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Introduction

In recent years considerable interest has been focused on the problem of type:

%Apu = f (X, z,u, Vu) , ' (1)

with the boundary conditions
u =0 in 60 (2)
or
wl_l}g u(z) = : (3)
or
don = [® @)@y @
A _

where Q is a bounded region in RY, N > 1 with smooth boundary 8Q, Apu = div ( | VP2 Vu).

is the p—Laplace operator , p > 1, A is a real parameter, ® : 5Q x Q — R is a positive kernel

and f: Q2 x R?2 — R is a given functlon

’,yf" Tt
o

The problems of the type (1-2) appears in the study of nonﬁe, ' k\,The quantity

p is a characteristic of the medium. Media with p > 2 are ca.?’led gzhlatant ﬂmd‘s @nql those Wlth

}m
S

p < 2 are called pseudo plastics. If p = 2, they are Newtoma% ﬂmds (see\‘g;,r e)gal;gl éle Diaz [81]
and its blbhography) \ j

.1{ b

‘The problems of the type (1-3) comes originally from differentis g &g&m»»é’nd electrohydro-



dynamics and the problem of the type (1-4) are motivated by a model arising from quasi-sfatic
thermoelasticity. | '

In this work, we :/zre interested with the existence and the multiplicity of the solutions of
the type (1-2) and (1-3) in the one dimensional case and (1-4) in thé higher dimension.

In order to prove our results we use a variety of techniques that is:

(i) Quadrature method for the p—Laplace operator.
(ii) Angular function technique. -
(iii) Method of upper and lower solutions.

Chapter 2 is concerned by the question of existence, multiplicity and the zeros of solutions

for the problem:

/
<}u}c]p 2“?;) = fr, (t,u1, U2, ..., Un, v}, UG, ..., 1) in (a,b)
ug, (a) sin oy, — ), (a) cosa, = 0 (5)
ug, (b) sin By, —uj, (b)cos By =0
where k = 1, 2, , n.and py > 1forall k = 1,2, ..., n. The functions f : [a,b] x R?" — R are

) T iy . .
continuous, oy € [——5, 3 [.and By € [———- T [ The results of this chapter are generalizations

272
to the case p # 2 of a result of Shekhter [177]. The results of this chapter are done in [49].
In chapter 3, we study the existence and multipliéity results of positive solutions for the

boundary value problem:-

~ (wP?w) = Af @) i (0,1) .
u(0)=u(1)=0 | .

‘where p > 1, A is a positive real parameter and f is a p—concave-p—convex function. The
problem (6) was studied for the case p = 2 in [203]. In this chapter we show, using a quadrature
method the existence of a constant A« > 0 such that:

i) If A < A4, problem (6) vadmits' exactly two positive solutions;

ii) If A = A,, problem (6) admits exactly one positive solution;

iii) If A > A, px;oblem (6) has no positive solution.”



The results of this chapter are a generalizations of those published in [14] and [77].
In chapter 4, we study the existence and multiplicity results of solutions for the probiem:

T (Iu/lp—2 u/), = Ag(t) (!ul”“lu—}- [u[“"l 'u,) in (a,b)

u(a) =u(b) =0 @

where p > 1, A is a positive real parameter, 0 <.u <p—1<v and g: [a,8] — R} is of
class C*. Using the angular function technique we show that the results obtained in [75] holds
for any p > 1. The results of this chapter are published in [76].

In chapter 9, we study the existence and multiplicity results of positive radially symmetric

solutions for the problem:

~Apu=A(u! + 1) in Q
u>0in Q ‘ (8)
% = 0 on 80

where €} denotes the unit ball in RY, A, is the p—Laplace operator, A is a positive real
* N p . ’

parameter, o = p* = m, N>pand1l<g<p.

In this chapter we show, using a shooting method (see [117] for the case p = 2) the existence
of a constant A, > 0 such that: v

i) If A < A\, problem (6) édmit‘s at least positive radially symmetric solutions.

) A= Ay, problem (6) admits at least one positive radially symmetric solution.

iii) If A > A, problem (6) has no positive radially symmetric solutions.

. The novelty here is that we do not assume (as in the case in [27]) the condition

| | 2
<p<3orp>23andp>qg>a———

N 42 p—1

is satisfled.
The results of this chapter are done in [73].
Chapter 6 is concerened with the necessary and sufficient conditions for the existence and the

inultiplicity of boundary blow-up positive solutions for the quasilinear boundary value problems



- (]u’!p_2u'>/ =Af(u) in (0,1)

lim u(z) =400 = lim u(z)
z—0" ozl

(9)

where p > 1, A is a Iﬁositive real parameter and f : R — R is a continuous function. The
aim of this work is to give a generalization of t.he results obtained by Anuradha & al [29] and
Shin-Hwa Wang {207] for tbhe case p > 1. The results of this chapter are done in [79].

In chapter 7, we investigate the existence éf solutions of the multipoint boundary value

problem

—Apu = f(z,u) in Q

u(z) = / & (z,) u (y) dy on 5Q (10)

where A, is the p—Laplace operator with p > 1, Q is a bounded domain of class C1: o
0 < a < 1, with smooth boundary 82 f:Q x R — R is a continuous function and @ :
o0 x  — R, is a smooth function. We rely on the upper and lower solutions to provide a
constructive method for obtaining at least one solution. At our Knowledge, this is the first time -
that the method of upper and lower solutions is being used in the context of quasilinear elliptic

problem with nonlocal boundary conditions. The results of this chapter are done in [74].



Chapter 1

Quadrature method and angular

tunction technique

1.1 Introduction

This chapter is essentlally divided into two parts in WhJCh the shooting method serves as the
underlying techmque

The first part is concerned with the description of the quadrature method for the p—Laplace
operator.

The second part is devoted to an important method know as the ”angular function tech-
nique”. This method is enable us to solve an 1mportant problems concerning the existence,

mulmphclty and the zeros of solutions for the nonautonomous boundary value problems.

1.2 Quadrature method
1.2.1 Notation

For any integer k > 1, let

S"; ‘ u € CY([a,8]) : w admits exactly (k—1) zeros in (a,b)
E T
are all simple, u (a) = u (b) = 0 and ' (a) >0




Definition Let u € C ([a,b]) be a real valued functlon with two consecutive zeros z1 < 3.

We call a hump of u the restriction of to the open interval (z1,z2).

Let A (k > 1) be the subset of S7 consisting of the functions u satisfying:

(i) Every hump of u is symmetrical about the center of the interval of its definition.

(ii) Every positive (resp. negative) hump of u can be obtained by translating the first positive

(resp. negative) hump.
(iii) The derivative of each hump of u vanishes once and only once.

Let Ay = —AF and 4y = A} U 47

1.2.2 Description of the method

Denote by g a nonlinearity and by p a real parameter, and we assume

gEO(R,R) and 1 <p < 400 (1.1)}

and consider the boundary value problem,

— (<pp (u’))' =g(u) in (a,b)

u(a)=u()=0 2

where @, (z) = |2}’ 2z, z € R. Denote by ¢ = ——p—l the conjugate exponent of p. Define
p —

s
G(s) = /g(t) dt. For any £ > 0 and k = +, —, let,
- 0

XE(E)={s€R:msZOandE—p’G’(§)>0, V€, 0 < k€ < ks} and,

0 if X, (E) = @
rsup (kX (E)) otherwise

T (F) =

Note that ry may. be infinite. We shall also make use of the following sets,



_ ()
D, = E>0:0<}TE(E)|<+ooand/$/ [E—p'G(g)]_%d£'<+oo

D=D.nb_
Also, let Df := D if k > 2, and D§ = D Define the following time-maps

rw(B) ‘
LE=r [ [E-pe@]FdEeD,
' 0

To (E) = n (T, (E)7+T_ (E)),neN,EebD

T3nt1(E) = T3, (B)+ T (E), n €N, E € D.

Theorem 1 Assume that (1.1) holds. Let E >0, k> 1 and k = +,—. Then:

Problem (1.2) admits a solution uf € A% satisfying () (a)]° = KE if and only if E
~ b
BEN (0, +00) and Tt (B) = &

—a . . . . .
> and in this case the.solution is unique.

Proof. See the proof in [2].

1.3 ~Angular functioh technique

Consider the boundary value problem

(pp (W) = £ (t,u, w') (1.3)
u (a) [sin alﬁ sina — v’ (a) |cos 'oz|12:—:‘112 cosa =0 (1.4)

7



u (b) ]sin,@[i—:'? sin B — o/ (B) [cos,8|12>_:Jle cosB=0 (1.5)

where @, (z) = |z[P %2, z € R with p>1, f:la,b] x R2
Be [ T 7r)

Q, 2'9 /" ‘

Definition 2.1: A function » € O1 [a, B]

problem (1.3), (1.4)and (1.5) if:

— R is a continuous function and

such that ¢, (u') € C' (a,b) is called a solution of

(i) u satisfies (1.3) for each ¢ € (a,b).
(if) w satisfies (1.4) and (1.5).
Definition 2.2: By a nondegenerate solution of problem (1.3), (1.4)and (1.5)

function u such that u2 )+ @) ()£ 0forall t e la,b].
We distinguish two cases: '

we mean a

1.3.1 Thecasel <p<?2

Let u be a solution of (1.3) such that

WD (@) + ()" () £ 0, vi € [a,
We define the angular function associated to u by

_ WPy
tan<,0 (t) = Iu (t)lpdu(t)_

and set,

{ fu (O~ (£) = r (£) cos o (2

[ @) (¢) = r (¢) sinp (2)

where 7 (t) = \/ u2(P=1) (£) 4 (u/) 2~ D) (t) for all ¢ € [a, 8] .
If u is a solution of (1.3), then (r (¢), ¢ (t)) is a solution of the following system



N

' (t) = f (t,u, ') sin B+ @-1)r@) sin¢ () |sinp (1&){72;_:}12 cos ¢ (t) |cos ¢ (t)[ﬁ (1.6)

£ @20),5 ¢ 0),00)

¢ ()= 0 03 (t) = (p 1) sin g (0] 77 cos o (5] 55 (1.7)
where
W (), (8) =Ir () cosp (9] 7 (1) cos o 1)
and
T (0,9(0) = Ir (@) sing (91 r (4 sine (1)
Remarks |

(i) The set of angular functions corresponding to a given w is infinite; each of these functions

can be uniquely specified by indicating its value in q.

(i) Iftgisa 81mple zero of u then u (f) = 0 and o/ (to) # 0. Consequently r (to) # 0 and

@ (tg) = 3 Z 4k with k € N. This shows that the simple zeros of a solution of (1.3) are

obtained by studying the equation

w(t):%ilmr, keN
where ¢ is a solution of the equation (1.7).

(iif) w is a solution of (1.3), (1.4) and (1.5) if and only if its angular function v (%) satisfies

p@) =0, p(b)=f+kr



for some integer k.

1.3.2 The case 2 < p < +00

Let u be a nondegenerate solution of (1.3). In this case we define the angular function @

-associated to u by letting

tan o (t) = %—(%)

and set,

{ u(t) =r(£)cosgo(t)

u (1) =r(¢)sing (t)

where r () = \/u2 (&) + () (¢) for all ¢ ¢ a,8].

If u is a solution of (1.3), then (r (1), % (%)) is a solution of the following system

o (t) = S (¢, (t) cosp (2) ,7:(t) sin (p_(;f)) cos (1)
(p—-1)|r(t) sine (£)[P~* r (t)

~sin’ o (t)

()= [r @)ooni () + L7 B)00s0 (), r sing ()]
0= B=D (eGP T | 00

10



Chapter 2

Oscillations results of a weakly

coupled system

ABSTRACT: Weakly-coupled systems are studied using phase plane analysis. Infinitely many solu-

tions are obtained for an equation of the Emden-Fowler type.



2.1 INTRODUCTION

In this cha,ptei‘ we study the existence and oscillations of solutions of the system,

__2‘ Y
(I'U,;c (t) P u;i: (t)) =fk (tv ULy = sy Un, u,la u;"s) 1 (21)
2—-p 2—p,
uy, {a) sin oy, |sin ak];k—:% — uy, (a) cos ay, |cos aklﬁc_ﬁ =0, (2.2)
2—p 2-p
- uyg, (b) sin By, ]sin,@klﬁ:% — uj, (b) cos By, |cos ,Bk}ﬁ.:kf =0, (2.3)

fork=1,2, .-+, nand p; > 1.

The functions f : [a, 8] x R*" — R are continuous, oy, € [~%, £[ and B, € ]-%, ] . The
boundary conditions considered in (2.2) and (2.3) are a generalization of Dirichlet conditions
(ag = ~%, 0, = §)and of Neumann conditions (o = 5 = 0).

If u=(u1, -+, uy) is a solution of (2.1) with uz non degenerate for each k, i.e.,
w2 4y ¢ () PV () £ 0, Vi e]a, b,
so, we may define the angular function associated to uy by,

/ pr—2 o
- 080

and set,
ug 0P i (£) = 7 () cos o (2)
{ he, P20, (8) = 1y (t)singy (8).
Ifu=(u1, -+, un)is asolution of (2.1) then (rx (t), % (t))1<p<y, is 8 solution of the differential
system,
R S

ok — 1) sin 9y (&)| 72T Joos g (B 1

(24)

12



e (&) =i @ u1, -+, un, wh, -, wl)singy (£) — rx (¢) singy, (t) x
2-pg [ (2.5)
 Jsin gy (6)| 7o cos g, (£) cos oy (8)] T
fork=1, 2, ---, n.

The set of angular functions corresponding to the same component uy, is infinite. However,
to each_ component uy one may associate uniquely an angular function ¢, by fixing its value at
a to be oy. |

From 72 (t) = uz(p’“_l) (t) +'(u;c)2(p’°-1) (t), we deduce that if ¢ is a simple zero of wuy
(u§c (to) # 0) then r (to) 5 0. Also, one has ¢y, (fp) = 5 k™, jr € N. So, the study of a simple
zero of uy is reduced to study of ¢y, satisfying ¢y, (to) = % =+ ji, jiy € N,

Even for single equation, the results presented here are generalizations to the case p #2o0fa
result of Shekhter [177, lemma 3]. Weakly-coupled systems have been studied by several authors
see for instance A. Capiettov ,J.Mawhin and F.Zanolin [56] for periodic boundary conditions and
Henrard [113] for Sturm-Liouville boundary conditions where p; = 2.

The paper is organized as follows. In section 2 we state and prove our main result. In
section 3 we give two applications.The first application deals with Emden-Fowler equation and
the second with weakly coupled systems.Note that Emden-Fowler’s equation was studied by R.
Emden in an astrophysical investigation and involved in the study of the electronic distribution

in a heavy atom [135]. The estimates presented in the sequel are similar to the ones preSented

in [177]. In this work we show that the case 1 < p < 2 is slightly different from the case p > 2.

2.2 MAIN RESULT

Definition 2 By a solution of problem (2.1),(2.2) and (2.3),we mean a functionu = (uy, -+, up) €
C(Ja, b, R™) such that for each k = 1, 2, ---, n, |} (P* 2w (8) € CL(Ja, b, R) and
(2.1),(2.2) and (2.8) are satisfied.

Remarks: ‘
Let ¢, (s) = |s|”"* s, with p > 1.Since lim ¢p(s) = lim ¢, (s) =0, we can extend @, (s)
5—0+ 8—0—
to s = 0 by taking ¢, (0) = 0.

13



2.2.1 Case where p; €]1, 2] foreach k=1, ---, n

Consider the problem

-
(1 O, () = fi (8, -, oy, o)

2-pg
Pt (C1)

ug (a) = 2z cbs oy, |25 cos o]
2-p .
¥, (a) = zxsinoy |zp sinag| e, 2z €REE=1,.,n.
Theorem 3 Let k € {1,...,n}.Assume that py : I — Ry and gz : I — R be continuous
such that py, (t) > 0 for each t € I.Let hy : R2 — Ry be a continuous function satisfying for

any sufficiently small e, > 0:

. 1 . - “{TL ;
lim —hyg (r1]coseq|, -+, T |s1n¢n|)7{oga* 2 SN
=0+ T MR NS ZN
,"; // KQ‘L:
(or d oD | I
. 1 . At
lm —hg(rilcoseql, ---, mlsing, 7\J-00) e
rE—>-co Tk / /;

s /
uniformly with respect to p;, € [O, 5 - sk], w; andr; for allj +# k. \ze/,afbkégiwsitive integer
s mraicrts 8

jr and any positive real number vy, there exists a constant p;, (Vi) such that if u = (ux)i1<p<n
is a solution of (C1) with uy non degenerate for each k = 1,2,...n, defined for allt € [a,b] and

satisfy the inequality

sz (t, U, =y Un, uI17 Tty u;z)SIgnuk (t) <
o ®) b (P P P ) 26)

+(pr — 1) gx (2) (}uklpk‘l + |u1k|pk—1)

0< \/UZ(Pk—l)_(t) + (u%)?@k—l) () < By (vg) | @2.7)
(resp. \Ju2®D () 4 (u) 27D (1) > p; (1))

for dll t € [a, b] C I, with,
b
/ o (B dt > v > 0 (2.8)
a

Then uy, admits at least jx zeros in [a, b].

Proof. The proof will be given in two steps.

14



step.1 Using differential inequalities, we will control the angular function ¢, of equation (.2.4)

by another angular function 1, associated to a simpler problem.In fact,

for any given ji, there exists a positive 6y such that if 79 — 71 < & (71, T2 € I) then, since

pr, is continuous with respect to all its arguments,

T

’ pr (s)ds < vg. ' (2.9)

. T9 '
2\/5/ gr(s)ds <1 and 4jk/
T1 T

1

v b 1 . ™ 61(;
Let Qx = [ qr (¢) dt, o) = 7 Win {5, T Qk} and let us choose p;, (vg) > 0 such that,

1 . .
r_,.—hk (7'1 CO8@Py, "7y TnCOS Py, T18IMYy, -+, Ty SlIl(,On) =
k

2k |7 —=2(px — 1) 0% + Qs (pp — 1) V2
vy sin(oy (pr — 1) /2)

for0<r< pjk (vk) (resp. 7% > py, (Vk)), 0 < ¢y < g— - %. Let [a, 8] C I and ug € C* (Ja, )

satisfying (5.11) and (2.7). Let 4 (¢) = \/ uz(p k1) )+ (u’k)z(p k1) (t) and consider a maximal

solution 4, of the problem,

(9 (8) = [VE(or — 1) @ (¢) — (py (8) /3 () x
X hy, (11 (£) Jeos gy (8)], -+, 7 (£) [sing, (1)])] x

pp—2

ot (2.10)
X Jeos 9p ()] — (px — 1) Isinapy, (£)] 77 Jeos iy, (¢)]76~

Yy (a) = g

\

- If ¢y, : [a, ] — R is an angular function associated to uy and ¢y, (@) = oy then (2.4), (2.10)

and the theorem of differential inequalities| [138] Theorem 14.2 | imply that ¢, (t) < 1 (2) in
[a, 8]
The inequality (2.8) implies that there exist ¢; € [a, 8] (( =0, ---, j) such that, -

| /:ipk(s)ds: (%) Ve . (2.11)

15



"

step.2 Let us show by induction that the inequality,
T . ‘
'l:bk (tik) S .iz. — Mk, (212)

is valid for any i € {0, ---, jr}. One has: If 2¢, (¢}) < 7~ 2miy, for some t} € [a, b] and
some integer iy then 21y, (t) < w—2miy in]t}, b]. So, (5.3) is valid for i = 0. Suppose that

it is valid for some i = my € {0, ---, jr — 1} then 24 (¢) < m — 2wmy, in the interval
Vtms, .
claim for each k¥ =1, 2, ---,n we have the following inequality
s
Yy, (tm,, +4og) < 5 Mg = (pr — 1) o (2.13)

Proof. Suppose that (5.4) is not true. One has two possibilities:

(i) For tm, <ty < tm, + 40y, one has,

wk(tk)>g‘—7‘”mk—2(pk—l)0k- (2.14)

(ii) There exists sg € [tm,, tm, + 40%] such that,

Wy, (5) =—72I—7rmk —2(p — 1) o

™ .
Yy (tr) > 3 —mmy — 2 (pg — 1) ok, in |sg, tm, + 4ok -

16



In the case (i),

tmy +4Tk
Yy, (tmy, +40%) — Vg, (Emy,) < V2 (pr — 1) sin 2Uk/ g (£) di—
trmy .
Pk 2Pk
—4o (pr — 1) (cos 205 Pe=T 22(Px=1)
' by, 401
< (pr —1)2V20% / g (t) dt—
tm
PE TP
—407, (p, — 1) (cos 207,) P~ 22(pg-1)
' 3 2—pl.
< (pp — 1) op — 4oy (pp — 1) 22r=1) 220k 1)

= —(py—1) 0%,

that is to say,
Yy (tmk + 40'79) < Y (tmk) - (pk - 1) Ok

T
< 5 = Mk = (px, — 1) ok
Suppose that (ii) is true, one has,
tm,xT40E

(px — 1) V/25sin 20, / g (t) dt

Sk

IA

Y (tm?k +4oy) — P (sk)
< (pp—1) o,
that is to say,

Py (tmy, +40%) < g (sg) + (or — 1) 0%

T
B —my, — (pg — 1) O
So, in all cases one has,

ie
1/)k (tmk —{—-40],) < — —7amg — (pk — 1) Ok,

| o]

Assume that,

T
by, (tmy+1 — 4og) > -5 — T + (py, — 1) 0.
So, one has,

T 1 T 1
“§“W”lk+§(Pk—1)0kka(tk)g’i"‘ﬂ'mk—é(pk_l)ok,
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in [tm, + 40%, tm+1 — 40%] . In the contrary case, there exists,
[$1,81 82,8] C [tmy, + 40k, tmyt+1 — 40|

such that ¥y (s16) < ¥ (tk) < Vg (s2) for s15 < tp < sop and Yy (s15) = § — 7my +

1 5 (pr — 1) 0k, Yy (s24) = § — mmy + (pr, — 1) o which is impossible, because one has,

Wy, (s9,6) — ¥y, (51,6) = 3 (P& — 1) 06 < V20; (pr — 1) / g (t) d

1,k

—3 (s — 1) (82,6 — 51,6) »

which is a contradiction with the choice of 0.

