que ce pourcentage soit atteint ou dépassé, les composantes sont choisies successivement dans l'ordre des variances décroissantes. Le pourcentage de variance expliquée par les ℓ premières composantes est donné par :

$$PVC(\ell) = 100 \left(\frac{\sum_{j=1}^{\ell} \lambda_j}{\sum_{j=1}^{m} \lambda_j} \right) \%$$
(II.13)

La variance du bruit étant inconnue a priori, la décision est basée seulement sur le pourcentage de la variance expliquée est un peu arbitraire. Sa capacité à fournir le nombre correct de composantes principales dépendra fortement du rapport signal sur bruit.
II.4.5.2 Moyenne des valeurs propres

Cette règle consiste à ne prendre en considération que les composantes pour lesquelles la valeur propre est supérieure à la moyenne arithmétique de toutes les valeurs propres [15]. En particulier, si on travaille sur les données centrées réduites, cela revient à négliger les composantes dont la variance est inférieure à l'unité $\left(\frac{1}{m} trace(\Sigma) = 1\right)$.

Dans le cas du modèle ACP calculé à partir de la matrice de covariance Σ , la moyenne arithmétique des valeurs propres est donnée par $\frac{1}{m}$ trace (Σ).

II.4.6 Conclusion:

Dans ce chapitre nous avons présenté le principe de l'analyse en composantes principales. L'idée de base de l'ACP est de réduire la dimension de la matrice des données, en retenant le plus possible les variations présentes dans le jeu de données de départ. Cette réduction ne sera possible que si les variables initiales ne sont pas indépendantes et ont des coefficients de corrélation entre elles non nuls. Ces variables initiales sont transformées en de nouvelles variables, appelées composantes principales. Elles sont obtenues par combinaisons linéaires des précédentes et sont ordonnées et non corrélées entre elles [1-7-8].

II.5 La méthode des moindres carrées partiels (PLS)

II.5.1 Introduction

De nombreux problèmes industriels peuvent être décrit sous la forme d'un système à entrées-sorties ou on peut plus ou moins agir sur les variables d'entrée X d'un système et on observe les variables de sorties Y. La régression PLS (*Partial Least Squares Regression*) est une méthode d'analyse des données spécifiquement construite pour l'étude de ce type de problème [18].

La régression PLS (Partial Least Squares Regression) permet donc de relier un ensemble de variables dépendantes Y à un ensemble de variables indépendantes X lorsque le nombre de variables indépendantes et /ou dépendantes est élevé [19].

Historiquement la régression PLS est née de l'association de l'algorithme NIPALS (*Non linear Iterative Partial Least Squares*) développé par H.Wold (1966) pour l'analyse sur

composantes principales et de l'approche PLS proposée par H. Wold (1975) pour l'estimation des modèles d'équations structurelles sur les variables latentes. Il en résulte une représentation "classique" de la régression PLS sous la forme d'un algorithme (remarquons qu'il y a plusieurs versions possibles de l'algorithme NIPALS aboutissant aux mêmes résultats). Une méthode d'estimation alternative pour les composantes de la régression est l'algorithme SIMPLS de Jong [20].

Elle a été proposée par Wold, Albano, Dunn III, Esbensen., Hellberg, Johansson & Sjostrom (1983). En 1990, Stone et Brooks introduisent le PLS dans un contexte du "continuum Regression" en ajoutant un paramètre autorisant la méthode de modélisation à varier continûment entre MLR ["]*Multiple Linear Regression*" et PCR "*Principal Component Regression*". Cette méthode connaît un très grand succès dans le domaine de la chimie.

La régression PLS devrait pouvoir s'appliquer à de nombreux domaines avec le même succès qu'en chimie. C'est ce que nous voulons démontrer dans cette thèse dont l'objet est de faire le point aux niveaux théorique et pratique sur cette nouvelle méthode [19-20].

II.5.2 Intérêt de la régression PLS

La régression PLS est donc une extension du modèle de régression linéaire multiple. Dans sa forme la plus simple, un modèle linéaire spécifie la relation (linéaire) entre une (ou des) variables dépendantes (réponses) *Y* et un ensemble de variables prédictives *X* telles que :

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$$
(II.14)

Ou les bi sont les coefficients de régression.

La régression PLS est une technique récente qui généralise et combine les caractéristiques de l'analyse sur composantes principales et de la régression multiple. Elle est particulièrement utile quand on a besoin de prédire un ensemble de variables

dépendantes à partir d'un ensemble très grand de variables explicatives (prédicteurs) qui peuvent être très fortement corrélées entre elles.

Quand les prédicteurs sont peu nombreux, non significativement colinéaires et ont une relation connue avec les réponses, alors la régression linéaire multiple est la meilleure méthode pour utiliser les données. Cependant si l'une de ces trois conditions n'est pas vérifiée, la régression linéaire multiple peut être inefficace et inappropriée.

PLS est donc une méthode pour construire des modèles de prédiction quand les facteurs sont nombreux et très colinéaires [21].

Notons que cette méthode met l'accent sur la prédiction de la réponse et pas nécessairement sur la mise en évidence d'une relation entre les variables. Ce qui signifie que PLS n'est pas appropriée pour designer les variables ayant un effet négligeable sur la réponse, mais quand le but est la prédiction et qu'il n'y a pas besoin de limiter le nombre de variables mesurées, PLS est un outil très utile.

II.5.3 La méthode PLS linéaire

II.5.3.1 Modèle de base

Principe:

Supposons que l'on a p variables explicatives, c variables réponses et un échantillon de n observations.

Comme dans la régression linéaire multiple, le but principal de la régression PLS est de construire un modèle linéaire [23].

$$Y = XB + E \tag{II.15}$$

Ou $B_{p \times c}$: coefficients de régression,

 $E_{n \times c}$: terme de bruit pour le modèle.

Usuellement les variables dans X et Y sont centrées en soustrayant leur moyenne, et réduites en divisant par leur écart type. La régression en composantes principales et la régression PLS produisent toutes les deux des facteurs de scores comme des combinaisons linéaires des variables prédictives originelles, de telle manière qu'il n'y ai pas de corrélation entre les facteurs scores utilisés par le modèle de régression prédictive.

Par exemple, supposons que nous ayons un ensemble de données pour des variables réponses Y et un grand nombre de variables prédictives X, dont certaines sont très fortement corrélées. Une régression utilisant l'extraction des facteurs pour ce type de données calcule la matrice de facteurs score T = XW pour une matrice de poids appropriée W et alors on considère le modèle de régression linéaire Y = TQ + E ou Q est une matrice des coefficients de régression pour T et E un terme d'erreur. Une fois les Q calculés, le modèle de régression ci-dessus est équivalent à Y = XB + E ou B = WQ qui peut être utilisé comme un modèle de régression prédictive [22-23].

Pour établir le modèle, la régression PLS produit une matrice de poids $W_{p\times c}$ pour X telle que T = XW, c'est à dire les colonnes de W sont des vecteurs de poids pour les colonnes de X produisant la matrice de facteurs de score $T_{n\times c}$ correspondante. Ces poids sont calculés

de telle façon qu'ils maximisent la covariance entre la réponse et les facteurs de score correspondants.

Une fois Q calculé, nous avons Y = XB + E ou B = WQ et le modèle de prédiction est complet.

Une matrice supplémentaire nécessaire pour une description complète de la procédure de régression PLS est la matrice P des facteurs qui donne le modèle X = TP + F ou F est la partie non expliquée du score de X.

II.5.3.2 La méthode

La méthode PLS est une méthode de régression linéaire de *c* variables réponses sur *p* variables explicatives toutes mesurées sur les mêmes *n* individus. Les tableaux des observations, notés respectivement *Y* et *X*, de dimensions $n \times c$ et $n \times p$, sont supposés centrés et éventuellement réduits par rapport aux poids (p_1, \ldots, p_n) . On note $D = diag(p_1, \ldots, p_n)$ la matrice diagonale des poids [24].

L'intérêt de la méthode PLS comparée à la régression sur composantes principales (RCP) [29], réside dans le fait que les composantes PLS sur les X, notées t, sont calculées "dans le même temps" que des régressions partielles sont exécutées. La régression sur composantes principales produit une matrice de poids W reflétant la structure de covariances entre les variables prédictives alors que la régression PLS produit une matrice de poids W reflétant les structures de covariance entre les prédicteurs et les réponses. Cette simultanéité leur confère un meilleur pouvoir prédictif que celles de la RCP. La question est donc d'examiner comment cette simultanéité est mise en œuvre [23].

Notons $E_0 = X$ et $F_0 = Y$ les tableaux centrés et réduits au sens de D qui en général est égal à $\frac{1}{n}I_n$. La méthode procède par étapes successives permettant le calcul des composantes principales. On notera A le nombre total d'étapes, c'est à dire de composantes indicées par k = 1, ..., A.

II.5.3.2.1 Description de la K^{ieme} étape

Notons $t = E_{k-1} w$ et $u = F_{k-1} q$, les combinaisons linéaires colonnes des matrices centrées E_{k-1} et F_{k-1} , associées respectivement aux vecteurs des poids w et q. La covariance entre t et u s'écrit comme le D-produit scalaire [25].

$$\operatorname{cov}(t, u) = (t, u)_{D} = w^{T} E_{k-1}^{T} D F_{k-1} q$$
 (II.16)

Le carré de la *D*-norme associée fournit la variance $||t||_D^2 = \operatorname{var}(t)$.

L'étape k, se décompose en deux parties :

♦ La première fournit les composantes $t_{k-1} = E_{k-1} w_k$ et $u_k = F_{k-1} q_k$ par le calcul des poids optimaux w_k et q_k .

$$(w,q) = \arg\max \operatorname{cov}(t,u) = w^T E_{k-1}^T D F_{k-1} q$$
 (II-17)

Sous les contraintes $\left\|w\right\|^2 = \left\|q\right\|^2 = 1$.

↔ La deuxième actualise les matrices des prédicteurs et des réponses E_k et F_k comme résidus de la régression sur t_k .

$$E_{k} = E_{k-1} - P_{t_{k}} E_{k-1} \quad et \quad F_{k} = F_{k-1} - P_{t_{k}} F_{k-1}$$
(II.18)

Où $P_{t_k} = \frac{t_k t_k^k D}{\operatorname{var}(t_k)}$ est la matrice $n \times n$ de projection D-orthogonale sur t_k .

II.5.3.2.2 Propriétés des composantes t₁, ..., t_A

Le modèle PLS linéaire trouve quelques nouvelles variables. Ces nouvelles variables sont appelées les X-scores notées par t_k (k=1,2,...A). Ces composantes PLS $t_1, ..., t_A$ sont des combinaisons linéaires des colonnes de E₀, non corrélées entre elle, résumant au mieux E₀ tout en expliquant autant que possible F₀ [26]. Ces composantes PLS sont donc analogues à des composantes principales des X₁,..., X_m expliquant au mieux les variables Y₁,..., Y_p.

La non corrélation ou *D*- orthogonalité, mutuelle entre les composantes t_1, \ldots, t_A a de multiples conséquences. On peut montrer ainsi par récurrence que t_k appartient à *ImX* espace vectoriel engendré par les prédicateurs.

La non corrélation implique en outre que $\sum_{k=1}^{k-1} P_{t_k} = P_{T_A}$, ou P_{T_A} est le projecteur orthogonal sur la matrice $T_A = [t_1 \dots t_A]$.

Enfin, dernière conséquence de la non corrélation, la décomposition des variances totales des réponses et des predicteurs fournit deux critères pour le choix du nombre *A* de composantes [28].

II.5.3.2.3 Le modèle PLS

Les formules d'actualisation entraînent l'écriture des modèles linéaires :

$$X = E_0 = \sum_{k=1}^{A} \widehat{X}_k + E_A = \widehat{X}_A + E_A$$
(II.19)

$$Y = F_0 = \sum_{k=1}^{A} \hat{Y}_k + F_A = \hat{Y}_A + F_A$$
(II.20)

Où $\hat{X}_k = P_{t_k} E_{k-1}$ et $\hat{Y}_k = P_{t_k} F_{k-1}$ sont les modèles partiels de rang 1.

- \widehat{X} : est l'approximation de X avec une erreur E_A .
- \hat{Y} : est l'approximation de Y avec une erreur F_A .

L'actualisation des variables et la non corrélation des composantes conduisent à écrire plus simplement les modèles partiels :

$$\hat{X}_{k} = P_{t_{k}} X \tag{II.21}$$

(II.22)

Et

D'autre part, ceci conduit à l'écriture définitive des modèles PLS en fonction des composantes :

 $\widehat{Y}_k = P_{t_k} Y$

$$\widehat{Y}_A = P_{T_A} Y \tag{II.23}$$

$$\hat{X}_A = P_{T_A} X \tag{II.24}$$

Ce qui implique que le modèle PLS est linéaire en les variables explicatives initiales :

$$\widehat{Y}_A = \widehat{\beta}_A X \tag{II.25}$$

Avec

$$\widehat{\beta}_A = P_{T_A} X^T X^{-1} DY \tag{II.26}$$

II.5.3.2.4 Cas particuliers

Lorsque A = rang(X), t_1, \ldots, t_A forment une base *D*-orthogonale de Im(X). Alors, $P_{T_A} = P_X$, $\hat{X}_A = X$ et $E_A = 0$. *X* est entièrement reconstitué. De plus, $\hat{Y}_X = P_X Y$, ce qui signifie que la régression PLS linéaire est équivalente à *c* régressions linéaires multiples aux moindres carrés usuels. En règle générale, la régression PLS multi réponses ne conduit pas aux mêmes modèles que ceux obtenus par *c* régressions PLS séparées [27]. PLS(X,X) = ACP(X) Quand Y = X, les composantes t_k et u_k sont identiques. Le problème qui était de maximiser la covariance entre t et u, revient alors à maximiser la variance de t sous la contrainte $||w||^2 = 1$. Alors, $\lambda_1 = var(t_1)$ est la plus grande valeur propre de $V = X^T D X$, matrice des covariances de X. On peut montrer que $\lambda_2 = var(t_2), \ldots, \lambda_k = var(t_k)$, pour tout $k = 1, \ldots, A$, et que, par récurrence, les w_k , qui sont de norme 1, sont les vecteurs propres associés aux valeurs propres λ_k de V classées en ordre décroissant. On retrouve donc l'Analyse en Composantes Principales de X.

II.5.3.3 Interprétation du modèle PLS

Une façon à voir PLS, c'est qu'il forme des nouveaux variables x, (t_k) , qui sont des combinaisons linéaires des x et qui sont utilisées comme predicteurs de Y. Ainsi PLS est basé sur un modèle linéaire.

Tous les paramètres, t, u, w, et q sont déterminés par un algorithme PLS. Les scores t et u contient des informations sur les objets et les corrélations/ non corrélations entre ces différents objets [28].

Les poids w et q donnent des informations sur la manière dont la quelle les différente variables se combinent pour former des relations quantitatives entre X et Y, et par conséquent fournir une interprétation des scores t et u. Ces poids w expriment à la fois les corrélations positives entre X et Y et les corrélations nécessaires pour prédire Y à partir de X.

II.5.4 Choix du nombre de composantes PLS

En tout modèle empirique, il est essentiel de déterminer la bonne complexité du modèle. Avec un grand nombre de variables X corrélées, il y a un fort risque d'ajustement du modèle, c'est-à-dire obtenir un modèle bien ajusté avec peu ou pas de pouvoir prédictif.

Par conséquent, un strict critère de l'importance prédictive de chaque composante PLS est nécessaire, et ça s'arrête quand les composants commencent à être non significatives.

La borne supérieure de *A* sera évidemment le rang de la matrice de départ, c'est à dire $A \le rang(X)$. On aura des critères permettant de déterminer *A* de façon raisonnable [30].

Critères du choix de A :

- > Critères 1 : Ajustement ("FIT") sur les données.
- Critères 2 : Prédiction interne ("Validation Croisée").
- > Critères 3 : Prédiction externe sur un jeu de données test ("Validation Externe").

On ne veut pas avoir un surajustement donc le FIT ne devra pas être trop grand (*A* trop grand) car cela dégradera la prédiction. Donc il faut une balance entre le critère "ajustement" et le critère "prédiction" (interne ou externe).

II.5.4.1 Le "FIT" ou "Critère d'Ajustement"

Le nombre total *A* d'axes ou de composantes (la dimension du modèle) est le super-paramètre de la méthode. Lors de l'exécution de l'algorithme, il est utile de voir évoluer, à chaque nouvel axe construit, la reconstruction de la variance des predicteurs et des réponses. La stratégie consiste à s'arrêter lorsque le pourcentage de la variance de *X* est suffisamment grand, pour un gain faible dans le pourcentage de variance de *Y*. Ce critère est donc basé sur l'ajustement des données [30-24].

II.5.4.2 Le "PRESS" ou "Critère de Validation Croisée"

La validation croisée est un critère très populaire pour le choix du nombre de composantes dans un modèle PLS. La base de cette méthode est d'estimer les mesures d'un jeu de données de validation à partir d'un modèle qui a été calculé à partir d'un jeu de données d'identification et de comparer ces estimations avec les valeurs mesurées.

Cette procédure de validation croisée est basée sur la minimisation de la quantité *PRESS (PREdiction Sum of Squares)*. Cette quantité se présente comme la somme des carrés des erreurs entre les données observées et celles prédites ou estimées par le modèle obtenu à partir d'un jeu d'identification différent.

Après avoir enlevé un individu *i* (une ligne) aux matrices *X* et *Y* (ou 10% des individus si leur nombre est élevé), on calcule $\hat{\beta}_{A}^{(i)}$, qui représente la matrice des coefficients du modèle construit avec les individus restants. Puis, on calcule l'erreur de prédiction faite sur l'individu *i*

$$E_{A}^{(i)} = Y_{i} - X_{i} \beta_{A}^{(i)}$$
(II.27)

L'erreur de prédiction est définie par le PRESS (PREdiction Sum of Squares) :

$$PRESS(A) = \frac{1}{n} \sum_{i=1}^{n} \left\| E_A^{(i)} \right\|^2$$
(II.28)

On choisit donc A tel que PRESS (A) soit le plus petit possible [30].

II.5.4.3 "Critère de Validation Externe" et Prédiction

Pour utiliser ce critère de choix de A, on doit posséder outre l'échantillon d'apprentissage (X, Y) sur les n individus, un échantillon test (Xtest, Ytest) sur N observations mesurées sur les mêmes variables. Différents modèles PLS bases sur (X, Y) sont calculés pour différentes dimensions. La valeur optimale de A correspond à la plus petite des erreurs de prédiction calculée sur (Xtest, Ytest).

