République Algérienne Démocratique Et Populaire

Ministère De L'enseignement Supérieure Et De La Recherche Scientifique

UNIVERSITE ABOU BEKR BELKAID -TLEMCEN-Faculté De Technologie

Département de Génie Electrique et Electronique

THESE

Pour obtenir le titre de

Docteur

En Electronique biomédicale

Titre :

COMPRESSION D'IMAGES MEDICALES PAR ONDELETTES DE SECONDE GENERATION

Présenté par :

Mr. BOUKLI HACENE ISMAIL

Soutenu le 14 setempbre 2014 devant le jury :

Président :	BENABDELLAH Mohamed	Professeur, Université de Tlemcen	
Directeur de Thèse :	BESSAID Abdelhafid	Professeur, Université de Tlemcen	
Examinateurs :	BASSOU Abdesselam	Professeur, Université de Bechar	
	BELLOULATA Kamel	Maître de Conférences, Université de Sidi Belabbes.	

DEDICACES

Le cœur d'une mère est un abime au fond duquel se trouve toujours un pardon « **Balzac** ». Oh ! L'amour d'une mère ! Amour que nul n'oublie !pain merveilleux qu'un dieu partage et multiplie ! Table toujours servie au paternel foyer! Chacun en a sa part, et tous l'ont tout entier ! « **Hugo Victor** ».

Portrait de ma mère :

Ma mère, que je l'aime en ce portrait ancien, Peint aux jours glorieux qu'elle était jeune fille, Le front couleur de lys et le regard qui brille Comme un éblouissant miroir vénitien ! Ma mère que voici n'est plus du tout la même; Les rides ont creusé le beau marbre frontal ; Elle a perdu l'éclat du temps sentimental Où son hymen chanta comme un rose poème. Aujourd'hui je compare, et j'en suis triste aussi, Ce front nimbé de joie et ce front de souci, Soleil d'or, brouillard dense au cochant des années. Mais mystère de cœur qui ne peut s'éclairer ! Comment puis-je sourire à ces lèvres fanées ? Au portrait qui sourit, comment puis-je pleurer ?

« A ma chère mère qui a fait preuve de beaucoup de patience et de sacrifice, qu'elle trouve ici un modeste témoignage de mon indéfini tendresse......il y a tant d'amour et de générosité dans ton âme.Ton cœur est vaste comme l'aurore qui monte derrière les collines. Tu ne critique personne, tu dis tout le bien que tu sais de chacun. Pendant que je préparais le manuscrit de ce mémoire tu t'étais glissé timidement, dans ma chambre et tu me disais avec une tendresse touchante que dieu a fait fleurir en ton cœur et que ma froideur même ne pouvait flétrir « que dieu t'aide mon fils ».

Eh bien ! Maman, c'est alors que les feuilles avaient glissé des mains et qu'une terrible crainte m'avait saisi. Voila ce qu'avait fait de moi la manie des reproches : Un enfant grondeur .je n'en veux pour témoignage que ton élan spontané pour venir me souhaiter le bonsoir, mais, demain, tu verras, je deviendrai ton ami, je rirai quand tu riras, je pleurerai quand tu pleureras...... » Je sais maintenant pourquoi il fait toujours beau a Tlemcen : nos mère sont notre rayon de soleil a tous.

Je voudrais témoigner de la reconnaissance envers mon frère Abdel Ali, et mon cousin B.H.Mohamed elhadi pour leur encouragement bénéfique, qui a été un support précieux et une source de courage durant les langues heures du travail.

Je suis tout particulièrement redevable à mademoiselle H. Naïma, qui a venue à mon secours de multiples fois. J'aimerai bien que tu saches à quel point j'apprécie ta sympathie. Toi si gentille, si courtoise, et si serviable.

Enfin, je remercie tous ceux qui ont contribué à l'élaboration de ce travail de prés ou de loin et qui méritent d'y trouver leur nom. J'espère qu'ils me pardonneront.

A tous un sincère et chaleureux merci.

L'auteur :

BOUKLI HACENE ISMAIL

Remerciements

*M*a profonde gratitude est envers mon créateur le tout puissant qui m'a toujours guidé dans ma vie et qui m'a fait savoir que la science est le flambeau qui mène à la vraie connaissance de sa majesté.

Ce travail a été effectué dans le Laboratoire de Génie biomédical, Faculté de Technologie, Université Abou-Bekr Belkaïd– Tlemcen.

J'exprime toute ma gratitude à Monsieur A. BESSAID, Professeur à l'Université Abou-Bekr Belkaïd, de m'avoir dirigé et guidé tout le long de ce travail. Ses intuitions et son savoir mais aussi son exigence et ses critiques m'ont permis de comprendre ce qui constitue l'essence d'une démarche scientifique. Les nombreuses discussions tout au long de la thèse ont été très riches et fructueuses. Il a su m'initier à l'esprit de recherche avec rigueur et efficacité et aussi partager son expérience et sa compétence dans ce domaine de recherche scientifique.

J'exprime toute ma reconnaissance et mes remerciements à Monsieur BENABDELLAH Mohamed , Professeur à l'Université Abou-Bekr Belkaïd, qui a bien voulu me faire l'honneur de présider le jury de cette thèse.

*M*onsieur A. BASSOU, Professeur à l'Université de Bechar, me fait l'honneur d'examiner cette thèse, je le remercie vivement.

Je remercie Monsieur K.BELLOULATA, *Maître de conférence à l'Université de Sidi Belabbes, pour l'intérêt qu'il a bien voulu porter à ce travail en acceptant de faire partie du jury.*

Je tiens à remercier sincèrement Monsieur Djabarri Abdelghani Maître assistant à l'Université de Tlemcen, pour son soutien permanent, ses conseils et ses remarques qui ont fait avancer mes travaux.

Je tiens à remercier sincèrement Monsieur M. Beladghem Maître assistant à l'Université de Bechar, ses conseils et ses remarques qui ont fait avancer mes travaux.

Je tiens à remercier sincèrement tous les membres du Laboratoire de Génie biomédical pour leurs encouragements, sans oublier mes collègues des autres Laboratoires de recherche.

Enfin, j'adresse mes remerciements à toutes les personnes qui de prés ou de loin m'ont aidé et soutenu pendant cette période.

Résumé

Dans le domaine du diagnostic médical, les intéressés ont recours de plus en plus à l'imagerie médicale ; il est bien établi que la justesse et la précision du diagnostic sont initialement liées à la qualité de l'image ; Mais la qualité de l'image est elle-même conditionnée par un certain nombre de facteurs dont principalement les traitements que doit subir une image pour rehausser sa qualité.

Dans le cadre de cette thèse, nous nous sommes intéressés aux ondelettes de seconde génération (ou ondelettes géométriques), et à la compression hybride, afin de compresser des images médicales en niveau de gris et couleur.

Les méthodes actuelles de compression d'images médicales reposent sur la transformée en ondelettes. La première contribution de cette thèse est d'appliquer la transformée en ondelette basé sur la structure Lifting couplée avec le codeur SPIHT sur les images médicales en niveaux de gris et couleur à afin de réduire les limites des ondelettes classiques à banc de filtre.

La seconde et la principale contribution de cette thèse est de proposer une nouvelle transformation appelée ondelettes quinconce (QWT), plus performante que l'ondelette classique (DWT). Nous appliquons cette transformée non séparable (QWT) couplée avec le codeur SPIHT sur les images médicales en niveau de gris et couleur. Les résultats obtenus, à l'aide de l'algorithme que nous proposons, sont très satisfaisants et encourageants comparés à plusieurs des meilleurs codeurs cités dans la littérature. Dans notre dernière contribution, nous proposons deux algorithmes de compression hybride ; l'une basé sur la DCT et la DWT (banc de filtre) et le deuxième basé sur la transformé de Walsh et la DWT. Nous implémentons l'ondelette bi orthogonale CDF9/7 dans ces deux algorithmes.

Les résultats obtenus sur deux bases d'images médicales en niveau de gris de différentes modalité et quelques images médicale couleur (Rétinographie par exemple) montrent une supériorité visuelle et numérique de la compression hybride avec Walsh et Ondelette par rapport aux méthodes classiques. Ces résultats visuels prometteurs sont confirmés par des paramètres d'évaluation telle que (PSNR, MSSIM, TFC, TC).

Mots Clés : Compression hybride, Imagerie médicale couleur, Ondelettes, Structure Lifting, Ondelettes Quinconce, SPIHT, DCT, Walsh, Paramètres d'évaluation.

Abstract

In the domain of the medical diagnosis, interested parties have recourse more and more to the medical imagery; it is established well that the exactness and the precision of the diagnosis are bound to the quality of the picture initially; But the quality of the picture is herself conditioned by a certain number of factors of which mainly treatments that must undergo a picture to heighten her quality.

In the setting of this work, we interested ourselves to wavelet of second generation (or geometric wavelet), and the hubrid compression, in order to gray scale and colour image medical compression.

Current methods of compression of medical images are based on the wavelet transform. The first contribution of this thesis is to applied for gray scale and colour medical image the SPIHT algorithm to the Lifting scheme in order to reduce the limitations of conventional wavelet filter bank .

The second and main contribution of this thesis is to propose a new wavelet transform called Quincunx (QWT) that is more efficient than the classical wavelet (DWT). We apply this non-separable transform (QWT) coupled with the SPIHT coder for gray scale and colour medical image. The results obtained using the proposed algorithm is quite satisfactory and encouraging compared to some of the best coders cited in the literature. In our last contribution, we propose two algorithms ;the first algorithm based on DCT and DWT,and the second based on DWT coupled with Walsh. We implemented the biorthogonal wavelet CDF9/7 in this algorithms.

The results obtained for two base gray scale medical image for different modality and colour medical image (Retinographic for example) show a visual and digital superiority for hybride compression with Wavelet coupled Walsh transforms .These results are confirmed by promising new visual Evaluation parameters (PSNR, MSSIM, TFC, TC...).