Using inequality (5.4) we will show that (5.3) is true for i = my + 1.

From (2.9) and (5.2) one has,

tmk+1“40k tmy+1
/ p@ds= [ py(s)ds-

tmklsl“lak b +1 )
[T - | oy (5) ds (2.15)

tmy, g, +1— 40k

> Vg 143 Vg Vg
Jx  Aje 49 2%

and then : tm,+1 — tm, — 80k > 0. From the relations (2.7), (2.8), (2.10), and (2.15) one

gets, Yy, (tmy+1 — 40%) — Vg, (bmy, +40%) <

tmk 1—4dog

< Vi 1) [T @ eosn ) -

tm +40,

f""k 1—40y,
- ”’*“lcoswka)lx

tmy+1+40s Tk (t)
o (v (2) feos oy (8)], =+, 7 (8) loos Y (8)], -~ -, 7 (2) [sin g, (£)]) dt

VA {W R andeston

AN

= —n+2(pr—1)op

18



that is to say,

"_p}.; (tmk-i-l "‘4079) < ¢k (tmk +4Uk) """T+2(pk - 1) Ok ‘
s
-2——ka—(pk—l)ak—w+2(pk-l)ak

IA

4 .
5 — 7 (mg 4+ 1) + (px —l)ak,

and then,

Uy, (tmk-i-l) < g - 71'(7’):),); + 1) |

Taking 45 < my -+ 1. we have proved (5.3).80 with i, one gets
T .
er (E.) < 3~ Tiws
which shows that uy admits at least jj, zeros in fa, 8].

2.2.2 Case where p; € |2, +00[ for each k = 1,e-4,n

Consider, in this case, the problem,
7 Pr—2 ! ’ '
(luk (t)l Uy, (t)) =fk (t7 Uty ey Up, Uy, <0, ’U,n) : (216)

sinoy —u) {a)cosay = 0
ug (a) sin oy, — uj, (a) cos oy, 217)
ug, (b) sin By, — uj; (B) cos B, =0, k=1, e, my

T =

where f; € C ([a, 8] x R?", R), o e,]_%’ %] and 8, €]-5, %].
Let uy, € C1([a, 8], R) be a non degenerate component of the solution u of the equation

(2.16). One may define the angular function associated to uy by,

' uh, (¢
tg e (t) = u: Et

N’

S
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Set _
up (t) = 5 (t) cosey ()

w(t) = i (8)sing, (1),

It is not difficult to see that ( (), ¢y (t))1<r<n is & solution of the differential system,

()= felo vy o vm - ) esy (1) |
L P v s o e ) (218)
T?c (t) = [(pk - 1) Tk (t) COs @y, (t) + fu (t’ UL, “*y Un, u/17 T 'u';z)] SiIl(pk (t) . (2'19)

In this case we consider the auxiliary problem

(,u;c (t),pk—2 u;: (t))l = Ji (t, Ugy vy Un, ull? T uéz)
ux (@) = zx, cos ay, (C2)

uy, (@) = zpsinay, 2z € RN k=1,..n.

Theorem 4 Let k € {1,...,n} .Assume that Pr L — Ry and g : I — R, be continuous

functions and assume that pr (t) > 0 for each t € I and u € R™.

Also assume that hy, : REL — Ry is continuous and for any e, > g,

hk <]T1 COs w4 lpl_l y Ty [’rn Sinsonlpn—l>
lim - —3 = 40
'f‘k——>+0+ ’]"gk
(or
: hy, (]7'1 cos gal{pl_l I [ simpn]p”_l)
rk—l*r—r!}oo 7-2%_1 o -|-OO)

uniformly with respect to ¢, € [O, - sk] » 5 and 1 for all j # k Then, for any positive
integer jr and any positive real number vy, there exists a constant P, (Vk) such that if u =
(uk)lgksn is a solution of (C2) with uy non degenerate Jor each k = 1,2,...n, defined for all

¢ € [a,b] and satisfy the inequality

fk(t? U1, ***y Un, ui; Tty ufn)mgnuk(t) <
= () B (Jaaf” ™ -l o ) 4

+e0) (hus (P + 1 ()
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0. </ () + () (1) < g, () (resp. A/ (6) + ()2 (8) > s, ()

in [a, b], with,
b
la, 8] C I and / pr (s)ds > vy,
a

Then ug has at least ji, zeros in [a, b].

Proof. Similar to that of theorem 3. B

2.3 APPLICATIONS

2.3.1 Emden Fowler equation:
We consider the problem,

!

(v &OF > ) = ~a@) lu ()P signu (2.20)
u(a)sina |sma|H u (a) cos a|cos a]z_% =0 (2.21)
u(b)sin B [sm,@{z’_l12 u (b) cos B Icos,B{ =0,

UAS Cl ([a’7 b]1 Rj)7 pe]]“’ 2]? ’\(p'— 1) > 17a € ["'%7 %[a‘ndﬁ € [—%7 %[
Theorem 5 . The problem (2.20)-(31) admits infinitely many solutions.

For each z € R}, let u(t, z) be a solution of the following problem:

(v @OF 2w @) = -a() e PP Vsignu
u(a) = zcosa |2z cos oz|zzo?1a (C3)

o (a) = zsinoz]z:sirlod?z;Eg , z€ R},
Lemma 6 (i) The solution u(t,z) of problem (C3) is defined for all t € [a,b].
(i) Let r(t,2) = (u2®=D (8, 2) + (')2P (¢, 2))3,Vt € [a, b].

Thenzggloo r(t,z) =
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Proof. (i) Suppose there exist a sequence (tn) _ which tends to t, € [a, ] such that
. ! )
ngﬁlm (lu(tmz)l + lu (tmz)l) = +00
The mean value theorem shows that

nEI-Ikloo (lu (tn, 2) | = ' (t, 2)| = —i;oo

Let
| Pt = [ a@)f (s with £(5) = sP¢ sgn(s)
and
E(t,z) = |u’(t 2)[’ + F(¢, u(t z))
Then

B2 = (-6 2060 (12) + o (yult,2)) + O (Lt )u(t )

= /u(t q@)f (u(s))ds<M/utz) f(u(s))ds where M = sup |q/(t)].
A [ =sup |q

te[a,b]
Fu)= /Ou f(s)ds

we obtain F'(t,z) < MF (u(t,z)).On the other hand, F(t,u(t,z)) > mf (u(t, 2)) where

Let

=t 1{1f q(t).As m > 0, it follows that E'(t,2) < £ E(¢, 2).This 1mp11es that
elab]

| E(ts, z) < exp (% (b a)> E(t, a) Vi€ la,b]

which is impossible.
(ii)It is a consequence of lemma 2.6.3. in [42].
Proof of theorem 3:Let ¢ (¢, z) be the angular function corresponding to u (¢, z). By

theorem 3, for any n € IN*, there exists a positive real z; such that,

¢ (b,z) < B—mn, for z> 2z,

22



so that , lim,,4e0 ¢ (b, 2) = —00. Since ¢ is continuous with respect to z ( See [42] Jernma

2.6.2 pp. 118) Hence there exists infinitely many positive real numbers z such that,
o (b, z) = B — km, k € N¥,

and then problem (2.20)-(31) admits infinitely many solutions.

Remark 1 When g = 1, similar results were obtained in [93] ,where the authors consider the

case of an autonomous superlineair term using the time map of the superlinear term which is

not defined when the weight q(t) is not a constant function.

2.3.2 Weakly coupled systems:

Now, let us consider the problem

(w0

uy, (@) sin g — uj, (@) cos oy, =0

ug, (b)sin By, — uf (b)cos B, =0,k =1, ...,n.

Pr—2 !
uzos)) T g (ue) = pi (8, )

where u = (u1,ug, .., Un), O, € [—5, 20,8, €]-%, ] andpy > 2forallk =1,2,..

. fuctions gr and p;, satisfies respectively the following hypothesis:

(g) The function g5 : R — R is continuous and odd with

9k (uk)

= 400
fur|—4oo [1g[PF7% g, :

(p) The function p; : R x R?™ — R is continuous with
it u, ) =0if up, <0
Assume that there exists a continuous function gy, : [a,b] — R such that

pr(t, u, ) < gi(2) [P

23
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Ny

For k=1,..,n

Theorem 7 The problem (2.22),(2.23) admits infinitely many solutions.

For each z = (21, 22, -y 2n) Jlet u(t, z) be a solution of the following problem:

(1 (OF 25, + 98 () = pu (t0,)

ug, (@) = 23 cos o

(c4)
)y, (4) = zsinog, zx € RY

We need a preliminary result.

_ Lemma 8

i) For each k=1,...,n uk(t ) is defined for all't € [a,b].

|
ii) For any 7, > O, there exist 6y > 0 such that if \/7uk (a,2))? + (uk (a, z)) < 43 then

\/(;k (t,2))? + (u (¢, z)) < &y for allt € [a,b] and k=1,2,..,n

Proof.

i) Assume by contradiction that there exists a sequence (t1);en converging to ¢, € [a, b| such

that

lim Z (|’U4c(tl7 |+luk(tl7 )D_Jroo

=400 2

then by the mean value theorem, we have

lim E lu;g(tl,z)‘ = Z wy (te, 2 ]——+c>o
l=too =1

Consider

k=1

E(t,2): i(”’“ luk(t zk)|’°+a(uk(t,'z))>

where Gi(u) = [ gr(s)ds
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we have

E'(t, 2) 'Zpk (t,u,u')) u;g (t, 2)
k=1

< Do (@) fuk (8 2) [
k=1

pk-——l Pr

n .
< oy Bl 4, )
k=1 Dk

where M = max ( sup ¢ (t))

1<2<n’ \ te(a,b)
It follows that

Ef(t, 2) < 2ME (¢, 2)
‘Hence

E (t«,2) < E(a, 2) 2M(t—a)

- ii Foreach k=1,2,...,n, let By (t,2) = ka—- ), (¢, 2)|P* + Gy (ug (t, 2))
. k

"The hypothesis (g) implies that there exist My > 0 such that

Gr (ug) = —Mj,

o — 1 |
Hence Ey (t,2) > pkp |}, (¢, 2)[P* — M,
k .
it follows that

p—’“p e, (£, 2)[P* — My, < E (a, z) e2M0-9)
k

This last inequality shows that

s 1,2) — 0 0,2) < [5225 (Vs + L () 2C-0) | (0~

where

k—1 ' '
|v41P* + max Gy (ug)
, [zl <vge

Ly () = £ ~
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In other words, we have

re(te) = 12 + (4 (42)° B
(s + [s22s (0 + L o) 10

+ ([pffl (M + L (1x) 62M(b_a)))] i)

1 2

-
*(b—a)
9 = 0y

IA

for all ¢ € [a, b].

Lemma 9 Letk € {1,2,...,n} be fizred. Given any r >0, there ezists a number Ry, (v) such that

if 2z = Ry (r) and 21,29, 251, 2k41, .-, 2n are arbitary then ry, (t,z) > for all t € [a,b].

Proof. Let k € '{1,2,.",71} be fixed and let 7 > 0 be given. Consider a solution wuy, (¢, 2)
passing through the set Sy = {(¢,2) : t € [a,}], zx < r}. By (ii) there exist Ry, () such that
rx (t,2) < Ry (r) where uy, (¢, 2) passing through Sy. Hence if 2x > Ry, (r) then ry, (¢, 2) > r for
all ¢t € [a,b].

Proof of theorem 4 :By the preceding lemma we have

N

Zp~++co

lim 7y, (2, 2)= (|u,c (t,2)? + o (2, z)|2) = +o0

| The rest of the proof is similar to that of theorem 3.

Remark 2 a)- In this last theorem, we suppose only one side condition on the perturbation

pk, (¢, u, ) .Similar results can be found inf118] and [95] .

b)-This last theorem can be generalized for the case py, € ]1,2] for each k=1,2, .., n.
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Chapter 3

Exact number of positive solutions
for a class of quasilinear boundary

value problems

Abstract Using time-mapping approach, we study the exact multiplicity of positive solutions

of the bouhdary value problem:

u(0)=u(1)=0

where p > 1, A > 0 and f is a p—concave- p—convex function.



3.1 Introduction

The purpose of this chapter is to study the exact multiplicity of positive for the quasilinear

problem

(WP =2 im0

w(0) =u(l) =0 &2

where p > 1, A > 0 are real parameters and f is a 'j)—concave-p—convex function.
- Our study is motivated by some recent works on elliptic problems with concave-convex
nonlinearities. This question was studied by several authors,, in particular T.Bartsch et al [41],
Ambrosetti et al [25] and I.Peral & al [26]. In [25], the authors investigate the following problem:

—Au=u"+f inQ

%> 0in Q (3.3).
u =0 on 80

. «ox N+2-

with0 <8 <1<a<2,2 =N_2forN>2and2*=+oof0rN:2.Theauthorsprove

the existence of a constant v € R such that for all A € (0,4), the problem(3.3) admits at least

two solutions. One sqlution, denoted uy, is obtained usingvlower' and upper solution method,
‘when the concave term uP is ess'éntial, ‘and the other solufion, denoted v, is obtained using a

variatonel technics, when the essential term is the convex term u®. In [34]; the authors showed

the existence of additional pair of solutions whlch can change sign for all 0 < A < A, with A,
 possibly smaller then +. Their method relies as a critical point of & functional I constrained

on a sﬂtable manifold M.

In [27], the problem:

°

Apu=Ah(u) +g(ru) in 2] =r<1 (3.4)

u=0in |zj=r=1
is studied where A, denotes the p—Laplace operator in RV, A > 0
h{u) = |u|q_2u, 1 < g < p near u = 0 and g is of higher order with respect to h at u = 0. ‘

The authors showed the existence of infinitely many continua of radial solutions branching of
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A = 0 from the trivial solution, each continuum being characterized by nodal properties. As a
consequence (3.4) posses infinitely many radial solutions for A > 0 and small. This bound is the
counterpart, for radial solutions that change sign of the classical result by Gidas and Spurck

[95]. The problem (3.2) was studied for the case p = 2 in [203] . The aim of this work is to

show that the same result holds for any p > 1.

3.2 Main result and the method used

We consider the boundary value problem
. np—2 g ! —_\ ) ' ' . |
(P2 u!) = Xf () in (0,1) 5)
w(0) =u(1) =0 |
where p > 1, A > 0 are real parameters. Assume that f € C* (0, +-00)NC [0, +00) and F (u)
satisfies:
(H1) f(u)>0foru>0and f(0) 20.

» D ) N i ) N
(HZ) u1—1>r(()1+ lulP % u —ull*+oo [ulP~%u = e

(H3) lim_(pF (u) —uf () = —00 and Tim_((p—1) () —uf' (1)) =~
(H4) (p—2) f' (u) —uf"(u) >0 for 0 <u < cand

(p—2) f' (u) —uf" (v) <0 for u > ¢ for some number ¢ > 0.

To state our result, define »
St = {ueC'([0,1]); u>0in (0,1), u(0) = u(l) =0 and v (0) > 0} and let A} the

subset _of Sf composed by those the functions u satisfying:
i) u is symmetrical about 3.
ii) The vderivaftive of u vanishes bnce and only once.

The main.result‘of this work is:-

" Theorem 10 There exists a number A, > 0 such that
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i) If A < s, problem (3.5) admits ezactly two solutions and they belong to AT.
ii) If A= A, problem (3.5) admits a unique solution and it belongs to AT .
iii) If A = A, problem (3.5) admits no positive solution.

In order to state the method, consider the boundary value problem

, .
- u’p”zu’) =g (u) in (0,1
(1) g(u) in (0,1) 56)
w(0)=u(1)=0
where g € C* (RT,R) and p > 1.
&
Define G (3) = /‘g(t)dt

0
For any E € (0,00), let
X+(E) = {S >0 E——E_Z;)-—IG(C) >0,‘VC, 0<¢ <5}

and

s.py o] HXi@=0
i sup X4 (F) otherwise

Let

D= {E > 0;0 < 8, (E) < +o0 and g(S4 (E)) > 0}

- and define the following time-map

- S4(B) o1
T (BE) = f [E—-#G(u)] P gu,EeD.

Theorem 11 Let E € (0,+00) and let p > 1, problem (3.6) admits a positive solution u € Af
 satisfying (v ,(0))10 =E if and only if E € D and Ty (E) = % , and in this case the solution is
unique and it sup-nbhn is equal to Sy (E). -



3.3 Proof of niain result

As usual, in order to define the time map, we need the following technical lemma.
Lemma 12 Consider the equation in s € R:

p .

where p > 1, A > 0 and E > 0 are real parameters. Then for any E > 0, equation (8.7)

admits a unique positive zero T4 =714 (p,\, E) . Moreover

i) The function E > 14 (p, \, E) is C* in (0,+00) and

ary (p, A, E) (p-1)E
; = >0, Vp>1,VA>0and VE >0
OE »of (@ NE) T

L ee . _n+
ii) Eh—{{)l+ ry (p,\, E) =07,
ii) Egrfm r+ (p,\, F) = +c0.