II.5.5 Les algorithmes PLS

Les propriétés de régression PLS peuvent être analysées à partir d'un ensemble d'algorithmes originaux. Soit l'algorithme NIPALS original si dessous qui travaille avec les données originales de X et Y [32].

La première étape consiste à créer deux matrices: E = X et F = Y. Ces Matrices sont ensuite centrées et normalisées (c'est-à-dire transformée en scores). Avant de commencer le processus d'itération, le vecteur u est initialisé avec des valeurs aléatoires.

(A) $w \alpha E^{T}$ (pour estimer les vecteurs du poids de X) : $w = X^{T}u/u^{T}u$. (B) $t \alpha E w$ (pour estimer les facteurs scores de X) : t = X w. (C) $q \alpha F^{T} t$ (pour estimer les vecteurs du poids de Y) : $q = Y^{T} t/t^{T} t$. (D) $u \alpha F q$ (pour estimer les facteurs scores de Y) : u = Y q.

Si *t* n'a pas convergé, retour à l'étape (A), si *t* a convergé, calculer la valeur de *b* qui est utilisé pour prédire Y à partir de *t* comme $b=t^T u$, et calculer les facteurs loadings pour X comme $p = E^T t$.

(E)
$$P=X t/(t^T t)$$

(F) $X = X - t p^T$
(G) $Y = Y - t q^T$

Continuer avec la composante suivante (retour à A) jusqu'à ce que le critère de validation indique il n y a plus d'informations importantes de X envers Y [30].

Un autre algorithme SIMPLS, proposé par Jong (1993 [20]) pour relier un groupe de réponse Y à un groupe de prédicteurs X. L'algorithme SIMPLS est équivalent à la régression

PLS lorsque *Y* se limite à une seule variable et donne des résultats très proches dans le cas général. Comme dans NIPALS, le *T* de SIMPLS est calcule comme T = XW et *B* pour la régression de *Y* sur *X* comme $B = WQ^{T}$.

II.5.6 Conclusion

La régression PLS permet de rapprocher le statisticien du chercheur dans les problèmes de modélisation. En générale ce dernier souhaite en effet conserver dans son modèle toutes les variables importantes tout en obtenant des équations de régression cohérentes. Lorsque, en régression multiple il y a multi colinéarité et / ou un nombre important de variables explicatives par rapport au nombre d'observation, la solution la plus courante consiste à exclure des variables explicatives par des méthodes pas à pas. La régression PLS permet dans ces situations de conserver toutes les variables explicatives tout en obtenant une équation de régression cohérente.

La compréhension de la statistique PLSR s'est récemment améliorée considérablement. Nous pensons que la souplesse de l'approche PLS, son orientation graphique, et sa capacité à manipuler des données incomplètes et bruyantes avec de nombreux variables (et observations) rend PLS simple et puissant pour l'analyse de données pour des problèmes complexes.

PLSR fournit une approche de modélisation quantitative des relations souvent complexes entre les prédicteurs, X, et les réponses, Y, qu'avec de problèmes complexes est souvent plus réaliste que la MLR y compris les étapes de sélection variantes. Ceci parce que les hypothèses du PLS, les corrélations entre les X, le bruit en X, les erreurs du modèle sont plus réalistes que les hypothèses de la MLR.

Notamment, les tests de validation croisée et les scores plots (u, t) avec les loadings plots correspondant fournissent des informations sur la corrélation de la structure de X qui n'est pas obtenu dans le langage ordinaire du MLR.

En développant des tests de validité et en examinant les résidus, on pourrait utiliser plus d'informations que celle donnée par le PRESS et le FIT et donc mieux juger de la qualité du modèle. Même si le contexte (peu d'observations, beaucoup de variables, très corrélées) permet de construire un modèle PLS, rien ne dit qu'il sera de bonne qualité. Cependant, il reste encore beaucoup de choses à développer [19,24,30].

Références :

- [1] M.A. Chikh, "Analyse du signal ECG par les réseaux de neurones et la logique floue : Application à la reconnaissance des battements ventriculaires prématurés", Thèse présentée devant l'Université de Tlemcen, 2005.
- [2] I.T. Jolliffe "Principal component analysis", Springer-Verlag, New York, 1986.
- [3] K.I. Diamantaras, S.Y. Kung, "Principal component neural networks. Theory and applications", John Wiley and Sons , 1996.
- [4] H. Hotelling "Analysis of a complex of statistical variables into principal components", Journal of Educational Psychology, 24 (1933) 417- 441
- [5] J. F. MacGregor, T. Kourti, "Statistical process control of multivariate process control" Engineering Practice, 3, (1995) 403-414.
- [6] C. Duby, S. Robin, "Analyse en Composantes Principales", Département O.M.I.P(2006).
- [7] Lindsey Smith, "A tutorial on Principal Component Analysis», (2002).
- [8] M. F. Harkat, "Détection et localisation de défauts par Analyse en Composantes Principales ", Thèse de doctorat de l'Institut National Polytechnique de Lorraine (2003).
- [9] http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf.
- [10] S. Wold, K. Esbensen, P. Geladi, "Principal component analysis", Chemometrics and Intelligent Laboratory Systems 2 (1987). 37-52
- [11] P. Teppola, S. Mujunen, P. Minkkinen, T. Puijola, P. Pursiheimo "Principal component component analysis", Chemometrics and Intelligent Laboratory Systems, 44 (1998) 307-317.
- [12] L. Ferre, "Selection of components in principal component analysis : A comparaison of methods", Computational Statistics and Data Analysis (1995) 669-682.
- [13] J.V. Kresta, J. F MacGregor, T.E. Marlin,"*Multivariate statistical monitoring of process operating performance*", Chemometrics Engineering, 69 (1991) 35-47.
- [14] P. Besse, L. Ferre, "Sur l'usage de la validation croisée en analyse en composantes principales", Revue de Statistique Appliquée, 1 (1993) 71-76.
- [15] S. Valle and al., "Selection of the number of principal components: The variance of The reconstruction error criterion with a comparison to other methods", Industrial and Engineering Chemestry Research 38 (1999) 4389- 4401.

- [16] M. Tenenhaus, "Analyse en composantes principales d'un ensemble de variables nominales ou numériques", Revue de statistique appliqué 2 (1977) 39-56.
- [17] S. J. Qin, R. Dunia, "Determining the number of principal components for best Reconstruction", Symposium on Dynamics and Control of process Systems, (1998) 359-364.
- [18] P. Bastien, V. Esposito. Vinzi, M. Tenenhaus, "PLS generalised linear regression", Computational Statistics Data Analysis 48 (2005) 17-46.
- [19] Michel. Tenenhaus, "La regression PLS : Théorie et pratique", Edition TECHNIP (1998)
- [20] S. Jong, "SIMPLS: An alternative approach to partial leasts quares regression", , Chemometrics and Intelligent Laboratory Systems 18 (1993), 251-263.
- [21] S. Wold, A. Ruhe, H. Wold, W.J. Dunn, "The collinearity problem in linear regression", Computational Statistics Data Analysis. 5 (1984) 735–743.
- [22] I.S.Helland, "Some theoretical aspects of partial least squares regression", Chemometrics and Intelligent Laboratory Systems, 58 (2001) 97-107.
- [23] A. Hoskuldsson, "PLS regression methods", Chemometrics and Intelligent Laboratory Systems .2 (1988) 211–228.
- [24] S. Wold, M. Sjostrom, L. Eriksson, "PLS-regression: a basic tool of chemometrics", Chemometrics and Intelligent Laboratory Sys-tems, 58 (2001) 109-130.
- [25] R. W. Gerlach, B. R. Kowalski, H. Wold, "Partial least squares modelling with latent variables", Computational Statistics Data Analysis 112(1979) 417–421.
- [26] A. J. Burnham, J. F. MacGregor, R. Viveris, "Latent variable regression tools", , Chemometrics and Intelligent Laboratov Systems. 48 (1999) 167–180.
- [27] H. Haario, V.M. Taavitsainen, "Nonlinear data Analysis II. Examples on new link functions and optimization aspects", Chemometrics and Intelligent Laboratory Systems, 23 (1994) 51-64.
- [28] A. Hoskuldsson, "Variable and subset selection in PLS regression", Chemometrics and Intelligent Laboratory Systems .55 (2001) 23–38.
- [29] P.R.C. Nelson, P.A. Taylor, J.F. MacGregor, "Missing data methods in PCA and PLS : score calculations with incomplete observation", Chemometrics and Intelligent Laboratory Systems. 35 (1996) 45–65.
- [30] H.Abdi, (in press 2003), "Partial Least Squares (PLS) Regression", In M.Lewis-Beck,A.T. Bryman, Futing (Eds): Encyclopedia for Research methods for the Social Sciences. Thousand Oaks (CA): Sage.

- [31] S.Wold, P.Geladi, k. Esbensen, J. Äohman, "Multiway Principal Components and PLS Analysis", Journal of Chemometrics, 1(1987), 41-56.
- [32] R.Manne, "Analysis of two partial least squares algorithms for multivariate calibration" Chemometrics and Intelligent Laboratory Systems. 1 (1987) 187–197.

CHAPITRE III

RESULTATS ET DISCUSSIONS

 D_{ans} ce chapitre nous présentons les résultats liés à l'utilisation des approches de

Datamining sur les intermétalliques polaires de type phase de Laves et les verres métalliques massifs. L'Analyse en Composante Principale (ACP) et la régression (PLS), deux techniques qui ont étés utilisés afin d'identifier les tendances des propriétés de matériaux.

Ce chapitre se divise en deux parties, dans la première partie nous avons effectué une analyse critique sur les propriétés mécaniques des intermétalliques polaires de type phase de Laves (structures hexagonales C14, C36 et cubique C15) et ceci pour prédire des intermétalliques avec une grande dureté et rigidité ainsi qu'une ductilité appréciable.

Dans la deuxième partie, nous avons analysé les critères du GFA existants pour voir l'efficacité de ces derniers et déduire le meilleur indicateur du GFA parmi tous ces paramètres.

Partie I

III.1 Les propriétés mécaniques des phases de Laves YCu₂ et YZn₂ analysés par l'approche de Datamining

III.1.1 Introduction

Cette partie met l'accent sur une catégorie particulière des intermétalliques, les phases dites phases de Laves. Ces phases, formant le plus grand groupe de composés intermétalliques avec plus de 1400 matériaux, et ont la composition AB₂. La classe des composé intermétalliques de types phases de Laves est purement basée sur la géométrie de la structure cristalline. Les phases de Laves cristallisent dans les trois types de structures : structure cubique MgCu₂(C15), hexagonale MgZn₂(C14) et hexagonale MgNi₂(C36)[1-4]. Une structure orthorhombique existe également c'est la structure du type CeCu₂ (figure[III.1.1]).

Figure [III.1.1] : Structures cristalline de phases de Laves de types AB₂ [C14 (a), C15 (b) et C36(c)] et la structure orthorhombique CeCu₂ (d).

Les phases de Laves ont suscité beaucoup d'intérêt dans la recherche fondamentale [5]. En outre, dans la dernière décennie, de nombreux métallurgistes et ingénieurs ont étudié les transitions de phase dans ces matériaux afin d'améliorer les propriétés mécaniques et physiques. Ceci induit des efforts considérables dans le développement de nouveaux matériaux de construction à base de phases de Laves pour des températures extrêmement élevées.

Dans cette partie nous présentons les résultats liés à l'utilisation des approches de Datamining, sur les intermétalliques polaires. L'analyse en Composantes Principales (ACP) et la méthode des moindres carrés partiels (PLS), des techniques numériques, ont été appliquées pour étudier les propriétés mécaniques des intermétalliques polaires afin de prédire des matériaux de haute dureté et rigidité.

Afin d'identifier les tendances des propriétés de matériaux, nous construisons une base de données pour plusieurs intermétalliques polaires, y compris les constantes élastiques, le module de cisaillement (G), le module de Young (E), la pression de Cauchy (C_{12} - C_{44}) et le rapport B/G. Le tableau [III.1.1] contient une partie de l'ensemble de données utilisées.

III.1.2 Base de données

La base de données a été construite en se basant sur des valeurs obtenues à partir du calcul ab initio en utilisant le code VASP [6] basé sur la Théorie de la Fonctionnelle de la Densité DFT. L'approximation du gradient généralisé (GGAPW91) de Perdew et Wang [7] est appliquée pour évaluer les énergies d'échange et corrélation pour toutes les structures examinées [8-10]. Nous avons commencé dans notre étude par optimiser le nombre de points spéciaux « k » pour le maillage de la première zone de Brillouin (PZB) sachant que la convergence a été obtenue pour les structures de types phases de Laves (C14, C15 et C36) à partir d'une mèche de $13 \times 13 \times 13$ pour la structure cubique C15 de type MgCu₂, $13 \times 13 \times 11$ pour les deux structures hexagonales C14 et C36 de types MgZn₂ et MgNi₂ respectivement, et $11 \times 9 \times 9$ pour la structure orthorhombique de type CeCu₂. L'énergie de coupure minimisant le nombre de bases d'ondes planes modélisant notre système pour les trois composés étudiés a été obtenue après optimisation : 310 eV.

	B	G	0	V	B/G	C ₁₁	C ₄₄	C ₁₂	C ₁₂ -C ₄₄
YCu ₂									
CeCu ₂	28,586	11,87	31,28	0,317	2,408	85,761	9,475	24,791	15,316
C15	89,291	32,875	87,978	0,336	2,716	133,124	32,935	67,375	34,44
C14	48,867	24,704	96,111	0,04	1,978	113,136	20,053	20,761	0,708
C36	37.749	20.191	98.539	0.030	1.869	114.634	15.489	18.999	3.510
YZn2									
CeCu2	23,995	9,854	26,002	0,56	2,435	74,96	8,013	19,312	11,299
C15	47,577	29,496	68,941	0,258	1,612	86,902	27,058	27,915	0,857
C14	36,182	32,303	125,06	0,135	1,12	127,511	22,723	17,351	-5,372
C36	30.990	20.819	100.116	-0.047	1.488	109.79	15.291	4.700	-10.591

Tableau [III.1.1] : Base de données de différents Intermétalliques polaires.

III.1.3 Techniques de calculs

III.1.3.1 L'analyse en composantes principales (ACP)

L'analyse en composantes principales (ACP) est une méthode descriptive permettant d'effectuer une représentation simplifiée d'une série de variables intercorrélées.

➢ Le premier résultat intéressant à identifier dans l'analyse en composantes principales est la matrice des corrélations : le tableau suivant correspond à la matrice de corrélations de différentes intermétalliques polaires de types phase de Laves :

Variables	В	G	E	B/G	C ₁₁	C ₄₄	C ₁₂	C ₁₂ -C ₄₄
В	1	0 <i>,</i> 698	0,297	0,382	0,612	0,867	0,900	0,647
G	0,698	1	0,752	-0,377	0,743	0,943	0,441	0,003
E	0,297	0,752	1	-0,653	0,862	0,539	-0,069	-0,417
B/G	0,382	-0,377	-0,653	1	-0,216	-0,086	0,642	0,889
C ₁₁	0,612	0,743	0,862	-0,216	1	0,639	0,353	0,073
C ₄₄	0,867	0,943	0,539	-0,086	0,639	1	0,675	0,274
C ₁₂	0,900	0,441	-0,069	0,642	0,353	0,675	1	0,894
C ₁₂ -C ₄₄	0,647	0,003	-0,417	0,889	0,073	0,274	0,894	1
v	0,048	-0,337	-0,778	0,640	-0,537	-0,133	0,427	0,637

Tableau [III.1.2] : Matrice des corrélations des intermétalliques polaires.

Sur la base du tableau précédent on remarque que le B/G et C_{12} - C_{44} , sont fortement corrélés (0.889), et la corrélation inverse entre B/G et G (-0.835) et (-0. 377). L'analyse en composantes principales nous déduit les axes principaux, dans notre cas la première composante principale (PC₁) est le vecteur propre qui correspond à la plus grande valeur propre, et PC₂ est le vecteur propre correspondant à la deuxième plus grande valeur propre.

➢ La première analyse effectuée était d'examiner les tendances générales dans les différents intermétalliques polaires. Le résultat des "Score plot" de cette analyse est montré sur la figure [III.1.2].

Figure [III.1.2] : Graphe des observations «Score plot » pour les intermétalliques polaires.

➢ Pour cette analyse, le signe de chaque composante principale n'a pas de sens relationnel. PC1 capture 48.04 % de la variance dans l'ensemble de données, et PC2 capture 41.99 % de la variance comme le montre la figure [III.1.2]. Aucune autre composante principale PCs n'est incluse dans ces discussions parce qu'elles ne fournissent pas des informations significatives.

Pour confirmer le fait qu'une variable est fortement liée à une composante principale, il suffit de consulter la table suivante des cosinus carrés :

	PC1	PC2	PC3	PC4	PC5	PC6	PC7
В	0,763	0,204	0,001	0,024	0,007	0,000	0,000
G	0,859	0,045	0,093	0,000	0,000	0,001	0,001
Ε	0,494	0,461	0,021	0,017	0,003	0,003	0,000
B/G	0,007	0,869	0,105	0,010	0,009	0,000	0,001
C ₁₁	0,739	0,066	0,137	0,057	0,000	0,001	0,000
C ₄₄	0,879	0,008	0,098	0,015	0,000	0,000	0,000
C ₁₂	0,415	0,579	0,000	0,000	0,005	0,000	0,000
C ₁₂ -C ₄₄	0,074	0,881	0,028	0,006	0,010	0,000	0,000
v	0,092	0,666	0,142	0,094	0,006	0,000	0,000

Tableau [III.1.3] : Cosinus carrés des variables (intermétalliques polaires)

▶ Plus le cosinus est élevé (en valeur absolue), plus la variable et liée à l'axe. Plus le cosinus est proche de zéro, moins la variable est liée à l'axe. Dans notre cas, l'axe PC₁ et clairement lié à G, B, C₁₁ et C₄₄, avec des cosinus 0.85, 0.76, 0.73 et 0.87 respectivement, et l'axe PC₂ est lié à la variable B/G et C₁₂-C₄₄ avec des cosinus 0.86 et 088. respectivement.

En analysant la figure des scores, trois importants groupes ou clusters émergent ceux avec un PC₁ positif [YCu₂ (C14) ,YCu₂ (C36) , YZn₂ (C15) , YZn₂ (C14) , YZn₂ (C36)] , [YCu₂ (C15)] que nous notons cluster1 et 2 respectivement, et ceux avec un PC1 négatif [YCu₂ (CeCu₂) , YZn₂ (CeCu₂)] que nous notons cluster 3 comme il est indiqué sur la figure [III.1.2].