Key words: Compression hybrid, Color Medical Imaging, Wavelets, Lifting scheme, Quincunx Wavelets, SPIHT, DCT, Walsh, Evaluation parameters.

الملخص

يعدُّ التشخيص الشعاعي في الوقت الحالي ثاني أهم القطاعات الضرورية في الطب بعد المعالجة، وهو الوسيلة التي تسمح لفريقين طبيين أو أكثر بتبادل الصور الطبية والتعليق عليها للتوصل الى التشخيص الصحيح. إن التصوير الطبي الحديث يعطينا معطيات رقمية كبيرة ولكن لا يمكن إدخالها عبر أنظمة الصحيح. إن التصوير الطبي قدا فإن استعمال الصور المضغوطة، يبقى ضرورياً في عصرنا الحالي، الاتصالات والتخزين بسرعة، ولذا فإن استعمال الصور المضغوطة، يبقى ضرورياً في عصرنا الحالي، الاتصالات والتخذين بسرعة، ولذا فإن استعمال الصور المضغوطة، يبقى ضرورياً في عصرنا الحالي، إن الطريقة الحديثة المستعملة حالياً في أقسام الأشعة هي ضغط حجم الصورة بدون ضياع المعلومات التشخيصية والنورية في عصرنا الحالي، إن الطريقة الحديثة المستعملة حالياً في أقسام الأشعة هي ضغط حجم الصورة بدون ضياع المعلومات التشخيصية في الصور الطبية وهي الوحيدة المعتمدة من الخبراء لأنها تضمن سلامة البيانات الموجودة فيها، وتمنع الخطأ في التشخيص، ولكن هذه الطريقة الحالية لا تقال كثيراً من حجم هذه البيانات. أما الطرق الطرق الحديثة المستعملة حالياً في أقسام الأشعة هي ضغط حجم الصورة بدون ضياع المعلومات الطريقة الحديثة المستعملة حالياً في أقسام الأشعة هي ضغط حجم الصورة بدون ضياع المعلومات الطريقة الحريقة الحراء لأنها تضمن سلامة البيانات الموجودة فيها، وتمنع الخطأ في التشخيص، ولكن هذه الطريقة الحالية لا تقال كثيراً من حجم هذه البيانات. أما الطرق الحديثة المتبعة حالياً في ضغط الصور الطبية فترتكز على تحويلات الأمواج الصغيرة أي المويجات.

في هذه الأطروحة نحن مهتمون على تحويلات الأمواج الصغيرة من الجيل الثاني (المويجات الهندسية)، وضغط الهجين للصور الطبية في الرمادي والملون.

الأساليب الحالية لضغط الصور الطبية تعتمد على أساس تحويل المويجات. اول مساهمة في هذه الأطروحة هو اقتراح التكييف و التحسين في خوارزمية (SPIHT) في تركيبة (LIFTING) لهدف التقليل من قيود المويجات الكلا سيكية .

المساهمة الثاني والرئيسية من هذه الأطروحة هو اقتراح تحويلات مويجات جديدة تسمى (QWT) أكثر كفاءة من المويجات الكلاسيكية (DWT) . نطبق هذا التحويل غير قابلة للفصل (QWT) مع خوارزمية (SPIHT) على الصور الطبية في الرمادي والملون. النتائج التي تم الحصول عليها في باستخدام خوارزمية المقترحة مرضية للغاية ومشجعة مقارنة مع طرق اخرى مستعملة سابقا.

في مساهمتنا الاخيرة نقترح خوارزميتين لضغط الهجين للصور الطبية في الرمادي والملونة؛ الاولى على أساس DCT وDWT وDWT وDWT استعملنا في هذه الخوارزميات الاثنين المويجات 7 / CDF9

النتائج على قاعدتين مختلفتين من الصور الطبية في الرمادي و بعض الصور الطبية الملونة (مثل تصوير الشبكية للعين) إظهار التفوق الرقمي والبصري لطريقة الضغط الهجين للصور الطبية بطريقة والش مع المويجات الكلا سيكية مقارنة بالطرق الكلا سيكية

تأكد هذه النتائج المرئية باستعمال هده المعطيات (TC ، TFC ، PSNR ، MSSIM)

مفاتيح البحت: الضغط الهجين، صور طبية ملونة، المويجات، تركيبة (LIFTING) ، مويجات DCT، Quinconce، والش، معطيات التقييم.

Table des matières

Introduction générale	3
Chapitre I : l'état de l'art sur la compression d'images médicales	
I.1. introduction	6
I.2. Méthodes de codage sans perte	7
I.2.1. Codage entropique	7
I.2.1.1. Codage de Huffman	8
I.2.1.2. Codage arithmétique	9
I.2.2. Codage RLC	9
I.2.3. Codage Lempel –Ziv	10
I.3. Méthodes de codage avec perte	10
I.3.1.Codage par Quantification	11
I.3.1.1.Quantification scalaire	11
I.3.1.2.Quantification vectorielle	12
I.3.2.Codage par prédiction	13
I.3.3.Codage par transformation	13
I.3.3.1.Transformation de Karhunen-loeve (KLT)	14
I.3.3.2. Transformation Spéctrales ou sinusoidales	14
I.3.3.3.Transformation en Ondelettes	14
I.4. Méthodes de codage de sous bandes	15
I.4.1.L'algorithme de codage EQ	16
I.4.2.L'algorithme de codage EZW	16
I.4.3.L'algorithme de codage SPIHT	18
I.5. Evaluation de la Qualité de compression	20
I.5.1.Techniques Subjectives	20
I.5.2.Techniques Objectives	21
I.5.2.1.Taux de compression	21

I.5.2.2.Distorsion	21
I.5.2.3.Temps de calcule	23
I.6. Etat de l'art sur la compression d'images médicales	23
I.6.1.Compression sans perte	24
I.6.2. Compression avec perte	24
I.7. Conclusion	25
Chapitre II : Transformée en Ondelettes de seconde génération	
II.1.Introduction	28
II.2.Transformée en ondelettes continue	29
II.3.Transformée en ondelettes discrète	31
II.4.Analyse Multi résolution	33
II.5.Transformée en ondelette unidimensionnelle rapide	34
II.5.1.Banc de filtres orthogonaux	34
II.5.2.Transformée en ondelette rapide	35
II.5.3.Propriétés fondamentales d'une ondelette	37
II.6. Transformée en ondelette bidimensionnelle Séparable	37
II.6.1. Analyse Multi résolution et ondelette bidimensionnelle Séparable	37
II.6.2.Transformée Rapide en ondelette bidimensionnelle	38
II.6.3.Les ondelettes biorthogonales	40
II.6.4.Ondelette couramment utilisées en compression	41
II.7.Limites des ondelettes bidimensionnelle de Première génération	42
II.8.Solution	43
II.9.Etat de l'art sur les ondelettes de seconde génération	45
II.9.1.Approches non adaptatives	45
II.9.2.Approches Adaptatives	48
II.10.Nouvelle représentation adaptatives à la compression d'image	49
II.10.1.Structure Lifting	50
II.10.1.1.Propriétés de Schéma Lifting	51
II.10.1.2.Compression d'image médicale par la structure lifting couplée avec	

SPIHT	52
II.10.2.Ondelettes Quinconces	54
II.10.2.1.Echantillonage en Quinconce et banc de filtre	55
II.10.2.2.Filtres fractionnaire en Quinconce	57
II.10.2.3.Implémentation dans le domaine de Fourier	58
II.10.2.4.Compression d'image médicale par QWT couplée avec SPIHT	61
II.11.Conclusion	64
Chapitre III : Compression Hybride des Images Médicales	
III.1.Introduction	65
III.2. LA TRANSFORMÉE DISCRÈTE EN COSINUS (DCT)	65
III.2.1 La Transformée discrète en cosinus monodimensionnelle	66
III.2.1.1 Transformée discrète en cosinus type I (DCT I)	66
III.2.1.2 Transformée discrète en cosinus type II (DCT II)	67
III.2.1.3 Transformée discrète en cosinus type III (DCT III)	67
III.2.1.4 Transformée discrète en cosinus type IV (DCT IV)	68
III.2.2.La Transformée discrète en cosinus bidimensionnelle	69
III.3. Propriétés de la DCT	69
III.3.1 Décorrélation	69
III.3.2 Concentration de l'énergie	70
III.3.3 Séparabilité	71
III.3.4. Symétrie	72
III.3.5 Orthogonalité	72
III.4 l'algorithme proposé de WCT (Wavelet Cosinus transform) :	72
III.5. Compression hybride d'image Médicale par WCT (wavelet cosinus Transform)	74
III.6.La transformé de Walsh-Hadamard	77
III.6.1. Transformation d'Hadamard	78
III.6.1.1 Définition	78
III.6.1.2 Principe de transformation d'Hadamard	79
III.6.1.3 Transformée d'Hadamard unidimensionnelle (1D)	79

III.6.2. Transformée de Walsh	80
III.6.2.1 Définitions	80
III.6.2.2 Transformée de Walsh 1D	83
III.6.2.3 Fonction de Walsh Bidimensionnelle	84
III.6.2.4. Propriétés communes aux transformées de Walsh et Hadamard.	87
III.6.3. L'algorithme de WWT (Wavelet Walsh Transform)	88
III.6.4. Compression hybride d'image Médicale par WWT (Wavelet Walsh	
Transform)	90
III.7. Conclusion	98
Chapitre VI : RESULTATS EXPERIMENTAUX	
IV.1 Introduction	100
IV.2. Présentation des différents résultats sur les images médicales en niveau de gris	100
IV.2.1.Compression d'images médicales par QWT couplée avec SPIHT	100
IV.2.2.Compression hybride d'image médicale en niveau de Gris	107
IV.2.2.1. Compression hybride d'image médicale par WCT	107
IV.2.2.2. Compression hybride d'image médicale par WWT	111
IV.3. Présentation des différents résultats sur les images médicales couleurs	115
IV.3.1. Définition de l'espace de couleur	115
IV.3.1.1.L'espace RGB	116
IV.3.1.2.L'espace YCbCr	117
IV.3.2.Compression d'images médicales couleur par la structure lifting couplée	
avec SPIHT.	118
IV.3.3- Compression d'images médicales couleur par Quinconce couplée avec	
SPIHT	122
IV.3.4.Compression Hybride des Images médicales Couleur	129
IV.3.4.1. Compression d'image médicale couleur par WCT	129
IV.3.4.2. Compression d'image médicale couleur par WWT	134
IV. 4 CONCLUSION	141