Proof. For any fixed p > 1, A >0 and E > 0, consider the function
s H(p,\,E,s):=F — ;)2—1—)\}7(5)

defined in R which is strictly decreasing with H (p, A\, E,0) = E and li? H(p,\,\E,s) =
§—r-1 00

—00. So, it is clear that equation (3.7) admits for any E > 0, a unique positive zero, vy =

T4 (p, A, E) .
Now, for any p > 1 and A > 0, consider the real valued function

— P
(E,s)— Hy (E,s):=FE — ;—;—i)\F (s)

defined in 4 = (0, +00)?. One has Hy € C1(£24) and

8H+ (E, S) o
ds T op

f M (s) in Q4
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hence

3H+ (E, 8)

9s <01nQ+

and one may observe that ry (p, A\, E) belongs to the open interval (0,+0c0) and satisfies

from its definition

H (E,r (p, A\ E)) = 0 | (3.9)

So, one can makes use of the implicit function to show that the function E — ry (p, A, E) is

alr-l- (p 3 )\7 E )
8E

p > 1 and A > 0, the function defined in (0, 400) by E + 4 (p, A, E) is strictly increasing and

C* ((0,4+00),R) and to obtain the expression of

bounded from below by 0 and from above by 4+c0. Then, the limit lim+ r} (p, A\, E) = lg+ and
. E—0
the limit Eh{f r4+ (p, A, E) = 1 exist and belong to (0, 4-00] . Moreover
—3-1-00

0_<_lo+ <Z+00S+OO
We observe that, for any fixed p > 1 and A > 0, the function
(E,s) — Hy (B, s)

is continuous in [0, +QO)2 and the function E.— 7, (p, A\, E) is continuous in (0,+400) and

satisfies (3.8) as F tends to 07, we get
0 =E1:i§{)l+ Hy (E1 T+ (pv A E))
Hence, ly+ is a zero belonging to [0, +00), to the equation in s
H+ (0, S) = 0

By resolving this equation in .[0, +00), we obtain
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lo+ - O
Assume that [, < 400, then by passing to the limit in (3.8) as E tends to +o0, we get
P
+00 = )\F_—l'F(lq-oo) < +00

which is impossible. So I, = +o0. B
Now we are ready, for any p > 1, A > 0 and £ > 0 to compute Xy (p, A, E) as defined in

~ section 2. In fact X5 (p, A\, E) = 0,74 (p, A, E)[. Then
5+ (p, Ay E) = Ssup X+ (pa A, E) =Ty (p3 A E)

and since f (s) > 0, Vs € R* then

D = {E>0;0<s4(p,A E)<-+ooand f(s4(p,\ E)) >0}

By lemma 12, we have

i MNE) = i =
Eh—{%‘*‘ 8+ (p7 ’ ) Oand E—]iIBOO S+ (pv A E) +00

854 (AE) __ (p—1)E
- > 0,YE € D.
8E - pAf(s+ (p, N\ E))

At present we define, for any p > 1, A > 0 and E € D the time map

5+<p,A,E)
Ty (py L E) = / [E -

_1
)\plF‘(u)] * du
and a simple change of variables shows that
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1

T G AE) = sp(pAE) [] [E—;——F<S+<p,/\ Byw| " du

1.1
= o8 (52) [P A B - F s 1 B )
0 .

Lemma 13 We have

(] - —_ +
i) Elgr()l+ Ty (p,\, E) =07,
.. . . +
ii) EEToo Ty (p,\, E)=0".

Proof.
i) We have

1 1
) p—1\>» ' _1
Jm TeeAE) = tim G E) (B) (1 0 B) ~ Flor (oA, D)) au

/ |

(zo;l)] ) [F(s+(p,A,E»—F<s+<p,A,E>u>]‘%du

m
AP ) ) sepaB)-0r (54 (0, M\ E))P

On the other hand, one has ,
F(ss (5, A B)) = F (5 (0, B)w) = £ (54 (5, ), E) &) 54 (5, A, B) (1 — ) with ¢ & (1, 1)

Using the last formula, we obtain

' 1

im. F(S+ (p’A’E))__F(S‘f' (p7’\7E)u) K3 .
/ olBor | o GA B | 7a
| FlorpABIa-u]F
[ 84 (p,/\ E)—>0+ [ (3+ (p, )\’ E) )P"l ] d

So,
1

; P=1\p o+ _ o+
lim T4 (p,\,E) = 5— )P x0t =0
Jim T (p,\, B) <)\p)
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ii) In a similar manner as in i), we prove that Elixf Ty (p,\,E)=0".1
— OO0
The previous lemma shows that T (p, A, .) admits at least one critical point.

We observe that
T+ (P’ Av E) - T (p7 ’\7 $ (P7 )‘7 E))

where s (p, A\, E) = 54 (p, A, E) and

18
1 ~1

T (p ), 5) = (%)5/[17(3) — @) du

Since for each A > 0, the function E ~ s (p, A, E) is an increasing C'-diffeomorphism from

(0, +00) onto itself, and

Ty (0, N E) 8T (p,\,s(p,\, E)) 8s (p, \, E)
OF - Os OF

So, to study the variations of E + T4 (p,\, E), it suffices to study of 7. That is, T
attains a local maximum (resp.minimum) value at s, if and only if T’ (p, A, .) doso at s 1 (sw)
where s;}\ is the inverse function of s(p,A,.). So, from the previous lemma, it follows that
31—1;1(1)14- T (p’ )" s) =S£I—POO T (p’ )\’ S) =0.

Then 7' admits at least a maximum value.

We have
i 1o
oT (p,\s) _ <p— 1),, (K (ps) = K(pyu)) g,
s A ) S s[F(s) - F (@)%
where
K(p,‘u) = pF (u) —uf (u)
We hav'eb

35



OK (p,u)

W (p—1) f (u) —uf’ (u) - (3.9
2 u '
8_{(3—32),—.—)' =(p— 2) I () — uf” (u) | (3‘.10)

Since f satisfies (H1)-(H4), we see that

BK (p,0
K (p,0) =0, ﬁ_(i’ )

> O,uligr:oo K (p,u) <0

In addition, by (3.9) and (3.10), there exists a real numbers A and B with 0 <c < A < B
such that

OK (p,u)
T >0on (0, A)

K ( yA)
u

9K (p,u)

5 <Oon (A, +00)

and

| K (p,u) >0 on (0,B)
K(p,B)=0

K (p,u) <0 on (B, +00)

So, it follows that
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S,

T (p, A, 8)

5a >0, Vs € (0, 4)
I (p, A
E(_g%s_) <0, Vs € (B, +o0)

: : ,
Under, one additional resonable hypothesis on the function uf’ () on (0, B), we show that

f(w)

T admits exactly one critical point, a maximum on (0, +00).

In addition to (H1)-(H4), suppose that f satisfies

(H5) uj{ﬂ(s;) > _p i 7 on (0, A) and u;l(il)t) is increasing on (4, B).

Lemma 14 f’(p, A,.) admits a unique critical point, s* (p,A), at. which it attains it global

mazimum value.

We observe that 1 |

PTp0s) _ (p=1\p (p+1) [ (K@) =K@u)l, 17 (o) -¥(pu) ,
9s? <Ap) ( P )[szws)—zr(@f"’zﬂi.l b | 2 [F(s) — F (u)] %

where

U(p,u)=~p(p+1) F (u) + 2puf (u) —u2f (u)

A simple computations shows that

) : 1 8 e 7t .
PTmNs)  (p=1\, 1 T 5 (AK)(aF)+(ak) (aF)
9s? —( /\p) :5?/ p+1 du
[AF] P

where
AK = K (p,s) — K (p,u)

AF =F(s)— F (u)
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Af = sf(s) —uf (u)

OK(ns) K (pu)

i
Ak ou ou

To prove lemma 14, we state and prove the following lemmas 15 and 16.

Lemma 15 Suppose that f satisfies (H1)-(H5), then it follows that the mazimum of %;;— on

[0, s] attains at w=s for s € (A,B), and 0%13%(3 2;, = ! (s)]j—(:)f’ (s) fors e (A,B).

Proof. For fixed s € (A, B), we have

K(p,s)=pF(s)—sf(s) >0

and

a_KaLioli):(p~1)f(s)—sf’(8) <0
So,

A _sf@-u@), s
AP T () - F@) " T F()

<p

AF_f@)+sf6) | f@)+ =11 () _

AF™= 77 f(s) & F

. Af . e

Then for fixed s € (A, B), the maximum of AF attains at v = s or at some point interior
on (0,s).
Put
uf’ (u)
hu)=1+
M=)
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We have -

h{u)<pforO<u<A
h(A)=p

h(uw) is increasing on (4, B)
This yields
h{s)—h(u) 20for0<u<sands€(4,B)

For s € (A; B), suppose that the maximum of —Z}—;— attains at ug € (0, s) .
Then

AFY B
)

which is equivalently to:

f (uo) [sf (s) — uof (uo)] — [F(s) — F(uo)] [uof’ (uo) + f (u0)] =0

This yields
sf (s) —uof (uo) _ uof’ (uo) + f (uo)
F (s) — F (up) f (uo)
So,
%{; luuo = h (u0)
Hence
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Af AF
AF lu=uo = k(o) < h(s) = AR Ju=s
: : : : Af
This contradicts the assumption that the maximum of NG does not occurs at u = s for
se€(A,B).1
We define

A]i-‘/ =82f, (8) _u2]c-/ (u)

We have the following lemma

-~

!

= ON
Af

Lemma 16 Suppose that f satisfies (H1)-(HS5), then it follows that the minimum of

_ _ o . Af sf(s)
[0, 5] attains at u =0 fors € (A, B), and Qin 37 =0 for s € (A, B).

Proof. By (H5), we have

f (@) +af' (z)

1
f(=) - mf(x)

¥4
,p_+1—f(z)20

(of (&)Y

v

| Then
(zf (z)) >0 on (0, 4c0)
" So,
sf(s)—uf(u)>0for0<u<s<B
‘This yields

Af>0for0<u<s<B
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For s € (4,B) and 0 < u < s, we have

sf'(s) uf (w)
uf(u)[f(s),_ f('u,) |

sf(s)——'u,f(u) ’
wf (u) [ (s) — b (u)]
@) —uf(w) =P

Af’ Af’
Af  Af

lu—O =

On the other hand, we have

Af/, lim 2f’(s) u2f’(u)

AF T u=s  sf(s) —uf (u)

251" (s) + 821" (s)
f'(s) +sf7 (s)

Since f €C*(0,+00) and A is increasing in (A, B), we obtain

A A @i
AF T AT T ) taf () e 2

pr J]
Hence the minimum of éi on [0, 5] attains at u =0 for s € (A, B) and min Ai =5 (s)
A 0<u<s A f f(s)

Proof. of lemma(14)

!
LetM = max ﬂ and m := min —f.,
v 0<u<s AF 0<u<s Af
We have

. ]
OT(p \s) M 0T (p,,5)

Hs? . D Os
_ (;9_-_1_)57 Y par)?- (Af)(AF)]-!—L(Af) ~(p+1)(Af)(AF)- (Af’)(AF)+(p 1)(Af)(AF)
Ap 32(4\‘1:*)‘})m
1, '
_ (P_—_l)E / FBOrr -(AN@R2E(a) - 2(a7)AR)- (aF Jar)
Ap sﬁ(AF) o
Let
M X p+1 . o
Q=" lp(AF)? - (& 7) (AF)| + - (a f) 2(a f) (AF) - (Af) (AF)

and define the function A by
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h(z):=zf (z) - E%F(ZE)

We have

W ()

I

@)+t @)
‘ 1 zf(x) .
- 1@t T | =0

Then, for 0 <u<s< B

sf(s)—uf(w) o P
F(s)—F(u) ~p+1

Sy
g~

Db
4
v
3
i
H

which implies that

Q

IA

— (aF)" - (2+ > +_m) (a7) (AP + M (AFY

M
= (AF) {Qi—lLﬂ - (2 +— +m> L+ M]
P p -
Put

P(L) :=3-‘£3L2— (2+—A;£+m>L+M'

‘We observe that

P(L) = p—inl(L—M) (L fﬁ’l)

"Since P < L < M, we obtain
+1 :
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P(L)<O
and consequently

Q<0

We can show that @ is not identically zero for fixed s € (4, B), 0 < u < s.

Hence

. i,
T (pAs) | M T (0, A,3)

a2 » s < 0for s € (4,B)

which proves the uniqueness of the critical point of T (py A, ) n
Proof. of theorem(10)

From the preceding lemmas one has the following picture of the function s ~ T' (p, A, 8)

which is defined on (0, +00) :

liI(l)Tl+ T(p, A\, 8) = ]irf T (p,\,s) = 0t, and T'(p, A,.) admits a unique maximum value
S—r 3— 400 .

T (p, A, s4). So,
. ’ 1
1) ET(p,\ 84) < 3 problem (3.5) admits no positive solution.

=~ 1
il) T (p, A s4) = 5 problem (3.5) admits a unique positive solution.

iii) If 7 (p, A, 84) > ‘l, problem (3.5) admits exactly two positive solutions. .

2

1
Then, if one put A, = B—;—l 25, (p, A, E)/[F (s« (0, \, E)) — F (54 (p, \, E) u)]_% du)
: 0

theorem (10) follows. M
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Chapter 4

Multiplicity results for quasilinear
boundary-value problems with

concave-convex nonlinearities

Abstract This chapter is concerned with multiplicity results for the problem

| { — (wPtu) =2g ) (" ut ), ¢ € (a,0)
| u(a)=u(b)=0

where p > 1, Ais a strictly positive real parameter, 0<p<p—l<vandg: [a,b] — R%L

is of class CL. We usé the angular function technique for showing the existence of solutions.




4.1 Introduction

The purpose of this chapter is to study the existence and multiplicity of solutions to the problem:

—- (}u’[p"2 u’), = Ag (¢) (Iu["_lvu + ]ul“_lu) , t € (a,b)

u(a) =u(®) =0 )

where p > 1, A is a strictly positive real parameter, 0 <y <p—1<vandg: [a,b — R} is
of class C?. We|investigate the influence of the combined concave-‘con\.fex nonlinearities on the
multiplicity of the solutions. This question was studied by several authors (see, for instance,
[14], [25]-[27], [41], [76], [92], [162], [175], [198], [199], [202], [203], and [213]).In [25], the authors

“investigated the following problem:

~Ay = u’t+ Au”2 in Q _
u > 0 _ in Q (4.2)
) = 0 on Of2

with 0 < 71 <1 < 79, A > 0 and the set Q is a bounded domain in RY with smooth
boundary 8. The authors prove that (4.2) has a minimal solution uy for A € (0, A) with some
A-> 0, and there exists A > 0 such that for all A € (0,A), (4.2) has at most one solution uy -
such that |juy ||, < A. Moreover, if the condition v; < 2* holds then for all A € (0,A) problem
(4.2) has a second solution vy > uy, where 2* = {2 for N > 2 and 2* = +oo for N =1,2.

At the end of the paper [25], the authors indicated that it could be interesting to study in
detail the problem (4.2) in the special case when NV =1 and = (a, b), see [[25], section 6, (d)].

" This study was done by S.Villegas [199] by means of a quadrature method. He shows that there

exist two monotone divergent sequences (en) and (Ly); en < Ly, satisfying:

(i) If A € (0,€y), then problem (4.2) has exactly two pairs of opposite solutions with (n + 1)

Zeros.

(ii) If A € [en, Ly), then problem (4.2) has at least two pairs of opposite solutions with (n + 1)

Zeros.
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(iii) f A = Ly, then problem (4.2) has at least one pair of opposite solutions with (n + 1)

Zeros.

(iv) It A> Ly, then problem (4.2) has no pair of opﬁosite solutions with (n + 1) zeros.

In[76], the authors shows that the results obtained by S.Villegas remain true for problem

(4.1) in the case p=2
The aim of this work is to show that the same results obtained in [76] holds for any p > 1.

The paper is organized as follows. -In section 2 we give some definitions and present the

method used to prove the results of this paper. Some preliminary lemmas are the aim of section

3. Next, in section 4 we state and prove our main result. Finally, we conclude the paper with

some remarks in section 5.

4.2 Definitions and the method used -

Consider the boundary value problem

<|u' |p*2u')l = f (t,u,u) ' ‘(4.3)
Ju (a)|p “Tu(a)sina— [v (a) |LH v (a)cosa = 0 (49
Ju®)FE w(B)sing - [uf B[+ of (B) cos B = 0 (4.5)

where p > 1, f: [a, 8] x R? —»Risa continuous function and.
T
pel-33) | |
Definition 1: A function u € C! [, 3] such that |/[P %4/ € C! (a,b) is called a solution of
problem (4.3), (4.4)and (4.5) if:
(i) wu satisfles (4.3) for each ¢ € (a,b).

- (i) w satisfies (4.4) and (4.5).
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Definition 2: By a nondegenerate solution of problem (4.3), (4.4)and (4.5) we mean a
function w such that u? (£) + ()2 (t) # 0 for all ¢ € [a, b].
- 4.2.1 Angular function technique
To obtain our results, we use the well-know angular function technique (see for instance, [42],
[88], [138] and [177)).

We distinguish two cases:
The case 1 <p< 2

Let u be a solution of (4.3) such that
WD (1) 4 ()20 (1) 2.0, i & [, 8

We define the angular function associated to % by

[ ()FF~* o (2)

e O = o)

and set,

{ fu (P2 (8) = r (£) cos o (1)

[ OF 2 (8) = r (8) sinp (1)

where 7 (¢) = \/u2(p‘1) ) + ()2~ (t) for all ¢ € [a,8].
If u is a solution of (4.3),_' then (r () ,¢ (¢)) is a solution of the following system

¢ (0= 8 000 9) — (= 1) s o (0152 eosip (22 (46)

' (t) = f (¢, u, ') sinp (t) — r (t) sinp (£) ]sm @ (t)lﬁz12 cos ¢ (t) [cos ¢ (t)[ﬁ (4.7

Remarks
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(i) The set of angular functions corresponding to a given u is infinite, each of these functions

can be uniquely specified by indicating its value in a.

(ii) If %o is a simple zero of u then u (o) = 0 and u' (f) 0. Consequently 7 (to) # 0 and
@ (to) = T £ kr with k € N. This shows that the simple zeros of a solution u of (4.3) are

obtained by studying the equation
(p(t)=§:i:k7r, keN

where ¢ is a solution of the equation (4.6).

(iii) w is a solution of (4.3), (4.4) and (4.5) if and only if its angular function ¢ (¢) satisfies

p(a)=a, p(b) =B +kn

for some integer k.

The case 2 < p < 400
Let u be a nondegenerate solution of (4.3). In this case we define the angular function ¢
associated to u by letting ‘
v ()
t =

and set,

u (t) = r(t) cosp (t)
u' () = r (t) sin g ()

where 7 (t) = \/u2 (£) + (w)? (2) for all ¢ € [a, B].
If u is a solution of (4.3), then (r (¢), ¢ (¢)) is a solution of the following system

' f(t,u,u) cosp (t) sin?
O ey r@mear e Y
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r'(t)=[(p—1)r(t)cosp(t) + f (t,u, )] sing (t)

4.3 Preliminary Lemmas

Consider the Cauchy problem

(Iu’lp—zu’)l =f(t,u,o)
u(a) = ccosa

v (a) = csina
where c € R},

Lemma 17 Let 1 < p < 2. Assume q1,¢ : [a,6] — R are continuous function satz’sfyiné for ‘
h (r cos @, T sin @)

all € > 0 small enough lim =400 (
r—0t T .
resp lim h(reos ¢, sing) = 400) uniformly with respect to p € [O, g - e} . Then for

r—rtco T
all integer n and positive real number v, there exists [i, () such that if u is a nondegenerate

solution of (4.8) defined for all t € [a,b] and satisfy the inequalities

f b ) signu(t) < —a @b (u@P W 0F ) (4.9)
22 (0) (ke (OF " + ! () )

with

0 < /u2e-D (t) + (w)**V (8) < i, () | (4.10)

(resp /@D (&) + (w)X®D (1) > i, (7)) for all ¢ € [a,b] where

/‘91 (t)dt =29 >0 | (4.11)

a

Then w admits at least n zeros in [a,b].
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Proof. The proof will be given in several steps
Stepl: Using differential inequalities, we will control the angular function ¢ of equation
(4.6) by another angular function % associated to a simpler problem. In fact, for any given

n € N, there exists a positive constant § such that if 7o — 71 < 6 (71, T2 € [a,b]) then

T2 TO .
2\/5/(12 (s)ds <1 and 4n/q1 (s)ds< v o (4.12)
T1 T1
b .
Let @ = /CI2 (s)ds, o = % min {g, 7 jQ} and let us choose fi (¥) > 0 such that
a

h(rcosp,rsing) _ 2n {71'—2(1)—1)04-@(})—1)\/5}

Z = por
r v sin p2

for 0 <7 < fi(¥) (resp. 7> ji(¥)),0< o < g— - g—. Let u be a nondegenerate solution

of (4.8) defined for all ¢ € [a, 5] and satisfy (4.9)-(4.11). Set r (£) = \/u2<p—1) (t) + (w)2P=D ()

and consider a maximal solution of the problem

WO = Vi -1 a0 - %%}h(r (8) loos b (8)] 7 (&) Jsin g <t)|>] x

X |eos (8)] — (p — 1) |sinp (B 7°7 Joos v (£)] 53 (413)

$(a)=7

If ¢: [a,b] — R is an angular function associated to u and ¢ (a) € (—g, g—] then by (4.9)

‘the theorem on differential inequalities (see[[138], Theorem 15.2]) implies that
) <¢(t) fora<t<b

The inequality (4.11) implies that there exists t; € [a, b] such that
t;

/ ql(S)»ds = (%) v , ('4.14)

a
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Step 2: Liet us show by induction that the inequality

Y(t:) < —mi | (4.15)

oy

is valid for any 4 € {0, ..., n}. _

If 29 (t*) < m — 2mi for some t* € [a,b] and some integer 4 then 2y (t) <7 —2mi in 1£%, 8].
So, (4.15) is valid for 4 = 0. Suppose that (4.15) is valid for some i = m e {0,...,n — 1} then
2% (t) < —27m in the interval Jtpm, b].