Dans un premier aperçu il s'avère que le premier et le deuxième cluster correspond à des intermétalliques polaires avec un grand module de cisaillement (G), un grand module de compressibilité B et un petit rapport B/G tandis que le cluster 3 inclue ceux avec un petit G, B, et un rapport B/G élevé.

Les matériaux du premier cluster qui cristallisent dans les structures hexagonales C14 et C36 sont fortement corrélés avec le module de Young (E) ce qui signifie la rigidité de ces matériaux qui est en bon accord avec les observations ab initio.

> En revanche, en faisant un zoom du cluster 1, nous observons que la structure cubique C15 (YZn_2) semble se comporter un peu différemment. Ce composant est localisé dans la région où les matériaux présentent à la fois une bonne rigidité et une bonne dureté.

▶ Par conséquent, le composé YCu₂ de cluster 2 qui cristallisent dans la structure C15 est fortement corrélé avec B et G indiquant la dureté de ce matériau, ces tendances sont en bon accord avec les calculs ab initio. Cependant, les matériaux du cluster 3 qui se cristallisent dans la structure orthorhombique (CeCu₂) sont fortement corrélés avec le rapport B/G et la pression de Cauchy (C₁₂-C₄₄) indiquant la ductilité de ces matériaux.

Le graphe des variables « Loading plot » correspond aux observations « Score plot » mais représente la variance entre les descripteurs (variables).

➤ La figure[III.1.3] montre les graphes des variables « Loadings » correspondant aux échantillons représentés sur la figure [III.1.2]. Les axes des deux graphes de Loadings et Scores sont identiques ainsi l'information dans les deux graphiques peut être comparée directement.

Figure [III.1.3] : Graphe des variables « Loading plot » pour les intermétalliques polaires, chaque point correspond à une propriété

➤ Comme on le constate sur la figure [III.1.3], on peut déduire que les positions des propriétés B, G et B/G sont corrélées avec le cluster 2 et le cluster 3 respectivement . Les propriétés avec les valeurs similaires de PCs sont fortement corrélées, tandis que les propriétés avec des valeurs inverses de PC sont inversement corrélées. Par conséquent, les propriétés dans le cluster1 et 2 sont inversement corrélées aux propriétés dans le cluster 3, alors que les propriétés dans le clusters2 sont fortement corrélées avec d'autres propriétés dans le même cluster.

▶ Plusieurs corrélations entre les propriétés ne sont pas aussi évidentes. Cependant une corrélation qui est bien apparente est celle entre G et B/G. G et B/G sont inversement corrélés (figure [III.1.3]), cela indique que si la dureté augmente la ductilité diminue qui est bien en accord avec les observations expérimentales et nos calculs ab initio. Tandis que G, C₄₄ et B ont tous un PC2 positif et un PC1 négatif, donc ils sont fortement corrélés et indiquent la dureté des matériaux de cluster 2. Le rapport B/G et la pression de Cauchy (C₁₂ - C₄₄) sont fortement corrélées, ce qui valide le fait que les matériaux avec un grand B/G et un (C₁₂-C₄₄) positive sont très ductile faisant référence au matériaux du cluster ayant une structure orthorhombique.

Afin de confirmer les résultats précédents, La relation entre tous les intermétalliques polaires et les paramètres correspondants est clairement indiqué dans le paraphe suivant de « Biplot » superposant les échantillons et les propriétés.

Figure [III.1.4] : Graphe de « Biplot » superposant les échantillons et les propriétés.

▷ Pour cette analyse, le signe de chaque composante principale n'a relativement pas de sens. En regardant cette figure, il apparaît que les matériaux du première cluster sont en bonne corrélation avec les indicateurs de la rigidité (E), ceux du troisième cluster sont fortement corrélés avec les indicateurs de la ductilité (B/G, C₁₂-C₄₄), cependant les intermétalliques polaires du deuxième cluster sont fortement corrélés avec les critères de dureté (G, B) ce qui valide nos résultats ab initio.

Cependant à partir de ces données nous avons tracé le graphe suivant de la variation du
 B en fonction du G pour toutes les structures de phases de Laves calculées.

Figure [III.1.5] : Variation de B en fonction de G pour les Phases de Laves calculées.

A partir de ce graphe nous constatons que les deux structures $C15(YZn_2)$ et $C14(YCu_2)$ possèdent des grandes valeurs de B [47.577, 48.867] et des grandes valeurs de G [29.496, 24.704] et notamment des grandes valeurs de B/G [1.61, 1.97].

Ainsi ces matériaux sont durs et ductile à la fois. Dans ce cas nous pouvons penser qu'ils servent de très bons revêtements.

III.1.3.2 <u>Le modèle PLS (Partial Least Square)</u> III.1.3.2.1 <u>Le graphique des corrélations</u>

L'un des premiers résultats du PLS c'est le graphe des corrélations (Figure [III.1.6]) ou plus précisément le cercle de corrélations, qui traduit bien les corrélations à chaque groupe de variables X et Y. Ce graphe des observations X (X- Scores) nous montre bien les intermétalliques polaires de type phases de Laves regroupés selon leurs propriétés similaires formant trois clusters.

Figure [III.1.6] : Graphe des observations (t_1, t_2) des intermétalliques polaires de type phase de laves .

On note que les variables dépendantes sont bien représentatives dans le graphique, elles sont globalement bien corrélées avec les variables explicatives (les matériaux). En ce qui concerne les variables explicatives, on remarque que [YCu₂ (CeCu₂) , YZn₂ (CeCu₂)] sont bien liées aux variables B/G et la pression de Cauchy (C₁₂-C₄₄), sachant qu'ils ont un B/G \geq 1.75 et une pression de Cauchy >0, ce qui indique bien la ductilité de ces derniers, le [YCu₂ (C14) ,YCu₂ (C36) , YZn₂ (C15) , YZn₂ (C14) , YZn₂ (C36)] , [YCu₂ (C15)] sont liées au deux variables B , G et E indiquant la dureté et la rigidité de ces derniers, et ceci en se basant sur les deux critères cités précédemment.

III.1.3.2.2 Mesures de l'importance de variables

Dans le modèle PLS une variable X_k peut être importante pour la modélisation de Y, ces variables sont identifiées par des grands coefficients de régression b_k . Un résumé de l'importance d'une variable X pour X et Y à la fois est donnée par le graphe des VIP (Variable Importance for the Projection) pour chacune des variables explicatives, sur chaque composante. Cela permet d'identifier rapidement quelles sont les variables explicatives les plus importantes sur l'ensemble des modèles (figure [III.1.7]).

Figure [III.1.7] : VIP pour les quartes premières composantes pour les intermétalliques polaires.

> Sur les quartes composantes, et parmi toutes les structures le C15(YCu₂) apparait comme étant influent pour modèle, et ceci valide bien le fait que c'est les matériaux le plus

intéressant parmi toutes les autres structures car il est dur et possède une ductilité appréciable ce qui est en bon accord avec nos observation ab initio.

III.1.3.2.3 Les résidus et prédictions

➢ Le modèle PLS permet aussi de donner des graphes correspondant aux coefficients normalisés ainsi que des graphes des résidus et prédictions permettant d'identifier la qualité du modèle. Nous obtenons alors des résultats plus riches en prenant les graphiques ci-dessous

> qui correspond aux coefficients normalisés pour le modèle avec 2 composantes et ceci pour les cinq variables (B, G, B/G, E, C_{12} - C_{44}).

Figure [III.1.8] : Graphes des résidus et prédictions correspondant au variables B, G, E et

➢ L'analyse du modèle correspondant aux variable B, G, E et B/G nous permet de conclure que la variation est linéaire entre les valeurs prédîtes en fonction de celle utilisée en entrée, ce qui indique bien la bonne qualité du modèle.

III.1.4 Conclusion

Dans cette partie, nous avons analysé les intermétalliques polaires, une analyse critique, a été effectuée en utilisant les techniques de Datamining. Le principal objectif était de prédire les meilleurs intermétalliques polaires durs et rigides avec une ductilité appréciable. Les présents résultats démontrent clairement qu'une simple observation visuelle des graphes PCA et PLS, des positions des différents intermétalliques conclut que les composés YCu₂ et YZn₂ cristallisant dans la structure orthorhombique CeCu₂ n'ont pas une bonne dureté et rigidité par rapport aux structures de phases Laves (Hexagonal C14, C36 et cubique C15). Cependant, nos résultats confirment que les phases de Laves présentent des propriétés mécaniques très intéressantes, en particulier une grande dureté et rigidité résultant de la différence d'électronégativité des deux éléments.

Partie II

III.2 Etude des corrélations entre les paramètres thermiques et l'aptitude de vitrification (GFA) des verres métalliques massifs en utilisant l'approche du Datamining

III.2.1 Introduction

Les verres métalliques massifs ont émergé au cours des quinze dernières années avec leurs propriétés intéressantes et promesse technologique [11]. Pour la conception de matériaux, non seulement la création de données par le calcul ou l'expérience est importante, mais la façon d'analyser ces données de manière efficace et complète est également nécessaire[12-14].

Dans cette partie, les approches du Datamining telles que l'analyse en composantes principales (ACP) et la régression (PLS) sont utilisés afin d'examiner les critères existants de GFA et identifier les caractéristiques de composition des verres métalliques massifs[15-16].

Afin d'identifier les tendances de propriété de matériaux et d'examiner l'efficacité des critères de GFA, ΔT_x , $T_{rg} = T_g / T_1$, $T_{rg} = T_g / T_m$, et γ . Une base de données pour plusieurs verres métalliques massifs a été construite, en se basant sur des valeurs expérimentales obtenues dans le groupe Dalian en utilisant le même processus et techniques de calcul [17-22].

Les tableaux 1-5 contiennent l'ensemble de données de verres métalliques massifs (BMGs) y compris la température de cristallisation T_x , la température de transition vitreuse T_g , la température de fusion T_m , la température de liquidus T_l , la région du liquide surfondue ΔT_x , le diamètre critique d_c, et le critère γ .

III.2.2 Bases de données

Une base de données, usuellement abrégée en BD ou BDD, est un ensemble structuré et organisé permettant le stockage de grandes quantités d'informations afin d'en faciliter l'exploitation.

Alloys	T_g/K	T_x/K	T_m / K	T_l/K	$\Delta Tx / K$	$T_{g'}/T_{m}$	T_g/T_l	γ	dc /mm
Cu _{62.7} Zr _{35.3} Al _{2.0}	751	796	1156	1237	45	0,65	0,61	0.400	3
Cu _{61.4} Zr _{34.6} Al _{4.0}	756	800	1156	1236	44	0,65	0,61	0.402	3
Cu _{60.2} Zr _{33.8} Al _{6.0}	765	797	1155	1230	32	0,66	0,62	0.399	3
Cu _{60.3} Zr _{37.2} Al _{2.5}	733	794	1151	1185	61	0,64	0,62	0.414	3
Cu _{59.6} Zr _{36.9} Al _{3.5}	740	802	1157	1181	62	0,64	0,63	0.417	3
Cu _{58.7} Zr _{36.3} Al _{5.0}	748	803	1159	1179	55	0,65	0,63	0.417	3
Cu _{58.1} Zr _{35.9} Al _{6.0}	760	799	1154	1173	39	0,66	0,65	0.413	5
Cu _{58.0} Zr _{36.2} Al _{5.8}	756	799	1158	1179	43	0,65	0,64	0.413	5
Cu _{57.1} Zr _{35.7} Al _{7.2}	764	791	1157	1177	27	0,66	0,65	0.408	3
Cu _{54.8} Zr _{38.7} Al _{6.5}	746	792	1140	1167	46	0,65	0,64	0414	3

Table [III.2.1]: Paramètres thermiques T_g , T_x , T_m , T_l , et indicateur du GFA ΔTx , T_g/T_m , T_g/T_l , γ , d_c des BMGs de type Cu-Zr-AI [17].

Tableau [III.2.2]: Paramètres thermiques T_g , T_x , T_m , T_l , et indicateur du GFA ΔTx , T_g/T_m , T_g/T_l , γ , d_c des BMGs de type Zr-Ni-AI [18].

A	Alloys	$T_{\rm g}/{ m K}$	$T_{\rm x}/{ m K}$	$T_{\rm m}/{ m K}$	T_1/\mathbf{K}	$\Delta T_{\rm x}/{\rm K}$	$T_{\rm g}/T_{\rm m}$	$T_{\rm g}/T_{\rm l}$	γ	<i>d_c</i> /mm
Ni ₃ Zr ₉ Al ₁	Al _{7.7} Ni _{23.1} Zr _{69.2}	649	691	1221	1192	42	0.544	0.532	0.370	4
Ni ₃ Zr ₈ Al ₁	Al _{8.3} Ni _{22.5} Zr _{66.7}	663	710	1226	1199	47	0.553	0.541	0.376	4
Ni ₃ Zr ₇ Al ₁	Al _{9.1} Ni _{27.3} Zr _{63.6}	680	721	1214	1178	41	0.577	0.56	0.381	5
Ni ₄ Zr ₉ Al ₁	Al _{7.1} Ni _{28.6} Zr _{64.3}	673	706	1240	1178	33	0.571	0.543	0.369	4
Ni ₃ Zr ₆ Al ₁	$Al_{10}Ni_{30}Zr_{60}$	702	743	1210	1178	41	0.596	0.58	0.389	4
Ni ₃ Zr ₁₀ Al _{1.5}	Al _{10.3} Ni _{20.7} Zr ₆₉	659	704	1263	1199	45	0.55	0.522	0.366	4
Ni ₃ Zr ₉ Al _{1.5}	Al _{11.1} Ni _{22.2} Zr _{66.7}	669	717	1278	1172	48	0.571	0.523	0.368	4
Ni ₃ Zr ₈ Al _{1.5}	Al ₁₂ Ni ₂₄ Zr ₆₄	682	729	1283	1174	47	0.581	0.532	0.371	5
Ni ₃ Zr ₇ Al _{1.5}	Al ₁₃ Ni ₂₆ Zr ₆₁	702	770	1263	1176	68	0.597	0.556	0.392	8
Ni ₄ Zr ₉ Al _{1.5}	Al _{10.3} Ni _{27.6} Zr _{62.1}	691	739	1239	1176	48	0.588	0.558	0.383	4
Ni ₃ Zr ₆ Al _{1.5}	Al _{14.3} Ni _{28.6} Zr _{57.1}	720	780	1280	1177	60	0.612	0.563	0.390	5
Ni ₃ Zr ₁₀ Al ₂	$Al_{13.3}Ni_{20}Zr_{66.7}$	673	716	1309	1174	43	0.573	0.514	0.361	5
Ni ₃ Zr ₉ Al ₂	Al _{14.3} Ni _{21.4} Zr _{64.3}	690	731	1315	1179	41	0.585	0.525	0.365	5

Ni ₃ Zr ₈ Al ₂	$Al_{15.4}Ni_{23.1}Zr_{61.5}$	703	758	1333	1178	55	0.597	0.527	0.372	5
Ni ₃ Zr ₇ Al ₂	Al _{16.7} Ni ₂₅ Zr _{58.3}	721	789	1286	1185	68	0.608	0.561	0.393	5
Ni ₄ Zr ₉ Al ₂	Al _{13.3} Ni _{26.7} Zr ₆₀	707	775	1209	1179	68	0.601	0.586	0.404	8
Ni ₃ Zr ₆ Al ₂	$Al_{18.2}Ni_{27.3}Zr_{54.5}$	748	800	1215	1186	52	0.631	0.616	0.408	5
Ni ₃ Zr ₁₀ Al ₃	$Al_{18.7}Ni_{18.7}Zr_{62.6}$	712	751	1313	1185	39	0.601	0.542	0.371	5
Ni ₃ Zr ₉ Al ₃	$Al_{20}Ni_{20}Zr_{60}$	727	765	1342	1184	38	0.614	0.542	0.370	5
Ni ₃ Zr ₈ Al ₃	$Al_{21.4}Ni_{21.4}Zr_{57.2}$	745	784	1337	1183	39	0.63	0.557	0.377	8
Ni ₃ Zr ₇ Al ₃	$Al_{23.1}Ni_{23.1}Zr_{53.8}$	772	813	1336	1182	41	0.653	0.578	0.386	8
Ni ₄ Zr ₉ Al ₃	Al _{18.8} Ni ₂₅ Zr _{56.2}	742	804	1341	1184	62	0.627	0.553	0.386	8
Ni ₃ Zr ₆ Al ₃	Al ₂₅ Ni ₂₅ Zr ₅₀	659	710	1336	1180	51	0.558	0.493	0.356	2

Tableau [III.2.3]: Paramètres thermiques T_g , T_x , T_m , T_l , et indicateur du GFA ΔTx , T_g/T_m , T_g/T_l , γ , d_c des BMGs de type Co-B-Si-(Ta,Nb) [20].