Conclusion Générale et perspectives	142
Annexes	146
Bibliographie	155

Liste des Figures

Fig I.1– Arbre binaire de Huffman
Fig I.2 – Schémas de compression /décompression classique pour les images médicales
Fig.I.3 – Quantification scalaire
Fig.I.4 – Les relations entre les coefficients d'ondelettes dans différents sous bandes
Fig.II.1-La transformée en ondelette par banc de filtre en QMF d'Analyse -Synthèse
Fig.II.2 – Filtres miroirs en quadrature
Fig.II.3 – Exemple d'un triplet de fonctions ondelettes en 2D
<i>Fig.II.4</i> –Décomposition en ondelette séparables CDF 9/7 d'une coupe sagittale de cerveau sur 3 niveaux de résolution
Fig.II.5 – Transformée en ondelette 2D : a) Schéma de décomposition ; b) Schéma de reconstruction
Fig.II.6 – Comparaison des performances de l'approximation non linéaire par les ondelettes classique et
les 'X-let
Fig. II.7– Structure en lifting a) analyse ;b) Synthèse
Fig.II.8 – Image original (coupe coronale)
Fig.II.9- Variation des paramètres d'évaluation (PSNR, MSSIM) pour différents méthodes
Fig.II.10- Compression d'image (coupe coronale) par CDF9/7 (Lifting Scheme) couplée avec le codeur
SPIHT
Fig. II.11 – décomposition en ondelettes quinconce
<i>Fig. II.12</i> –a) grille quinconce et b) sa correspondance dans le domaine de Fourier
<i>Fig. II.13</i> – La reconstruction parfaite du banc de filtre avec l'échantillonnage en quinconce
<i>Fig. II.14</i> – L'isotropie du filtre $H_{\alpha} = (e^{j\omega})$ pour différentes valeurs du paramètre d'ordre α
<i>Fig. II.15</i> – L'ondelettes Ψ_{α} pour différentes valeurs du paramètre d'ordre α ······ <i>Fig. II.16</i> – Schéma de décomposition de l'algorithme de transformée en quinconce pour det
itérations
Fig. II.17 – Résultats de la transformée en quinconce avec 6 itérations pour différentes valeurs o
paramètre d'ordre α (coupe axiale du cerveau)
Fig. II.18 – Relation parent enfants de l'algorithme SPIHT pour la décomposition par ondelette
quinconce (nombre d'itération 6)
<i>Fig. II.19</i> – Relation entre le paramètre d'ordre de filtre α et le PSNR pour différentes valeurs de bit rate
Rc (l'image de teste : la coupe coronale)
<i>Fig.II.20</i> – Compression d'image (coupe coronale) par OWT couplée avec le codeur SPIHT
<i>Fig.II.21</i> – Variation des paramètres d'évaluation (PSNR, MSSIM) pour différents méthodes pour la
coupe coronale
<i>Fig III 1</i> – a) Image rachis-cervical b) Auto-corrélation normalisée de l'image rachis-cervical c) DCT de
l'auto-corrélation normalisée de l'image rachis-cervical
F_{ia} $III.2$ a) Imaga rankis, soliosa b) DCT da l'imaga rankis, soliosa
r_{12} , $m_{22} = a_1$ mage racins_ sconose, v_1 DC1 ue r mage racins_ sconose

<i>Fig.III. 3</i> – Compression par WCT	7
Fig. III.4 - Variation des paramètres d'évaluation pour différents types d'ondelettes :a) variation de	
PSNR ;b) variation de MSSIM ; c) variation de la taille de fichier compréssé ;d) variation de temps de	
calcule pour différents types d'ondelettes	7
Fig.III.5 – Compression hybride d'image (coupe coronale) par WCT (CDF9/7) couplée avec le codeur	
arithmétique	7
Fig.III.6 – Les 8 premières fonctions de base de Walsh	8
Fig. III.7 – l'algorithme de la transformé de Walsh rapide	8
Fig. III.8 – Exemple de la transformé de Walsh 1D pour un vecteur (1,0,1,0,0,1,1,0)	8
Fig. III.9 – Fonctions de Walsh Analogique à 2 dimensions	8
<i>Fig. III.10</i> – Fonctions de Walsh à 2 dimensions	8
<i>Fig.III.11</i> – Transformée de Walsh d'une imagette de 8*8 pixels	8
<i>Fig. III</i> 12– 1 ^{er} étape de l'algorithme de compression WWT. Décomposition par ondelette en deux	
niveaux	8
<i>Fig. III</i> 13_{-2}^{eme} étape : Transformé de Walsh 2D	8
<i>Fig. III.14</i> – Compression hybride d'image (coupe coronale) par ondelette Walsh discrète (WWT)	
couplée avec le codeur arithmétique avec F1=0.01 et F2 allant de 0.01 jusqu'à 0.1	9
<i>Fig. III.15</i> – Compression hybride d'image (coupe coronale) par ondelette Walsh discrète (WWT)	
couplée avec le codeur arithmétique avec F2=0.01 et F1 allant de 0.01 jusqu'à 0.1	9
Fig. III.16 – Compression hybride par ondelette Walsh discrète (WWT) avec F1 et F2 allant de	
0.01 jusqu'à 0.1	9
Fig.III.17–Variation des paramètres d'évaluation (PSNR, MSSIM, FCTet tc) par la CDF9/7 pour	
différentes variations de facteur pour la coupe coronale	9
Fig. III.18.compression hybride par WWT (CDF9/7) couplée avec le codeur arithmétique	9
Fig. IV.1- Variation du PSNR, MSSIM, par différentes méthodes avec un bit-rate de 0. 5bpp sur la base I	
d'images médicales	1
Fig. IV.2- Variation du PSNR, MSSIM, par différentes méthodes avec un bit-rate de 0.5 bpp sur la base	
II d'images médicales	1
Fig. IV.3- Compression de différents types d'images médicales par différentes méthodes	1
Fig. IV.4- Variation du PSNR, MSSIM, pour différents types d'images médicales (Base I) compressée par	
l'algorithme hybride WCT	1
Fig. IV.5 - variation du PSNR, MSSIM, pour différents types d'images médicales (Base II) compressée	
par l'algorithme hybride WCT	1
Fig.IV.6- Variation du PSNR, MSSIM, pour différents types d'images médicales (Base I) compressée par	
l'algorithme hybride WWT	1
Fig. IV.7- Variation du PSNR, MSSIM, pour différents types d'images médicales (Base II) compressée	
par l'algorithme hybride WWT	1
Fig. IV.8- Compression de différents types d'images médicales par WCT et WWT	1
Fig. IV.9– Composition additive des couleurs	1
<i>Fig.IV.10</i> – Présentation des couleurs dans l'espace RGB	1

Fig. IV.11– Une image RGB, avec ses composantes Y, Cb, et Cr
Fig.IV.12- algorithme de la compression d'image médicale couleur par la CDF9/7 (Structure
lifting)
Fig.IV.13 - compression image rétinographie couplée par CDF9/7(lifting Scheme) couplée avec le
codeur SPIHT
Fig. IV.14– Variation des paramètres d'évaluation pour différents méthodes
Fig IV.15- Compression d'image rétinienne par QWT couplée avec le codeur SPIHT
Fig. IV.16– Variation des paramètres d'évaluation pour différents méthodes
Fig. IV.17 - Compression de différents types d'images médicales couleur par CDF9/7 (Lifting Schème) et
QWT couplée avec le codeur SPIHT
Fig IV.18- Variation de paramètre d'évaluation pour différents type d'ondelette par la méthode
WCT
Fig IV.19- Variation de paramètre d'évaluation pour différentes valeurs de paramètre de quantification
par la méthode WCT
Fig IV.20- Compression d'images médicales rétinographie couleur par la méthode WCT
Fig IV.21- Compression Différentes images médicales couleur par la méthode WCT
Fig.IV. 22- algorithme de la compression d'image médicale couleur par WWT
Fig IV.23- Compression d'images médicales rétinographie couleur par la méthode WWT
Fig IV.24- Compression différents images médicales couleur par la méthode WWT