Claim: We have the following inequality

1/}(tm+4a)_<_g—7rm—(p——1)cr - (4.16)
Proof. Suppose that (4.16) is not true. One has two possibilities

(i) For ¢, <t £ty + 4o, one has
¢(t)>g—7rm—-2(p—l)cr

(ii) There exists s € [tm, tm, + 40) such that

b()=5-mm-2(p—1)0

and
¥ (¢) >Z2r——7rm—2(p—1)ain (8, tm + 40)

In the case (i),
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tm 40

Y (tm +40) =Y (tm) < V2(p—1)sin2¢ / g2 (s)ds —4o(p—1)x
tm
x (cos 20)55%1' 271
tmt+do
< (p—-1)2V20 / g2 (s)ds ~4o(p — 1)x
tm
2-p
X (cos 2(7)51}I 226-9
< (p—1)o —4do(p— 1)2‘#223;1)

| = —(p-1)o
Hence,

b(tm+40) < Y(tm)—(p—-1)0o
< §—mm—(p-1)o
Suppose that (ii) is true, one has

tm+-do
WVl t40)=4() < (p-1)VEsn2 [ g

A

P-1)e
Thus,

bltm+do) < p(s)+(p-1)0
' s—mm—(p—1)o

IN

So, in all cases one has
P (tm +40) < g —mm—(p—1)o
Assume that,

Y (tmy1 —

So, one has




—g—wm—i—(pZ) <¢(t)<__ m_.*__(p“;)"

in [tm +40,tm11 — 40]. In the contrary case, there exists [s1,80] C [tm + 40, tmy1 — 40]
such that 9 (s1) < ¥ (¢) < 9 (s2) for 57 < ¢ < s and Y(s1) =5 —am + (;D-—Tl)a, ¥ (sg) =

% —mm + (p — 1) o which is impossible because one has

¥ (o2) ~ (or) = B <fa<p—1>/qz<t>dt~—< 1) (52— 1)

which is a contradiction with the choice of o.
Using inequality (4.16) we will show that (4.15) is true for 4 = m + 1.
From (4.12) and (4.14) one has

tmi1-40 tmt1 tmoto tmt1
q1(s)ds = / q1(s)ds — / q1 (s)ds — / g1 (s)ds
tm-+do tm tm tmt1~d0 (4.17)
v v v b ‘

~ n 4dn Zﬁ‘%

Then tyny1 — tm — 80 > 6. From the relations(4.10), (4. 11), (4 13) and (4.17) one gets
tm41—do

Vltmi1—40) =Y imt40) < VEG-1) [ q(t)leosy(o)ar

tm+40

tmi1—4o '
a1 () 2 (r(2) ,cos:b((tt))l 7 () sine (2)]) s ()]
tm+do
= —m+2(p-1)o

which implies

IN

Y({tm+4o)—7+2(p—-1)0
g=—mm—(p—1)o-n+2(p—-1)0c
F=m(m+1)+(p-1)o

'%b (tm-!-l - 40')

IA
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and then

—7(m+1)

Ny

Y (tmy1) <

The inequality (4.15) is valid for ¢ = m + 1. Then, we obtain
@ (tn) < ‘g‘ —7n

which shows that u admits at least n zeros in [a, ] . B

Lemma 18 Let 2 < p < +oo. Assume g1, g9 : [a,b] — Ry are continuous function satisfying
h (Ir singfP™t | |r sin<p|p_1)

for all € > 0 small enough rl—lf(% s

h (lr sinfP~! | |rsin galp_l)

= 400

= +00) uniformly with respect to ¢ € [0 , g — 5] .

400 rp—1
Then for all integer n and positive real number ¥, there exists fin, (7) such that if u is a nonde-

generate solution of (4.8) defined for allt € [a,b] and satisfying the inequalities

f(tu, ) signu(t) < —q()h (|“ ®P, |/ (t)lp_1>
+a ) (P + o ()P )

with

0 < \/u2 () + ()2 () < fin (7)

(resp \/u2 @) + (W) () > i, (8)) for all t € [a,b] where

b
/ql(t)dt21~/>0

a

Then u admits at least n zeros in [a, b].
Proof. Similar to that of lemma 17.
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e

Remark: Lemmas 17 and 18 are generalizations to the case p # 2 of a result of Shekhter
[[177],lemma3] .

4.4 Main result
In this section, we state and prove our main result
Theorem 19 There exists a decreasing sequence (An)p>1 Such that

() IfA> Ay, then problem (4.1) has no solution with 1i zeros in (a,b).

(i) If A = A,, then problem (4.1) has at least one pair of opposite solutions with n zeros in
(a,b).

(iii) If A < A\, then problem (4-1) has at least two pairs of opposite solutions with n zeros in

(a,b).

Remark: We will give the proof for the case where p € (1, 2) The adaptation of the other
case may be handled similarly.

Proof. Consider the Cauchy problem

~ (wp? W) =29 (8) (ul b ) ,
wla) =0 T (418)
v (a) =2, z€RY |

Lemma 20 Each solution u of (4.18) is deﬁhéd forallt € [a,b].

Proof. Suppose that there exist a sequence (tn),>1 converging to &, € [a, 8] such that n]jrf
> " p-Foo

(lw (tn, Ay 2)| + |t (tn, A, 2)]) = 4-00. The mean value theorem shows that n}jrfoo [o (tn, A, 2)| =
| (s A, 2)] = +o0
Let

E(t)\z) fu (t)\z)]p—{—F(t u(t, A 2))

where
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=

w

F(tu) = /)\g (®) (1s1" s 4[5}~ s) ds

0
We have
: u(t,\z)
L2~ [ g ) (s 1ok s)
0
u(tAz)
< Ml [ (I s Al s) ds = Mgy O )

0

u
where [|¢'|lo = sup |¢ (¢)] and G (u) = / (Is]”_l s+ A|s|tt s) ds
t€[a,b]
0

Let m = inf g¢(¢). T :
et M tel[a,b]g() hen

OE (t, A 2)
ot

llg'llo lg'llo
< i . < /
< =2 F (t,u(t, ,\’ 2)) < =RE (8, )\, 2)
which implies that

E(ty, A z) < FE(a,\ z)exp (ﬂ% (b~ a)) (4.19)

which is a contradiction. B

Lemma 21 The problem (4.18) has nonzero solution satisfying zero initial condition.

Proof. Suppose that u is a nontrivial solution of (4.18) with u (a) = v (a) = 0.

By the inequality (4.19), we have
: Ig'llo
E(t,\,0) < E(a,\ 0)exp | =2 (b~ a)

Then E (¢, X,0) = 0 for all ¢ € (a, b] since E (a, A, O) = 0. This implies that « (¢, A\,0) = 0 for

all t € [a, b] which is a contradiction. M
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Lemma 22 Forany~y > 0, there exist § > 0 such that if z lg 7 then \/uz(l"l) (t, A, 2) + (@) 2PV (1, ), 2)
6 for all A >0 and t € [a,l]. '

Proof. There exist a constant My > 0 such that

Ft,u(t,\z2) > —-M

Hence

E(t,\2) > ijl |/ (¢, 0, 2)|F — My

It follows that

p_;—_l | (t, M 2) P — M1 < E (a, M\ 2) exp (”97;‘0 (b— a))

Then :
%1 W/ (6, A 2)F < M+ [1";71 I (a, A\, 2)|P + F (a,u (a,)\,z))] X .
X eXp (”—Q%Q (- a))
= M+ 1’%121" exp (”L%”ﬂ (b— a))
The last inequality shows that
w(t, A 2) —u(a, A 2) < [p% (M1 + P exp (%ﬁ (b-a)))]
In other words, we have
it hz) = fueD (), 2) + ()2 D (4,2, 2)
< é
with
1 I’} z e
8= HEET (Ml + BE=2Pexp (——;n—Q (b— a)))] (b— a)} +

+ [5% (Ml + %lzpexp (%‘1 (b— a)))] =

3 =

(b—a)

Lemma 23 Givenr > 0, there ezist a number R (r) such that if z > R (r) then \/ w2-1) (¢, N\, 2) + (o )2(‘”' ‘

r for all t & [a,b]. |
|
I

Proof. Let r > 0 be given. Consider a solution u (¢, A, 2) passing through the set S =
{(t, 1, 2) : t €[a,b],A >0,z < r}. By the preceding lemma there exists R (r) such that r (¢, ), 2) <
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]

R(r) where u (t, A, 2) passing through S. Hence if z > R (r) then \/ w21 (¢, ), 2) + (W )2(p Dt A 2) >
rforall ¢t € [a,b] . B

Now, let ¢ (¢, X, z) be the angular function associated to a solution u (¢, A, z) of problem

(4.18) such that ¢ (a, A, 2) = By lemma 23, we will have that

Im r(¢,Az2) = hm u2(1"1) @t 2) + @)D (1, ), 2) = +o0. Hence, lemma 17 im-

22— -+00

plies that for all m € N, there exists 21 > 0 such that for all 2 > 21, we have ¢ (b, ), z) < g—wm;

which means that ]im @ (b, A, 2) = —00. Similarly, lemma 17 implies that lim ¢ (b, A 2) =
. z—0

—00 since lim 7 (t A, z) = 07 by lemma 21.

z—0t

The angular function ¢ satisfies

¢ (t) = F (¢,1,cos ¢, sin p) (4.20)
where
F(trcospsing) = */\g (¢) (T%%E (t) |°OS<P{V_:%_1 + PHEEEE (t) |cos <p|l%51)
—(p— 1) sing (§)]77 foosp (1) *1
We have

~1

: 1290 +
= =g (t)'r'&zﬁ2 |cos <,0|LP% X

X 1:__|-____27‘p -1 (t) |COSSDIP 1 ...]_H..ﬂ:l

OF (t,r,cos p, sin p)
or

The last equality shows that

Py :
OF (b, cg:go,sm #) > 0 for r sufficiently small and - OF (4,1, (gf 510 ¢) < 0 for r suffi-

ciently large. Applying theorems 15.3 and 15.4 in [138], we obtain that ¢ (b, ), 2) is strictly

decreasing for z sufficiently large and ¢ (b, ), 2) is strictly increasing for z sufficiently small.
Now, it is clear from the previous study that ¢ is bounded from above.

Let $(b,A) = - sup @ (b, A, z). Then, we have

2€{0,+00
1) EedA) > g - mm, then problem (4.1) has at least two pairs of opposite solutions with

exactly m zeros in (a,b).

(i) If @ (b, /\) 2 — mm, then problem (4. 1) has at least one pair of opposite solution with
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exactly m zeros in (a,b).
(iil) If @ (b, A) < g — mm, then problem (4.1) has no solution with exactly m zeros in (a, b).
Now, we will show that the equation

@(b,A)=g—m

has a unique solution Ay, for each m.
Lemma 24 ¢ is decreasing with respect to A.

Proof. Since

(A = =Ag(8) (5 () loos] T+ (1) oosp] T )

—(p— 1) sin (§)[7°7 Jcos o (£) 51

is strictly decreasing with respect to A and ¢ (a) is independent of A, then the theorem of
differential inequalities shows that ¢ (¢, z, A) is decreasing with respect to A for a given value
te(ab]. M

Let ¢; and ¢, be respectively the solutions of the following problems

() = —AM (r%'—ifﬂ (8) |cos | T2 4 5T (1) |COS(P1|&¥-1—_1.)
— (p— 1) [singy (£)|7°7 fcos g, (1) 71
1 (“)‘ = g
and
Ahlt) = X (75 O loosl T 475 (9 foos )
—(p— 1) |sin gy (£)|75T |cos g, (£)| 571
py(a) = %

where M = ||g||, and 7 is the constant defined in the proof of lemma 20.
Lemma 25 One has ¢; (£, ) < ¢ (£, A, 2) < g (t,A) for all t € [a, b].
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Proof. It is a‘consequence of the theorem of differential inequalities.

Now consider the problem

{ = (e OF 2w () = 20 (Ju(OF 0 (2) + u (1 1)) o
u(a) =u(d)=0 .
Let
HEAE) e L
T} (p,\, E) = / [E—;—%AM‘('SL = I;jl+1 )J du (4.22)

0

where Sy (p, A, E) is the first positive zero of the equation

P u* | Jultt
E- AM | = =0
p—1 (._i/—l-l_lh,u-f-l

We note that CITL (p,\,E) is the half-time between two consecutive zeros of the solution u

of (4.21).

Lemma 26 Consider the equation in s € R

p s Jst
L\ - .
E p_lM(U+1+ﬂ+1 0 (4.23)

where p > 1, A > 0 and E > 0 are real parameters. Then for any E > 0, equation (4.23)

admits a unique positive zero S. = Sy (p, A, E). Moreover

(i) The function E — Sy (p,\, E) is C! in (0, +00) and

aS_;_(p,/\,E) _ p—1 :
OE DM B 4 (5r oy, B O P> L VA> 0 and VE > 0.

i) lim Sy (p,A E)=0*.
(i) lm S (p, ) B)
(i)  Lm Sy (p,A E) = +oo

Proof. For any fixed p > 1, A > 0 and E > 0, consider the function
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p s st
s Gp,NEs)=FE——AM| — +——
p—1 v+1  p+1l
defined in R. which is strictly decreasing with G (p, A, E,0) = E and liI_Ex G(p,\, E,s) =
100
—00. So, it is clear that equation (4.23) admits for any E > 0, a unique positive zero, Sy =

S+(p7ArE)‘
Now, for any p > 1 and A > 0, consider the real valued function

v+1 p+1
(B,8) — Gy (E,s)=E— L _\M 15 + 5
p—1 v+1 " pl

defined in €, = (0, +00)%. We have G € C! (Q,) and

EX;+(ELS)
93

=P v 1s#) j
.p_l\M(‘s| + ) in Q4

Hence

6C1+(EL8)

3a <0in Q4

and one may observe that S; (p, A, E) belongs to the open interval (0, +c0) and satisfies

from its definition

(;+(12H9+(paAal;» =0 o (4“24)

So, one can use of the implicit function theorem to show that the function E — Sy (p, /\,4 E)
is C* ((0, +o0) ,R.) and to obtain the ekpression of i"’g%—)\—’—E—) givén in (i). Hence for any
p > 1 and A > 0, the function defined in (0, +00) by E — Sy (p, A, E) is strictly increasing and
bounded from below by 0 and from above by +o00. Then the limit El_ig)l+ S+ (p, A, E) = g exists

and the limit Emf S, (p, A\, E) = lyoo exists and belong to (0, +co] . Moreover
. 100
0<!lp <o < +00
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We observe that, for any p > 1 and A > 0, the function
(E,s) — G4+ (E,S)

is continuous in €24 and the function £ +— S, (p, A, E) is continuous in (0, +-00) and satisfies

(4.24). So, by passing to the limit in (4.24) as E tends to 0%, one gets
0=1lm G4 (FE,S NE
E—)I](:)l'*' -I-( ’ +(p1 s ))
Hence, lp is a zero, belonging to [0, +00), to the equation in s :
'G.}_ (0, 8) =0

By resolving this equation in [0, +00), we obtain lp = 0. The point (ii) is proved.
Assume that [; is finite, then by passing to the limit in (4.24) as E tends to +oco, we will

obta.in that

P ) i+1 li+1
Pty e )
et il ko

which is impossible." Thus, we deduce that [+ = +oo. M
Lemma 27 We have for all A >0 and0<u<p—1<v
. . -+ Nt )
@ Jm T (oA E)=0
3] .o — +
(ii) E—lilfoo T1+ (P A\ E)=0

Proof. _
(i)Letting u = Sy (p, A, E) ¢ in (4.22), we will obtain

1

St (p,\E vtl-p .

THpE) = [ Eran [BERE (e
0

: -1
Sr@AENHP ]
+ R (1) 7 at
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Then

pri-p 1
ANE
0< T1+ (p,/\,E) S (S+ (p1 ’ )) 1p / dt .
[ pMM ]5 [1—tst1]p
@D+ 0

So, by passing to the limit as E tends to 07", one gets'

: pil-p 1
0 < lim T1+ (p,\, E) < lim (5 (2 A, F)) 1,, / dt - =0.
E—0t E—0t l: pMA :|;; []_ — tu—l—l];
' (p—1)(u+1)
(ii) We have
vil-p 1
(S+ (A E)) >

0<Tf (pNE) < / &
: [1—t+1)p

i

3 =

So, by passiﬁg to the limit as £ tends to +o00, one gets

’ : v+l-p 1
0< lim TF (p, A E) <_lim (1 (. ), B)) z / @ _y
E—+oo : E—+co M ? , [1 _ t”'*'l];
{(T——lﬂﬁrl)] 0

Lemma 28 We have for all E>0and0<pu<p—1<v
(i) lim f?+ (9,4, B) = +oo

(ii) AEI—}I-loo S—i— (pa A, E) =07

Proof.| (i) By lemma 26, we have

((S+ (p, A\, E))" T + B (p, A\ E))” +1> -

E-—-L M

p—1 v+1 pA1

or

p-DE _ S+ @MENT | (Se @ AE)T
PAM v+41 p+1

Letting A — 0, we get (1)
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(ii) In a similar manner as in (i), we prove (ii).
Lemma 29 We have for dl E>0 and 0 < p<p—-1<vw
() lim T (5,2, B) = +o0
(ii) lim Ti (p,\,E)=0%

‘ A—+oo

Proof. (i)We observe that

T+ S+(p7/\,E) ) |’u|<y+1 }ull"'i'l —;—1 )
NEY = E—- -2 \M d
1(p7 ) A p‘_1 I/+l+/1,+1 T
. Si(eAE)
0 Er
S+£p1’\aE2
BP
One has
im S; (p,\ E) =
A——)Ig:*" + (p7 3 ) +o0
So,
A—0+ A—0+ E;
Hence

; + —
)‘ILI(I){}_ Tl (pa /\7 E) = 400

(ii) We have

=1
P

it

. S+(p7’\;lE) |u|y+1 IUI/"'_,']‘
— P
17 (p, M\, E) ; / E—-5\M o) + PR du
0

- (&)

[('S+<p,xy,ﬂ)”+1‘f° (1— 41 4

O\I—‘
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. ~ =1
+(S+(p)};fi)#+l ? (1 _tﬂ+1)] P dt

One has
T — 0t
/\}_1,13_100 S—i— (p7/\7E) 0
Hence
: + =0t
)\—]i{lr-loo Tl (p’ )‘7 E) =0

The previous lemma, shows that the angular function @, (b, A) has respectively the limits

7r
+ when A\ tends to zero and —co when \ tends to +co. Similarly, we obtain the same limits for

2
¢1. Consequently, we obtain the existence of a decreasing sequence (/\n)n2 1 such that:

(i) If A > Ay, then problem (4.1) has no solution with n zeros in (a,b).

(i) Itrx= An, then problem (4.1) has at least one pair of opposite solutions with n zeros in
(a,b).

(iii) If A < M\, then problem (4.1') has at least two pairs of opposite solutions with n zeros in

(a,b).

4.5 Remarks

(i) Since ¢ (b, ), 2) is strictly monotone for z small enough and z large, we can deduce that the

exact number of solutions is exactly two when A is small enough.