Alloys	T_g/K	T_x/K	T_m/K	T_l/K	$\Delta T_{\rm x}$	T_g/T_m	T_g/T_l	γ	<i>dc /</i> mm
B _{26.8} Co _{62.5} Si _{5.35} Ta _{5.35}	906	939	1343	1432	33	0.675	0.633	0.402	3
B _{26.3} Co _{61.4} Si _{6.15} Ta _{6.15}	912	947	1344	1419	35	0.679	0.643	0.406	3
B _{26.1} Co ₆₁ Si _{6.45} Ta _{6.45}	927	961	1345	1415	34	0.689	0.655	0.41	4
B _{26.1} Co _{60.9} Si _{6.5} Ta _{6.5}	925	956	1346	1415	31	0.687	0.654	0.409	3
B _{25.9} Co _{60.3} Si _{6.9} Ta _{6.9}	932	967	1347	1470	35	0.692	0.634	0.403	3
B _{25.4} Co _{59.3} Si _{7.65} Ta _{7.65}	926	957	1345	1482	31	0.688	0.63	0.399	3
B25C058.3Si8.35Ta8.35	939	972	1346	1457	33	0.698	0.644	0.406	3
B _{24.6} Co _{57.4} Si ₉ Ta ₉	950	981	1362	1467	31	0.698	0.648	0.406	3
B _{24.2} Co _{56.5} Si _{9.65} Ta _{9.65}	954	990	1348	1460	36	0.708	0.653	0.41	3
B _{24.2} Co _{64.5} Si _{5.65} Ta _{5.65}	885	922	1379	1414	37	0.647	0.626	0.401	3
B _{24.1} Co _{64.1} Si _{5.9} Ta _{5.9}	906	927	1378	1418	21	0.657	0.639	0.399	3
B24C064Si6Ta6	903	921	1382	1416	18	0.653	0.638	0.39	3
B _{23.8} Co _{63.5} Si _{6.35} Ta _{6.35}	903	939	1379	1487	36	0.655	0.607	0.393	3
B _{23.4} Co _{62.5} Si _{7.05} Ta _{7.05}	917	949	1380	1493	32	0.664	0.614	0.394	3
B _{23.1} Co _{61.5} Si _{7.7} Ta _{7.7}	907	959	1345	1480	52	0.674	0.613	0.402	3
B _{22.7} Co _{60.6} Si _{8.35} Ta _{8.35}	914	970	1348	1476	56	0.678	0.619	0.406	3
B _{26.1} Co ₆₁ Si _{6.45} Nb _{6.45}	901	937	1322	1409	36	0.682	0.639	0.406	3

$B_{24.1}Co_{64.1}Si_{5.9}Nb_{5.9}$	877	917	1328	1412	40	0.66	0.621	0.401	3
B _{26.2} Co _{61.2} Si _{7.8} Ta _{4.8}	926	948	1350	1410	22	0.686	0.657	0.406	4
B _{27.2} Co _{63.6} Si _{5.2} Ta ₄	873	917	1379	1418	44	0.63	0.62	0.4	2
B _{24.7} Co _{65.9} Si _{5.4} Ta ₄	866	909	1359	1422	43	0.64	0.61	0.4	3
B _{22.6} Co _{67.8} Si _{5.6} Ta ₄	837	882	1326	1326	45	0.63	0.58	0.39	2
B _{26.9} Co _{62.2} Si _{6.9} Ta ₄	896	933	1344	1426	37	0.67	0.63	0.4	4
B ₂₄ Co _{64.8} Si _{7.2} Ta ₄	872	912	1381	1417	40	0.63	0.62	0.4	2
B _{27.2} Co _{63.6} Si _{5.2} Nb ₄	859	895	1311	1432	36	0.66	0.6	0.39	2
B _{24.7} Co _{65.9} Si _{5.4} Nb ₄	861	895	1304	1430	34	0.66	0.6	0.39	3
B22.6C067.8Si5.6Nb4	847	885	1312	1423	38	0.65	0.6	0.39	2
$B_{26.9}Co_{62.2}Si_{6.9}Nb_4$	898	945	1320	1445	47	0.68	0.62	0.4	3
B24C064.8Si7.2Nb4	869	910	1310	1423	41	0.66	0.61	0.4	2

Tableau [III.2.4]: Paramètres thermiques T_g , T_x , T_m , T_l , et indicateur du GFA ΔTx , T_g/T_m , T_g/T_l , γ , d_c des BMGs de type B-Ni-Fe-Si-Ta [19-21].

Alloys	T_g/k	$T_{x/K}$	T_m/K	T_l/K	ΔT_x	T_g/T_m	T_g/T_l	γ	dc/mm
$B_{17.7}(Ni_{0.70}Fe_{0.30})_{70.5}Si_{7.8}Ta_4$	789	821	1241	1277	32	0.636	0.618	0.397	2
$B_{17.7}(Ni_{0.65}Fe_{0.35})_{70.5}Si_{7.8}Ta_4$	793	832	1242	1279	39	0.638	0.62	0.402	3
$B_{17.7}(Ni_{0.60}Fe_{0.40})_{70.5}Si_{7.8}Ta_4$	792	834	1235	1281	42	6.641	0.618	0.402	3
$B_{17.7}(Ni_{0.55}Fe_{0.45})_{70.5}Si_{7.8}Ta_4$	793	831	1237	1290	38	0.641	0.615	0.399	3
$B_{17.7}(Ni_{0.50}Fe_{0.50})_{70.5}Si_{7.8}Ta_4$	802	834	1239	1306	38	0.647	0.614	0.396	2
$B_{17.7}(Ni_{0.45}Fe_{0.55})_{70.5}Si_{7.8}Ta_4$	806	836	1270	1322	30	0.635	0.61	0.393	2
$B_{17.7}(Ni_{0.40}Fe_{0.60})_{70.5}Si_{7.8}Ta_4$	807	838	1294	1321	31	0.624	0.611	0.394	2
$B_{17.7}(Ni_{0.35}Fe_{0.65})_{70.5}Si_{7.8}Ta_4$	815	839	1288	1327	24	0.633	0.614	0.392	2
$B_{17.7}(Ni_{0.30}Fe_{0.70})_{70.5}Si_{7.8}Ta_4$	824	854	1296	1348	30	0.636	0.611	0.393	2
$B_{17.7}(Ni_{0.25}Fe_{0.75})_{70.5}Si_{7.8}Ta_4$	831	865	1294	1358	34	0.642	0.612	0.395	2
$B_{17.7}(Ni_{0.20}Fe_{0.80})_{70.5}Si_{7.8}Ta_4$	841	865	1310	1372	24	0.642	0.613	0.391	2
B _{18.2} (Ni _{0.65} Fe _{0.35}) _{72.7} Si _{6.1} Ta ₃	793	817	1246	1314	24	0.636	0.604	0.388	2

$B_{18.2}(Ni_{0.60}Fe_{0.40})_{72.7}Si_{6.1}Ta_3$	792	814	1252	1318	22	0.633	0.601	0.386	2
$B_{18.2}(Ni_{0.55}Fe_{0.45})_{72.7}Si_{6.1}Ta_3$	790	811	1249	1320	21	0.633	0.598	0.384	2
B _{24.7} (Ni _{0.55} Fe _{0.45}) _{65.9} Si _{5.4} Ta ₄	790	827	1238	1286	37	0.638	0.614	0.398	2
$B_{24.7}(Ni_{0.50}Fe_{0.50})_{65.9}Si_{5.4}Ta_4$	799	834	1237	1290	35	0.646	0.619	0.399	2
$B_{24.7}(Ni_{0.55}Co_{0.45})_{65.9}Si_{5.4}Ta_4$	834	867	1335	1373	33	0.625	0.607	0.393	2
$B_{24.7}(Ni_{0.50}Co_{0.50})_{65.9}Si_{5.4}Ta_4$	826	863	1330	1371	37	0.621	0.602	0.393	2

Tableau [III.2.5] : Paramètres thermiques T_g , T_x , T_m , T_l , et indicateur du GFA ΔTx , T_g/T_m , T_g/T_l , γ , d_c des BMGs à base de Ni [22].

Alloys	Tg /K	Tx /K	Tm /K	Tl /K	∆Tx	T_g/T_m	T_g/T_l	Ÿ	dc /mm
Ni _{62.5} Nb _{32.2} Zr _{5.3}	889	929	1419	1448	40	0.626	0.614	0.398	3
Ni _{62.5} Nb _{31.875} Zr _{5.625}	892	928	1416	1443	36	0.630	0.618	0.397	3
Ni _{62.5} Nb _{31.56} Zr _{5.94}	892	926	1415	1444	34	0.630	0.618	0.396	3
Ni _{62.5} Nb _{31.25} Zr _{6.25}	885	924	1413	1441	39	0.626	0.614	0.397	3
Ni _{62.5} Nb _{30.94} Zr _{6.56}	882	922	1411	1436	40	0.625	0.614	0.398	3
Ni _{62.5} Nb _{30.625} Zr _{6.875}	881	920	1411	1441	39	0.624	0.611	0.396	3
Ni ₆₂ Nb _{30.31} Zr _{7.19}	888	918	1406	1433	30	0.632	0.62	0.396	3
Ni _{62.5} Nb _{31.825} Ta _{5.625}	932	951	1471	1501	19	0.634	0.621	0.391	3
Ni _{62.5} Nb _{31.25} Ta _{6.25}	935	952	1471	1492	17	0.636	0.627	0.392	3
Ni _{62.5} Nb _{30.625} Ta _{6.875}	939	954	1476	1499	15	0.636	0.626	0.391	3
Ni _{62.5} Nb _{37.1875} Ag _{0.625}	917	935	1454	1477	18	0.631	0.621	0.391	3
Ni _{62.5} Nb _{37.1875} Ag _{0.3125}	915	937	1454	1482	22	0.629	0.617	0.391	3
Ni _{58.75} Nb _{37.5} Cu _{3.75}	897	916	1441	1469	21	0.622	0.609	0.388	3
Ni _{62.5} Nb _{31.25} Ta _{1.875} Zr _{4.375}	911	935	1425	1453	24	0.639	0.627	0.396	4
Ni _{62.5} Nb _{31.25} Ta _{1.25} Zr ₅	896	932	1420	1446	35	0.631	0.62	0.398	4

$Ni_{62.5}Nb_{31.25}Ta_{0.625}Zr_{5.625}$	898	930	1416	1444	32	0.634	0.622	0.397	4
Ni _{62.5} Nb _{29.375} Zr _{1.875} Ta _{6.25}	932	953	1450	1479	21	0.643	0.63	0.395	4
Ni _{62.5} Nb _{28.75} Zr _{2.5} Ta _{6.25}	922	951	1448	1476	29	0.637	0.625	0.397	4
Ni _{62.5} Nb _{28.125} Zr _{3.125} Ta _{6.25}	915	949	1441	1469	34	0.635	0.623	0.398	4
Ni ₆₀ Nb _{31.25} Cu _{2.5} Ta _{6.25}	917	941	1464	1493	24	0.626	0.614	0.391	4
Ni _{59.375} Nb _{31.25} Cu _{3.125} Ta _{6.25}	918	936	1461	1492	18	0.628	0.615	0.388	4
Ni _{58.75} Nb _{31.25} Cu _{3.7} Ta _{6.25}	922	934	1460	1490	12	0.632	0.619	0.387	4

III.2.3 <u>Techniques de calculs</u>

III.2.3.1 L'analyse en composantes principales (ACP) et la régression (PLS)

➤ La première analyse effectuée était d'examiner les tendances générales entre les différents BMG_S. L'analyse des résultats entre les différents BMGs est donnée par les graphes des observations "Scores". Les "Scores" donnent des informations sur les échantillons et traite la façon dont ils se comportent [23]. Le résultat des "Scores plot" de cette analyse est montré sur les figures ci-dessous.

Figure [III.2.1] : Graphe de « score Plot » pour les verres métalliques massifs de type Cu-Zr-Al.

Figure [III.2.2] : Graphe de « score Plot » pour les verres métalliques massifs de type *Zr-Ni-Al.*

Figure [III.2.3] : Graphe de « score Plot » pour les verres métalliques massifs de type Co-B-Si- (Ta-Nb).

Figure [III.2.4] : Graphe de « score Plot » pour les verres métalliques massifs de type B-Ni-Fe-Si-Ta.

Figure [III.2.5] : Graphe de « score Plot » pour les verres métalliques massifs à base de Ni.

Les différents points de BMGS sont représentés dans l'espace engendré par les deux premières composantes principales PC1 et PC2. Aucune autre composante principale PCs n'est incluse dans ces discussions parce qu'elles ne fournissent pas des informations significatives.

En regardant ces figures, on constate qu'il n'y a pas de corrélations importantes ou regroupement en clusters entre ces différents BMG_S même dans un alliage du même système donné, pour ne pas dire dans les différents systèmes. Ce comportement est expliqué par le fait que les BMG_S peuvent être formée sur de grandes zones de compositions, mais seulement quelques compositions qui présentent les plus grandes GFA.

Les tendances du GFA entres toutes les compositions BMGs ne sont pas évidentes, et l'appui du datamining sur tout les BMG n'a pas de sens. Par conséquent, les techniques PCA et PLS vont être appliquées plu tard en utilisant les critères de GFA, $T_{rg} = T_g / T_1$, $T_{rg} = T_g / T_m$, ΔTx et γ afin d'identifier les compositions de verres métalliques massifs qui ont une meilleur aptitude à la vitrification GFA et ceci pour chaque système d'alliage.

III.2.3.1.1 BMGs de type Cu - Zr -AI

Les corrélations entre les BMG_S de type Cu-Zr-Al [17] et leurs paramètres correspondants sont clairement indiquées dans la figure [III.2.6] de Biplots superposant les échantillons et les propriétés et qui correspond aux données énumérées dans le tableau [III.2.1].

Figure [III.2.6] : Graphes de « Biplots » pour les BMG à base de Cu.

Ces Biplots obtenues par les deux approches, PCA et PLS, sont similaires et combinent les propriétés et les critères avec les différents verres métalliques massifs. En analysant les figures suivantes, on remarque que PC1 capture 38,27 % du désaccord dans l'ensemble de données et PC2 capture 35,45 % du désaccord. Les propriétés avec les valeurs similaires de
PCs sont fortement corrélées, tandis que les propriétés avec des valeurs inverses de PC sont inversement corrélées.

En analysant ces figures, il apparaît que les matériaux $Cu_{58.1}Zr_{35.9}Al_{6.0}$ $Cu_{58.0}Zr_{36.2}Al_{5.8}$ qui ont une meilleur aptitude à la vitrification GFA [24], et qui peuvent former des tiges de BMG avec un diamètre de 5 mm, sont fortement corrélés avec T_g/T_1 et d_c. D'après le tableau, on constate que ces deux BMG_S ont le plus grand $T_g/T_1 = 0,65$, ce qui est en bon accord avec le critère générale de mesure du GFA qui indique qu'un alliage avec grand T_g/T_1 possède une grande aptitude à la vitrification GFA [25].

En outre, T_g/T_m n'est pas aussi bon que T_g/T_1 dans la représentation de la GFA. Les alliages $Cu_{57.1}Zr_{35.7}Al_{7.2}$ $Cu_{60.2}Zr_{33.8}Al_{6.0}$ avec un diamètre critique inférieure d_c de 3 mm sont corrélées avec T_g / T_m , mais pas avec la taille critique dc. A partir de ces observations, on peut conclure que $T_{rg} = T_g/T_1$ a une forte corrélation avec la GFA valorisée par l'épaisseur critique que le T_g / T_m .

III.2.3.1.2 BMGs de type Zr -Ni- Al

En utilisant les valeurs expérimentales obtenues par FWLi et al [18], les données correspondantes sont indiquées dans le tableau [III.2.2]. Les biplots obtenus par les approches PCA et PLS sont présentés dans la figure [III.2.7].

Figure [III.2.7] : Graphes de « Biplots » pour les BMG à base de Zr.

En analysant ces figures, on remarque que la plus grande valeur de $\Delta T_x = 68K$ correspond au compositions de BMG_S Ni₃Zr₇A_{11.5} = Al₁₃Ni₂₆Zr₆₁, Ni₃Zr₇Al₂ = Al_{16.7}Ni₂₅Zr_{58.3}, et Ni₄Zr₉Al₂ = Al_{13.3}Ni_{26.7}Zr₆₀, qui possèdent des diamètres critiques de 8, 5 et 8 mm respectivement et qui sont fortement corrélés avec T_g / T_1 , γ et ΔT_x , mais pas avec dc. Parmi toutes ces compositions, le meilleur verre métallique massif Ni₄Zr₉Al₂ = Al_{13.3}Ni_{26.7}Zr_{60.0} est fortement corrélé avec T_g/T_1 et γ , ce qui indique que parmi tous les indicateurs du GFA le $T_{rg} = T_g/T_1$ corrèle le mieux avec la GFA.

III.2.3.1.3 BMGs de type Co-B -Si- (Ta, Nb)

Les données correspondantes sont indiquées dans le tableau [III.2.3] et les Biplots sont représentés sur la Figure [III.2.8].

Figure [III.2.8] : Graphes de « Biplots » pour les BMG à base du Co.

Le tableau [III.2.3] représente les données des BMGS à base du cobalt Co-B -Si- (Ta, Nb) [20] . La figure [III.2.8] montre les graphes biplots obtenus par PCA et PLS. D'après la figure, on remarque bien que les indicateurs du GFA γ , T_g/T₁, et dc sont fortement corrélés les **BMG**_S $B_{26.9}Co_{62.2}Si_{6.9}Ta_4$, $B_{26.9}Co_{62.2}Si_{6.9}Nb_4$, B26.2Co61.2Si7.8Ta4.8 avec et B_{26.1}Co₆₁Si_{6.45}Nb_{6.45} qui présentent les plus grandes GFA avec 3 mm et 4 mm de diamètre, ce qui signifie que ces paramètres peuvent précisément indiquer la GFA des BMG. Les BMGs B_{24.7}Co_{65.9}Si_{5.4}Nb₄, B₂₄Co_{64.8}Si_{7.2}Nb₄ et B_{27.2}Co_{63.6}Si_{5.2}Nb₄, qui présentent de faibles GFA avec des diamètres critiques de 3, 2, 2 mm respectivement sont fortement corrélés avec ΔT_x , indiquant que les GFA de ces alliages ne peuvent pas être évaluées directement en termes de ΔT_x . Encore une fois le T_g/T_1 ainsi que γ , mais pas ΔT_x , reflètent précisément les GFA du présent BMG_S de type Co-B -Si- (Ta, Nb).

III.2.3.1.4 BMG_S de type B -Ni- Fe-Si- Ta

Les données correspondantes sont indiquées dans le tableau [III.2.4][19-21]. Les Biplots obtenus par les deux modèles PCA et PLS sont présentés dans la figure [III.2.9].

Figure [III.2.9] : Graphes de « Biplots » pour les BMG de type B -Ni- Fe-Si- Ta.

On peut voir que les trois BMG_S $B_{17.7}$ ($Ni_{0.65}Fe_{0.35}$) $_{70.5}Si_{7.8}Ta_4$, $B_{17.7}$ ($Ni_{0.6}Fe_{0.40}$) $_{70.5}Si_{7.8}Ta_4$, et $B_{17.7}$ ($Ni_{0.65}Fe_{0.45}$) $_{70.5}Si_{7.8}Ta_4$, présentant les plus grandes aptitude à la vitrification GFA avec un diamètre critique de 3 mm, sont tous en corrélation avec les quartes indicateur du GFA ΔT_x , T_g/T_1 , γ et dc.

III.2.3.1.5 BMG_S à base de Ni

Les données correspondantes sont indiquées dans le tableau [III.2.5][22] et les graphes Biplots sont représentés sur la figure [III.2.10].

Figure [III.2.10] : Graphes de « Biplots » pour les BMG à base de Ni.

En analysant les graphes suivants le on remarque que T_g/T_1 est fortement corrélée avec l'épaisseur critique d_c, mais le γ et ΔT_x sont inversement corrélée à d_c, ce qui indique bien que le Tr_g mais pas γ et ΔT_x peut précisément corréler avec les BMG_S présentant les plus grandes aptitude à la vitrification GFA tels que ,Ni_{62.5}Nb_{28.75}Zr_{2.5}Ta_{6.25} Ni_{62.5}Nb_{29.375}Zr_{1.875}Ta_{6.25}, Ni_{62.5}Nb_{28.125}Zr_{3.125}Ta_{6.25} et Ni_{62.5}Nb_{31.25}Ta_{1.875}Zr_{4.375} avec un diamètre critique de 4mm .