Liste des Tableaux

Table II.1- Variation des paramètres d'évaluations (PSNR, MSSIM) pour différents méthodes de	
compression (coupe coronal) (level=6)	53
Table III.1 – L'obtention des fonctions de Walsh à partir des matrices d'Hadamard	82
Table III.2 –passage d'indice de Hadamard à l'indice de la fonction de Walsh	83
Table IV.1 - Variation des paramètres d'évaluations (PSNR, MSSIM, Tc) pour différents	
méthodes de compression (Base I)	101
Table IV.2–Variation des paramètres d'évaluations (PSNR, MSSIM, Tc) pour différents méthodes	
de compression (Base II)	102
Table IV.3 - Variation des paramètres d'évaluations (PSNR (db), MSSIM, FTC(Ko), TC(%),	
Tc(sec)) en fonction de facteur de quantification varié de 0.01 à 0.05.(Base I)	108
Table IV.4 - Variation des paramètres d'évaluations (PSNR, MSSIM, FTC, TC(%), Tc(sec)) en	
fonction de facteur de quantification varié de 0.01 à 0.05.(Base II)	110
Table IV.5 - Variation des paramètres d'évaluations (PSNR (db), MSSIM, FTC(Ko), TC(%),	
Tc(sec)) en fonction de facteur de quantification (Fact1=Fact2) varié de 0.01 à 0.05.(Base I)	112
Table IV.6 - Variation des paramètres d'évaluations (PSNR (db), MSSIM, FTC(Ko), TC(%),	
Tc(sec)) en fonction de facteur de quantification (Fact1=Fact2) varié de 0.01 à 0.05.(Base II)	114
Table. IV.7- Variation des paramètres d'évaluations (PSNR, MSSIM) pour différents méthodes	
de compression (coupe coronal) (level=6)	121
Table. IV.8-Variation des paramètres d'évaluations (PSNR (db), MSSIM, FTC(Ko), TC(%),	
Tc(sec)) en fonction de facteur de quantification = [A ;0.1 ;0.1] avec A varié de 0.01 à 0.1	129
Table. IV.9-Variation des paramètres d'évaluations en fonction de différents facteurs de	
quantification 'Q'	132
Table IV.10 - Variation des paramètres d'évaluations en fonction variation de facteur 2 de 0.01	
jusqu'à 0. 5 avec factor1=0.01	138
Table IV.11 - Variation des paramètres d'évaluations en fonction variation de facteur 1 de 0.01	
jusqu'à 0. 5 avec factor2=0.01	138
Table IV.12 - Variation des paramètres d'évaluations avec facteur 1=facteur2 varié de 0.01 jusqu'à	
0. 5	139

Les figures et les équations sont numérotées par chapitre. La bibliographie est en outre classée par chapitre à la fin de ce manuscrit.

ABREVIATIONS

ACR	American College of Radioligy	IRM	Imagerie par Résonance Magnétique
RMN	Résonance Magnétique Nucléaire	CT	Computerized Tomography
RF	Radio Fréquence	TEP	Tomographie par Emission de Positons
SPECT	Single Photon Emission Computerized	RLE	Run Length Coding
	Tomography		
DICOM	Digital Imaging and Communications	PACS	Picture Archiving and Communication
	in Medecine.		System
LZ W	Lempel-Ziv-Welch	QS	Quantification Scalaire
QV	Quantification Vectorielle	LGB	Linde Buzo Gray
DPCM	Differential Pulse Code Modulation	KLT	karhumen- Loeve Transform
FFT	Fast Fourier Transform	DCT	Discret Cosine Transform
JPEG	Joint Photographic Experts Group	DWT	Disctret Wavelet Transform
MPEG	Moving Picture Exepert Group	DFT	Discret Fourier Transform
AMR	Analyse Multi résolution	QWT	Quincunx Wavelet Transform
FMQ	Filtres miroirs en quadrature	bpp	Bit par pixel
R	Rate	EQ	Estimation-Quantization
EZW	Embedded Zerotree Wavelet	SPIHT	Set partitioning in hierarchical trees
LSP	Listes de Coefficients Signifiants	LIP	Listes de Coefficients Insignifiants
LIS	Ensembles Insignifiants	SOFM	Self organizing Feature Map
SNR	Signal to Noise Ratio	MSE	Mean Square Error
PSNR	Peak Signal to Noise Ratio	NCC	Normalized Cross- Correlation
SC	Contenu Structurel	MD	Maximum Difference
SSIM	Structural Similarity Index	HVS	Human Visual System
WCT	Wavelet Cosines Transform	WWT	Wavelet Walsh Transform
RN	Réseau de Neurone	Tc	Temps de calcule
TC	Taux de Compression	TFC	Taille de fichier Compressé
VGQ	Very Good Quality	VBQ	Very Bed Quality
VGC	Very Good Compression	BQ	Bed Quality

CALIC Context Based Adaptative, Lossless Image Coding

Introduction Générale

L'imagerie médicale est un domaine en plein essor, du fait du développement des technologies numériques. Elle permet une investigation de plus en plus fine des organes humains grâce à la mise à disposition de systèmes de radiologie de plus en plus performants. La contrepartie réside dans une quantité de données générée considérable qui peut rapidement saturer les systèmes conventionnels de transmission et de stockage.

L'augmentation croissante et continue des capacités de stockage apporte une réponse partielle à ce problème mais demeure la plupart du temps insuffisante. La nécessité de compresser les images apparaît donc aujourd'hui incontournable. De plus, la compression présente un intérêt évident pour la transmission des images afin de réaliser un télédiagnostic qui est actuellement parmi les secteurs potentiels en télémédecine.

L'utilisation massive des modalités numériques en imagerie médicale (IRM, Scanner X, médecine nucléaire, etc...) engendre aujourd'hui des volumes de données de plus en plus importants (Méga octets à Téra octets/ans). Le problème devient encore plus critique avec la généralisation de séquences tridimensionnelles. Alors il est nécessaire d'utiliser des images compressées afin de limiter le volume de données à stocker et à transmettre. Il est fort utile de noter que la compression d'une image numérique permet de réduire le nombre de bits qu'elle occupe.

Pour atteindre l'objectif assigné, il faut assurer deux tâches : La réduction de la redondance n'introduisant pas de pertes, et la représentation approximative de l'information contenue dans l'image introduisant une perte mais nous verrons qu'il faudra minimiser cette perte sous peine de modifier le contenu informationnel des images compressées.

Actuellement, la compression dans un service de radiologie est toujours effectuée sans perte quand elle existe car elle constitue à ce jour le seul type de compression toléré par les médecins. En effet, la compression sans perte garantit l'intégrité des données et permet d'éviter les erreurs de diagnostic. Cependant, ce type de compression n'offre pas de réduction significative du volume de ces données. Dans ce contexte, la compression "avec pertes" maîtrisées peut être la réponse la plus appropriée, à condition bien entendu que les pertes n'affectent pas la qualité des images pour l'usage régulier des praticiens. Hier encore inenvisageable, l'idée d'une compression avec pertes semble aujourd'hui de mieux en mieux acceptée par les médecins, comme en témoigne par exemple, l'American College of Radiology (ACR) qui estime que les techniques de compression avec pertes peuvent être utilisées à des taux raisonnables, sous la direction d'un praticien qualifié, sans aucune réduction significative de la qualité de l'image pour le diagnostic clinique. L'un des principaux enjeux de ce manuscrit est donc de proposer une méthode de compression d'images médicales avec pertes efficace et acceptable visuellement pour les médecins.

Les méthodes actuelles de compression pour les images médicales sans et avec pertes les plus efficaces pour les images médicales exploitent la corrélation des images afin d'améliorer la performance de compression. Elles s'appuient sur une transformation décorrélant les deux dimensions : la transformée en ondelettes, qui permet en particulier d'atteindre des taux de compression importants sans produire les artefacts (effets de bloc) observés sur les images compressées par la transformée en cosinus discrète (JPEG).

Cependant, malgré le succès des ondelettes dans divers domaines de traitement d'images, des faiblesses ont été constatées quant à leur utilisation pour la détection et la représentation des contours d'objets de l'image. Les décompositions multi-résolutions classiques semblent former une catégorie restreinte et limitée des possibilités de représentations multi échelles de signaux multidimensionnels. Des travaux récents montrent qu'il est possible de définir des cadres théoriques de représentations multi échelles plus vastes donnant naissance à de nouvelles transformées plus intéressantes et plus adaptées à l'extraction de structures géométriques lisses et continues telles que les contours d'objets. C'est le cas de la nouvelle famille des transformées en ondelette dite de seconde génération. Ces méthodes sont mieux adaptées à la représentation des images médicales, et offrent la possibilité d'augmenter considérablement les taux de compression à qualité image équivalente.

Dans cette thèse nous nous intéressons à la compression d'images médicales en niveaux de gris et couleur enregistrées par les différentes techniques d'imagerie médicales.Habituellement, les images couleurs sont stockées sous le format RGB (Red Green Blue : Rouge Vert Bleu). Or le système RGB n'est pas le mieux adapté pour le processus de compression, puisqu' il y a une forte corrélation entre les plans RGB ; mais avec un changement d'espace de couleur RGB vers un autre espace moins corrélé, par exemple YCbCr. Cette transformation permet une compression plus efficace, car l'information est principalement condensée dans le plan Y. Nous pouvons, donc, comprimer plus efficacement Cb et Cr.Il est clair que les résultats obtenus après application de la transformation YCbCr en terme de taux de compression et de distorsion sont mieux que ceux obtenus par application directe de la compression sur une image RGB.

Dans le but d'atteindre des taux de compression élevés avec une qualité satisfaisante de l'image reconstruite ; et un temps de calcul minimal lors de processus de codage, nous focalisons notre attention par la suite sur la compression hybride des images médicales basé sur la transformée en ondelette couplée avec des transformées orthogonales. On peut citer la transformée discrète en cosinus et la transformée discrète de Walsh .

Toutes ces transformées sont unitaires, symétriques, réversibles (à énergie finie)et la somme de leurs énergies avant et après transformation reste inchangée .

Pour atteindre les objectifs fixés et faire état des nos travaux bibliographiques et de simulations, nous présentons ce mémoire subdivisé en plusieurs chapitres, chaque chapitre aborde une thématique bien définie.

Le premier chapitre a pour objet d'expliquer les différentes techniques de compression d'images médical rencontrées dans la littérature, nous présentons les algorithmes de codages sans perte ainsi les méthodes de compression avec pertes. Ensuite nous exposerons en détail les codeurs de sous-bandes (EZW, SPIHT). Ces algorithmes sont capables de représenter efficacement et simplement les coefficients d'ondelettes et d'obtenir des performances (en termes de qualité d'image par rapport au débit) bien meilleurs que celles des codeurs existants. Dans ce travail, l'estimation et le jugement de la qualité d'image compressée sont donnés par les paramètres d'évaluation le PSNR et le MSSIM.