(i) One of the motivations for studying problems of the type (4.1) are the existence and

multiplicity of radially symmetric solutions to the boundary value problems of the form

~div (|Vul?* Vu) = Ap(jal) (o ut ol ) in B(Ry, Ry)
u=0on 8B (R, Ry)

(4.25)

where B (R, Ra) = {z € RV, R; < |z| < Rg} and p : (R, Ry) — RY, is of class O,
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The radially symmetric solutions of (4.25) satisfies

{ ~ (I P () = B2 P2 () = Mo () (et ) i (R, Ry)

u(R1) =u(Rg) =0
(4.26)

If N = p, we make the change of variable r = e?, then (4.26) becomes

{ = (v pw (t))' = e Pp () (Julu+ [u#~* ) in (LogRs, LogRy)
u(LogR1) = u(LogRe) =0

\ Nzp
EN#p lett= (%;v__—l%) ?~' | then (4.26) becomes

{ (W orte @) = /\tﬂ;—:lmp (B=pe %) (Pt o) i (o1,12)
u(ty) =u(ts) =0

where t1 = () 7™ and tp = (@)

Applying theorem 19, we have the following corollary

Corollary 30 There exists a decreasing sequence (\p) such that

~3) If A > X, then problem (4.25) has no radially symmetric solutions with n zeros in

B(Ri,R9). v
i) If X\ = A, then problem (4.25) has at least one pair of opposite radially symmetric

solutions with n zeros in B (R, Ry) .

i) If \ < An, then problem (4.25) has at least two pairs of opposite radially symmetric

solutions with n zeros in B (Ry, Ry) .
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Chapter 5

On the number of positive
radially symmetric solutions for a

quasilinear Dirichlet problem on a

ball

Abstract: Using a shooting method,we study the existence and multiplicity of positive radially

symmetric solutions for the quasilinear elliptic problem:

—Apu = A (uo‘_l 4+ uq“l) inQ
U > 0 in
U =0 on 6%

where €2 denotes the unit ball in R¥, A, is the p—Laplace operator, A > 0, a = p* = N—p’

N>pandl<g<p



5.1 Introduction

The purpose of this chapter is to study the existence and multiplicity of positive radially sym-

metric solutions for the quasilinear elliptic problem:

Ay = AWl url) inQ _
u > 0 - inQ (5.2)
u = 0 on 82
where {2 denotes the unit ball in RV, Ap is the p—Laplace operator, A > 0, o = p* = —]#‘—,
—p

N >pand 1 < g < p. Our study is motivated by some recent works on elliptic problems with
concave-convex nonlinearities.

In [25], the authors investigate the following problem:

-Au = W+f inQ
U > 0 inQ (5.3)
% = 0 on 6Q

with 0 <y <1< a < 2,2 = Y42 for N > 2 and 2* = 400 for N = 2. The authors
prove the existence of a constant A € R such that for all A € (0,A) the problem (5.3) admits
at least two solutions. One solution. denoted u,, is obtained using lower and upper solution
method, when the concave term uf is essential and the other solution denoted v, is obtained
using variational technics, when the essential term is the convex term u”. In [26], the authors

showed the existence of an additional pair of solutions which can change sign for all 0 < A < A,

' with Ax possibly smaller then A. Their method relies on a critical point theory. In fact, these

solutions arise as critical points of a functional T A constrained on a suitable manifold M. In

[27], the problem:

A = in |o|=r <1
Apu Mo (uw) +g(r,u) injzj=r< (5.4)

u = 0 : injzl=r=1

is studied where A is a positive real parameter, h(u) = |u|? %y, 1 < ¢ < p near u =0 and g

is of higher order‘with_re'spect to h at u = 0.The authors showed the existence of infinitely many
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continuum of radial sélutions branching at A = 0, from the trivial solution, each continuum
being characterized by nodal properties. As a consequence (5.4) possess infinitely many radial
solutions for \ strictly positive and small. The main ingredient of the proof is an

a priori bound. This bound is the counterpart for radial solutions that change sign of the
classical result by Gidas and Spurck [95].

In the present paper we show, using a shooting meﬁhod ( see [117] for the case p = 2) the
existence of a constant A, > 0 such that:

i) If A < A, then problem (5.2) admits at least two positive radially symmetric solution.

ii) If A = \,, then problem (5.2) admits at least one positive radially symmetric solution.

iii) If A > A, then problem (5.2) has no positive radially symmetric solution.

The novelty here is that we do not assume ( as is the case in [27] )the condition

ij!—-< <3orp>3and 2

is satisfied.
The chapter is organized as follows. In section 2, we state our main result. In section 3, we

present some preliminary lemmas. In section 4, we prove our main result.

5.2 Statement of the result

Theorem 31 There ezists a continuous function F : (0,+00) — (0, +00) such that v is a

positive radially symmetric solution of (5.2) if and only if

A= F (u(0)). Moreover hm F(d) = hm F(d) = 0 and there ezist A, > 0 such that:

i) If A< )\* then p'mblem ( 5. 2 ) admzts at least two positive radially symmetric solutions,
i) If A = A then problem (5.2) admits at least one positive mdzally symmetric solution,

#i) If A > A, then problem (5.2) has no positive radially symmetric solution.

5.3 Preliminaries

We first note that radial solutions to (5.2) correspond to solutions of the problem
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(p2a) + X et sa et pury =0, mo<r <1 (59

.u('r')>0, n0<r<l1 (5.6)
u’(O);o (5.7)
u(l)=0 (5.8)

For d > 0, we define u (., A, d) := u (.) as the solution to the initial value problem

' N-—
(wp2e) + 2R el A e 1) =0, 7 e 0,1] -
. (5.9).

uw(0)=d, v (0)=0
It can be shown using the contraction mapping principle that for every (A, d) € R} x Ri’

problem (5.9) has a unique positive solution u () := u (r, \,d) on the interval [0, 1].
—_ 51 q
Set E ('r) = E(')"’/\, d) = 'p—p—:!- Iru/ (T)Ip + /\ (u a(r) + u q(lr)>

Let G (r) =rE (r)+ Z-V—E)_—E ! (P)P2 o () w (r) .

Lemma 32 Let u be abposz'tz've solution of (5.9). Then _
. r
— 1 1
rN1G () = Y6 () =/\——————-————p+N(p D) /sN_l (———az u®(s) + q-;— ud (s)) ds
!

p
for all vy, r € [0,1].
Proof. Multiplying the equation in (5.9) by'rN u' (r) and integrating the resulting equation

over [r1,r], we obtain

] N (e ()P () o (3) + (N = 1) sV o ()P } o 5.0
+2sN (uemt (s) + ut"1 (s)) o/ (s)

E

We have
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/SN (iu’ (s)‘p"zu’ (s))/u' (s)ds = &;A’I‘N lu’ (r)lp—ﬁg—lriv Iu’ (rl)lp (5.11)

T1

-
_NE-1) p*l /SN_l 1u’ (s)]p ds
Y
On the other hand, we have:

/ s (au® 1 (s) + qua™ (s)) o (s) ds (5.12)

= N (u* (r) +ul (r)) = rl (u® (r1) +u? (r))

_N / N1 (2 (8) + ul (s)) ds

Now from (5.10), (5.11) and (5.12), we obtain:

] [ N (1 ()P0 (5)) o (5) + (N = 1) s ! (a)P } .
+AsY (w1t (8) +ul1 (s)) v (s)

1

= LN |y ()P — Z1pd o (ry) P — MDD f SN (s)fP ds

(N -1) / sNLad (s)P ds + ArY (UT() +Lq(—)>

™1

Y (“aé”) LY gﬁ)) - AN]SN‘I (%@ + —"—%@) ds

This yields

rVE (r) —r E(r1)

r ™
o q 5.13
= 2N [ N1 [/ (s)|Pds + AN [ sV-1 L(—sl + u (s) ds ( )
¥4 o q
‘ /.

1

Multiplying the equation (5.5) by " ~1u (r), we obtain:
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V-1 (‘u’ (7‘)‘1;—2 u (r))/u(r)—%-(N ~ 1)V | (r) |p~2u' (r)u (r)-}—/\rN_% (u*(r) +ui(r)) =0

(5.14)
We have:
/ V-1 (}u’ (s)P 2 (s))/u(s) ds
=V ()P () u(r) —.Tiv"l [/ (r) P2 (1) w () (5.15)
—-(N-1) /sN‘2 o/ (s)]p_2 o (s)u(s)ds — /sN_l [/ (s)|P ds
It follows from (5.14) and (5.15) that
/3N"1 [/ (s)[Pds - | (5.16)

= PV @ () =T )P () u ()

+}\/SN_1 (u® (s) +ui(s))ds

1

Substituting (5.16) in (5.13), we get:

rNE(r) —r{ E(r1)
_P=N N ! ()P~ 2 (r)u (r) - ;NTiV‘l_Iu' (ro)fP~? o (r1) u (1)

p
+/\p___+N(p— D /sN‘l (——a+1u°‘ (s) + q-;_luq (s)) ds
D a

1
Therefore

rN-1G (r) — rfr_lG (r1)

T

= )\p______-}-N(p— 1)./sN‘1 (——a: Lo (s) + qzluq (s)) ds
p

1
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Lemma 33 Let u be a positive solution of (5.9). Then g—; (1,),d) <0.
Proof. For any s > 0, we define
v(r) :=u(rs, A\ d)

Then v satisfies

(10 ()P ~20 (1)) + B3 | ()P0 () - AeP (053 (1) 0872 () =0
v(0)=d, v/ (0)=0

By the uniqueness of the solution to the initial value problem (5.9), this implies that
u(rs, A\, d) = u(r,As?,d)
Differentiating this equality with respect to s, we obtain:
! p—1 Ou
ru (rs, A, d) = pAsP™ —— (r, As?, d)
. O
Taking s = 1, we get:

ou
ru' (r,\,d) = p\a)\ (r N\, d)

Then % (r,A;d) <0, for all r €10,1].
Now, we define the function h by

P ()
) = T P e

Claim: h is a strictly increasing function.

Proof. Simple computation and lemma (32) give:
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. T
-2 P2 u(r) | ui(r) Np-1+p 1-N [ N &ty (s)
pre2u ()P | (S0 4 20y \NeDizoN [

+1 ds
0 +Eul (s)
—ArP=L (P2 () 4 2P (7))
W(r) = IR
)| 21

Mot [(24+[(N@-D+p) (5£2) 1)) uet=2()+ (24 |- 1p) (25 ) 1] Juste=2(r)|
- Jugr) 21
)\Tp—lp—a+(N(p;l)+p)(a+l) (’lL (T))a——p >0

>
which implies that h is a strictly increasing function.

Lemma 34 Let u be a positive solution of (5.9). Then there exist a constant Mg > 0 and a
p

unique 7 € (0,1) such that u(¥) = Mot ¢ ~P. Moreover if 0 < M < Moy, then there emist
p

exactly two positive numbers r1 and o € (0,1) such that u(r;) = Mr, 7P =12

Proof. Let 7 € [0, 1] be such that Mo =max{u (7) 7", 7 € [0,1]} with
v = P Then the graph of u is tangent to the graph of u(¥) = Mor™" in 7, and

a—p .
u(r) < Mpr~" for all M < Mp. Now if M < My, the graph of u intersects the graph of M7 "7

exactly in two points.

Suppose 0 < r; < 1 < r3 < 1 are the three first points such that u (r;) = Mr7,1=1,2,3,
then '

u(ry) <u(ry) <wu(rs).

Define Z by

Z(r)=Mr—"

Then, we have
Z (rg) = u(re), Z' (ra) > (r2), Z (r3) = u(r3) and 7' (r3) < v’ (r3).
We have
BT (rg) P ()
fu (rs) " -2 u(rs)
1y |2 (r3)[P" 2 (rs)
|Z (rs)[P~2 Z (r3)

h(7‘3) =

—_ ,yp—l

74



and

I altie aae
M) S T T

B2 )P 7 )
2P TZ0)
-1

> —_
= ~P
Therefore h(rs) < h(ra), with r2 < r3 which is a contradiction.
Suppose now, u (F) 71 = u ()7 = Mo, we obtain h (F) = h(F) = +P~1, which is contradic-

tion. Then 7 is unique. .
—p\P~

Tt is not difficult to prove that, 7 is the unique element in (0, 1) such that 2 () = (_p_p) .

Estimation of My

‘We have
K (r) > AerP™t (u (r))* 7P

P-a)+(N(p-1)+p)(a+])
a
Integrating this inequality over [0,7], we obtain:

with ¢ =

W) —h(0) > Ac/sp—l(u(s))a~Pds

e (u ()P

Z
_ ACrop
p o
_p\P-]
Since h () = (%_2) , we have:
1
_p\Pl{p—-1
Mp < [—E— (-————N p) :lp
Ac p

Lemma 35 We haver=0|d P

75



a—p

Proof. Let rg=d P
We have:
PN (r) P2 (r)
Then

' (r) > - 7

NPT (14dom 97T 1
r

and put Ko = rh (u(rg))* P

T

- / sN-1 (uo“l (s) + -l (s)) ds

0

-1 -1

> _,\WTN
1
p-1

Integrating this inequality over [0, ro], we get:

u(ro) —u(0) > —
which leads to
u (7‘0) 2 d—
> d—
_ [1 _
1 p

— — P
?—ﬁp—l ATTRT (14 dom0)7T
——pj\‘f' L) ArTafst (1 4 domoytT a5

P

— -1 1 2
% AP (14 dem )5t g
Pl iosta i it a>a

Np
(207 (p - 1)} J

Np

Since u (rg) = Koa - pro ®~ P we obtain

1
a-—p
KO

On the other hand:

Np

(1 e SZA!PJ—T@—IZ)

Np
sir
Np—2 —1 .
(—-—-——p L )). A<

A
i [1 N gn)ﬁ-lgp—l)} d

R () > derP~ (u(r))* P
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Integrating this inequality over [0,7], we obtain:

7h’ (rydr > )\c}rp“l (u(r))*Pdr

ro

T
> Ac / P~ 1KorPdr
70

= AcKplog —
To

-1
Since h (T) = (%ﬁ)p , we obtain:

< p, where p is a constant

3=

a—p

Then7=0|d P

Lemma 36 Ifu is a positive solution of (5.9), then we have
1

lim /rN“lu(r, A, d)dr =0.
d—r+co
0

Proof. Let ¢ > 0 be sufficiently small such that for r > 7+ § where § > 0, we have:

( 4 )ﬁdh&)21+e

N-p

That is

o Ve P
(N—p) WOF T S

Then, we have

Integrating this inequality over [7, 7], we obtain:
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1
logu{g (l—i—s)p"l N—p_——glog%

Hence

1 - —
u(r) < (;.’)F(l+5) T(552) _(1+s)_l_f(£p‘2)
o TR e ("pj)r—(ue)ﬁ(gi’z)

L(52) (rom 1) |55

This implies that
1
97 T-1) [, . Lo(5®
/rN—W(r) dr < clr (1+ )” { v -ro T (75 )}

N—-(1+e)p- 1(NP )

7
1
F <(1+E)P 11 F%N+N
= a _1_ Ioz)
N - (1+¢)rT E
o p <(1+£)5]:r—-1) .
< — 0 as d— 400

N—(14e)F-T (%52)
On the other hand, we have:

=
/TN‘lu(r)clr < @N?’N
0

= _——>0an—++'00

Finally, we obtain
1

d_li?oo /rN_lu (r,\,d)dr =0.
0

Lemma 37 Ifu is a positive solution of (5.9), then we have
1

lim [ rV-lu(r, )\, d)dr = 0.
d—0t
0
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Proof. We have

1 1
/TN"lu (r,\d)dr < d/rN"ldr
0 0
- 4
N
This implies that
1
: d
1 N-1 . L ot
Jim, /r u(r, A, d) dr Sd]iI(I)IJr N 0
0

5.4 Proof of theorem (31)

ou
As 8)\(
S ={\d);u(,\d) =0 and u (r, A, d) >0 for all 7 € [0,1[} then there exists a differen-"

tiable function F" such that S = {(F'(d),d);d € (0,4c0)}.

1 )\ ,d) <0, the 1mp1101t function theorem shows that if

By lemma (37) there exists a constant a € ]0, 1[ such that

hm u(a, F(d),d) = 0. Then if hm F(d) > 0, we have, for a some sequence (dn) such
that d — 07
F (dp)

Ju (@, F(dn), dn) [P~ u(a, F(dn), dn)
Since u (r, F(dy), dn) satisty

— 4-co

(474 A 0+

The comparison theorem of Sturm (see [86]) shows that u (r, F(dy), dn) must have a zero in -
[a,1), which contradicts the fact that u (r, F(dy,),dy) is positive in (0,1).

By lemma (36) there exists a constant ¢ € |0, 1] such that
lim wu(c, F(d),d) = 0. Then if ;EI:]EI;F (d) > 0, we have, for a some sequence (d,) such

. d—oo
that d, — +00
| F(dm)

- — +00
[u (¢, F{dn), dn)l"~ u(c, F(dn), d _
Also, the same argument shows that u(r, F(d,), ds) must have a zero in [¢, 1), which con-

tradlcts the fact that u (r F(dn) dp) is positive in (0,1).
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Let d. € (0, +00) be such that F (d,) = I(I(}aj( ) F(d):= A«. Then we have:

€(0,+o00
i) If A < A, then problem (5.2) admits at least two positive radially symmetric solutions;
ii) If A = A then problem (5.2) admits at least one positive radially symmetric solution,

iii) If A > )\, then problem (5.2) has no positive radially symmetric solution.
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Chapter 6

Existence and multiplicity results
for quasilinear boundary value
problems with blow-up boundary

conditions

Abstract This chapter is concerned with the necessary, sufficient conditions for the existence

and the multiplicity of boundary blow-up rionnegative solutions of the quasilinear boundary

value problem:

{ —(#p () =2f () in (0,1)

1i = = lim

where p > 1, ¢, (y) = lylP~2y, ((pp (v ))' is the one dimensional p—Laplacian, A is a strictly
positive real parameter and f is a continuous function. We use the quadrature method for

showing the existence of solutions.
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6.1 Introduction

Let Q be a bounded domain in R¥, N > 1. A solution u € C? () of the following boundary

value problem

~Au=f(u) inQ _ (6.1)

u(x) = +coas x — 0 (6.2)

is called a boundary blow-up solution.

This type of problems has been extensively studied. The first striking result in that case is
due to Bieberbach [44] who proved that if Q is a bounded domain in R? with C? submanifold
8Q and f(u) = —exp(u), then (6.1)-(6.2) admits a unique solution u € C?(£2) such that
u(z) —In (d (:c)_z) is bounded on €, where d (z) denotes the distance from the point z to the
boundary 2. A

This result, was extend by Rademacher [173] to smooth bounded domain in R3. La;ter Lazer
and Mckenna [142] extend the results of Bieberbach for the case when 2 is a smooth bounded
domain in RY. In this case the problem plays an important role, when N = 2 in the theory of
Riemann surfaces of constant negative curvature and in the theory of automorphic functions,

and when N = 3, according to [173], in the study of electrical potential in a glowing-hollow

| Ja\'ﬁl?f?um\
T — L S / )

o

)

metal body.
Problems of type (6.1)-(6.2) has been discussed under aspects of exis

uniqueness and asymptotic behavior near the boundary.

) 7Y
The question of existence of blow-up solutions at least for monotone f, was' tuﬁ@y Kelk /
' S
{éhcg%ﬁbéai\tiy@“‘

S—

[134] and Osserman [159]. They gave a sufficient conditions on f for the exist

solutions:

f is locally Lipschitz continuous and nondecreasing on [0, +00)

, oo
£(0) =0 and / [F(u)]:2A du < co'where f = F'
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Keller applied the results to electrohydrodynamics, namely to the problem of the equilibrium
of a charged gas in a conducting container, see [133]. ‘

The question of the uniqueness and the asymptotic behavior near the boundary has been
discussed by many others. ‘ _

For the special case where flu) = —uN% and N > 2, Loewner and Nirenberg [145] prove
that if 9O consists of the disjoint union of finitely corﬁpact C*°° manifolds, each having codi-
mension less than 4§ + 1, then there exists a unique solution of problem (6.1)-(6.2). Later,

Bandle and Marcus ([37] and [38]) and Lazer Mckenna [141] extended the results of [145] to

- a much larger class of nonlinearities including f (u) = —u® with a > 1. For smooth domaiﬁ,

they obtained the asymptotic behavior of the blow-up solutions near the boundary and under
the monotonicity assumption on f, they could deduce the uniqueness of the positive blow—up_
solutions. The uniqueness was established also by Kondrat’ev and Nikishkin [137]. In fact they
have showed that for f (v) = —u® with a > 1, 8 is a C?—manifold and the Laplace operator is
replaced by a more general second order elliptic operator. The case where the Laplace operator
is replaced by the p—Laplace operator has been discussed by Diaz and Letelier [80].