III.2.3.2 Corrélations entre les paramètres du GFA

Pour déterminer précisément les tendances et les corrélations entre tous les paramètres, les graphes des variables « Loading plot » du modèle PCA sont représentés sur la figure [II.2.11].

Les "Loadings" donnent des informations sur les relations qui existent entre les propriétés. La figure [III.2.11] montre les graphes des variables « Loadings » correspondant aux échantillons représentés sur les figures 1-5. Les axes des deux graphes de Loadings et scores sont identiques ainsi l'information dans les deux graphiques peut être comparée directement.

Les propriétés avec les valeurs similaires de PCs sont fortement corrélées, tandis que les propriétés avec des valeurs inverses de PCs sont inversement corrélées.

Plusieurs corrélations entre les propriétés ne sont pas aussi évidentes. Cependant une corrélation qui est bien apparente est que, tous les indicateurs de GFA T_g/T_l , γ , et ΔT_x présentent des corrélations soit directement ou inversement proportionnelles avec le diamètre critique d_c, indiquant que tous ces paramètres peuvent, à un certain moment, refléter la GFA des BMGs et ceci dépend de type de verres métalliques choisit. Il semble également dans la figure [III.2.11] que la température de transition vitreuse réduite $T_{rg} = T_g/T_1$ et la température de fusion T_m sont inversement corrélées, ce qui signifie que les alliages multi-composants ayant d'excellentes GFA possèdent une faible température de fusion ce qui est bien en accord avec les observations expérimentales [26].

Figure [III.2.11] : Graphes de « Loading plots » pour les différents BMG à base de Cu, Zr, Co, BNiFeSiTa et à base du Ni respectivement .

III.2.3.3 Corrélations entre les compositions et les indicateurs du GFA dans

d'autres BMG_s

Un bon critère du GFA doit refléter la GFA de tout des verres métalliques massifs, qu'elle soit élevée ou faible. Après une récolte de données basée sur les paramètres mentionnés ci-dessus, une fiable base de données composée de nombreux verres métalliques massifs à base de RE, Cu, Ti, Fe, Zr et Ni été établie à partir de la littérature [27-32]. Les données sont mentionnées dans le tableau [III.2.6] jusqu'au tableau [III.2.11] situés dans l'annexe [29-30].

D'autre BMS à base de Mg, Pd, Ca, Hf et La ont été étudiés pour valider nos résultats et les données correspondantes sont mentionnées dans les tableaux [III.2.12] jusqu'au tableau [III.2.17] situés dans l'annexe.

La meilleur façon de décider de la fiabilité des critères de GFA est principalement basée sur la corrélation de ces critères au BMG_S qui présentent les plus grandes valeurs du GFA mesuré par le plus grand diamètre critique d_c. Meilleure est la corrélation avec dc, le meilleur est le critère du GFA.

Les graphes de Biplots correspondants sont indiqués dans les Figures ci-dessous, pour les BMG_s énumérés dans les Tableaux de l'annexe.

Figure [III.2.12] : Graphe de « Biplot » pour les BMG à base de RE.

Figure [III.2.13] : Graphe de « Biplot » pour les BMG à base de Cu.

Figure [III.2.14] : Graphe de « Biplot » pour les BMG à base de Ti.

Figure [III.2.15] : Graphe de « Biplot » pour les BMG à base de Fe.

Figure [III.2.16] : Graphe de « Biplot » pour les BMG à base de Zr.

Figure [III.2.16] : Graphe de « Biplot » pour les BMG à base de Ni.

D'après les figures, on remarque que les BMG_S avec de grandes GFA et des diamètres critiques élevées d_c sont fortement corrélés avec $T_{rg} = T_g/T_1$ et γ mais pas avec ΔT_x . De plus, la corrélation entre $T_{rg} = T_g/T_1$ et d_c est plus forte que celle entre γ et d_c, ce qui indique que $T_{rg} = T_g/T_1$ est le meilleur indicateur de mesure du GFA que le ΔT_x et γ et ceci pour la plupart des alliages verres métalliques. Par exemple, dans les BMG_S à base de RE, Zr, Ti et Fe, le $T_{rg} = T_g/T_1$ est fortement corrélée à la taille critique d_c. Contrairement, dans les systèmes à base de Cu et Ni, ΔT_x ne peut pas être utilisé tout seul pour prédire la GFA ainsi qu'une augmentation du GFA n'est pas toujours accompagnée par une meilleure stabilité. De ce fait, c'est inapproprié d'utiliser ΔT_x seul en tant qu'indicateur pour les BMG_S ce qui est en bon accord avec les observations théoriques de Weinberg [33].

En outre, le paramètre γ est significatif pour différents verres métalliques massifs et présente de bonnes corrélations avec le d_c et T_{rg} = T_g/T_l. Comme on peut constater sur les Figures ci-dessus, l'indicateur γ présente une forte corrélation avec T_{rg} = T_g / T₁ dans les BMG_S à base de Zr et Ti et une meilleure corrélation avec ΔT_x dans les BMG_S à base de Ni et RE. Cela signifie que ce paramètre est susceptible de représenter la GFA de la plupart des alliages, mais n'est pas un meilleur indicateur pour l'ensemble de tous les verres métalliques. Expérimentalement, le paramètre γ a moins de précision dans l'évaluation de la GFA d'un alliage amorphe [33].

III.2.3.4 Corrélation générale entre les paramètres thermiques et la GFA

En revanche, Comme mentionné ci-dessus, un seul indicateur ne peut pas être utilisé pour prédire la GFA de tous les systèmes de verres métalliques. La logique de Datamining présentée ici peut être appliquée à n'importe quel système avec un nombre quelconque d'échantillons et de propriétés. La combinaison de l'informatique avec les données mesurées permet une plus grande compréhension des relations composition- structure-propriété. L'utilisation de PCA et PLS ici démontre comment l'informatique peut être employée pour examiner l'information afin de déterminer ce qui est nécessaire et utile, et employer alors cette connaissance dans le domaine expérimental, théorique et pour la conception de nouveaux matériaux.

Comme nous l'avons déjà indiqué précédemment, les BMG_S qui possèdent un grand diamètre critique sont fortement corrélés avec T_g/T_1 . Ce critère peut alors être employé pour

prédire de quelque sorte les meilleures compositions de BMGs. Le Tableau [III.2.18] extrait les meilleures compositions de BMGs et leurs indicateurs du GFA à partir des tableaux précédents, et le graphe de Biplot correspondant est clairement montré dans la figure [III.2.17].

Alloys	T_g/T_l	$\Delta Tx / K$	dc /mm
Al _{13.3} Ni _{26.7} Zr ₆₀	0.586	68	8
Al _{18.2} Ni _{27.3} Zr _{54.5}	0.616	52	5
Al ₁₃ Ni ₂₆ Zr ₆₁	0,556	68	8
Al _{21.4} Ni _{21.4} Zr _{57.2}	0,557	39	8
Al _{23.1} Ni _{23.1} Zr _{53.5}	0,578	41	8
Al _{18.8} Ni ₂₅ Zr _{56.2}	0,553	62	8
Cu _{58.1} Zr _{35.9} Al ₆	0,65	39	5
Cu _{58.0} Zr _{36.2} Al _{5.8}	0,64	43	5
Cu _{60.2} Zr _{33.8} Al _{6.0}	0,62	32	3
Cu _{57.1} Zr _{35.7} Al _{7.2}	0,65	27	3
B _{26.2} Co _{61.2} Si _{7.8} Ta _{4.8}	0.657	22	4
$B_{26.1}Co_{61}Si_{6.45}Nb_{6.45}$	0.639	36	3
B _{26.1} Co _{60.9} Si _{6.5} Ta _{6.5}	0.654	31	3
B _{23.1} Co _{61.5} Si _{7.7} Ta _{7.7}	0.614	52	3
$B_{23.4}Co_{62.5}Si_{7.05}Ta_{7.05}$	0.614	32	3
$B_{23.8}Co_{63.5}Si_{6.35}Ta_{6.35}$	0.607	36	3
B _{27.2} Co _{63.6} Si _{5.2} Ta ₄	0.616	44	2
B _{24.7} Co _{65.9} Si _{5.4} Ta ₄	0.609	43	3
B _{26.9} Co _{62.2} Si _{6.9} Ta ₄	0.628	37	4
B ₂₄ Co _{64.8} Si _{7.2} Ta ₄	0.615	40	2
$B_{17.7}(Ni_{0.60}Fe_{0.40})_{70.5}Si_{7.8}Ta_4$	0.618	42	3
$B_{17.7}(Ni_{0.65}Fe_{0.35})_{70.5}Si_{7.8}Ta_4$	0.62	39	3
$B_{17.7}(Ni_{0.55}Fe_{0.45})_{70.5}Si_{7.8}Ta_4$	0.615	38	4
$Ni_{62.5}Nb_{29.375}Zr_{1.875}Ta_{6.25}$	0.63	21	4
$Ni_{62.5}Nb_{28.125}Zr_{3.125}Ta_{6.25}$	0.623	34	4
$Ni_{62.5}Nb_{28.75}Zr_{2.5}Ta_{6.25}$	0.625	29	4
Ni _{62.5} Nb _{31.25} Ta _{1.875} Zr _{4.375}	0.627	24	4
$Ni_{62.5}Nb_{31.25}Ta_{0.625}Zr_{5.625}$	0.622	32	4
Ni _{62.5} Nb _{31.825} Ta _{5.625}	0.621	19	3

Tableau [III.2.18]: Les BMGs avec grande GFAs et leurs paramètres Tg/Tl, Δ Tx et d_c tirésà partir des Tableaux 1-5.

Le plus grand de nos objectifs ici est de relier les tendances dans les verres métalliques massifs avec les indicateurs du GFA dans tous les systèmes. La relation entre tous les paramètres et les matériaux est montrée clairement dans la figure [III.2.17], qui semble former environ trois cluster.

Figure [III.2.17]: Graphe de Biplot pour les BMGs avec grande GFA.

Les BMG_S du premier cluster sont corrélées avec le $T_{rg} = T_g / T_l$. les BMG_S du cluster 2 et 3 sont en corrélation avec le diamètre critique d_c et ΔT_x , respectivement. Cela signifie que, chaque groupe correspond à un indicateur. Nous pouvons noter donc, qu'en raison de la complexité des facteurs dominants qui gèrent la formation des multi-composants de verres métalliques massifs, il n'est pas possible de proposer un critère universel qui peut être utilisé pour juger et prédire la GFA de tous les alliages BMG.

III.2.4 Conclusion

Afin d'évaluer l'aptitude de vitrification (GFA) des verres métalliques massifs, une analyse critique des indicateurs du GFA existants : T_g / T_1 , T_g / T_m , γ , et ΔT_x , a été réalisée à l'aide des techniques du Datamining PCA et PLS. Le principal objectif était de juger leurs fiabilités et applicabilités pour mesurer l'aptitude de vitrification des différents BMG_S obtenus expérimentalement. Les présents résultats démontrent clairement qu'un indicateur de GFA spécifique n'est pas universellement applicable pour tous les BMG_S. Comparativement parlant, cependant, le paramètre $T_{rg} = T_g / T_l$ est le meilleur parmi tous les indicateurs du GFA. Ainsi, nous avons démontré dans ce travail que sur la base des techniques de datamining et en utilisant les données expérimentales ou théoriques déjà existantes sur les verres métalliques massifs, il est possible d'extraire le meilleur indicateur du GFA sans faire de calculs ni expérience.

Références

[1] X. Liu, K. Asano, N. Terashita et E. Akiba, Hydrogenation of C14 Laves phase alloy: CaLi ₂, J. Hydrogen Energ. 34 (2009) 1472.

[2] D.J. Thoma, K.A. Nibur, K.C. Chen, The effect of alloying on the properties of (Nb, Ti)
 Cr< sub> 2</sub>< i> C</i> 15 Laves phases, Mater, Sci. Eng. 329 (2002) 408.

[3] H. Xu, X. Nie, Y. Du, S. Lu, K. Wang, Philos. First-principles study of structural and electronic properties of Laves phases structures YM_2 (M = Cu and Zn), Mag. Lett. 8 (2009) 465.

[4] J. Chao, Site preference of early transition metal elements in C15 NbCr2, Acta Mater. 55 (2007) 1599.

[5] F. Stein, M. Palm, G. Sauthoff, Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability ,Intermetallics. 12 (2004) 713.

[6] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases, Intermetallics. 11 (2003) 23.

[7] K.S. Kumar, D.B. Miracle, Microstructural evolution and mechanical properties of a $CrCr_2Hf$ alloy, Intermetallics . 2 (1994) 257.

[8] K.S. Kumar, L. Pang, J.A. Horton, C.T. Liu, Structure and composition of Laves phases in binary Cr–Nb, Cr–Zr and ternary Cr–(Nb, Zr) alloys ,Intermetallics .11 (2003) 677.

[9] X. Tao, Y. Ouyang, H. Liu, F. Zeng, Y. Feng, Y. Du, Z. Jin, First-principles calculations on finite temperature elastic properties of B2-AlRE (RE = Y, Tb, Pr, Nd, Dy) ,intermetallics. 44 (2008) 392.

[10] Y. Ouyang, X. Tao, H. Chen, Y. Feng, Y. Du, Y. Liu, Effect of electron concentration on the Laves phase stability of NbCr₂–Ni produced by powder metallurgy ,Comput. Mater. Sci. 47 (2009) 297.

[11] O. AbuOmar, S. Nouranian, R. King , J.L. Bouvard , H. Toghiani , T.E. Lacy , C.U. Pittman Jr, Data mining and knowledge discovery in materials science and engineering: A polymer nanocomposites case study, Advanced Engineering Informatics. 27 (2013) 615–624.

[12] A. Javadi, M. Rezania, Intelligent finite element method: an evolutionary approach to constitutive modeling, Advanced Engineering Informatics. 23 (2009) 442–451.

[13] I.K. Brilakis, L. Soibelman, Y. Shinagawa, Construction site image retrieval based on material cluster recognition, Advanced Engineering Informatics. 20 (2006) 443–452.

[14] A. Ullah, K.H. Harib, An intelligent method for selecting optimal materials and its application, Advanced Engineering Informatics. 22 (2008) 473–483.

[15] D. Turnbull, Under what conditions can a glass be formed, J.Contemp. Phys. 10 (1969)473–488.

[16] Q.Chen, J.Shen, D.Zhang, H. Fan, J.Suna, .G.Mc.Cartney, A new criterion for evaluating the glass-forming ability of bulk metallic glasses, J. Materials Science and Engineering. 433 (2006) 155–160.

[17] G. Han, J. B. Qiang, Q.Wang, Composition formulae of ideal metallic glasses and their relevant eutectics established by a cluster-resonance model, J. Phi Mag. 91(2011)2404-2418.

[18] F.W.Li, J.Qiang, Y.Wang, Q.Wang, X.Dong, C.Dong, Revisiting Al-Ni-Zr bulk metallic glasses using the 'cluster-resonance' model, Chinese Science Bulletin. 56(2011) 3902-3907.

[19] C. Zhu, PhD thesis, Dalian University of Technology, Compositions design and properties of (Co,Ni,Fe)-B-based bulk metallic glasses designed from eutectic cluster formulae.2011.

[20] C.L. Zhu, Q. Wang, Y.M. Wang, J.B. Qiang, C. Dong, Co–B–Si–Ta bulk metallic glasses designed using cluster line and alloying, J. Alloys and Compounds. 504 (2010) 34–37.
[21] C.L. Zhu, Q. Wang, Y.M. Wang, J.B. Qiang, C. Dong, Ni-based B–Fe–Ni–Si–Ta bulk metallic glasses designed using cluster line, minor alloying, and element substitutions, J.Intermetallics.18 (2010) 791–795.

[22] L.Yuan, C.Pang, Y.Wang, Q.Wang, J.Qiang, C.Dong, Understanding the Ni–Nb–Zr BMG composition from a binary eutectic Ni–Nb icosahedral cluster, J. Intermetallics. 18(2010) 1800–1802.

[23] C.Suh, A.Rajagopalan, X.Li, and K.rajan, The application of Principal Component Analysis to materials science data, J. Data science Journal. 1(2002) 19-26.

[24] Y.H.Li, Q.Wang, J.Wu.C Dong, Formation of Cu-Zr-M ternary bulk metallic glasses based on atomic clusters, Journal of Physics: Conference Series. 98 (2008) 012006.

[25] Z.P. Lu, H. Tan, Y. Li, S.C. Ng, The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses, J.Scripta mater. 42 (2000) 667–673.

[26] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, J.Materials Science and Engineering. 44 (2004) 45–89.

[27] S. Li, R.J. Wang, M.X. Pan, D.Q. Zhao, W.H. Wang, Formation and properties of RE55Al25Co20 (RE=Y, Ce, La, Pr, Nd, Gd, Tb, Dy, Ho and Er) bulk metallic glasses, J. Non-Crystalline Solids. 354 (2008) 1080–1088.

[28] Z.Long, H.Wei, Y.Ding, P.Zhang, G.Xie, A. Inoue, A new criterion for predicting the glass-forming ability of bulk metallic glasses, J. Alloys and Compounds. 475 (2009) 207-219.

[29] W.MC.Cormick, Intermolecular condensation rates in the acidic polymerization of octaethoxytrisiloxane, J. Non-Cryst. Solids. 167(1994)289-294.

[30] H.X. Li a, S.L.Wang b, S.Yi b, Z.B.Jiao a, Y.Wua, Z.P.Lu , Glass formation and magnetic properties of Fe–C–Si–B–P–(Cr–Al–Co) bulk metallic glasses fabricated using industrial raw materials, J. Magnetism and Magnetic Materials. 321 (2009) 2833–2837.

[31] Q. Luo, W.H. Wang, Rare earth based bulk metallic glasses, J. Non-Crystalline Solids. (2009) 759–775.

[32] X. Xu , L.Y. Chen , G.Q. Zhang , L.N. Wang , J.Z. Jiang , Formation of bulk metallic glasses in $Cu_{45}Zr_{48_x}Al_7RE_x$ (RE= La, Ce, Nd, Gd and), J. Intermetallics. 15 (2007) 1066-1070 [33] Z.P.Lu, C.T.Liu, Y.Wu, H.Tan, Y.Li, G.L.Chen, Composition effects on glass-forming ability and its indicator γ , J. Intermetallics. 16(2008)410-417.