Le deuxième chapitre consiste à présenter les ondelettes classiques et ces limites, et de faire à un tour d'horizon sur les ondelettes de secondes générations que nous avons présenté. Notre choix s'est alors orienté vers la structure Lifting et la transformée en ondelettes basée sur la structure quinconce. Nous appliquons cette transformée non redondante couplée avec le SPIHT à la compression pour les 2 types de catégories de l'image (couleur et niveau de gris).

Dans le 3^{eme} chapitre nous penchons sur la technique de la transformée discrète en cosinus (DCT), et la transformée de Walsh en énumérant leurs propriétés les plus importantes. Et nous introduisons des méthodes hybride basée sur la combinaison de deux technique DWT et DCT et ou la DWT avec WALSH.

Nous terminons notre étude par une série d'expérimentations pour chaque algorithme proposé. Nous nous intéressons à la compression d'images médicales enregistrées par les différentes techniques d'imagerie médicales. Nous qualifions nos résultats à l'aide des nouveaux paramètres d'évaluation de qualité proposés.

Le manuscrit s'achève sur une conclusion générale concernant les différents travaux menés au cours de cette thèse, et sur les perspectives pouvant en découler.

5

CHAPITRE I ETAT DE L'ART SUR LA COMPRESSION DUNAGES MEDICALES « Le savoir est de beaucoup la portion considérable du bonheur » **SOPHOCLE**

Chapitre I

ETAT DE L'ART SUR LA COMPRESSION D'IMAGES MEDICALES

I.1 INTRODUCTION

La compression d'image concerne plusieurs domaines de la science et de la technologie, notamment le domaine médical. En effet, les praticiens disposent d'une base de données en image très dense et très variée. L'utilisation conjointe de ces images et les examens cliniques et biologiques aide considérablement les médecins à affiner leur diagnostic. Cette quantité en intense d'images nécessité des moyens de stockage de plus en plus important, a cette allure le seuil de saturation est très vite atteint. Les études ont prouvé que le service de radiologie d'un hôpital peut produire plus de 20 térabits de données d'image par année **[1].**

Pour remédier à ces problèmes, la compression des images numériques est alors une solution incontournable.

Une caractéristique trés importante de la compression d'images est qu'elle peut être avec pertes. Après tout, une image, est visualisée par des humains donc on peut se permettre de négliger quelques informations imperceptibles par le système visuel humain (HVS).

Eliminer la redondance présente dans l'image et adapter les techniques de compression avec le systeme visuel humain est l'idée de base derrière toutes les méthodes de compression avec pertes qui existent à l'heure actuelle.

L'origine de la préférence des médecins pour la compression sans perte par rapport à la compression avec pertes est, comme on l'a dit, d'éviter les erreurs médicales liées à une mauvaise reconstruction de l'image. En effet, le principal problème de la compression avec pertes pour les images médicales est dû au fait que des détails importants pourraient disparaître (d'autres pourraient éventuellement apparaître). Ces détails sont généralement des structures difficiles à discerner car elles entraînent de faibles changements de contraste. Ainsi par exemple, des images peuvent révéler des lésions à travers des détails potentiellement sensibles à la compression avec perte puisqu'ils sont petits et ont des bords faiblement définis (comme par exemple : des micro-calcifications dans des mammographies, le contour d'un pneumothorax, un faible nodule d'une image pulmonaire, etc).

Pour autant, la compression avec pertes est plus que jamais à l'ordre du jour en imagerie médicale, et ce pour les raisons suivantes. Tout d'abord, les études bien que peu nombreuses ont montrées **[2]**, **[3]** que les images médicales possédaient des tolérances (maximum taux de compression) à la compression avec perte.

Enfin la qualité de la compression des images médicales doit tenir compte des éventuelles distorsions pouvant influencer l'interprétation qualitative des images et la valeur des paramètres anatomiques ou fonctionnels reflétant l'état de l'organe étudié.

Dans ce chapitre nous allons passer en revue sur un état de l'art sur les différentes techniques de compression, sans perte et avec perte des images médicales, nous présentons les différents codeurs existants dans la littérature, leurs avantages et leurs inconvénients.

I.2 METHODES DE CODAGE SANS PERTE

La notion de codage sans perte d'une source encore appelé codage entropique, a pour objectif d'atteindre une limite théorique du gain de compression caractérisée par l'entropie de la source. Nous rappelons quelques définitions liées à l'entropie d'un signal discret dont les échantillons proviennent d'une source dont la nature physique est connue. Elle peut être aléatoire et caractérisée par sa loi de probabilité **[4]**.

I.2.1 Codage entropique

De nombreux algorithmes de compression sans pertes ont été mis en œuvre pour coder une source S avec la contrainte d'obtenir des mots de code de longueur moyenne aussi proche de H(S) que possible. Un codeur entropique permet de compresser une séquence de symboles en se basant sur leur probabilité (a priori) d'apparition. Chaque symbole se voit assigner une nouvelle représentation (dépendent de sa probabilité d'apparition) de manière est ce que le codage de la source s'approche au plus de son entropie.L'entropie [5] est une grandeur qui caractérise la quantité d'information que contient une image.

Par exemple, une image dont tous les pixels ont la même valeur contient très peu d'informations car elle est extrêmement redondante, donc son entropie est faible. En revanche une image dont tous les pixels ont une valeur aléatoire contient beaucoup d'informations, son entropie est forte .

L'entropie (en bits) est calculée par la formule suivante:

$$H = -\sum_{i=1}^{N} p_i \log_2(p_i)$$
 I.1

où Pi est la probabilité de présence du niveau de gris i, et N étant le nombre du niveau de quantification (N = 256 pour une image à niveau de gris codée sur 8 bits).

Plus l'entropie est faible, moins on a besoin de bits pour représenter les niveaux de gris des pixels de l'image. Par définition l'entropie d'ordre zéro H_0 est donnée par :

$$H_0 = -\sum_{i=1}^{2^R - 1} p_i \log_2(p_i)$$
 I.2

où R est le nombre de bits par pixels. L'entropie H_0 d'une image originale fournit le débit minimal qu'il est possible d'atteindre par compression, pixel par pixel sans dégrader l'image, est par la même, un taux de compression sans perte maximale .

Certains algorithmes exploitent les statistiques des symboles en faisant l'hypothèse d'indépendance statistique. Ces codeurs (tel que le codage de Huffman, de Shannon-Fano [6] et le codage arithmétique [7]) sont limités par la valeur de l'entropie d'ordre zéro de la source. D'autres codeurs (tel le code de Lempel-Ziv [8],[9] et le codeur par longueur de séquence) utilisent les informations conjointes des réalisations des événements de la source. Ils sont limités par la valeur de l'entropie d'ordre zéro. Ces derniers codeurs ont de meilleures performances lorsque les réalisations de la source ne sont pas indépendantes. En supposant une source stationnaire, la valeur de l'entropie baisse au fur et à mesure qu'elle est calculée avec un ordre élevé. Ainsi, les codeurs performants exploitent les probabilités conjointes avec un ordre de plus en plus élevé. Cette stratégie est cependant limitée par la complexité des algorithmes mis en œuvre.

I.2.1.1 Codage de Huffman [10],[11]

Le codage Huffman a été proposé par David Huffman en 1952 [10]. C'est une méthode statistique basée sur l'attribution d'un mot de code binaire pour chaque symbole de la chaine à compresser. La longueur des mots du code des symboles est variable. Les symboles ayant la probabilité d'apparition forte sont codés avec des chaînes de bits plus courtes, tandis que les symboles dont la probabilité d'apparition est faible sont codés par des chaînes plus longues. Le codeur de Huffman est un arbre binaire ordonné par tous les symboles et par leurs fréquences d'apparition [66]. Les deux symboles les moins fréquents de la chaine sont reliés par leurs 'Parents' en faisant la somme de leurs fréquences. Les symboles jusqu'à ce qu'il ne reste qu'un seul symbole parent formant la racine de l'arbre binaire. L'opération inverse est utilisée pour le décodage.

Exemple : Soit un message a codé "**ABBBBAAC**". La fréquence d'apparition ainsi que le code Huffman correspondant est donné dans le tableau suivant est représentés par la figure I.1 :

Symbole	Fréquence	Code
	d'apparition	Huffman
а	3	01
b	4	1
с	1	00

Fig I. 1: Arbre binaire de Huffman

I.2.1.2 Codage arithmétique :

Très prisé pour ses performances, le codage arithmétique se singularise par sa capacité à coder chaque symbole sur un nombre non entier de bits. En réalité, il n'assigne pas un mot de code à chaque symbole mais il associe un point de l'intervalle [0,1] à un ensemble de symboles. Le principe repose sur le découpage de l'intervalle [0,1]. Chaque symbole se voit attribuer une partition de l'intervalle dont la taille est égale à sa probabilité d'occurrence. L'ordre de rangement est mémorisé pour être utilisé lors du décodage.

Le codage arithmétique est généralement plus performant que le codage de Huffman. Il tend vers la limite inférieure théorique de Shannon. Il permet d'atteindre des taux très proches de l'entropie théorique. Cependant il est gourmand en ressources et nécessite de connaitre à priori l'intégralité du signal avant de pouvoir procéder au codage.

Algorithme de codeur arithmétique : Les différentes étapes de l'algorithme de codage sont :

• L'initialisation : Nous affectons à chaque symbole une plage d'intervalle dont la longueur est égale à sa probabilité d'apparition fournie par le module. Les bornes externes de l'intervalle initial sont zéro et un.

• Le traitement du message: Nous initialisons un intervalle de travail en prenant comme bornes 0 et 1. Le premier symbole est représenté par la plage qui lui est affectée à l'étape 1.