Note that for f(u) = —u® with @ > 1, problem (6.1)-(6.2) is of mterest in the study of
the subsonic motion of a gas when a = 2 (see [171]) and is related to a problem involving
superdiffusion, particularly for 1 < a < 2 (see [84] and [85]). »

The first result of nonuniqueness was obtained by McKenna, Reichel and Walter, in the
special case when the domain  is a ball and f (u) = — |u|®. More precisely, they proved that
for 1 <a<N* ( note that N* = %—‘_’% for N > 3 and N* = oo for N = 1,2) there are exactly
two blow-up solutions: one positive and one sign-changing. For a > N*, there is a unique blow-
up solution and it is positive. They first proved the radial blow-up solutions for the p—Laplace
operator using the monotonicity and shooting methods and the use of variational techniques
and Pohozaév’s identity. | A

Subsequently, Aftalion and Reichel [16] extended the existence of at least two blow-up

-solutions to convex, bounded C* domains for general nonlinearities f including

4—u“witha>1ifu>0b

fw) = o |
. —(~u)” with 1 <b < N*, ifu <0
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For general nonlinearities f and in the one dimensional case Anuradha, Brown and Shivaji
[29] and Shin-Hwa Wang [207] considered problem(6.1)-(6.2). Using quadrature method they
have studied the existence and the multiplicity of boundary blow-up nonnegative solutions.

During, the last decedade, the p—Laplacian opérator Apu = div ( |VulP -2 Vu) P> 1 has
been widely investigated. This operator is linear if and only if p = 2. So, several authors are
interested by questions as, does such a result, know for D = 2, steel hold for p # 27 If not, what
minimal informations can one gets such a result for p>17

In this chapter, we will discus the necessary, sufﬁéient conditions for the existence and
~ the multiplicity of boundary blow-up nonnegative solutions of the quasilinear boundary value

problem:

~ (o (@) = Af (w) in (0,1) 6.3)
mlilng u(z) = 400 =wliri1_ u(x) (6.4)

where p > 1, ¢, (y) = ly|P~2y, (gop (v ))' is the one dimensional p—Laplacian, A > 0 and
f:RT - R is a continuous function.

The aim of this work is to give a generalization of the results obtained by Anuradha, Brown
and Shivaji [20] and Shin-Hwa Wang [207] for the case p > 1.

The chapter is organized as follows. In section 2, we present the method used for proving
the main results of this paper. In section 3 we state and prove our main results. In section 4

we give some examples to illustrate our results. Finally in section 5 we give an appendix,

6.2 Quadrature method

'To obtain our results, we use of the well know quadrature method. This method enable us to
look for nonnegative solutions of (6.3)-(6.4) in a prescribed subset of C* (0,1). |

By a nonnegative solution to problem (6.3)-(6.4), we mean a nonnegative function u €
C1(0,1) with ¢, (w') € C1(0,1) satisfying (6.3)-(6.4).

Let A* the subset of _C’l (0,1) composed by the functions u satisfying:
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(i) u(z).20,Vz €(0,1), and 1i1(r)1+ u(x) = liI{l u(zr) = o0
T z—1—
. . . 1
(ii) w is symmetrical about 5
(iii) The derivative of u vanishes once and only once in (0,1).
Consider the boundary value problem (6.3)-(6.4) and assume that f, p and A satisfy the
following condition: |
fECRYR),p>1and\>0 , - (6.5)

Let
F(u):= [ f(t)dt
[

and
I::{s_>_0:f(s)<0andF(s)>'F(u) Yu > s}

We have the following result

Theorem 38 Assume that (6.5) holds. The problem (6.3)-(6.4) admits a unique nonnegative

solution uw € AT with p = ig}fl) u(x) if and only if p € I and G(p) = )\%, where G is defined by
z€(0, :

+co

G (p) =2 &

b [FEe) -F©)

3 e

One may observe that this result doesn’t give informations about solutions to (6.3)-(6.4)

outside A*. The following proposition give some useful informations.

feCRYR), fu)<0,YVu>0,p>1and A >0 (6.6)
 f is locally Lipschitzian in R*, 1 <p <2 and A > 0 (67)
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Proposition 39 Denote by S the nonnegative solution set of (6.3)-(6.4).

(i) If (6.6) holds then S C A*.

(ii) If (6.7) holds then S C A™.

Proof. The proof of proposition39 is established in the Appendix.
Proof. of theorem38

Let u be a solution of problem (6.3)-(6.4) belonging to A*. Thus u takes its minimum at
1 : 1
o U is symmetric with respect to o> v <0in (O, %) and v > 0in (%, 1). Hence (6.3)-(6.4)

is equivalent to the following problem defined on (0, %) :

—(ep ()Y =Af () in (0, %) (6.8)
:cl-i->I(I)l+ u(z) = 400 (6.9)

o (%) -0 | (6.10)

Multiplying the equation (6.8) by u'and integrating the resulting equation over (x, —), we

obtain

'[P () + p—f—l-AF (u(z)) = I-)—f-l-,\p (o) (6.11)

where p = u (%)

Since ' < 0 in (0, 1], we obtain
2 .

-

V@) == [ 26 - )] torars e (0]

4

and thus

—/ ()

1 1
r =Ar, forallz € (0, =
[ ()~ Fa(@))]” (3)
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Integrating the last equality on (0,z) , we obtain

+o0

“ T =/\%.7;, forall z ¢ FO,‘-l- , | (6.12)
a(z) [p—f—l (F (o)~ F ()] ( 2>

Letting  — £ in (6.12) gives

+co

G(p) =2 d

b [ (F (o) - F ()]

Il
>
"3 [

3 =

It follows that if u is a nonnegative solution of problem (6.3)-(6.4) belonging to AT, there

exists p, € I where

| . +oo
I= sZO:F(s)>F(u)‘v’u>sand/ de

—7 <+o0
o B E@-FE©)

. ' 1
such that u (1) = p, and G (p,) = A?.
. 1
Conversely, given A, > 0, if there p, € I is such that G (p,) = AZ, then we can obtain a
nonnegative solution of problem (6.3)-(6.4) belonging to A™* as follows. Define the function hy

on (p,, +00) by

“+co

hy(u):=2 d§ T
) [bEW@%F@M”

1
Notice that hy (p,) = G (p,) = AL and
0 < hy (u) < G(p,) for all u € [p,, +00)

Thus, A is well defined on [p,,+00). Moreover, it is a decreasing diffeomorphism from

(ps, +00) onto (0, G (p,)),
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-2
Rl (u) = < 0 for all u € (p,, +c0)

52 (F () - P

Let uy be the inverse of h defined by

1
uy (z) = hjrl (Afa:) € [p,, +00), for all z € (O, %J

and let u be defined on (0,1) by

w(z) = { uy (z) if z € (0,3]

up (1-z) ifz e [£,1)

It is easy to show that this function u is a solution of problem (6.3)-(6.4) belonging to At

and satisfies i%fl) u(z) =u (%—) = p,. Let us prove it uniqueness. Assume that v is also a
(0,

solution of problem (6.3)-(6.4) belonging to A™ and satisfies

inf v(x);'v (%) —p,

x&(0,1)

By (6.12) it follows that

+o00 +eo

/\éx= de T = ds lfora]lxe(O,é}
sy [ZF @) =F @) oy 525 (F () - F )
Thus,
v(z) )
d T =0,forall z € (0,5]
i) |25 (F (o) = F ()]
Thus,

1
—. 0.=
% =7 on ( ,2]
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and by symmetry it follows that
‘w=wvon (0,1)

Thereforé, by I C I, theorem3s is proved.

Remark: The proof of theorem 38 is similar to that of theorem 5 in (3].

6.3 Main results

6.3.1 Existence results

Consider the sequence of functions (9n)neng+ defined by:

91 (t) =Int:=1ns ¢
g2(t) =In(Int) =1Iny¢

9n () =In(gn-1 (¢)) := In, ¢
We have the following results

Theorem 40 Letp > 1 and n € N*. If there exists any solution to (6.3)-(6.4) for any A > 0,

then

. ~f (w) |
_ - 6.13
uginoo\sup P11} ulnf u... Inf u +oo (6.13)
—f (u)

# +oo. Then there exists constants

Proof. Assume that " 11)141_100 sup 1 lnzf " lng .

K > 0 and M; > 0 such that
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—f ()

This implies that

- —F(u)

Let p € I, then

IA

n
Kyp-1 Hln? u for all u > My

e ,
Jn ’ n o n ‘
Kuyp~1 Hlnﬁ-’_lu (1 + ZHln,, u) for all u > M,
j=1 k=1 i=k
w
[-roa
0
u
_P (M) +/—f(t) dt
M; '
w n n n
_F(MI)HP—I/KHlng"lt 1+ 3 [ 1nyt | at
i =t k=1 j=k
n n )
—F )+ & o [T u— 2 T2 by
=1 Jj=1

=1 =1

F(p)—F(u){F(p)—F(Ml)—f-% (upﬁ]nfu—Mf’ﬁln§JV[1>

n
I we put Ky = F (p) — F (M) — %wa Hln? M, we obtain

=1

K n
F(p) — F(u) < K; —I—;—ulengu
. =1

On other hand, there exists My > 0 such that:

n
p—_—lKup Hln?u > K for all u > My

Let M = max (M1, Mz), then combining (6.14) and (6.15) one gets:
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F(p)—F(u) < KupHIngu for all u > M
j=1

(6.16)

without loss of generality, we may assume that M > max (p, M) and obtain from (6.16)

that
1 +co v
Gp) = 2(%,7—1)”/————~r- e
A [F(p)—F(u))?
1 Hoo :
> 2 p=1 P/ du
( P ) , (Flo)-F)]?

1
4
So, Wé have that G (p) does not exist if lim sup =/ () # +oo and
u—+00 wP~1Ind 4 Ind u... InP u
theorem40 follows from theorem3s8. -
Theorem 41 Let p > 1 andn € N*. If f satisfy
lim inf —f (u) =L (6.17)

u—too P llnf ulnf ... Inf_ ulnEHy

then there eists solutions to (6.3)-(6.4) for some A > 0. FurtheMom, G (p) is well defined

and continuous for all p € I.

- To prove theorem41, we need a technical lemma which is similar to [[29], Lemma 4.1].

Lemma 42 Let f satisfy (6.17) and p € [pq, py] C I. Then there exists C > 0 and M > 0 such

' that

‘ n
F(p) — F (u) ZC'uplnnuH_hf;ufor allu>M
. Cog=1

where
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| L if 0<L<+4co
C={6p / (6.19)

5 if L=+4oco

Proof. If [ satisfies (6.17), then there exists a constant Mz > 0 such that

: | n
~f(uw) > 3pCuPlln,u H Inf u for all u > M
o i
. n n n (6'20)
> h(w ;=2Oup‘1Hln§?“1u D 1+ZH1nju Inpu+1
F=1 k=1j=k

where C' is the constant defined in (6.19). Then, for all u > M3, one has

w

“F) = ~F(M)+ / _f(t)dt

M3
w

v
;ﬂ

P
h

—F (M3) + ) dt
/

' n ; ’ n
= —F (M) +2C |wPlnpu [ [Infu— MEIn, My [ [ 1n? M5

J=1 J=1

v . |
If we put K = ~F (M3) — 2CME Inp, M3 H Inf M3+ inf F (p), we obtain
=1 PElp1302]

. |
F(p) = F(u) > K + 20w nn u | [ 10 u for all u > Ms, p'€ [py, py] +(6.21)

On other hand there exist My > 0 such that

n
CuP In, u Hln?u > —K for all u > My | (6.22)
J=1 )

and then cc.)mbiningv(6.21) and (6.22) one gets:

F(p) = F(u) > Cuflnyu | [ 108 u for all u > M, p € [py, p,]
] .

g=1

where M = max (M3, My) .
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This 'completés the proof of lemmad5s.

Proof. of theorem41 Let p € I. Since I is open, there exists p1; P2 € I such that p € (py, py)

and [py,pg] C I

Let f satisfy (6.17), by lemma35 there exists a éonstants M > 0 and C > 0 such that

F(p)— F(u) > C’upln,,bqunfu forallu > M, p € [p1,p9] (6.23)
j=1

where C is the constant defined in (6.19).

Note that
1 teo du .
G(p) =2 (’%1) F / T < 400 if and only if there exists § > 0 such that
| 1P (o) - F )l

pté i

/ - T <400, 0 <8< py—p

) [F (o)~ F (w)]?
and

“+oo

du
4y [F(p) = F (w)]7

<+

where we suppose without loss of generality that M > Pa-

Since [py, po) C I, we have

L= inf ](—f(z))>0 (6.24)

2€[py,p9

Using (6.24) and the mean value theorem, one gets

F(p) = F@)=~f() (u=p) 2 L(u—p) for all uin [py, )

Since p 46 < py, one has

p+s

e~
+
(2

du
LR () - F ()]

<

YR
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=P & <4 (6.25)

Also, from (6.23) it follows that

=L (41 M) 7 < 400 (6.26)

Thus, from (6.25) and (6.26) it follows that

G{p) < +oo for all p in I.

Hence G' is well defined on I, and by theorem38 there exists a solution to (6.3)-(6.4) for
A =[G (p)} given any p in I. v
Also, G is continuous at p. This can be shown by defining

1 ptn
G =2(22) [ 2w Yol
P/ i F )= F(u)r

Since Gy, is a proper integral of a continuous integrand for each n € N*, Gy, is continuous
on [py, po] . We will have that G is continuous on [py, py], and thus at p, if we can shown that
Gy — G uniformly as n — 4-00.

Since I is open, there exists § > 0 such that [p;, ps + 8] C I which implies that

L= inf —f(z)>0
Ze[ﬂhl"z'*‘(ﬂ( f( ))

Choose N big enough so that % < 6, for all n > Nj. Thus, we obtain by the mean value

theorem
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—1 ,:.l‘, du 1 % du _
2(%) [[F(p%F(u)]% . 2<%) [[E(u—p)}% (6.27)

» Vi > Ny, Vp € [pq, po]

1
— (p——l)p 2
P 2=l ~ 1
. n e Lr

Also, choosing N, big enough so that p+nz2py+n>Mforalln> Ny, where M > 0 as

in lemma35, we have

2(.2—_1)% / _du < (g—_l)%_zj du
\ 1 - P 1 n
— Cr EX
ptn [7(p) = F (] ptn ulnf{uthju
i=1
1 co
< (P_‘l)zl du
> P T 1 P
cr 1
p1+n ulng qunju_
1 =1
= ()" 2 Wn > Ny and Vp &
( P ‘ C%(]ﬂn+1(p1+n))TT’, = 4V2 4 [p17p2]

Letting N := max (N1, V) , we have from the previous inequality and (6.27) that
1 .

1 1
e g(”—“—l)‘” 2 +<2:1)P Vn>NandVpepp
I( n) ()| D = ) C%(hn+l(p1+n))% n= P € [p1, 03]

which implies sup |(G —G,) (p)] — 0 as n — +o0. Thus Gy — G uniformly on [py, p,]
PE[p1,09]
as i — +00. Therefore G is continuous on all of 7. The proof of theorem41 is complete.

Theorem 43 Let f satisfy (6.17). Then G(p) — 0% as p — +oo.

Proof. Let f satisfy (6.17). By theoremd41 we have that G exists and is continuous on I, Also,

note that (6.20) implies that there exists a constants Ms > 0 and C' > 0 such that

n
—fu) > 3pCuP Ing u Hlnfu for all u > M;
Cj=1

n J n
> h(uw) =2CuP 1ln,u Hlng_lu p lnnu+ZHInj'u +p+1
i=1

i=1 j=1

(6.28)

For w > p > Ms, one has
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F(o)~F(u) = [—f()a

= 20 uplnnuHIn u— pplnnpﬂlnp

j=1

If we let p* = 2p, then for u > p* = 2p, we obtain

v

F(p)— F (u) 2C [uplnnuﬂlnpu ppln,,,pHInp
- =1 (6.29)
> = 1Cupln,nuH1np

J=1

because
uplnnuHInp u> 2o, lenp
J=1 i=1
By (6.29), we have for p > M;

Glo) =

/F@ —F(u)]*

p .
1 Px =1 oG
; / 555 / du
T+ T n
[F (o) — F@F (-vopp J 3

IN

P Pe ulng ’LLthj U
=1

-1
Mt
—f(z)(u— p)P (er-1)0)7 lnn+1 Pu }

where z = 2 (u ) € (p,u) for each u € (p, p,) exists by the mean value theorem. However, by

(6.28), we have
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~f(z) > 2pC2P-1lln, , [~

. =
> 2pCpp1 lnanInfp for 2 > p > M,
J=1
This implies that
L [P
—1\>p du 2=1
66 < 2(zt)7d [ 22
o V ~f (z) (u - p)p [(2r-1C1? InP. P,
1 _
< Q(E)p £ TP+ 2%11 — 0 as p — 400
? ' <L (@r-1)C17 WE, , »
(p-1) [‘@cm’-l nnpf | m? pJ T
j=1
The proof of theorem43 is complete. ’
Theorem 44 Let f satisfy (6.17) and 0 € I, then
G(0) <o ~ (6.30)

Proof. Let 0 € I, then there exists Pa € I such that [0, p,] C I.

It is well know thaoto

1
2 d
G(0) =2 (”;—1) ? / — < +00 if and only if there exists numbers 0 < § < M such

| =F (w)?
that
y d:
/—Ll<+oo,0<6<p2
) [=F (@)
and

+co d .
/ — o, M > 2
o [ F ()P

Now [0, po] C I implies 7, ;= ifll)fél (=f(2)) >0.Foru ¢ [0, 6], by the mean value theorem,
z€[o,

we have
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~F(u) = F(0)~F(u)

v

inf (= (2) (u=0)

z€[0,6
Lu

i

Thus

1 L )
ur o (6.31)

Also, if f satisfies (6.17),

—F (u) > CuPln, u H Infu for all u > M ﬂ (6.32)
i=1 -

Using the inequality (6.32), we obtain

+o0 +co
/ du < L/ du
Y FP@s T e SR
M M
CuPlnyu [ In2u (6.33)
J=1
= Tt <40

CP (lu, M)?

| The proof of theorem34 is complete.

6.3.2 Multiplicity results

Theorem 45 : Let f satisfy (6.17). If there exists s > 0 such that s € I and [ is nonincreasing

in [s,+00), then G is strictly decreasing in s, +00).

Proof. : Suppose that there exist s 2 0 such that s € [ and J is nonincreasing in 5, +00).
Let py, py € I such that p2>p125and6:=p2-p1 |
Let

98




Y (u) = F(p)) ~ F (u)

Y2 (u) = F (py +6) ~ F(u + 6)

Since

—f () S ~f(u+6) for all u> s

it follows that

Yl(u):/.—f(w)dwg/-f(w—l—tS)clszg(u) for all u > p, (6.34)
P1 P1

Also, condition (6.17) implies that [ is not eventually constant and so there exists a u* > p,

such that

—f (@) < ~f (u* +5) (6.35)

Since f is continuous, it follows from (6.34)and (6.35) that

Y1 (u) < Ya(u) for all u > 4* (6.36)
Which implies that
1 1 +oo d 1 1 too d
b P U — » U
R ey PR
- P wmer TN e

Thus, G is strictly decreasing on [s, +-00). Therefore, theoremd45 is proved.
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Case where the nonlinearity is strictly negative
This subsection is devoted to the study of problem (6.3)-(6.4) where the nonlinearity f is strictly

negative in [0, +00).

Theorem 46 Let f satisfy (6.17). If f (0) <0 and f is nonincreasing on [0, +00), then there
exists A* > 0 such that:

(i) If A > A, problem (6.3)-(6.4) admits no nonnegative solution.

(i) If A < X%, problem (6.8)-(6.4) admits a unique nonnegative solution and this solution is in
At

Proof. Since f(0) < 0 and f is nonincreasing on [0, +co), I = [0, +00) . Thus, G is well defined

and continuous in I (theorem41), G is strictly decreasing (theorem45) and lixf G(p) — 07
p—+oo ‘

(theorem43). So, the equation G (p) = A® admits a unique solution in I if and only if A7 < G(0),
which is equivalent to A < A* with \* := [G (0)]P. Therefore, theorem46 is proved.