CONCLUSION GENERALE

Pour Conclure, nous présentons les principales motivations de notre travail. Actuellement, avec les progrès rapides dans la technologie et à tous les niveaux, la conception et la prédiction de nouveaux matériaux assistés par ordinateur sont devenus de plus en plus nécessaires.

Notre travail décrit les différents concepts de l'utilisation des approches de l'informatique des matériaux pour examiner les critères du GFA existants et tirer le meilleur indicateur parmi ces derniers, et étudier les propriétés mécaniques des intermétalliques polaires pour prédire des matériaux de grande dureté et rigidité.

Dans la première partie, nous avons construit une base de données qui tient compte des différentes propriétés mécaniques des intermétalliques polaires de type phase de Laves. Ces données tirées à partir de calcul du premier principe sont considérées comme données d'entrée pour le calcul.

Nous avons envisagé l'alternative de réduire ce nombre de données et les analysées en utilisant des modèles informatiques et des techniques du Datamining, l'analyse en composante principale (ACP), et la régression aux moindres carrés partiels (PLS), ont été appliquées afin d'identifier les tendances et propriétés de ces matériaux.

Le principal objectif était de prédire les meilleurs intermétalliques polaires durs et rigides avec une ductilité appréciable. Nous avons démontré clairement qu'à partir d'une simple observation visuelle des graphes PCA et PLS, des positions des différents intermétalliques, on peut conclure que les composés YCu₂ et YZn₂ cristallisant dans la structure orthorhombique CeCu₂ n'ont pas une bonne dureté et rigidité par rapport aux structures de phases de Laves (Hexagonal C14, C36 et cubique C15). Cependant, nos résultats confirment que les phases de Laves présentent des propriétés mécaniques très intéressantes, en particulier les deux structures C15(YZn₂) et C14(YCu₂) qui présentent une bonne dureté avec une ductilité appréciable, faisant de ces martiaux de bons candidats pour une éventuelle application dans le domaine de l'aéronautique.

Dans la deuxième partie, nous avons tenté d'évaluer l'aptitude de vitrification (GFA) des verres métalliques massifs, pour cela nous nous somme basés sur des données expérimentales pour construire une base de données qui contient des propriétés thermiques de plusieurs verres métalliques massifs.

Une analyse critique des indicateurs du GFA existants : T_g / T_1 , T_g / T_m , γ , et ΔT_x , a été réalisée à l'aide des techniques du datamining PCA et PLS. Le principal objectif était de juger leurs fiabilités et applicabilités pour mesurer l'aptitude de vitrification des différents BMG_S obtenus expérimentalement. Nos résultats démontrent clairement qu'un seul indicateur

du GFA spécifique n'est pas universellement applicable pour tous les BMG_s. Cependant, le paramètre $T_{rg} = T_g / T_l$ est le meilleur parmi tous les indicateurs du GFA.

Ainsi, nous avons démontré dans notre travail que sur la base des techniques de datamining et en utilisant les données expérimentales ou théoriques déjà existantes sur les verres métalliques massifs, il est possible d'extraire le meilleur indicateur du GFA sans faire de calculs ni de l'expérience.

Le calcul avec ces nouvelles approches produit des résultats comparables aux mesures expérimentales et ab-initio, et démontre comment l'informatique peut être employée pour utiliser l'information afin de déterminer ce qui est nécessaire et utile.

Les résultats obtenus sont très encourageants à approfondir l'étude dans ce domaine du Datamining.

Ce travail en perspective devrait servir à l'intégration de l'informatique de matériaux dans la conception de nouveaux matériaux et augmenter aussi nos chances de découvrir de nouveaux matériaux aux propriétés exotiques.

ANNEXE

Tableau [III.2.6]: Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx , T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de RE.

RE- Based BMG	Tg /K	Tx /K	Tl /K	dc /mm	T_g/T_l	$\Delta T/K$	γ
$La_{60}Al_{10}Ni_{10}Cu_{20}$	387	447	788	3	0.56	60	0.38
Ce ₇₀ Al ₁₀ Ni ₁₀ Cu ₁₀	359	377	714	3	0.56	18	0.351
$Pr_{60}Al_{10}Ni_{10}Cu_{20}$	409	452	806	5	0.51	43	0.372
$Nd_{60}Al_{10}Ni_{10}Cu_{20}$	438	478	755	5	0.58	40	0.401
Sm40Y15Al25C020	590	657	950	3	0.66	67	0.427
$Gd_{36}Y_{20}Al_{24}Co_{20}$	606	666	1048	3	0.6	60	0.403
$Tb_{36}Y_{20}Al_{24}Co_{20}$	619	686	1021	5	0.62	67	0.418
$Dy_{46}Y_{10}Al_{10}Co_{20}$	635	685	1025	5	0.63	50	0.413
$Ho_{35}Y_{21}Al_{24}Co_{20}$	644	696	1074	5	63	52	0.405
Er ₃₆ Y ₂₀ Al ₂₄ Co ₂₀	661	719	1071	8	0.62	58	0.415
Sc ₃₆ Y ₂₀ Al ₂₄ Co ₂₀	662	760	1048	3	0.63	98	0.444

Tableau [III.2.7]: Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx , T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Cu.

Cu-Based BMG		Tg /K	Tx /K	Tl /K	dc /mm	T_g/T_l	$\Delta T/K$	γ
Cu ₅₅ Zr _{42.5} Ga _{2.5}	а	709	762	1199	1	0.59	53	0.399
Cu _{57.5} Zr _{37.5} Ga ₅	b	745	785	1241	1	0.60	40	0.395
Cu _{52.5} Zr ₄₀ Ga _{7.5}	с	744	777	1281	1.5	0.61	33	0.396
$Cu_{55}Zr_{40}Ga_5$	d	736	779	1193	2	0.61	43	0.403
Cu _{52.5} Zr _{42.5} Ga ₅	е	733	777	1187	2	0.61	44	0.404
Cu ₄₆ Zr ₅₄	f	696	746	1201	2	0.57	50	0.393
$Cu_{46}Zr_{47}Al_7$	g	705	781	1163	3	0.60	76	0.418
$Cu_{46}Zr_{37}Al_7Y_{10}$	h	665	743	1118	4	0.59	78	0.416
$Cu_{46}Zr_{45}Al_7Y_2$	i	693	770	1143	8	0.60	77	0.419
Cu ₄₆ Zr ₄₂ Al7Y ₅	j	672	772	1113	10	0.60	100	0.432
$Cu_{60}Hf_{25}Ti_{15}$	k	730	790	1117	4	0.62	60	0.414
Cu _{52.5} Hf ₄₀ Al _{7.5}	I	779	833	1250	3	0.62	54	0.410
$Cu_{60}Zr_{30}Ti_{10}$	m	720	757	1160	4	0.62	37	0.402
$Cu_{47}Ti_{33}Zr_{11}Si_{1}Ni_{6}Sn_{2}$	n	720	765	1140	6	0.63	45	0.411
$Cu_{50}Zr_{43}Al_7$	0	721	792	1176	4	0.61	71	0.417
$Cu_{47}Zr_{43}Al_7Ag_3$	р	716	795	1156	5	0.61	79	0.424
Cu ₄₇ Zr ₄₃ Al ₇ Be ₃	q	715	798	1139	6	0.62	83	0.430
$Cu_{43}Zr_{43}Al_7Ag_7$	r	710	797	1125	8	0.63	87	0.434
Cu ₄₃ Zr ₄₃ Al ₇ Be ₇	s	710	813	1126	12	0.63	103	0.442
Cu ₄₉ Hf ₄₂ Al ₉	t	778	863	1249	10	0.62	85	0.425
Cu ₄₅ Zr ₄₈ Al ₇	u	708	766	1186	5	0.59	58	0.404
Cu ₄₇ Ti ₃₃ Zr ₁₁ Ni ₈ Si ₁	v	720	757	1157	4	0.62	37	0.403
$Cu_{47}Ti_{33}Zr_9Nb_2Ni_8Si_1$	w	728	762	1159	5	0.62	34	0.403

Cu ₄₇ Ti ₃₃ Zr ₇ Nb ₄ Ni ₈ Si ₁	х	713	736	1172	5	0.60	23	0.390
Cu _{47T} i ₃₃ Zr ₅ Nb ₆ Ni ₈ Si ₁	у	712	739	1187	2	0.59	27	0.389
Cu ₄₇ Ti ₃₃ Zr ₃ Nb ₈ Ni ₈ Si ₁	z	708	731	1228	1	0.57	23	0.377
Cu ₄₇ Ti ₃₃ Nb ₁₁ Ni ₈ Si ₁	А	710	732	1265	0.5	0.56	22	0.370
Cu ₄₇ Zr ₁₁ Ni ₈ Ti ₃₄	В	671	717	1160	3	0.57	46	0.391
Cu ₆₀ Zr ₃₀ Ti ₁₀	С	713	750	1151	4	0.61	37	0.402
$(Cu_{60}Zr_{30}Ti_{10})_{98}Y_2$	D	707	757	1122	5	0.63	50	0.413
$(Cu_{60}Zr_{30}Ti_{10})_{90}Be_{10}$	Е	720	762	1130	5	0.63	42	0.411
$(Cu_{60}Zr_{30}Ti_{10})_{99}Sn_1$	F	730	776	1155	5	0.63	46	0.411
Cu ₆₀ Hf ₂₅ Ti ₁₅	G	745	805	1182	4	0.63	60	0.417
$(Cu_{0.6}Hf_{0.25}Ti_{0.15})_{98}Nb_2$	Н	746	792	1184	4	0.63	46	0.410
$(Cu_{0.6}Hf_{0.25}Ti_{0.15})_{96}Nb_4$	Ι	747	789	1188	4	0.62	42	0.407
$(Cu_{0.6}Hf_{0.25}Ti_{0.15})_{94}Nb_6$	J	745	785	1190	4	0.62	40	0.405
$(Cu_{0.6}Hf_{0.25}Ti_{0.15})_{92}Nb_8\\$	Κ	745	783	1198	2.5	0.62	38	0.402
Cu ₆₀ Zr ₃₃ Ti ₇	L	740	7768	1191	3	0.62	28	0.397
Cu ₅₄ Ag ₆ Zr ₃₃ Ti ₇	М	709	738	1135	6	0.62	29	0.400
Cu _{46.4} Ag _{11.6} Zr ₃₅ Ti ₇	Ν	689	732	1119	6	0.61	43	0.404
Cu ₆₀ Zr ₃₀ Ti ₁₀	0	724	746	1175	2	0.61	22	0.392
Cu ₅₅ Ni ₅ Zr ₃₀ Ti ₁₀	Ρ	717	750	1204	2	0.59	33	0.390
$Cu_{47}Ni_{13}Zr_{30}Ti_{10}$	Q	727	754	1251	1	0.58	27	0.381
$Cu_{55}Ag_5Zr_{30}Ti_{10}$	R	704	733	1149	3	0.61	29	0.395
Cu ₅₀ Ag ₁₀ Zr ₃₀ Ti ₁₀	S	694	726	1130	4	0.61	32	0.398
$Cu_{45}Ag_{15}Zr_{30}Ti_{10}$	Т	687	717	1121	5	0.61	30	0.396
$Cu_{40A}g_{20}Zr_{30}Ti_{10}$	U	677	708	1125	3	0.60	31	0.392
Cu ₃₅ Ag ₂₅ Zr ₃₀ Ti ₁₀	V	677	706	1138	2	0.59	29	0.388
$Cu_{45}Ni_5Ag_{10}Zr_{30}Ti_{10}$	W	710	738	1160	5	0.61	28	0.394
Cu ₆₀ Hf ₂₀ Ti ₂₀	Х	740	767	1211	4	0.61	27	0.393
Cu ₆₀ Hf1 _{7.5} Ti _{22.5}	Y	732	755	1229	3	0.59	23	0.385
$Cu_{45}Zr_{45}Ag_{10}$	Z	683	756	1159	6	0.58	73	0.410
$Cu_{45}Zr_{45}Ag_7Al_3$	1	688	768	1151	7	0.59	80	0.417
$Cu_{45}Zr_{45}Ag_5Al_5$	2	697	783	1147	9	0.60	86	0.424
$Cu_{45}Zr_{45}Ag_3Al_7$	3	708	786	1177	8	0.60	78	0.417
Cu ₄₄ Zr ₄₄ Ag ₆ Al ₆	4	698	790	1144	10	0.61	92	0.428
$Cu_{42}Zr_{42}Ag_8Al_8$	5	705	780	1213	12	0.58	75	0.406
$Cu_{40}Zr_{40}Ag_{10}Al_{10}$	6	710	765	1273	3	0.55	55	0.385
$Cu_{40}Zr_{44}Ag_8Al_8$	7	693	791	1176	15	0.58	98	0.423
$Cu_{38}Zr_{46}Ag_8Al_8$	8	692	795	1145	20	0.60	103	0.432
Cu ₃₆ Zr ₄₈ Ag ₈ Al ₈	9	683	791	1142	25	0.59	108	0.433
Cu ₃₄ Zr ₅₀ Ag ₈ Al ₈	a1	680	780	1148	15	0.59	100	0.426
Cu ₅₀ Zr ₅₀	b1	686	744	1237	2	0.55	58	0.386
Cu ₄₈ Zr ₄₈ Ag ₄	c1	681	743	1199	3	0.56	62	0.395
Cu ₄₆ Zr ₄₆ Ag ₈	d1	677	745	1167	4	0.58	68	0.40
$Cu_{44}Zr_{44}Ag_{12}$	e1	684	764	1156	4	0.59	80	0.415

Cu ₄₂ Zr ₄₂ Ag ₁₆	f1	685	757	1232	2	0.55	72	0.394
$Cu_{45}Zr_{35}Ag_{10}Hf_{10}$	g1	690	769	1171	4	0.58	79	0.413
$Cu_{45}Zr_{25}Ag_{10}Hf_{20}$	h1	698	783	1218	3	0.57	85	0.408
$Cu_{45}Zr_{15}Ag_{10}Hf_{30}$	i1	712	799	1275	2	0.55	87	0.402
Cu ₅₀ Zr ₅₀	j1	670	717	1208	2	0.55	47	0.381
Cu ₄₃ Zr ₄₃ Ag ₇ Ti ₇	k1	670	714	1118	5	0.59	44	0.399
Cu ₄₃ Zr ₄₃ Ag ₇ In ₇	11	704	748	1135	5	0.62	44	0.406
$Cu_{43}Zr_{40}Ag_7Ti_{10}$	m1	656	707	1095	7	0.59	51	0.403
Cu ₆₄ Zr ₃₆	n1	787	833	1230	2	0.63	46	0.413
Cu ₅₇ Zr ₃₆ Ag ₇	01	712	755	1156	4	0.61	43	0.404
$Cu_{54}Zr_{36}Ag_{10}$	p1	719	759	1146	6	0.62	40	0.40
$Cu_{49}Zr_{36}Ag_{10}Ti_5$	q1	691	737	1130	8	0.61	46	0.404
Cu ₅₀ Zr _{42.5} Ti _{7.5}	r1	677	717	1152	5	0.58	40	0.39
$(Cu_{0.5}Zr_{0.425}Ti_{0.075})_{99}Sn_1$	s1	683	730	1140	6	0.59	47	0.400
$(Cu_{0.5}Zr_{0.425}Ti_{0.075})_{99}Si_1$	t1	683	731	1141	6	0.59	48	0.400
$(Cu_{0.5}Zr_{0.425}Ti_{0.075})_{98.8}Sn_{0.6}Si_{0.6}$	u1	682	734	1141	7	0.59	52	0.402

Tableau [III.2.8]: Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx , T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Ti.

Ti-Based BMG		Tg /K	Tx /K	Tl /K	dc /mm	T_g/T_l	$\Delta T/K$	γ
$Ti_{50}Ni_{30}Cu_{32}Sn_3$	а	686	759	1283	1	0.534	73	0.385
Ti ₅₀ Ni ₁₅ Cu ₂₅ Sn ₃ Be ₇	b	688	733	1207	2	0.570	45	0.386
Ti ₄₅ Ni ₁₅ Cu ₂₅ Sn ₃ Be ₇ Zr ₅	с	680	741	1142	5	0.595	61	0.406
Ti ₄₀ Zr ₂₅ Ni ₈ Cu ₉ Be ₁₈	d	621	668	1009	8	0.615	47	0.409
Ti ₅₀ Cu _{42.5} Ni _{7.5}	е	670	708	1226	0.2	0.546	38	0.373
$Ti_{47.5}Zr_{2.5}Cu_{42.5}Ni_{7.5}$	f	673	720	1225	1.5	0.549	47	0.379
$Ti_{42.5}Zr_{2.5}Hf_5Cu_{42.5}Ni_{7.5}$	g	677	726	1203	2.5	0.562	49	0.386
$Ti_{41.5}Zr_{2.5}Hf_5Cu_{42.5}Ni_{7.5}Si_1$	h	680	730	1199	5	0.567	50	0.3885
$Ti_{55}Zr_{10}Cu_9N_{i8}Be_{18}$	i	629	667	1013	6	0.620	38	0.406
Ti ₅₀ Zr ₁₅ Cu ₉ Ni ₈ Be ₁₈	j	622	662	1009	6	0.616	40	0.405
$Ti_{50}Ni_{24}Cu_{20}B_{1}Si_{2}Sn_{3} \\$	k	726	800	1310	1	0.554	74	0.392
$Ti_{34}Zr_{11}Cu_{47}Ni_8$	Ι	698.4	727.2	1169	4.5	0.597	28.8	0.389
$Ti_{41.5}Zr_{2.5}Hf_5Cu_{42.5}Ni_{7.5}Si_1$	m	684.6	719.9	1206	2	0.567	35.3	0.380
$Ti_{41.5}Zr_{2.5}Hf_5Cu_{37.5}Ni_{7.5}Si_1Sn_5$	n	693.3	757.5	1176	6	0.589	64.2	0.405
$Ti_{40}Zr_{10}Cu_{40}Pd_{10}$	0	660	709	1184	4	0.557	49	0.384
$Ti_{40}Zr_{10}Cu_{34}Pd_{16}$	р	672	723	1231	4	0.545	51	0.379
$Ti_{40}Zr_{10}Cu_{32}Pd_{18}$	q	683	740	1272	3	0.536	57	0.378
$Ti_{40}Zr_{10}Cu_{30}Pd_{20}$	r	687	747	1279	3	0.537	60	0.379
Ti ₅₃ Cu ₁₅ Ni _{18.5} Al ₇ Si ₃ Sc ₃ B _{0.5}	s	709	767	1240	2	0.571	58	0.393
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	t	695	749	1230	2	0.565	54	0.389
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	u	666	715	1189	6	0.560	49	0.385
$Ti_{40}Zr_{10}Cu_{36}Pd_{14}$	v	669	718	1191	6	0.561	49	0.386

Tableau [III.2.9]: Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx , T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Fe.