Chaque symbole suivant restreint davantage l'intervalle et il est représenté par sa plage relative dans la plage précédente. Ainsi le flot de données est traduit par un nombre contenu dans la dernière plage calculée.

• On rajoute un symbole spécial pour déterminer la fin du message où l'on donne la longueur du flot avec le message codé pour permettre au décodeur de déterminer la fin du message.

I.2.2 Codage RLC (Run Length Coding)

Il est plus intéressant de coder un message contenant une suite d'éléments répétitifs par "*un couple répétition et valeur*" au lieu de coder seulement le message lui-même.

Le codage RLC consiste en effet à coder un élément du message par sa valeur de répétition. Pour autant, s'il n'y a pas de répétition d'éléments, la technique ne donne pas de résultats satisfaisants. Notons que, le codage RLC introduit un système de contrôle (bits) pour réaliser l'encodage. I l réalise le codage s'il y a une répétition successive d'éléments (minimum égal à 4). Dans le cas contraire, il insert les bits contrôle (00).

I.2.3 Codage Lempel-Ziv

C'est une technique de codage à base d'un dictionnaire ou nous mémorisons les chaînes qui se répètent dans ce dictionnaire. Ensuite, on remplacer les chaînes mémorisées par leur adresse (ou indice) construite dans le dictionnaire. L'élaboration du dictionnaire ainsi que la recherche de chaîne répétée sont différentes selon la version de l'algorithme. Il en existe trois versions.

- LZ77, utilisé pour l'archivage , la recherche s'effectue par une fenêtre glissante.

LZ78, utilisé dans la compression d'image, la recherche s'effectue sur tout le fichier. La taille du dictionnaire est limitée en fonction du mode de codage (16, 32, ou 64 bits);

LZW, introduite en 1984, C'est un algorithme utilisé dans la compression et la décompression. Il est basé sur la multiplicité des occurrences de séquences de caractères

dans la séquence à encoder. Son principe est de substituer des motifs par un code d'affectation en construisant au fur et à mesure un dictionnaire. Il est rapide en compression et en décompression et ne nécessite pas de virgule flottante [66], [67].

I.3. METHODES DE CODAGE AVEC PERTE

Les méthodes avec perte (lossy) ou irréversibles sont des méthodes qui tirent parti d'une corrélation (ou redondance) existante dans l'image. L'information perdue est due à l'élimination de cette redondance, ceci rend possible une compression plus importante. La perte d'information est toujours discutable et nous nous posons alors la question de la limite acceptable. Cette limite est définie par le type d'application, comme les images médicales par exemple. La quantification est un des mécanismes utilisé dans les algorithmes de compression, qui produit des pertes d'information [12],[13].

La figure(I.2) représente le schéma général d'un système de compression avec perte.

Dans un premier temps, afin de mieux compresser l'information, la source est transformée en groupe de coefficients. Les transformations les plus utilisées, que ce soit pour les images fixes ou les séquences d'images, sont la Transformée en Cosinus Discrète (DCT), la Transformée en Ondelettes Discrète (DWT) ou la décomposition Pyramidale.

Dans un second temps, les coefficients obtenus après la transformation sont quantifiés (tronqués). La phase de quantification introduit l'erreur dans le système de codage.

La dernière étape consiste à coder les coefficients quantifiés par le codage entropique.

I.3.1. Codage par quantification

La quantification est l'une des sources de perte d'information dans le système de compression. Son rôle est en effet de réduire le nombre de bits nécessaire à la représentation de l'information. Elle est réalisée avec la prise en compte de l'aspect psychovisuel (l'œil humain), ce qui permet de déterminer la distorsion tolérable à apporter au signal à coder. On distingue deux sortes de quantification : la quantification scalaire (QS) et la quantification vectorielle (QV).

I.3.1.1. Quantification scalaire (QS)

La quantification scalaire est réalisée indépendamment pour chaque élément. D'une manière générale, on peut la définir comme étant l'association de chaque valeur réelle x, à une autre valeur q qui appartient à un ensemble fini de valeurs. La valeur q peut être exprimée en fonction de la troncature utilisée : soit par l'arrondi supérieur, l'arrondi inférieur, ou l'arrondi le plus proche.

Image reconstruite

On l'appelle le pas de quantification Δ . Il représente l'écart entre chaque valeur q. Arrondir la valeur x provoque une erreur de quantification, appelé le bruit de quantification.

La procédure suivante définit la réalisation d'une quantification scalaire. Soit *X* l'ensemble d'éléments d'entrée de taille *N*.

- 1. Echantillonner *X* en sous-intervalles {[x_n, x_{n+1} [, $n \in \{0..., N-1\}$ }
- 2. Associer à chaque intervalle $[x_n, x_{n+1}]$ une valeur q
- 3. Coder une donnée $x \in X$ par q si $x \in [x_n, x_{n+1}]$

Si Δ est constant, on parle d'une quantification uniforme. Sinon elle est dite non-uniforme.

La figure (I.3) montre l'exemple d'une QS.

Fig. I.3- Quantification scalaire.

I.3.1.2. Quantification vectorielle (QV)

La quantification vectorielle est plus complexe à mettre en œuvre car il faut préalablement engendrer un ensemble de vecteurs de référence appelé dictionnaire (code book), ce qui se fait à l'aide d'un algorithme d'apprentissage que l'on applique à un ensemble d'images. La quantification consiste alors à décomposer l'image en vecteurs de taille identique à ceux du dictionnaire, à rechercher pour chaque vecteur de l'image le plus proche dans le dictionnaire et à le remplacer par l'indice dans le dictionnaire du vecteur associé **[14]**.

Il faut remarquer que la quantification vectorielle donne souvent de meilleurs résultats que la quantification scalaire **[15]**. Récemment, des méthodes de quantification donnant de meilleurs résultats que les deux techniques citées précédemment ont été introduites. En effet ces méthodes sont avantageuses grâce au contenu spatial de la transformée en ondelettes de l'image, ceci en quantifiant les coefficients par approximations successives à travers les sous bandes de même orientation.

I.3.2. Codage par prédiction

C'est la technique de compression la plus ancienne. On prédit la valeur du pixel à partir de la valeur précédemment codée. La prédiction peut se faire au moyen de l'histogramme de l'image. Seul l'écart entre la valeur réelle et la valeur prédite est quantifié puis codé et envoyé au décodeur. On peut réaliser la prédiction, au sein de l'image elle-même ainsi qu'entre images d'une séquence. Cette dernière est connue sous le nom de prédiction par compensation de mouvement. Le codage par prédiction est utilisé dans le codage DPCM (Differential Pulse Code Modulation).

I.3.3. Codage par transformation

Les méthodes de compression par transformation n'agissent pas directement sur l'image numérique dans sa représentation canonique, mais dans le domaine de la transformée. Cette transformation pouvant être linéaire ou non. Il est bien connu qu'une transformation permet de mettre en évidence certaines propriétés de l'image que la représentation originale ou canonique ne laisse pas apparaître.

En partant d'un ensemble de valeurs numériques corrélées d'une image, le but est d'obtenir un autre ensemble de valeurs le moins corrélées possible dans l'espace transformée. En général, les schémas de codage par transformation subdivisent l'image de taille $N \times N$ en sous images de taille plus petites avant de faire subir à ces sous images une transformation.

Nous privilégions les transformations unitaires et qui conservent l'énergie. La transformation consiste en la décomposition de l'image dans une base adéquate de fonctions tels que les coefficients de la transformation soient indépendants et qu'un nombre minimum de ces coefficients contienne une proportion importante de l'énergie de l'image. Ainsi, on pourra mettre à zéro certains d'entre eux sans nuire de manière significative ni à la quantité d'énergie, ni à l'aspect visuel de l'image reconstruite **[16]**.

Une transformation adéquate pour la compression d'image devrait permettre la décorrélation des coefficients transformés, la conservation d'énergie ou sa condensation dans un nombre minimum de coefficients et enfin posséder un algorithme rapide. Les transformations linéaires sont les plus utilisées car ayant des expressions analytiques simples et s'implémentant assez vite. Pour satisfaire la contrainte de décorrélation, on utilise les bases orthogonales et les transformations utilisées en compression sont orthogonales. Autrement dit, ce sont des opérations séparables, c'est-à-dire que l'opération en deux dimensions est équivalente à deux opérations successives à une dimension, l'une horizontalement et l'autre verticalement. **[15]**

Il existe de très nombreuses transformations orthogonales parmi elles, la transformée de Karhunen-loeve, la transformée en sinus, cosinus...

I.3.3.1 Transformation de Karhunen-loeve (KLT)

La transformée continue de Karhunen-Loève a été développée par Karhunen **[65]** et Loève [64], Cette transformée est une série d'analyse spectrale pour la représentation d'un signal aléatoire donné [63], dont les fonctions de base orthogonales sont obtenues par les vecteurs propres de la matrice d'auto-corrélation correspondante. Cette transformée est optimale au sens où tous les coefficients obtenus sont décorrélés et que la quasi-totalité de l'énergie est conservée par un minimum de coefficients. Malheureusement les éléments de la

transformation, notamment la matrice, dépendent de l'image dont il faut entre autre calculer la moyenne et la covariance. Mais comme la transformée KLT ne possède pas d'algorithme rapide, elle ne peut être utilisée pour une application pratique. On préfère des transformations qui sont indépendantes des images et qui ont des algorithmes rapides, tels que les transformations spectrales en ondelettes.

I.3.3.2 Transformations spectrales ou sinusoïdales

La transformation de Fourier et celles qui s'en déduisent, telles la transformation en sinus, la transformation en cosinus, sont très utilisées en analyse et en filtrage du signal.