Case where the nonlinearity vanishes exactly once or at least once

This subsection is devoted to the study of problem (6.3)-(6.4) where the nonlinearity f vanishes

at least once or exactly once in [0, +c0).

Main results' The main results of this subsection are:

Theorem 47 Assume that p € (1,2], f € C1 (R*,R) satisfying (6.17). If there exists 8 >
0 such that f(B) = 0, I = (B, +00), and f is nonincreasing on (8,400). Then, for every
A > 0, problem (6.3)-(6.4) admits a unique nonnegative -solution and this solution is in AT,

Furthermore, for any solution u of (6.3)-(6.4), u (%) > .
Theorem 48 Let p € (1,2] and assume that f satisfies
(i) feC*®YR).

(ii) f satisfies (6.17).
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4

(iii) There exist B > 0 such that

Fw) <0Vu>0 withu+p and f(8)=0

Then, for every X > 0, problem (6. 8)-(6.4) admits a nonnegative solution and this solution
is in AT. Purthermore, there exists A\, > 0 such that problem (6.3)-(6.4) admits at least two

nonnegative solutions for all X > \,.
In order to prove our main results we need the following lemma

Lemma 49 Assume that p € (1,2], f € C! (R*,R) satisfying (6.1 7) and there exists s ¢
[0, +00) such that f (s) = 0. If there ewists € > O such that (s;8+¢€) C I, then G (p) — +oc0
as p — sT. Furthermore, if there exists £ > 0 such that (s—¢5) C 1, then G(p) — +00 as

p— 8.

Proof. Assume that there exists € > 0 such that (8,5 +¢€) C I. Then there exists a sequence

(8n)nen in I such that s, — sT as n — +oo. Since f is of class C! in R, then there exists

6 > 0and M > 0 such that

~f(u) S M(u—s) foralluin (s,s+ 6) (6.37)

If we choose N large enough that s,, + -g— < 8+ 6 for each n > N, then we have by (6.37)
that

u 9
F(sn)— F(u) = /—f (w)dw < ]_W_(z;ﬁs)_ for all % in (sn,sn + (—25)

For each n > N. This estimates give us the lower bound
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(6.38)

v
E
b
:

2 -2
— (pip;;/[p [ ~ (sn — S)LP_J ifp#2
5;—[-[ ( —3 §)~—1n(sn——s)] ifp=2

Ifpe(1,2], it is clear that G (s,) — +00 as 17 — oo,

Similarly, we can prove that if there exist & > 0 such that (s —&,8) C I then G (p) — +00
as p — 8~. The proof of lemma 49 is complete.
Proof. of theorem47 From the preceding results one has the following picture of the function
p — G (p) which is defined in (8, +00) : pliI;Ial+ G (p) = +o0, pl}igrnoo G (p) = 0" and G is strictly
decreasing in (8, +00). So, the equation G (p) = )Gl;, admits a unique solution for any A > 0.

Lastly, since u (%) = p, where G (p) = /\%, it is clear that u (%) > [ for any solution u of
(6.3)-(6.4). Theorem47 is proved.

Proof. of theorem 48 By theorem 43 and lemma 49, we have that G maps (B, +c0) onto
(0, +00) . This guarantees existence of solutions YA > 0. Also, by lemmad9 we have G (p) — 400

P
as p— B7. Let \* = L ei%?)fﬁ) G (p):l which exists since G is positive and well defined on [0,8).

: 1
For A > X%, there exists p; € [0, 8), py € (8, +00) such that G (p1) = G(py) = A?. Theorem48

is proved.

Case where the nonlinearity vanishes exactly 2n times with n € N*

This subsection is devoted to the study of problem (6.3)-(6.4) where the nonlinearity f vanishes

exactly 2n times with in [0, +00).

Main results The main results of this subsection are

Theorem 50 Let p c (1,2] and assume.that f satisfies:
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(i) feC'(RHR).
(ii) 7 satisfies (6.17).
(iii) There exists (a,b) € [0, +00)?: 0 < a < b such that
1) f(a)=0=f ()
2) f<0in[0,a)uU (b,400) and f > 0 in (a,b)
b ,
3) / £t dt <0
0
!
Then, for every A > 0, problem (6. 3)-(6.4) admits ¢ nonnegative solution and this solution
is in AT, Furthermore, there egists A« > 0 such that problem (6.8)-(6.4) admits at least two

nonnegative solutions for all A 2 Ay one of which is such that u (%) > b and one of which is

that u (1) < v, where v € (0,0) is such that F@)=F@).
Theorem 51 Letp ¢ (1,2] and assume that [ satisfies:
(i) feC*(RR).

(i) f satisfies (6.1 7).

(iii) There exists a;,bl, a2, b9, ..., ap, by, such that

1) 0<ay Sh<ar<bhy<..<ap<by < +oo

2) f(ai)=F(b:) =0 for alli c {1,2,...,n}.

3) f<0in (bs,ai11) for alli e {1,2,..,n} and J>0in (a;,b) for aili {1,2,...,n}.
4) F(b,-+1) < F(b) foralli e {1,2,..,n} and Fh)<o. |

Then, for every A > 0, problem (6.8)-(6.4) admits q nonnegative solution and this solution

is in A*. PFurthermore, there egists X > 0 such that problem | 6.3)-(6.4) admits at least 2n

nonnegative solutions for all \ > A

In order to prove our results, we need the following lemma,
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Lemma 52 et P € (1,2] and assume that [ satisfies the conditions of theorem50. Then there
erists a unique v € (0, a) such that | = [0,2) U (b, +00) and lim @ (p) = +o0

povT

Proof. of lemma52 Since F(b) <0 and f is strictly positive in (a,b), then (a) < F(b) <0.
On other hand since F is continuous and strictly decreasing in (0,a) and F(0) = 0, then there
exists a unique v € (0, a) such that F()=F (). So, F (¥) > F(u) forall u € (v,b) and since
F'is strictly decreasing in (b, +00) then F(v) > F (u) for all u € (b, +00). It follows that

F(v) > F(u), Vue (v, +00) (6.39)

On other hand since F is strictly decreasing in [0, ], then

Ve 0,v): F(p) > F(u), Yu € (p,v] (6.40)

From (6.39) and (6.40) it follows that

Voel0,v): F(p)>Fu), Yue (P, +00)

then,

0,v)c1 (6.41)

On other hand, since F is strictly decreasing in [v, a), then
Voelv,a): Flo) < F(v)=F ()
then,
v, a)NI =g
and since f (a) = f (b)) =0 and f > 0 in (a,b), then

[v,0] NI =0 (6.42)

104



On other hand since F ig strictly decreasing in (b,4+0), then

Yp € (b, +00) : F(p)> F(u), vu e (P, +c0)

This implies that

(&, +00) C I  (6.43)
From (6.41), (6.42) and (6.43) it follows that
L= [0,1) U (b, +00)

Now we are going to show that lim G(p) = +co

pP—UvT

Since f is of class C? in R™*, then there exists € > 0 and k; > 0 such that

I (u) — £ (b)] < &y lu—b| for all » in (b,b+¢)
HenceifOSp<1/andp<u<+oo, one has

0 <F(p) = F(u)

It

F(p) = F(v) + F (v) - F ()
F(p) = F(v) + F (b) - F (u)
22x |£ (o)) Ip = v] + F (5) — F (u)
kalp—v| + F (b) — F ()

A

where &g := max |f ()|

0<p<y
Then,
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+o0
du
G( ) = i
! [W@—NME

+o0
. du 1
- [ [k2lp v+ F () - F (u)]>
i du
2 1
b+e
S du x
o [alo=v+ 5, (u=2P]’
bte

- /H,,(u)du
b .

B2

where H, (u) := [kg lp—v|+ ks (u— b)2J -Butas p — v, H,is a nondecreasing se-

quence of measurable functions. Hence by the monotone convergence theorem,

bte
lim G(p) > lim /Hp(u)du
p—v= p—v=
b
bte

. ] v
= k* /]u—b]'P_zdu=+ooif1<p_<_'2
A .
Therefore,

lim G (p) = +0

p—vT

The proof of lemma52 is complete.
Proof. of theorem 50 By theorem 43 and lemma 49 we have G maps (b, +00) onto (0, +00). This

guarantees the existence of solutions for all A > 0. Also, by lemmab2 we have lim (p) = +oo0.

p—v

P
Let \* := [ i{r(;)f ) G (p)} which exists since @ is positive and well defined in [0,2). For A > A*,
pe|0,v

then there exists p; € [0,) and P2 € (b,+00) such that G (p;) = AP = G (py) and thus

(6.3)-(6.4) admits at least two nonnegative solutions. The proof of theorem50 is complete.
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Proof. . of theorem 51 Here, if a; = b for some i = L,...,n then choose v; := q; = b If
a; < b;, then choose v; € (0, a;) as in the proof of theorem50 so that it satisfies the hypothesis
of lemma52. Note that enforcing & (bi~1) < F (b;) ( where by is defined to be zero) and choosing
v; such that F'(u) < F (1) Vu ¢ (v4,b;) forces v; > b;_5. Thus, v; € (bi-1, a;]. Now, using
lemmab2, when necessary, we have that  — (0, vlju(bl, ve)U(bg, v3)U...U(by_q, U )U(by, +00),

and ([v1,b1] U [, bo] U ... [vy, ba])NI = @. Also, using lemmad9 when Vi = a; = b; and lemma52

when v; < a; < b;, we have lim @ (p) = +oo. Using lemmad9 we have ll'm+ G (p) = 400 for
=y p—b;

1=1,2,..,n.
Now, let A = inf |G (P fori=1,2,...nand A := max A;. Then, for A > X there
pe(bi—liy’i) i=112)'~'1n :
exists at least two nonnegative solutions with u (%) = p € [bi-1,v3)58 = 2,...,n while at least

one nonnegative solution exists with ( %—) € [0,21) and at least one nonnegative solution with
u (§) € (by, +00) exists. Therefore, theorem 51 is proved.

\
6.4 Examples

6.4.1 Example 1
Consider the following problem:

—(pp (W) = ~Aexp (u) in (0,1)

lim u(z) = lim u(z) = +oo
x—0F T—1-

(6.44)

where ¢, (y) = [y* 2y, p>1 and A > 0 are real parameters.

The main result of this example Is
Theorem 53 There exists q real number A > 0 such that:
(i) If A > A, problem (6.44) admits no nonnegative solution.

(ii) If A < A, problem (6.44) admits a unique nonhegatz‘ve solution and this solution is in A+,

Proof. In this example, one has

J(w) = —exp (u) andF(u)z/f(s)ds=1—exp(u)
. ‘o0
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We have
I:={320:f(s)<0andF(s)>F(u),‘v’u>s}=[0,+oo)

The function G is defined on I = [0, +c0) by

Glo) = 2()

Using the change of variables v = one gets

cos? '’

kil
1\: 2
— 2 2
G(p) = 4dexp (—g) <L>’°/cosr19sml‘sade
0

1
= (5 2 ()= ()
r . p Y

where B (k,1) is the Euler beta function defined by

B(k,1)=2 [ sin®* 10cos? 1640, k>0 and [ > 0

o\l\‘)l b=

We observe that

lim G(p)=G(0), lim G(p)=0"and G is strictly decreasing on [0, +00) . Then
,D—>0+ p—40co v

G(p) =G (0
poax (p) (0)

So, one can conclude that
() ¥G(0) > )\%, equation G (p) = A7 admits a unique solution.
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(i) ¥ G{0) < /\%, equation G (p) = A* admits no solution.

Then, if one put A = [@ (0)I7, theorem (53) follows.

6.4.2 Example 2

Consider the following problem

{ — (cpp (u )) = —Au®in (0,1) (6.45)

1i = li =
o (0 =i u(@) = oo
where ¢, (¥) = [yP %y, p>1, A > 0 and @ > p —1 are real parameters.

Theorem 54 Ifa>p—1 then, for each fized A > 0, problem (6.45) admits a unique nonneg-

ative solution and this solution is in AT,

Proof. In this example, one has for 4 >0:

f(u) = —u” and F(u) = /—sads N
0

uoz-i—l
a1 ,

We have

I:={320:f(sj<OandF(s)>F(u),‘v’u>s}=(0,+oo)

The function @ is defined on I = (0, +00) by

, oy du
0= 25 [ [F (o)~ F (]}

1 +eo

-1\p , 1 du
= 2(%1>p(a+l)f'p_°‘/‘_‘—-[ wrl 1
u —1|»

Using the change of variables v = 5@+ gpe gets

1 _ oo
G(p)—_—Q(g-;—l)p(a—{—l)l—;Ep_a/'U_c—fi—l(’v-l)_%dv
) 1
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and using the change of variables v = one gets

cos? @’

O\I\DI ]

1
— — P a1 —; =1y _
Qo) = 4(a+1)Fpe (?Lp—l) cos?(S272)-1 5 2(250) 1 g
1
i (p—1\r a+l—p p—1\ _
= 2 O{+1 » (*——) B< , ) fo
@+ S\ P p+1 » )’

We observe that
111(1)1+ G (p) = +co, pliriloo G(p) = 0T and G is strictly decreasing on [0,+00). Then the
p— -

1
equation G (p) = A admits a unique solution for any A > 0.

6.4.3 Example 3

Consider the following boundary value problem:

—(pp (W) = =A (u®+wP) in (0,1)

¥ = i =
wiI(];l“‘ u (23) a;——»r?‘ v (.’L') oo

(6.46)

where ¢, (y) = P2y, p>1,A>0and 0 < B <p—1 < a are real parameters.

The main result of this example is:

Theorem 55 Assume that p € (1,2]. Then for each fized A > 0, problem (6.46) admits a

unique nonnegative solution and this solution is in A™.

Proof. In this example, one has

yotl yP+1 )

f )= = (u ) andF(“)sz(s)dsz‘(a+1+ﬁ+1
| 4

We have
I:={s2>0:f(s) <0and F(s) > F(u), Yu > s} = (0, +0o0)

The function G is defined on I = (0, +00) by
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/ du,
[F(p) - F (u))>

- 2(1’—"1)%’ / du
P uotl B+l

Pl B :
g Ka+1+ﬁ+1) —(a—i—l +/3+1)]'

Using the preceding lemmas, we have

(i) ].ilél+ G (p) = 400 (lemmad9).
p—
X . — + ¢
(ii) , Erfoo G (p) = 0" (lemmad3).
(iii) G is strictly decreasing on (0, +00) (lemmadb).
Then, the equation G (p) = /\% admits a unique solution for any A > (.

6.4.4 Example 4

Consider the following boundary value problem:

—(ep (W) = =Aju — 117 in (0,1)

(6.47)
lim u(z) = lim u(z) = +oo
z—0t r—1-

- where ¢, (y) = |y[P 2y, p>1and A >0 are real parameters.
The main result of this example is:

Theorem 56 There exists a real number A > 0 such that:

(i) If A > A, problem (6.47) admits exactly two nonnegative solutions and these solutions are
in AT,

(ii) If X < A, problem (6.47) admits a unigue nonnegative solution and this solution is in A+,

Proof. In this example, one has
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u

Ju)=—|u—-1p andF(u):/f(s)ds=~

0

lu =1/ (u—1)
p+1

We have
I={5>20:f(s) <OandF(s)>F(u),,Vu>s}=[0,1)U(1,+§<;)

The function G is defined on I by

+oo
e —1 % du
O =25 e
+o00
o fp-1\7 du
- 2(5) [[W—lww—lx_m—lvm—n]%

p+1 p+1

Using the change of variables (u — 1) = (p—1) v, one gets

( 2(?;1)%?1:3; ] 1_1631’ w7 ifp<1

2(p—- )p(p+1)p/ T ifp>1
| p (o — 1)p [Pl — 1
Some easy computations shows that:
' 1 1 -1
a2l o)
[1 = fof?o? P+l |
— 00
1 p—1
+oo B
v _ (p(p+1)’ P ) (6.50)
prt! —1)% p+1 '

Then, from (6.48), (6.49) and (6.50) it follows that
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1 1 1p—1
1B , +B|-, % —
(2 p-1\» (p(p+1) p+1) (p P ).f |
— 1 T itp<i
G (p) = { P P+1)7 (1-p)
(P)— p—l
1B ,
2(29—1)P p(p;l) P )it ,e
\ P (p+1)% (p—1)7

We observe that

lirln G(p) = liI:{1+ G(p) = +oo, pligxrl G(p) = 0%, G is strictly increasing on [0,1) and
Pl p— ——+00 g :

strictly decreasing on (1,+00).

So, one can conclude that
(i) TG0 < /\%, equation G (p) = AF admits exactly two solutions.
(ii) If G(0) > /\%, equation G (p) = AP admits a unique solution.

Then, if one put A = [G (0)]?, theorem56 follows.

6.5 Appendix
In this section, we prove proposition39 which is a consequence of the following two lemmas. -
Lemma 57 Assume that (6. 6) holds and u is a nonnegative solution of (6.8)-(6.4). Then

(i) The derivative v vanishes ezactly once in (0,1).

1
(ii) The solution u is symmetric with respect to 5

Lemma 58 Assume that (6. 7) holds and u 1s a nonnegative solution of problem (6’5’)-(64)
. Then

' . 1
(1) The solution u is symmetric with respect to 5

(i) The derivative u vanishes exactly once in (0,1).
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Proof. of lemma57 |
- Assume that u is a nonnegative solution of problem (6.3)-(6.4). _

Proof of Assertion (i): By Rolle’s theorem 2/ vanishes at least once. On other hand since
F(u) <Oforallu>0and >0, By the equation (6.3) it follows that ©p (W (.)) is strictly
~ increasing. By o = lop (o )f;_:"‘;Z @, (W) it follows that o is strictly increasing. Then the
derivative u' vanishes exactly once in (0,1). Therefore Assertion (i) is proved.

Proof of Assertion (ii): By Assertion (i) of the present lemma, let g be the unique critical

point of u. Thus, u (z) =0I<ni1<11 u (x) and
T

v <0in (0,29) and o' >0 in (20, 1)

Multiplying the equation (6.3) by % and integrating the resulting equation over (z, zo)

(respectively (z0,z)), we obtain:

Cd(z) = — [ P\ (£ (u(zo)) — F (u (m)))} ’ vfor all z e (0, zg]

p—1
and
! b %
U (z) = {pTl/\ (£ (u(zo)) - F (u (x)))} for all z € [zo,1)

Then, - |

+oo ‘

z= / % T for all z € (0, z] (6.51)

ito) [ (F (ua0)) — F(8))]7

and |

+o0
1l—-z=

= T for all 5 € [;Uo,-l) (6.52)
u(z) [E%A (F (u(zg)) — F(.f))j' » o . _ ‘

. | .
Taking = = x4 in (6.51) and (6.52) we obtain that g = 5
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Let 27 and mg in (0,1) such that z; +z9=1and z; € (0 ;‘l . Take x = z; in (6.51) and
T = x2 in (6.52) and substractmg to obtain |

u(zg)

g
ufor) [5550 (F (u(z0)) — F ()]

=90

. . 1 '
then, u (z1) = u (z,) Wwhich means that u is symmetric with respect to 3 Therefore, Asser-
tion (i) is proved and lemma57 is proved. '

To prove lemma’8, we need the following lemma

Lemma 59 Let p > 1 and assume that u is a nonnegative solution of problem (6.3)-(6.4).

Then
(Iu/,p (z) + 5 f 1

Proof. : The proof is similar to that of lemma 7 in [3].