Fe-Based BMG		Tg /K	Tx /K	Tl /K	dc /mm	T_{o}/T_{I}	$\Delta T/K$	γ
$(Fe_{0.75}B_{0.2}Si_{0.05})_{96}Nb_4$	1	835	880	1475	15	0.57	45	0.381
$[(Fe_{0.9}Co_{0.1})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$	2	832	877	1460	2	0.57	45	0.383
$[(Fe_{0.8}Co_{0.2})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$	3	830	880	1431	2.5	0.58	50	0.389
$[(Fe_{0.7}Co_{0.3})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$	4	828	878	1413	3.5	0.59	50	0.392
$[(Fe_{0.6}Co_{0.4})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$	5	825	875	1407	4	0.59	50	0.392
$[(Fe_{0.5}Co_{0.5})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$	6	820	870	1397	0.5	0.59	50	0.392
$Fe_{48}Cr_{15}Mo_{14}C_{15}B_6Y_2$	7	839	886	1464	7	0.57	47	0.385
Fe ₄₅ Co ₃ Cr ₁₅ Mo ₁₄ C ₁₅ B ₆ Y ₂	8	834	880	1446	8	0.58	46	0.386
Fe43C05Cr15M014C15B6Y2	9	835	872	1442	9	0.58	37	0.383
Fe ₃₉ Co ₉ Cr ₁₅ Mo ₁₄ C ₁₅ B ₆ Y ₂	а	838	888	1466	10	0.57	50	0.385
Fe ₄₁ Co ₇ Cr ₁₅ Mo ₁₄ C ₁₅ B ₆ Y ₂	b	838	875	1436	16	0.58	37	0.385
Fe ₆₁ B ₁₅ Mo ₇ Zr ₈ Co ₇ Y ₂	С	904.6	916.4	1490	5	0.61	11.8	0.383
Fe ₆₁ B ₁₅ Mo ₇ Zr ₈ Co ₆ Y ₂ Al ₁	d	899.5	955.6	1495	5	0.60	56.1	0.399
Fe ₆₁ B ₁₅ Mo ₇ Zr ₈ Co ₅ Y ₂ Cr ₂	е	901.1	958.9	1490	5	0.60	57.8	0.401
Fe ₅₆ Mn ₅ Cr ₇ Mo ₁₂ Er ₂ C ₁₂ B ₆	f	793	832	1401	8	0.57	39	0.379
Fe ₆₃ C ₁₅ Mo ₁₄ Er ₂ B ₆	g	771	830	1389	3	0.56	59	0.384
Fe ₅₈ Cr ₅ Mo ₁₄ Er ₂ C ₁₅ B ₆	h	793	829	1416	6	0.56	36	0.375
Fe ₄₈ Cr ₁₅ Mo ₁₄ Er ₂ C ₁₅ B ₆	i	844	880	1446	8	0.58	36	0.385
$Fe_{68.3}C_{6.9}Si_{2.5}B_{6.7}P_{8.8}Cr_{2.2}Mo_{2.5}Al_{2.1}$	j	795	835	1316	4	0.60	40	0.396
$Fe_{72}Nb_4B_{20}Si_4$	k	842	880	1420	2	0.59	38	0.389
$(Fe_{72}Nb_4B_{20}Si_4)_{99}Y_1$	Ι	855	881	1419	2	0.60	26	0.387
$(Fe_{72}Nb_4B_{20}Si_4)_{98}Y_2$	m	855	903	1416	2	0.60	48	0.398
$(Fe_{72}Nb_4B_{20}Si_4)_{97}Y_3$	n	859	915	1416	4	0.61	56	0.402
$(Fe_{72}Nb4B_{20}Si4)_{96}Y_4$	0	905	933	1424	3	0.64	28	0.401
$Fe_{74}Nb_6Y_3B_{17}$	р	831	879	1391	2	0.60	48	0.396
$[(Fe_{0.6}Co_{0.4})_{0.75}B_{0.2}Si_{0.05}]_{0.96}Nb_{0.04}\}_{100}$	q	826	870	1452	4	0.57	44	0.382
$\{[(Fe_{0.6}Co_{0.4})_{0.75}B_{0.2}Si_{0.05}]_{0.96}Nb_{0.04}\}_{99}Cr_1$	r	827	871	1462	4	0.57	44	0.381
$\{[(Fe_{0.6}Co_{0.4})_{0.75}B_{0.2}Si_{0.05}]_{0.96}Nb_{0.04}\}_{98}Cr_2$	s	830	873	1469	4	0.57	43	0.380
$\{[(Fe_{0.6}Co_{0.4})_{0.75}B_{0.2}Si_{0.05}]_{0.96}Nb_{0.04}\}_{97}Cr_3$	t	831	874	1474	3.5	0.56	43	0.379
$[(Fe_{0.6}Co_{0.4})_{0.75}B_{0.2}Si_{0.05}]_{0.96}Nb_{0.04}\}_{96}Cr_4$	u	833	874	1481	3	0.56	41	0.378
Fe ₇₆ Si ₉ B ₁₀ P ₅	v	780	832	1258	2.5	0.62	52	0.408
Fe ₂₇ Co ₄₀ Zr ₃ Ti ₃ Mo _{1.5} Si _{1.5} B ₂₄	w	811	856	1379	1.5	0.59	45	0.391
$(Fe_{81.5}Si_{3.8}C_{14}Tm_{0.7})_{92.37}P_{7.63}$	х	687	752	1284	1	0.54	65	0.382
$(Fe_{81.5}Si_{3.8}C_{14}Tm_{0.7})_{90.9}P_{9.1}$	у	717	767	1318	1	0.54	50	0.377
$Fe_{65.5}Cr_4Mo_4Ga_4P_{12}C5B_{5.5}$	z	745	806	1322	3	0.56	61	0.390
$Fe_{76}Mo_4(P_{0.45}.C_{0.2}.B_{0.2}.Si_{0.15})_{20}$	A	744	788	1245	4	0.60	44	0.396
$Fe_{66}\overline{Co_{10}Mo_4(P_{0.45},C_{0.2},B_{0.2},Si_{0.15})_{20}}$	В	744	788	1221	6	0.61	44	0.401
$Fe_{56}Co_{20}Mo_4(P_{0.45}.C_{0.2}.B_{0.2}.Si_{0.15})_{20}$	С	736	778	1220	5	0.60	42	0.398

$Fe_{46}Co_{30}Mo_4(P_{0.45}, C_{0.2}, B_{0.2}, Si_{0.15})_{20}$	D	734	775	1233	3	0.60	41	0.394
Fe ₇₂ Y ₆ B ₂₂	Е	898	944	1419	2	0.63	46	0.407
$Fe_{71}Ni_1Y_6B_{22}$	F	883	926	1507	2	0.59	43	0.388
Fe ₇₀ Ni ₂ Y ₆ B ₂₂	G	880	925	1509	2	0.58	45	0.387
Fe ₆₉ Ni ₃ Y ₆ B ₂₂	Н	874	910	1503	1.5	0.58	36	0.383
$Fe_{68}N_{i4}Y_6B_{22}$	Ι	872	907	1470	1.5	0.59	35	0.387
Fe ₆₇ Ni ₅ Y ₆ B ₂₂	J	866	891	1469	1	0.59	25	0.382
Fe ₇₀ Co ₂ Y ₆ B ₂₂	К	898	944	1420	2	0.63	46	0.407
Fe ₆₈ Co ₄ Y ₆ B ₂₂	L	896	941	1414	2	0.63	45	0.407
Fe ₆₆ Co ₆ Y ₆ B ₂₂	М	887	925	1509	2	0.59	38	0.386
Fe ₆₄ Co ₈ Y ₆ B ₂₂	Ν	884	927	1505	2.5	0.59	43	0.388
Fe ₆₂ Co ₁₀ Y ₆ B ₂₂	0	885	932	1503	2.5	0.59	47	0.390
Fe ₆₀ Co ₁₂ Y ₆ B ₂₂	Ρ	881	924	1498	2.5	0.59	43	0.388
Fe ₅₈ Co ₁₄ Y ₆ B ₂₂	Q	880	925	1485	2.5	0.59	45	0.391
Fe ₅₆ Co ₁₆ Y ₆ B ₂₂	R	882	927	1494	2.5	0.59	45	0.390
Fe ₇₁ Mo ₁ Y ₆ B ₂₂	S	902	960	1517	2.5	0.59	58	0.397
Fe ₇₀ Mo ₂ Y ₆ B ₂₂	Т	907	969	1508	3.5	0.60	62	0.401
$\mathbf{Fe}_{69}\mathbf{Mo}_{3}\mathbf{Y}_{6}\mathbf{B}_{22}$	U	908	958	1488	6	0.61	50	0.400
Fe ₆₈ Mo ₄ Y ₆ B ₂₂	V	915	944	1488	6.5	0.61	29	0.393
Fe ₆₇ Mo ₅ Y ₆ B ₂₂	W	920	941	1483	3.5	0.62	21	0.392
$Fe76Mo_2Ga_2P_{10}C_4B_4Si_2$	Х	736	788	1247	2	0.59	52	0.397
$Fe_{74}Mo_4Ga_2P_{10}C_4B_4Si_2$	Y	740	790	1276	1.5	0.58	50	0.392
$Fe_{75}Mo_2Ga_3P_{10}C_4B_4Si_2$	Z	738	798	1230	2.5	0.60	60	0.405
$Fe_{73}Mo_4Ga_3P_{10}C_4B_4Si_2$	A1	744	801	1283	2	0.58	57	0.395
$Fe_{79}P_{10}C_4B_4Si_3$	B1	740	771	1263	1	0.59	34	0.386
$Fe_{78}Mo_1P_{10}C_4B_4Si_3$	C1	742	780	1268	1.5	0.59	38	0.388
$Fe_{77}Mo_2P_{10}C_4B_4Si_3$	D1	742	783	1264	2.5	0.59	41	0.390
$Fe_{76}Mo_3P_{10}C_4B_4Si_3$	E1	750	793	1250	3.5	0.60	43	0.397
$Fe_{75}Mo_4P_{10}C_4B_4Si_3$	F1	752	799	1227	4	0.61	47	0.404
Fe ₇₄ Mo ₅ P ₁₀ C ₄ B ₄ Si ₃	G1	758	799	1263	3	0.60	41	0.395
$(Fe_{0.75}B_{0.15}Si_{0.10})_{99}Zr_1$	H1	867	919	1469	0.75	0.59	52	0.393
$(Fe_{0.75}B_{0.15}Si_{0.10})_{99}Nb_1$	11	815	858	1455	0.5	0.56	43	0.378
$(Fe_{0.75}B_{0.15}Si_{0.10})_{98}Nb_2$	J1	812	870	1425	1	0.57	58	0.389
$(Fe_{0.75}B_{0.15}Si_{0.10})_{96}Nb_4$	K1	835	885	1369	1.5	0.61	50	0.402

Tableau [III.2.10]: Paramètres thermiques T_g , T_x , T_m , T_l , et indicateurs du GFA ΔTx , T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Zr.

Zr-Based BMG		Tg /K	Tx /K	Tl /K	dc /mm	T_g/T_l	$\Delta T/K$	γ
$Zr_{65}Al_{7.5}Cu_{17.5}Ni_{10}$	1	656.5	735.6	1167	16	0.56	79.1	0.403
$Zr_{57}Ti_5Al_{10}Cu_{20}Ni_8$	2	676.7	720	1145	10	0.59	43.3	0.395
Zr _{65.5} Al _{5.6} Ni _{6.5} Cu _{22.4}	3	630	733	1211	3	0.52	103	0.398
Zr _{41.2} Ti _{13.8} Cu _{12.5} Ni ₁₀ Be _{22.5}	4	623	672	996	50	0.63	49	0.415
Zr ₅₄ Cu ₄₆	5	696	746	1201	2	0.58	50	0.393

	1							
Zr ₄₇ Cu ₄₆ Al ₇	6	705	781	1163	3	0.61	76	0.418
$Zr_{41}Ti_{14}Cu_{12.5}Ni_8Be_{22.5}C_2$	7	628	683	997	5	0.63	55	0.420
$Zr_{41}Ti_{14}Cu_{12.5}Ni_2Be_{22.5}C_8$	8	629	727	992	3	0.63	98	0.448
$Zr_{26}Ti_{10}Cu_8Ni_8Be_{20}Y_4Mg_{24}$	9	650	700	951	5	0.68	50	0.437
$Zr_{40}Ti_{15}Cu_{11}Ni_{11}Be_{21.5}Y_1Mg_{0.5}$	а	630	674	975	5	0.65	44	0.420
$Zr_{48}Nb_8Cu_{14}Ni_{12}Be_{18}$	b	656	724	1072	8	0.61	68	0.419
$Zr_{48}Nb_8Cu_{12}Fe_8Be_{24}$	с	658	751	1071	8	0.61	93	0.434
$Zr_{36}Nb_{12}Cu_{10}Ni_8Be_{20}Y_2Mg_{12}$	d	653	733	1029	5	0.63	80	0.436
$Zr_{36}Nb_{12}Cu_{10}Ni_{6}Fe_{2}Be_{20}Y_{2}Mg_{12}$	е	670	712	1029	5	0.65	42	0.419
$Zr_{54}Al_{15}Ni_{10}Cu_{19}Y_2$	f	714	787	1112	5	0.64	73	0.431
$Zr_{53}Al_{14}Ni_{10}Cu_{19}Y_4$	g	668	766	1069	5	0.62	98	0.441
$Zr_{51}Cu_{20.7}Ni_{12}Al_{16.3}$	h	722	800	1132	3	0.64	78	0.432
Zr ₅₅ Al ₂₀ Co ₂₅	i	761	840	1245	2.5	0.61	79	0.419
Zr ₄₈ Cu ₄₅ Al ₇	j	698	758	1208	5	0.58	60	0.398
$Zr_{48}Cu_{43}Al_7Ag_2$	k	700	761	1152	12	0.61	61	0.411
$Zr_{48}Cu_{42}Al_7Ag_3$	Ι	700	763	1135	10	0.62	63	0.416
$Zr_{48}Cu_{40}Al_7Ag_5$	m	699	769	1121	10	0.62	70	0.423
Zr ₄₈ Cu ₃₇ Al ₇ Ag ₈	n	698	765	1125	10	0.62	67	0.420
Zr ₄₈ Cu ₃₆ Ag ₈ Al ₈	0	690	791	1143	25	0.60	101	0.432
$Zr_{48}Cu_{34}Pd_2Ag_8Al_8$	р	699	794	1140	30	0.61	95	0.432
$Zr_{50}Cu_{48}Ag_2$	q	668	719	1192	2	0.56	51	0.387
$Zr_{50}Cu_{45}Ag_5$	r	669	728	1188	4	0.56	59	0.392
$Zr_{50}Cu_{43}Ag_7$	s	669	727	1171	4	0.57	58	0.395
Zr ₅₀ Cu ₄₀ Ag ₁₀	t	667	733	1177	5	0.57	66	0.398
$Zr_{50}Cu_{38}Ag_{12}$	u	663	734	1187	4	0.56	71	0.397

Tableau [III.2.11]: Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx , T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Ni.

Ni-Based BMG		Tg /K	Tx /K	Tl /K	dc /mm	T_g/T_l	$\Delta T/K$	γ
$Ni_{60}Nb_{30}Ta_{10}$	1	934	961	1559	2	0.60	27	0.385
$Ni_{61}Zr_{28}Nb_7Al_4$	2	848	898	1348	1	0.63	50	0.409
$Ni_{61}Zr_{22}Nb_7Al_4Ta_6$	3	867	927	1379	2	0.63	60	0.413
$Ni_{59}Zr_{20}Ti_{16}Si_5$	4	830	876	1304	2	0.64	46	0.411
$Ni_{59}Zr_{20}Ti_{16}Sn_5$	5	819	854	1288	1	0.64	35	0.405
$Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$	6	821	877	1272	3	0.65	56	0.419
$Ni_{42}Ti_{20}Zr_{25}Al_8Cu_5$	7	748	803	1366	0.5	0.55	55	0.380
$Ni_{42}Ti_{20}Zr_{22.5}Al_8Cu_5Si_{2.5}$	8	767	833	1367	2	0.56	66	0.390
$Ni_{42}Ti_{20}Zr_{21.5}Al_8Cu_5Si_{3.5}$	9	774	846	1366	2.5	0.57	72	0.395
$Ni_{42}Ti_{20}Zr_{20.5}Al_8Cu_5Si_{4.5}$	а	763	856	1364	2	0.56	93	0.402
$Ni_{42}Ti_{19}Zr_{22.5}Al_8Cu_5Si_{3.5}$	b	780	846	1363	3	0.57	66	0.395
Ni ₆₀ Nb ₄₀	С	891	924	1478	1	0.60	33	0.390
$Ni_{60}Nb_{35}Zr_5$	d	887	911	1458	1.5	0.61	24	0.388

Ni ₆₀ Nb ₃₀ Zr ₁₀	е	875	902	1413	2	0.62	27	0.394
Ni ₆₀ Nb ₂₅ Zr ₁₅	f	860	891	1390	1.5	0.62	31	0.396
$Ni_{60}Nb_{20}Zr_2$	g	853	891	1391	0.5	0.61	38	0.397
$Ni_{60}Zr_{20}Ti_{2.5}Nb_{12.5}Al_5$	h	836	897	1378	2	0.61	61	0.405
$Ni_{60}Zr_{20}Ti_5Nb_{10}Al_5$	i	826	896	1379	2	0.60	70	0.406
$Ni_{60}Zr_{20}Ti_{7.5}Nb_{7.5}Al_5$	j	824	885	1385	2	0.60	61	0.401
$(Ni_{0.75}B_{0.2}Si0.05)_{96}Nb_4$	k	770	795	1446	0.5	0.53	25	0.359
$Ni_{0.9}Fe_{0.1})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$	Ι	762	795	1408	1	0.54	33	0.366
$[(Ni_{0.8}Fe_{0.2})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$	m	755	795	1381	2	0.55	40	0.372
$[(Ni_{0.7}Fe_{0.3})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$	n	750	795	1356	2.5	0.55	45	0.377
$[(Ni_{0.6}Fe_{0.4})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$	0	745	795	1348	3	0.55	50	0.380

Tableau [III.2.12]: Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx , T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Mg.