Ces transformations possèdent des algorithmes rapides comme la *FFT (Fast Fourier Ttransform)* et ses variantes. La variable de l'espace transformé étant la fréquence, une telle décomposition permet de mieux observer la répartition fréquentielle de l'image. Etant donné que ce sont les premiers harmoniques qui contiennent la quasi-totalité de l'énergie, il est donc possible de mettre à zéro une proportion importante des coefficients et de coder l'image à moindre coût.Malgré la rapidité de la transformation de Fourier, elle décompose l'image en une partie réelle et une partie imaginaire pouvant se convertir en module et argument ce qui n'est pas facile à manipuler ou à interpréter. Les traitements de ces données peuvent s'avérer lourds, d'où la préférence accordée à la transformation en cosinus qui bénéficie de toutes les caractéristiques de la *FFT*. La transformée en cosinus discrète *DCT (discret Cosine Transform)* a été choisie comme standard par *JPEG (Joint Photographic Experts Group)* pour le codage d'images fixes et a fait l'objet de beaucoup d'études et d'applications de la transformation *KLT*, la matrice de transformation *DCT* est complètement indépendante de l'image.

D'autre part, cette norme (JPEG) présente un certain nombre d'inconvénients :

- L'efficacité de codage est limitée.

- Le codage par blocs de 8×8 pixels génère un effet de mosaïque à bas débit très gênant visuellement.

- La transmission d'images codées est très peu robuste en environnement bruité.

- Les applications liées à l'image sont de plus en plus spécifiques et nécessitent de nouvelles fonctionnalités non résolues par *JPEG*.

I.3.3.3 Transformation en ondelettes

L'introduction de la transformée en ondelettes (DWT) avait pour but de faire face aux problèmes de non stationnarité des signaux. Lorsqu'on applique la DWT à une image, la transformation est appliquée sur l'ensemble de l'image et non pas par partitionnement, en conséquence absence d'effet de blocs lors de la reconstruction des données . Ceci permet une répatition uniforme de l'erreur de compression sur toute l'image. Donc, au lieu de représenter un signal comme la somme pondérée de sinusoïdes comme c'est le cas de la transformée de Fourier, nous avons la somme pondérée d'ondes translatées et dilatées dans le temps .

La transformation en ondelettes permet d'obtenir une représentation temps-fréquence **[17],[18]** ou temps échelle. Elle a des propriétés d'adaptation ou de flexibilité très attrayantes notamment le choix des fonctions de bases des ondelettes (orthogonales ou non à support compact ou infini, ect...) et des paramètres de dilatation et translation **[19],[20]**. Les transformées en ondelettes conservent l'énergie du signal et possèdent notamment des algorithmes rapides **[21]**, elles sont donc bien adaptées à la compression d'image **[19],[22]**. L'intérêt des ondelettes par rapport aux sinus et aux cosinus se situe surtout à deux niveaux :

- Contrairement aux sinus et cosinus qui ne sont bien localisés qu'en fréquence, les ondelettes le sont également en temps. Par conséquent tout changement de fréquence dans la transformée en ondelettes ne produira de changements que sur une certaine partie du domaine temporel.

- Les ondelettes permettent de représenter de manière compacte un grand nombre de fonction : ainsi les fonctions formées de pics près prononcés nécessitent beaucoup moins d'ondelettes que de sinus/cosinus pour être représentées [16].

Les ondelettes sont utilisées dans les deux catégories de techniques de compression que sont la compression sans perte et avec perte [23],[24].

I.4. METHODES DE CODAGE DES SOUS-BANDES

Le but des transformées présentées dans la section précédente est de décorreler les données brutes de l'image représentées par ses pixels. Cette décorrélation n'est cependant pas parfaite et les coefficients obtenus après transformée restent dépendants statistiquement.

Ainsi, bien qu'une loi gaussienne généralisée puisse représenter avec fidélité la statistique de premier ordre des sous-bandes, seuls les codeurs exploitant l'information mutuelle résiduelle entre les coefficients ont permis d'obtenir des performances bien meilleures que les codeurs précédents. De plus, les transformées en ondelettes offrant naturellement une représentation progressive de l'image, il est intéressant de conserver cette propriété lors du codage des sous-bandes.

Ainsi, dans les codeurs emboîtés (embedded), la quantification et le codage sont également réalisés de manière progressive, en commençant par coder partiellement les coefficients de plus forte amplitude, puis en raffinant la quantification de ces derniers et en codant de nouveaux. Nous commençons par présenter les codeurs non progressifs, puis les codeurs emboîtés, basés sur des structures d'arbres ou de blocs.

I.4.1. L'algorithme de codage EQ

L'algorithme d'Estimation-Quantization (EQ) **[25]** consiste à modéliser les coefficients de chaque sous-bande par un mélange de gaussiennes généralisées, dont la variance est conditionnée par un voisinage causal et le paramètre de forme est fixe. L'expression de la gaussienne généralisée est donnée par la formule suivante :

$$P(X = x) = \frac{\alpha\beta}{2\lambda(1/\beta)} e^{-|\alpha x|^{\beta}}$$
 I.6

Où β est le paramètre de forme, et α est donné en fonction de la variance σ^2 par

$$\alpha^2 = \frac{\lambda(3/\beta)}{\sigma^2 \lambda(1/\beta)}$$
. Cette loi se réduit à l'expression d'une laplacienne lorsque $\beta = 1$ et d'une

gaussienne lorsque $\beta = 2$. Elle représente de manière assez fidèle la distribution stationnaire des coefficients pour un paramètre β autour de 0,6 – 0,7. Dans l'algorithme EQ, ce paramètre est estimé pour chaque sous-bande à l'encodeur et transmis au décodeur. La variance est quant à elle estimée localement par maximum de vraisemblance, en fonction de la valeur de coefficients précédemment quantifiés dans un voisinage causal du coefficient considéré.

Lorsque tous les coefficients voisins sont quantifiés à zéro, la variance du coefficient est imprévisible et une valeur par défaut est utilisée. Cette variance par défaut est également estimée à l'encodage et transmise au décodeur.

Une fois les paramètres de la gaussienne généralisée estimés pour le coefficient courant, celui-ci est quantifié pour le débit cible donné. Un quantificateur uniforme par zone morte est sélectionné parmi un ensemble de quantificateurs prédéfinis indexés par la pente $-\tau$ correspondante sur la courbe débit-distorsion. Les probabilités des symboles quantifiés sont également stockées dans cette table pour l'étape de codage entropique.

Ce codeur a l'avantage d'être simple et de complexité très réduite, offrant des performances très satisfaisantes. Il a par contre l'inconvénient de ne pas permettre un décodage progressif efficace de l'image, car chaque coefficient est codé totalement avant de passer au suivant.

I.4.2. L'algorithme de codage EZW

C'est le premier codeur en sous-bande par « zerotree » à avoir été introduit par Shapiro [26]. L'idée c'est de trouver le meilleur ordre de transmission progressive des coefficients de représentation en ondelettes sur l'image codée tout en apportant d'excellentes performances débit/distorsion par rapport à la norme JPEG. Il procède au regroupement des coefficients non significatifs sous forme d'arbre de zéos (*zerotree*). La structure zerotree permet de détecter les zones de l'image qui ne contiennent pas d'information significative et sont codées ensuite en arbre. L'algorithme EZW peut être résumé en trois étapes, comme suit :

- La définition des cartes de signifiance indiquant les positions des coefficients significatifs par rapport à un seuil donné.

- Une approximation successive, par passes, des coefficients significatifs, qui permet donc une notion de progressivité du codage selon un critère d'arrét de débit-distorsion.

- Un codeur arithmétique dynamique de la chaine de symboles.

L'hypothèse principale de ce codeur est la suivante : si un coefficient d'ondelette à un certaine échelle est non signifiant pour un seuil T donné, alors tous les coefficients aux échelles plus fines ayant la même orientation ont une forte probabilité d'être non signifiants pour T (un détail « d » est dit insignifiant pour un seuil T si $T \prec |d|$). Cette hypothèse, si elle est vérifiée, permet de coder l'ensemble des coefficients d'un arbre (tel que représenté dans la figure I.4-b) à l'aide d'un seul symbole .L'arbre est alors dit arbre de zéros car tous ses coefficients sont insignifiants par rapport au seuil T courant. Le codeur EZW opère un codage itératif en plans de bits en utilisant des pas de quantification dyadiques de type $T_i = \frac{T_{i-1}}{2}$ et en mettant a jour des listes de signifiance et de raffinement. L'avantage de l'algorithme EZW est de faire la transmission progressive d'image puisque le décodeur peut s'arrêter au niveau de n'importe quelle suite de bits. De surcroît nous aurons une meilleure image reconstruite avec cette suite de bits tronquée. Cet algorithme présente en plus l'avantage de ne nécessiter ni phase d'apprentissage, ni dictionnaire, ni l'information sur l'image source.

a- Ordre de parcours des coefficients.

b- Modèle de dépendances inter-bandes pour l'EZW 2D.

I.4.3. L'algorithme de codage SPIHT : [28], [29], [30]

L'algorithme SPIHT (Set Partitioning In Hierarchical Trees) a été proposé par Saïd et Pearlman en 1996 pour la compression avec [28] et sans perte [31]. Il a été étendu aux images 3D pour la vidéo [32] et pour la compression d'images volumiques [33]. La modification majeure de SPIHT par rapport à EZW réside dans la mise à jour d'une 3 ^{eme} liste permettant de créer des ensembles non signifiants de grande taille. Ces ensembles non signifiants permettent de connaître l'état d'une descendance même si le coefficient n'est pas la racine d'un zérotree. SPIHT effectue un partitionnement récursif de l'arbre de manière à déterminer la position des coefficients significatifs dans la descendance du coefficient considéré. Il repose sur les mêmes concepts : codage progressif par plan de bits et utilisation des dépendances hiérarchiques entre les coefficients des différents sous-bandes. Cependant, un nouveau protocole de dépendance entre les coefficients est défini.