AF (u (m)))l = kO, Jor all x € (0,1)

Proof. of lemma58 ’
Assume that u is a nonnegative solution of problem (6 3)-(6.4).
Proof of Assertion (i): Let zo be the point at which u attains its minimum. Denote

u (st:o) p 2 0. Thus v/ (zg) = 0, u is a solution of the fo]lowmg problem

~ (@ (u{))’ =\f (u) (6.53)
u (.’120) p; v (z0) =0

Let v(x) = u (229 — a:) . This is also a solution of (653) Since f is locally Lipschitzian and
1 < p < 2 the problem (6.53) has a unique solution. Then u(z) = v (z) for all z. Arguing by

_ . 1 1
contradiction we obtain gy = 3" Assume that zy < 5 then

=i i =u(2
+00 wil:(r)1+u(x) m_}x(r;v(m) % (2z0)

which is impossible. The assumption zg > 5 leads to contradiction in a similar way. Then

1 . C 1 - o\
we must have g = 3 and thus u is symmetric with respect to —2- Therefore Assertion (i) is
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proved. . \
Proof of Assertion (ii): For any p > 0 and any A > 0 we define u (z, A, p) to be the solution

to the initial value problem

{ I (6.54)

u(d) =p ol () =0
Since f is locally Lipschitzian and 1 < p < 2, the problem (6.54) has a unique maximal
global nonnegative solution in the interval [%, 1). Let us denote this solution by u (z, A, p). On
other hand by Assertion (i) of the present lemma we see that the set of nonnegative solutions

of (6.3)-(6.4) is precisely the set of solutions of (6.54) for which

u(z,\,p) > 0forallz e E, 1) and lm u(z, A p) =400 (6.55)

z—1-
Let us show that the solution u (x, A, p) of problem (6.54) which satisfying (6.55) is stfictly
decreasing with respect to z. Arguing by contradiction, let u(z) = u (z, A, p) and let ¢ be the

minimal value for which there exists z1 < zg such that (1) = u(xq2) = c. Then one of the

- derivative ' (z1) and «' (z2) is 0, hence according to lemma59 the other one is 0, too. Using

this we define the following solution of (6.54)

u(z) if z <1
v(z) =
u(z+zo—x1) if 2> 29

Then 1lim+ v(z) = +o0. This contradicts the maximality of u. Then u is strictly
E—1—-T €T
@ 2+1
21

_ increasing in (— 1) . Therefore, Assertion (ii) is proved and lemma58 is proved.
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Chapter 7

A quasilinear elliptic problem

with nonlocal- boundary conditions

Abstract.- In this work, ‘we investigate the existence of solutions of the multlpomt boundary

value problem

—Apu
u(z)

f(z,v) in Q
[2@ s o o0
Q

Il

where A, = div (!Vu|p 2Vu) P €11, +oo[ 2 is a bounded domain in RY of a class
Ch 0 < a< 1, with smooth boundary 8, f: QxR — R is a continuous function and
b:80xQ— R;isa smooth function. We rely on the upper and lower solutions method to

provide a constructive method for obtaining at least one solution.



7.1 Introduction

The purpose of this chapter is to study the existence of solutions for a class of second or-
der quasilinear partial differential equations subject to nonlocal boundary conditions. More

specifically, we consider the following nonlinear muitipoint boundary value problem

~Ayu=f(z,u) nQ

u(zr) = /@(m,y)u(y)dy on 99
Q .

(7.1)

where Ap = div (\Vu\p 2 Vu), p € |1, +00[; © is a bounded domain of a class Cchep<a<
1, with smooth boundary a0 f:Q xR — R is a continuous function and & : 8Q x Q — R+

is a smooth function.

Mathematical models leading to the above so called ”nonlocal” boundary value problem,

were first investigated by I'in.V and Moiseev E (see [116]). Recently, several papers have been

devoted to the study of problemr('-? .1) in the one dimensional case for p = 2. More precisely,

the problem considered is

(

' = fi(t, u) 0<t<l

z:l

L 'u,(l)—}:cgu@)

where f1 : [0,1]] xR - R is a continuous function, 7; € (0,1), b; € Ry, 1 = 1,2,..,m
§;€(0,1) andc; ERy, 7 =1, 2, ...,ma (see for instance [90], [104], [105] and [106]). In general,

the ana1y31s is done by reducing the problem (7.2) to a thi‘ee point problem with boundary
conditions u(0) = 0, u(1) = bu(c) where bc R and o € (0,1). The case b =1 has been
investigated in ( [46], [106] and [148]). '

In al;lost all the above papers, the main assumption is that fi is allowed to grow linearly
(see [104], [105] and [106]). In [90], the authors assume f1 = g1 + h, where gy satisfies a sign

condition and h is allowed a nonlinear growth. In [46], the authors used an integral monotonicity

condition which generahzes the usual sign condition. All these condition have proven sufficient
T

f"’ \AJ SC \‘\_\,
/“

Y
V/ N
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in ordér_to obtain a priori bounds on solutions. Then degree theoretical methods are used to
prove existence.

In the present work, we consider the case of the general boundary conditions in the higher
dimension (N > 1) and assumptions on f which are more general than those used in the above
papers. We shall rely on upper and lower solutions method. At our Knowledge this is the first
time that the method of upper and lower solutions is used in the context of quasilinear elliptic
problem with nonlocal boundary conditions. As by product, we will provide a constructive
method to get at least one solution of problem (7.1). The chapter is organized as follows. In
section 2, we present some notations and definitions that will be used through the paper. In

section 3, we state and prove a preliminary result. Section 4 is devoted to our main result.

7.2 Definitions and notations

Let 2 be a bounded domain in RY of a class Che 0 < o<1 and [} its Lebesgue measure,

For £ = 0,1,2,..., let C* (©2) denote the space of real valued functions which are k times
continuously differentiable on ). For 4 € C* (2), we define its norm by

llufl, = max (“Djuno)ogjgk

where ||v]|, = sup {vt); te Q} and Diy = 57?'%‘-3—; with j = (j1,..., in), j —1nteger> 0,
and |j| = 51 + ... + Jn. The space of real valued funcmons which are k-times contmuously
differentiable whose k-th order derivatives are Holder continuous with exponent v € (0, 1)

denoted by C#7Y (Q) For u € C%7 (Q), we define its norm by

Dby (z — Dy )
=l gy 1= et

The space of mesurable real-valued functions whose p-th power of the absolute value is

- Lebesgue integrable over Q is denoted by L (Q). We denote the norm in L? (€2) by ffull,. Also,

we shall refer to the sobolev space W1? (£2), which may be defined by

WP () = {u € I7 (Q); Vu € LP (Q)}
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with -the norm lullwe = llull, + | Vaull,, and WP (€2) the completition of C§° () in the
norm ||.||yy1,5, Where C§° (2) is the space of smooth real-valued functions with compact support
in Q. | _ ‘

Definition 1: By a solution of problem (7.1), we mean a function « € Whe @no(©Q)
~ such that

IVulf 2 VuVpdzr = [ f T, u) pdz Yo € WP (Q)
o Q 0

u () =/<I>(x,y)u(y)dy on 80
Q

Definition 2: A function U € W? (Q)n ¢ ( ) is called an upper solution for problem
(7.1) if
/ [vﬁ]H VUVydz > / f(2,0) pdz Yo € WEP (), 0 >0
Q 0 ’

0@)2 [ ®(,4)0 (s)dy on 00
Q

Definition 3: A function e W? (Q)NC (€2) is called a lower solution for problem (7.1)

/,

if

VU

p-2
VUVgoda:S/ f(a:,U)cpda:‘v’cpEWOI’p(Q),wzo
v 0 Y

U@ < [ @@y ) dyonon

7.3 Preliminary result

In this section, we state and prove a preliminary result. On the nonlinearity f, we shall impose

the following condition:

(H1) f: QxR — R, is a continuous function and such that there exists a continuous function

© : 2 — R with the property that

f(z,u) = f(z,v) > -0 (z) (Iu[p"Zu — uP2 v) forallz € 0 and all u, v € R.
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Theorem 60 Assume (Hi1 ) is satisfied. Suppose that problem (7.1) has a lower solution U
and an upper solution U such that U< <U. Then problem (7.1) has a solution U< <u<U.

Proof. It follows from (H1) that there exist a constant M > 0 such that the function

s+ f(z,s) +M[slp-_2s

Is increasing for all z € Q.

Define a sequence of functions (ug) in the following way

uo=fj

~Bpurt1 (z) + M |ugyy ()P 2w,y (x) L(z,ux (), z€Q

w1 (z) = / ® (2,) us (y) dy, = € 50
0

(7.3)

where L (z,uy, (7)) := f (z,uy, () + M Juy, ()P~ 2 (z)
Note that the sequence is well defined (see theorem?71 in the Appendix).

Lemma 61 We have U<L<u, <U Jor all k ¢ N.

Proof. Suppose, by induction, that USwu; < U for all J=0,1,..,k
Let o € Wy (), 0 >0

It follows from the definition of the upper solution U and ( 7.3) that

/ (IVuk+1lp_2 Vug,q — ,\7ﬁ]p*2 V[?) Vdz
Q
+M/ (luk+llp—2uk+l —|op-? ﬁ) wdz

Q

| (@) L (2,0 0))) e
0

IA

A

Then we obtain
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/ Ve s1[72 Va1 Vodzr + M f R
Q Q

< / tvﬁ]w VOVdr + M / |ﬁ]1’“2t790dm
Q
Q2

By the weak comparaison principle (see theorem?72 in the Appendix), we have uy,; < U

Hence, we have that
up <Uforalke N
Similarly, we can prove that -

ULupforallke N

Lemma 62 If{ U,U ) € (C'* (9))?, then there egists a positive number C' = C (N, | , K, a, p) >

0, with K = max (

U“ ) ”0”0> such that uy, € C* (Q) and ||ugl), < C for dll k € N.
Zlo ,

Proof. See lemma2 p.54 in [94]. ‘
As (ug)pep is bounded in C 1 @), this implies, by Ascoli-Arzeld compactness theorem, that,

after passing to a subsequence,uy — u ,the limit function u belongs to C* (ﬁ) and satisfies (7.1)

in the sense of definition 1.

7.4 Main result

In this section, we state and prove our main result to prove existence of solutions of problem

(7.1).
Assume that f satisfies the following conditions

(H2) f(=, —u) = —f (z,u) for all (z,u) € 2 xR.

(H3) There exists a continuous function g : Ry — R such that
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f (z,u) < g(u) for all (z,u) e QX Ry

In this case, we shall refer to problem (7.1) as problem (Po).
Assume further that the function g in (H3) satisfies (H4):

(i) There exists a positive constant & such that

g(u)Zs>0fora11u€R+

w .
‘where G (u) = /g (s)ds and 1 = 1(Q,p) is given by
0 :

. ’
(p—-1)rm
l—‘-—— ——‘——‘—‘_,n-‘
R(Q) psin—
4

where R(Q) is the radius of the smallest ball containing €2.

Theorem 63 If the assumptions (H1 ), (H2), (H3), and (H4 ), are satisfied, then (Py) has at

least one solution.
Proof. Let M; be a strictly positive number and consider the boundary value problem
—Ayu=g(w) in B :
0 =4) (7.4)
v > M1 inB
where B is the smallest ball containing 2.

We look for a radially symmetric solution of (7.4).
A radially symmetric solution of (7.4) satisfies
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I N-1 |
i P—?.,UI _ o =2 1 _ .
(v ) = S WP = ) -
' (0) =0 and v > M; on [0, R(D)]
Consider the initial value problem
ION—1,
P2y — ——= VP 2y =g (v
(o) === 9 () r8)
v(0)=d, v/ (0)=0
Put w=|v/|P"2v/, the equation in (7.6) becomes
v = Ic‘)|%}1z w. )
— 7.7
W= LN g)

Lemma 64 For anyd € R there exists a solution v of (7.6) defined on a mazimal interval

[0, Ry[, with v € CL([0, Ry]) and [v/[P2v’ € C* ([0, Ral) .-

Proof. Take 1 > 0 and consider the mapping defined by
R
. iy
() @ =d— [ |(H) @FE (o) () ds
0 ‘
in the Banach space C ([0,7)]), where
8
(Hv) (s) = sV /TN'lg (v(r))dr

0

It is easily to show that the operator L is compact. -

We will show that for n >0 sufﬁciently small, L map some ball of C ([0, 7]) into itself. For
that purpose take 6'> 0 such that |g (s +d) — g (s)] < 1 for |s| < 6.

It follows ‘that if |v (t) -d| < 8, then

2p
p-1 8

(Lv) (t)-d] = 7 sl'N7rN'1é(b(r))df ’ sl‘N/rN'lg(v(r))dr d$
0 0
: ) %V(dz)v_!_l]ﬁﬂfl 0
< ¢
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for n > 0 sufficiently sma]l
Consequently, for such an 7, L admits a fixed point v in C ([0,n]) .1t is easﬂy seen that this

function v is a solution of (7.6), with v € C'([0,7]) and '[P~y € C([0,7]) Applying the
general theory of first order system with continuous right hand side, we can extend v over a

maximal interval [0, Rql.
Lemma 65 The solution v of problem (7.6) is defined on [0,~+oc[.

Proof, Suppose there exist a sequence (tn)nen Which tends to t, € [0, +oof such that

tim  (Jo (b, D)l + [V (tn, d)|) = +o0
The mean value theorem shows that

lim v (t,d) = (t,d) = +0c0

n—+c0

Let
E(t,d) == ?—;71- W (&, d)[° + G (v (¢, d))
We have
dEC(;,d) _ 1—;N l”’ (t’d)‘p <0
.Then

E(t.,d) < E(0,d

= G(d)
This is a contradiction. I
Now consider the ' time-map
d 1
T(d) : / [——— (@ (d) - G(u))] P du
0 .
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Lemma 66 We have lim 7T (d) > R(Q).
. d—-+o0

Proof. First, we have T (d) < +oo for all d > 0. In fact, the mean value theorem implies that
there exists o € (u,d) such that

G(d)—G(u) = (d-u)g(o)

This gives that

d =
1= [ |20 -] P
A P
It follows from (H4.i) that
la 1
p—1lip T
< - P
Td) < [‘ps] /[d W P du
0
1p-11 1
= [p_l]l’d P /[1——1)] P dv
pe
0

which shows that T (d) < +oco. Moreover, the improper integral defining T'(d) is uniformly
convergent in each subinterval of R} which implies that Tis continuous on R’ .

Now we have

1
Jim T(@) = lm 7 [53—1 (@ (d) - G(u))}_f_’ du
| Lp-
] e,

1
- EZUPT R
Ifpsin?

withl;= im ¢ m

U=r4-00 .
Proposition 67 For each le > 0, there exist a solution v of ( 7.5) defined on [0, R ()] such
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that v € C2([0,R(Q)]), v/ (0) =0 andv = .Ml in [0, R ()] .

Proof. Let v be a solution of (7.5) defined on [0, +oco. If v does not remain above M, then
there exist a first instant £g < --0o such that v (tz) = M. Multi;ﬂying the first equation in (7.7)

2.
by g (v), the second by le;}% w and adding, we obtain

That is

E '(G o ®) + 2= ) |P) <0
Then

G+ OF <o

Since v’ < 0, we obtain

v (1)

<1

| ==

[ (©@ e

on |0, +-00] . Integrating from 0 to ¢4, we obtain

P | 1
/ [p—ﬁ—l (G (d)-C (t)))]' P ds < tg
My
Since _
M 1 ‘
[-'—p— (G(d) —G(v(t)))] P ds— 0 as d — 400
p—1 »
we obtain
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Rasnele ey

T
DI B

. > 1
dEI—}I-loo ta —d—l—];I-EOO T (d) > R (Q)

Lemma 68 Let v be a solution of problem (7.4). Then V = vlq the restriction of v to €} is

 an upper solution for problem (Py).

Proof. The definition of V and condition (EI3) imply that
AV =g(V)>f(z,V) foralz cQ

" on the other hand if we choose / ®(z,y) dy < p with p sufficiently small, we obtain
Q .

/<I>(w,y)V(y)dySM1
.

Lemma 69 -V is a lower solution for problem (Py).

"Proof. We have

—AV =g(V) onQ

Hence, by (H3)

APV -g(V)

< ~f(z,V) onQ

Now, (H2) yields

Ay (V) £ f (@) on®

Also
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-V(z) < —-Mlb
< ~/¢><m,y>V(y>dy'

Q

This complete the proof.
Now, we see that all assumptions of theorem (60) are satisfied. Hence problem (Po)b has a

solution.

7.5 Appendix
The following result will be needed in the sequel

Lemma 70 Let z, y € RN and (.,.) the standard scalar product in RY. Then

cplz—ylf, ifp>2
(2o, lyP 2y 2 &~y

St | NS 2
Pl P

Proof. See Lemma A.0.5 pp78 in [170}.
Consider the following Dirichlet problem

—-Apu+ta Iulp—Z u=gon§ (7.8$
u = h on 80

where €2 is a bounded domain in RY vﬁth smooth boundary 8(2,
’ B 1

Gew 17 (Q),p = 2, he W' (50) and a > 0.

We have the following result |

Theorem 71 The problem (7.8) has a unigue solution u € WP (Q) in the weak sense, namely

| / |Vl VuVipds +a / P2 wpda = / Godz Vo € Wy (52)
Q o _ o :

u(z) = ;z(a:) on 99
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Proof. Let us introduce the subset of W (©)
Kz{vEWl’p(Q):v=;zon89}

It is easily to show that K is nonempty, closed and convex.

Note that v is a solution of (7.8) if and only if

/Q|Vu|p;2VuV(v-—u)d:z:—l—a/nlulp_?u(u——v)dw

(7.9)
> / Glv—u)ydr YvekK
Q .
Applying theorem 8.2 pp247 in {144] the inequality (7.9) has a solution.
Now suppose that (7.8) has two solutions u1 and up. Then we have
' / |Vur P2V V (v — uy) dz + a/ g [P~ ug (w1 — v) da .
o o | (7.10)
2/ Glv—u)de YweK
Q
/ |Vug|P~2 VeV (v — up) dz +a / lualP % ug (ug — v)dz
@ @ : (7.11)

Z/ Glv—w)dz YwekK
Q

If we put v = ug (resp v = uy) in (7.10) (resp in (7.11)) and additing, we obtain
/ (qullp_2 Vui — |VuglP Vuz) V (uy —ug) dz
Q .

+a /Q <|ullp—2 ur = |uz|p_2u2) (u1 —ug)dz <0

Put'

. f (1VasP 2V = Vsl ™ Vo) V (= wa) ds

+a / (.|u1|f>~2 uy — |u2|1’—%2)' (uy — ug) dz
Q .

It follows from lemma70 that
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01/ lV(ul—m)\pdm—}-Cz/ it —ugPds P22
. |

Q
123 ¢, [ Wl =)l g
- ) (V] + T J (e T ePs 2

" where 'C’z- are positive constants for all 2 € {1,2,3,4}

Then if p > 2, we have

01/lV(@1—u2)|pdx+02/\u1—@lpdmgo
. Q ‘

We obtain that
C1 7 (s — wa)ll, + Ca (i —w)ll, <O
This implies that
=z
If 1 < p < 2, we have
03/ |V (w1 —ﬁtz)lz2 / |(u1 — uz)l M —uwl”
(Wl + [Vaa (ual + )™

Then by Holder inequality

C’g/ lV(ul—UQ)lpda:+C4/ |ug — ugl” dz

IV (u1 — u)? p
=6 ( (] + Vual) ™ ) (/ (Veal +'V““*‘)>

2-p

jur — ual” ’
“ (4 (jua + Jua])*? ) (/ (jua] + el )
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This implies that
Cs HV (u1 — u2)ll, + Call(w1 —ug)l|, <0
Then consequently it follows that
up = Ug

Theorem 72 ( Weak comparaison principle) Let ) be a bounded domain in RN (N > 1) with
smooth boundary 0Q. Let uy,ua € WP (Q) and a > 0 satisfy

|Vual?~? Vua VY

dx (712)
+a l’U:glp_‘? Uty

/ <qu1l1;~2 VuiVy + a ]u1lp—2 unb) dr < /
' Q

Q

for all non-negative P € WoP (S2), that is
~Apuy +a |u1|p_2 w < —Apus+a |u2[p”2 U

in the weak sense.

Then the inequality
uy < ug on 69
implies ?Ehat
uy < ug in Q

Proof. Let 9 = max{us —u2,0}. ‘Since u1 < ug on 89, so 9 belongs to WoP (). Inserting
this function % into (7.12), we have
/ (\Wl P2 Vuy — |Vuaf? Vuz) (Vug — V) dz

{u1>u2}
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+a / (lullp—2 Uy — Iu2|p—2 u2> (ul —up)dz <0

{u1>ug}
Therefore using lemma 70,‘ we obtain

’LL1§U2iIlQ,
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