Mg-Based BMG	Tg /K	Tx /K	Tl/K	dc /mm	T_g/T_l	$\Delta T/K$	γ
$Mg_{80}Ni_{10}Nd_{10}$	454	471	878	0,6	0,517	17	0,354
Mg ₆₅ Cu ₂₅ Er ₁₀	422	480	766	3	0,551	58	0,404
Mg ₆₅ Ni ₂₀ Nd ₁₅	459	501	805	3,5	0,570	42	0,396
Mg ₆₅ Cu ₁₅ Ag ₁₀ Er ₁₀	427	465	733	6	0,583	38	0,401
Mg65Cu7.5Ni7.5Zn5Ag5Y10	426	464	717	9	0,594	38	0,406
Mg ₆₅ Cu ₂₅ Y ₁₀	413	473	760	4	0,543	60	0,403
Mg ₆₅ Cu ₂₅ Gd ₁₀	423	484	740	8	0,572	61	0,416
$Mg_{65}Cu_{25}Dy_{10}$	422	492	750	3	0,563	70	0,420
Mg ₆₅ Cu ₂₅ Pr ₁₀	413	446	784	1	0,527	33	0,373
$Mg_{65}Cu_{25}Nd_{10}$	423	456	744	1	0,569	33	0,391
Mg ₆₅ Cu ₂₅ Ho ₁₀	417	473	751	1	0,555	56	0,405
$Mg_{65}Cu_{15}Ag_5Pd_5Gd_{10}$	430	472	748	10	0,575	42	0,401
$Mg_{65}Cu_{25}Gd_5Y_5$	413	486	755	5	0,547	73	0,416
$Mg_{65}Cu_{20}Ni_5Gd_{10}$	420	481	786	5	0,534	61	0,399
$Mg_{65}Cu_{15}Ag_{10}Y_4Gd_6$	424	467	682	8	0,622	43	0,422
$Mg_{65}Cu_{15}Ag_{10}Gd_{10}$	416	459	686	7,5	0,606	43	0,417
$Mg_{65}Cu_{7.5}Ni_{7.5}Ag_5Zn_5Gd_{10}$	440	477	726	11	0,606	37	0,409
$Mg_{65}Cu_{7.5}Ni_{7.5}Ag_5Zn_5Gd_{7.5}Y_{2.5}$	438	474	719	13	0,609	36	0,410
Mg _{58.5} Cu _{30.5} Y ₁₁	422	496	762	9	0,554	74	0,418
$Mg_{57}Cu_{31.5}Y_{9.2}Nd_{2.3}$	428	502	777	10	0,551	74	0,417
$Mg_{65}Cu_{25}Gd_{10}$	413	473	739	7	0,559	60	0,411

Pd-Based BMG	Tg /K	Tx /K	Tl /K	dc /mm	T_g/T_l	$\Delta T / K$	y
Pd _{79.5} Cu ₄ Si _{16.5}	635	675	1086	0,75	0,585	40	0,392
Pd _{77.5} Cu ₆ Si _{16.5}	637	678	1058	1,5	0,602	41	0,400
Pd _{81.5} Cu ₂ Si _{6.5}	633	670	1097	2	0,577	37	0,387
Pd ₇₇ Cu ₆ Si ₁₇	642	686	1128	2	0,569	44	0,388
Pd _{73.5} Cu ₁₀ Si _{16.5}	645	685	1136	2	0,568	40	0,385
Pd _{71.5} Cu ₁₂ Si _{16.5}	652	680	1154	2	0,565	28	0,377
$Pd_{40}Ni_{40}P_{20}$	590	671	991	25	0,595	81	0,424
Pd ₄₀ Cu ₃₀ Ni ₁₀ P ₂₀	576,9	655,8	836	72	0,690	78,9	0,464
Pd ₇₇ Cu ₆ Si ₁₇	642,4	686,4	1128	2	0,570	44	0,388
Pd ₇₉ Cu ₆ Si ₁₀ P ₅	609	682	995	5	0,612	73	0,425
Pd ₇₉ Cu ₅ Ag ₁ Si ₁₀ P ₅	614	684	1001	4	0,613	70	0,424
Pd ₇₉ Cu ₄ Ag ₂ Si ₁₀ P ₅	613	684	1005	5	0,610	71	0,423
Pd ₇₉ Cu ₃ Ag ₃ Si ₁₀ P ₅	610	683	1005	5	0,607	73	0,423
Pd ₇₉ Cu ₂ Ag ₄ Si ₁₀ P ₅	611	676	1006	7	0,607	65	0,418

Tableau [III.2.13]: Paramètres thermiques T_g , T_x , T_m , T_l , et indicateurs du GFA ΔTx , T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Pd.

Tableau [III.2.14]: Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx , T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Ca.

Ca-Based BMG	Tg /K	Tx /K	Tl /K	dc /mm	T_g/T_l	$\Delta T / K$	γ
Ca _{66.4} Al _{33.6}	528	540	873	1	0,605	12	0,385
Ca ₆₀ Al ₃₀ Ag ₁₀	483	531	868	2	0,556	48	0,393
Ca ₆₃ Al ₃₂ Cu ₅	512	523	831	2	0,616	11	0,389
Ca ₅₅ Mg ₂₅ Zn ₂₀	375	418	751	1	0,499	43	0,371
Ca ₅₅ Mg ₂₀ Zn ₂₅	383	428	702	2	0,546	45	0,394
Ca ₅₅ Mg ₁₈ Zn ₂₇	389	419	671	0,5	0,580	30	0,395
Ca ₅₅ Mg ₁₅ Zn ₃₀	387	419	696	0,5	0,556	32	0,387
Ca ₆₀ Mg ₂₅ Zn ₁₅	377	409	744	1	0,507	32	0,365
$Ca_{60}Mg_{20}Zn_{20}$	378	415	660	4	0,573	37	0,400
Ca ₆₀ Mg _{17.5} Zn _{22.5}	383	421	650	10	0,582	38	0,408
Ca ₆₀ Mg ₁₅ Zn ₂₅	379	427	650	6	0,583	48	0,415
Ca ₆₀ Mg ₁₀ Zn ₃₀	380	400	666	0,5	0,571	20	0,382
Ca _{62.5} Mg _{17.5} Zn ₂₀	375	412	640	10	0,586	37	0,406
Ca ₆₅ Mg ₂₅ Zn ₁₀	387	405	759	0,5	0,510	18	0,353
Ca ₆₅ Mg ₂₀ Zn ₁₅	380	405	668	5	0,569	25	0,386
Ca ₆₅ Mg ₁₅ Zn ₂₀	377	410	630	6	0,598	33	0,407
Ca ₆₅ Mg ₁₀ Zn ₂₅	377	412	659	2	0,572	35	0,398
Ca ₇₀ Mg ₁₅ Zn ₁₅	371	397	688	0,5	0,539	26	0,375

Ca ₇₀ Mg ₁₀ Zn ₂₀	367	399	657	0,5	0,559	32	0,390
Ca40Mg30Cu30	395	430	694	0,5	0,569	35	0,395
Ca40Mg25Cu35	399	436	680	4	0,587	37	0,404
Ca45Mg30Cu25	401	436	717	1	0,559	35	0,390
Ca45Mg25Cu30	400	438	678	6	0,590	38	0,406
Ca45Mg19Cu36	399	428	714	0,5	0,559	29	0,385
Ca _{47.5} Mg _{22.5} Cu ₃₀	399	440	673	6	0,593	41	0,410
Ca ₅₀ Mg ₃₀ Cu ₂₀	402	439	731	2	0,550	37	0,387
Ca ₅₀ Mg ₂₅ Cu ₂₅	400	439	655	9	0,611	39	0,416
Ca ₅₀ Mg _{22.5} Cu _{27.5}	400	442	663	10	0,603	42	0,416
Ca ₅₀ Mg ₂₀ Cu ₃₀	401	442	690	8	0,581	41	0,405
Ca ₅₃ Mg ₂₃ Cu ₂₄	406	439	655	7	0,620	33	0,414
Ca ₅₅ Mg ₂₅ Cu ₂₀	398	428	668	8	0,596	30	0,402
Ca ₅₅ Mg ₂₀ Cu ₂₅	399	426	720	2	0,554	27	0,381
Ca ₅₅ Mg ₁₅ Cu ₃₀	397	437	706	3	0,562	40	0,396
Ca ₅₅ Mg ₁₀ Cu ₃₅	397	422	770	0,5	0,516	25	0,362
Ca ₅₈ Mg ₁₈ Cu ₂₄	388	426	667	6	0,582	38	0,404
$Ca_{60}Mg_{25}Cu_{15}$	390	416	676	2	0,577	26	0,390
$Ca_{60}Mg_{20}Cu_{20}$	387	412	678	4	0,571	25	0,387
Ca ₆₀ Mg ₁₅ Cu ₂₅	396	428	687	1	0,576	32	0,395
Ca ₆₀ Mg ₁₃ Cu ₂₇	394	426	701	1	0,562	32	0,389
Ca ₆₅ Mg ₂₅ Cu ₁₀	405	429	691	0,5	0,586	24	0,391
$Ca_{65}Mg_{20}Cu_{15}$	386	405	679	2	0,568	19	0,380
Ca ₆₅ Mg ₁₅ Cu ₂₀	383	409	682	4	0,562	26	0,384
Ca ₆₅ Mg ₁₀ Cu ₂₅	388	420	711	2	0,547	32	0,382
Ca ₆₅ Mg ₅ Cu ₃₀	403	424	757	0,5	0,532	21	0,366
$Ca_{70}Mg_{20}Cu_{10}$	356	385	702	0,5	0,507	29	0,364
$Ca_{70}Mg_{10}Cu_{20}$	385	407	713	1	0,540	22	0,371
$Ca_{55}Mg_{11}Zn_{11}Cu_{23}$	379	430	717	1	0,528	51	0,392
$Ca_{50}Mg_{20}Zn_5Cu_{25}$	399	441	654	10	0,610	42	0,419
$Ca_{50}Mg_{15}Zn_{10}Cu_{25}$	395	434	678	10	0,583	39	0,404
$Ca_{50}Mg_{10}Zn_{15}Cu_{25}$	395	427	702	2	0,563	32	0,389
$Ca_{50}Mg_{25}Zn_{15}Cu_{10}$	383	430	723	8	0,530	47	0,389
$Ca_{47}Mg_{19}Zn_7Cu_{27}$	393	440	676	6	0,581	47	0,412

Tableau [III.2.15]: Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx , T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de Hf.

Hf-Based BMG	Tg/K	Tx/K	Tl/K	$\Delta T x/K$	Tg/Tl
Hf ₆₅ Cu ₂₀ Ni _{7.5} Al _{7.5}	514	549	1114	35	0.55
$Hf_{55}Zr_5Ti_5Cu_{20}Ni_{7.5}Al_{7.5}$	498	531	1111	33	0.56
$Hf_{45}Zr_{10}Ti_{10}Cu_{20}Ni_{7.5}Al_{7.5}$	502	550	1195	48	0.53

Hf ₅₅ Zr ₄ Ti ₄ Cu ₂₀ Ni _{7.5} Al _{7.5} Ga ₂	510	540	1110	30	0.57
Hf ₆₅ Cu ₁₅ Ni ₇ Al ₇ Ga ₃ Ge ₂ Si	527	578	1156	51	0.56
Hf ₇₀ Cu _{17.5} Ni ₅ Al _{7.5}	466	507	1169	41	0.51
Hf ₆₀ Zr ₅ Ti ₅ Cu ₁₆ Ni ₄ Al ₇ Ga ₃	475	537	1124	62	0.53
Hf ₆₀ Zr ₅ Ti ₅ Cu ₁₅ Ni ₄ Al ₈ Ge ₂ Si	506	552	1136	46	0.55
Hf ₆₀ Zr ₅ Ti ₅ Cu _{11.33} Ni _{5.67} Al _{7.5} Ga _{2.5} Ge ₂ Si	478	554	1111	76	0.54

Tableau [III.2.16]: Paramètres thermiques T_g , T_x , T_m , T_b et indicateurs du GFA ΔTx , T_g/T_m , T_g/T_l , γ , et d_c des BMGs à base de La.

La-Based BMG	Tg /K	Tx /K	Tl /K	dc /mm	T_g/T_l	$\Delta T/K$	γ
La ₆₆ Al ₁₄ Cu ₂₀	395	449	731	2	0,540	54	0,399
La ₅₅ Al ₂₅ Ni ₂₀	491	555	941	3	0,522	64	0,388
La ₇₀ Al ₁₄ (Cu,Ni) ₁₆	404	429	763	0,5	0,529	25	0,368
La ₆₈ Al ₁₄ (Cu,Ni) ₁₈	405	431	724	1	0,559	26	0,382
La ₆₆ Al ₁₄ (Cu,Ni) ₂₀	405	431	674	1,5	0,601	26	0,400
La ₆₂ Al ₁₄ (Cu,Ni) ₂₄	417	446	738	10	0,565	29	0,386
La ₅₅ Al ₂₅ Ni ₁₀ Cu ₁₀	467,4	547,2	835	5	0,560	79,8	0,420
$La_{55}Al_{25}Cu_{20}$	455,9	494,8	896,1	3	0,509	38,9	0,356
La ₅₅ Al ₂₅ Ni ₅ Cu ₁₀ Co ₅	465,2	541,8	822,5	9	0,566	76,6	0,421
$La_{62}Cu_{12}Ni_{12}Al_{14}$	423	452	744	12	0,569	29	0,387
$La_{62}Al_{14}Cu_{24}$	401	449	734	5	0,546	48	0,396
$La_{62}Al_{14}Cu_{22}Ag_2$	401	455	722	5	0,555	54	0,405
$La_{62}Al_{14}Cu_{20}Ag_4$	404	456	729	8	0,554	52	0,402
La ₆₂ Al ₁₄ Cu ₁₉ Ag ₅	405	456	730	5	0,555	51	0,402
La ₆₂ Al ₁₄ Cu ₁₈ Ag ₆	406	457	736	5	0,552	51	0,400
La ₆₂ Al ₁₄ Cu ₁₇ Ag ₇	406	458	739	5	0,549	52	0,400
La ₆₂ Al ₁₄ Cu ₁₆ Ag ₈	407	458	744	5	0,547	51	0,398
$La_{62}Al_{14}(Cu_{5/6}Ag_{1/6})20(Ni_{1/2}Co_{1/2})_4$	412	472	713	16	0,578	60	0,420
$La_{62}Al_{14}(Cu_{5/6}Ag_{1/6})_{16}(Ni_{1/2}Co_{1/2})_8$	415	477	708	16	0,586	62	0,425
$La_{62}Al_{14}(Cu_{5/6}Ag_{1/6})_{14}(Ni_{1/2}Co_{1/2})_{10}$	418	491	703	20	0,595	73	0,438
$La_{62}Al_{14}(Cu_{5/6}Ag_{1/6})_{12}(Ni_{1/2}Co_{1/2})_{12}$	429	471	698	16	0,615	42	0,418
La ₃₂ Ce ₃₂ Al ₁₆ Ni ₅ Cu ₁₅	403	451	712	10	0,566	48	0,404
La32Ce32Al16Ni5Cu12Co3	406	455	709	10	0,573	49	0,408
La32Ce32Al16Ni5Cu10Co5	413	467	718	12	0,575	54	0,413
La ₃₂ Ce ₃₂ Al ₁₆ Ni ₅ Cu ₇ Co ₈	416	471	739	10	0,563	55	0,408
La32Ce32Al16Ni5Cu5Co10	424	472	767	10	0,553	48	0,396
La ₆₂ Al ₁₄ (Cu _{0.5} Ni _{0.5}) ₂₄	423	452	744	12	0,569	29	0,387
La ₅₅ Al ₂₅ Cu ₂₀	443	498	879	2	0,504	55	0,377
La ₅₅ Al ₂₀ Ag ₅ Cu ₂₀	429	503	823	4	0,521	74	0,402

La ₅₅ Al _{17.5} Ag _{7.5} Cu ₂₀	425	498	852	3	0,499	73	0,390
La ₅₅ Al ₁₅ Ag ₁₀ Cu ₂₀	416	483	787	2	0,529	67	0,402
La ₅₅ Al ₂₅ Ag ₅ Cu ₁₅	452	503	860	3	0,526	51	0,383
La ₆₀ Al ₁₅ Ag ₅ Cu ₂₀	401	481	759	5	0,528	80	0,415
La _{62.5} Al _{12.5} Ag ₅ Cu ₂₀	389	472	721	6	0,540	83	0,425
La ₆₅ Al ₁₀ Ag ₅ Cu ₂₀	380	458	716	5	0,531	78	0,418
La _{62.5} Al _{12.5} Ag ₅ Cu _{17.5} Fe _{2.5}	391	464	711	7	0,550	73	0,421
La _{62.5} A _{112.5} Ag ₅ Cu ₁₅ Fe ₅	390	445	713	6	0,547	55	0,404
La _{62.5} Al _{12.5} Ag ₅ Cu _{17.5} Co _{2.5}	393	473	712	8	0,552	80	0,428
La _{62.5} Al _{12.5} Ag ₅ Cu ₁₅ Co ₅	397	474	700	9	0,567	77	0,432
La _{70.0} Al _{12.4} (Cu,Ni) _{17.6}	397	418	759	0,5	0,523	21	0,362
La _{68.0} Al _{13.2} (Cu,Ni) _{18.8}	400	426	743	1	0,538	26	0,373
La _{66.0} Al _{14.0} (Cu,Ni) _{20.0}	404	435	703	1,5	0,575	31	0,393
La _{64.6} Al _{14.6} (Cu,Ni) _{20.8}	406	442	706	5	0,575	36	0,398
La _{63.1} Al _{15.2} (Cu,Ni _{)21.7}	408	448	709	10	0,576	40	0,401
La _{62.0} Al _{15.6} (Cu,Ni) _{22.4}	410	453	712	11	0,576	43	0,404
La _{61.4} Al _{15.9} (Cu,Ni) _{22.7}	413	459	729	10,5	0,567	46	0,402
La _{60.5} Al _{16.3} (Cu,Ni) _{23.2}	414	465	734	8	0,564	51	0,405
La _{59.6} Al _{16.6} (Cu,Ni) _{23.8}	416	475	750	8	0,555	59	0,407
La _{58.6} Al _{17.0} (Cu,Ni) _{24.4}	421	489	774	5	0,544	68	0,409
La _{57.6} Al _{17.5} (Cu,Ni) _{24.9}	425	499	790	8	0,538	74	0,411
La _{56.5} Al _{17.9} (Cu,Ni) _{25.6}	433	492	823	2	0,526	59	0,392
La _{55.4} Al _{18.4} (Cu,Ni) _{26.2}	426	491	881	2	0,484	65	0,376