Les coefficients de la sous-bande de plus basse fréquence (A3 en figure I.4-b) sont regroupés par quatre, et pour chaque groupe, la descendance est comme suit :

Un des quatre coefficients (A3 en figure I.4-b) n'admet pas des descendants, alors que les trois autres (en gris en figure I.4-b) ont quatre descendants chacun. Pour les autres sousbandes, comme dans le cas de l'EZW, chaque coefficient admet quatre descendants.

Trois ensembles de coordonnées sont utilisés pour présenter la nouvelle méthode de codage :

- D(i,j) : Ensemble de tous les descendants du pixel (i,j).
- O(i,j) : Ensemble de coordonnées des descendants directs du pixel (i,j).
- L(i,j) : Ensemble défini comme étant D(i,j)-O(i,j).

Algorithme de SPIHT :

L'algorithme est cependant plus sophistiqué : contrairement à l'algorithme EZW qui n'utilise qu'un seul ensemble décrivant la signifiance des coefficients, le SPIHT utilise trois listes , de coefficients signifiants (LSP), de coefficients insignifiants (LIP) et d'ensembles insignifiants (LIS). Les entrées de chacune des listes sont les coordonnées (i,j) dans la matrice image, qui représentent des pixels individuels dans le cas des listes LIP et LSP et l'ensemble de descendants D(i,j) ou L(i,j) dans le cas de la liste LIS.

Pour préciser la relation entre la comparaison des amplitudes à un seuil n et le message en bits envoyé, on utilise la fonction : $S_n(\Gamma) = \begin{cases} 1,0, & si \max_{(i,j) \in \{c_{i,j}\}} \} \ge 2^n \\ 0, & si non \end{cases}$

Avec $c_{i,j}$ qui représente le coefficient de coordonnées (i, j) et $S_n(\Gamma)$ indique la signifiance de l'ensemble de coordonnées Γ .

Même principe que l'EZW, on utilise une passe pour la description des coefficients significatifs et une passe de raffinement. L'algorithme SPIHT se déroule comme suit [27] :

1. Initialisation :

Calcul du seuil : $n = \left[\log_2 \left(\max_{(i,j)} |C_{i,j}| \right) \right]$

La liste des coefficients signifiants est initialement vide ($LSP = \emptyset$), tandis que la liste de coefficients insignifiants contient les racines de chaque arbre (coefficients de la bande basse) et la liste d'ensembles insignifiants.

LIP = Les coordonnées de tous les coefficients de la sous-bande de plus basse fréquence. Elle contient les racines de chaque arbre (coefficients de la bande basse).LIS = Les coordonnées de sous-bandes de plus basse fréquence admettant des descendants. Elle contient l'ensemble des descendants de chaque arbre

2. Passe de test de signifiance : Cette partition initiale est segmentée récursivement au moyen de deux règles. Si un ensemble de descendants d'un noeud est signifiant, il est séparé en quatre coefficients fils directs de ce noeud, et l'ensemble des autres descendants.

- **a**. Pour chaque entrée (i, j) dans LIP faire :
- ✓ Calculer S_n (i,j).
- ✓ Si S_n (i,j) = 1 alors, déplacer (i,j) vers LSP et envoyer le signe de $c_{i,j}$.

b. Pour chaque entrée dan LIS faire :

b.1 si l'entrée est de type A alors,

- Envoyer S_n (D(i,j)).
- Si $S_n(D(i,j)) = 1$ alors,

- Pour chaque $(k,l) \in O(i,j)$ faire :

- > Envoyer S_n (k,l).
- Si S_n (k,l) = 1 alors : ajouter (k,l) à LSP et envoyer le signe de ck,l.
- Si $S_n(k,l) = 0$ alors : ajouter (k,l) à la fin de LIP.

- Si $L(i,j) = \emptyset$, alors déplacer (i,j) à la fin de LIS comme une entrée de type B, ensuite aller à l'étape b.2. Sinon retirer l'entrée (i,j) de LIS.

- **b.2** Si l'entrée est de type B alors,
 - Envoyer S_n (L(i,j)).
 - Si $S_n(L(i,j)) = 1$ alors :
- Ajouter chaque $(k,l) \in O(i,j)$ à la fin de LIS comme entrée de type A.
- Retirer (i,j) de LIS.

3. Passe de raffinement :

Pour chaque entrée (i,j) dans la liste LIP, à l'exception de ceux trouvés par la dernière passe de test de signifiance, envoyer le n^{ieme} bit le plus signifiant de $|c_{i,j}|$.

Comme dans EZW, la passe de raffinement consiste à coder progressivement les bits de poids faibles des coefficients significatifs.

4. Réitération : Décrémenter n par 1 et passer à l'étape 2.

Un exemple d'application de cet algorithme sur une matrice de test est présenté dans l'annexe.

Successeurs de SPIHT [42]: SPIHT a connu un grand succès dans le domaine de la recherche, notamment en imagerie médicale.il a été étendu :

- Pour la compression d'images médicales volumiques [34], et amélioré afin de faciliter l'accès aléatoire [35],
- Pour le codage de région d'intérêt [36], [37].
- Pour la télémédecine afin de pouvoir transmettre des images à différentes résolutions [38]
- Pour la compression d'images médicales à l'aide d'un modèle psycho visuel humain [39]
- Et pour la compression presque sans perte [40],[41].

I.5 EVALUATION DE LA QUALITE DE COMPRESSION

Les techniques irréversibles de compression modifient l'image en y introduisant une distorsion. Il faut donc évaluer le niveau de cette distorsion, qui permettra de contrôler la qualité des images reconstruites, d'évaluer et comparer les différentes approches. Dans la pratique, plusieurs techniques subjectives et objectives sont utilisées **[43]**.

I.5.1 Techniques subjectives : Les mesures de la qualité subjective se fait par des tests psychophysiques ou par des questionnaires avec notations réalisés par des professionnels de la radiologie .Dans ce cas, on demande à un ensemble de radiologues de noter la qualité des images comprimées (généralement sur une échelle de 1 à 5) selon que celles-ci leur permettent ou non d'effectuer un diagnostic (ou une mesure particulière d'organe).

Les outils classiques d'analyse statistique (au minimum moyenne, écart-type) permettent ensuite d'interpréter les résultats et d'évaluer l'impact de la compression. Ces approches sont totalement ouvertes et ne reposent sur aucun standard (au contraire de l'approche suivante). Par ailleurs, contrairement aux images naturelles **[44]** ou à la vidéo **[45]**, très peu d'études

[46] ont été réalisées à notre connaissance pour proposer d'autres critères objectifs d'évaluation de la qualité spécifiques à l'imagerie médicale. Cela demeure un problème très ouvert qui ne sera pas abordé dans cette thèse

I.5.2 Techniques objectives :

Les mesures objectives sont basées sur des critères mathématiques pour évaluer la qualité des images. Les critères de qualité utilisés pour mesurer les performances des instruments optiques sont, par exemple, le rapport signal/bruit (SNR), l'erreur quadratique moyenne (MSE).

1.5.2.1Taux de compression

Le taux de compression est défini comme le rapport entre le nombre total de bits nécessaires pour représenter l'information originale et le nombre total de bits du fichier binaire à stocker qui résulte de la méthode de compression :

$$RC(\%) = \frac{nombre \ de \ bits \ codés}{nombre \ de \ bits \ de \ l'image \ originale} \times 100$$
 I.4

Dans la pratique, on utilise plutôt le débit pour mesurer le pouvoir de compactage d'une méthode. Le débit est exprimé en bits par pixel :

$$RC(bpp) = \frac{nombre \ de \ bits \ codés}{taille \ de \ l'image \ originale \ (nombre \ de \ pixels)}$$
I.5

I.5.2.2. Distorsion

L'information perdue entre le signal original et le signal décodé en fin de chaîne, S'appelle *distorsion. L*a mesure de distorsion la plus couramment utilisée est l'Erreur Quadratique Moyenne (EQM). Ce critère se calcule comme la moyenne des carrées des écarts entre les pixels de l'image reconstruite et les pixels correspondants de l'image originale.

 A) Erreur Quadratique Moyenne : La grande valeur de MSE signifie que l'image est de mauvaise qualité. Le MSE est défini comme suit:

$$MSE^{2} = \frac{1}{M \ x \ N} \sum_{1=1}^{i=N} \sum_{j=1}^{j=M} \left(I(i, j) - \hat{I}(i, j) \right)^{2}$$
 I.6

Avec I(i, j) : représente l'image originale, $I^{(i, j)}$: représente l'image dégradée . M et N sont le nombre de lignes et de colonnes.

B) Rapport signal sur bruit crête (PSNR)

La faible valeur du PSNR signifie que l'image est de mauvaise qualité. Le PSNR est défini comme suit:

$$PSNR = 10 \log_{10} \left(\frac{dynamique}{MSE} de l'image}{MSE} \right)^2$$
I.7

Généralement une image est codée sur 8 bits. Elle est représentée par 256 niveaux de gris qui varient entre 0 et 255, l'étendu ou la dynamique de l'image est alors 255.

• Le PSNR d'une image couleur RGB est défini par l'équation:

$$PSNR = 10 \log_{10} \left(\frac{255^2 \times 3}{MSE_{R} + MSE_{G} + MSE_{B}} \right)$$
I.8

C) L'indice de la Similarité Structurelle (SSIM)

La mesure du PSNR donne une valeur numérique concernant la dégradation, mais il ne renseigne pas sur le type de cette dégradation. De plus, comme cela est souvent noté dans **[47],[48],** il ne représente pas parfaitement la qualité perçue par les observateurs humains.

Pour les applications d'imagerie médicale dans lesquelles les images dégradées doivent finalement être examinées par des experts, l'évaluation classique reste insuffisante. C'est pour cette raison que des approches objectives sont nécessaires pour l'évaluation de la qualité de l'image médicale. Nous évaluons alors un nouveau paradigme pour l'estimation de la qualité des images médicales, précisément les images compressées par la transformée en ondelettes; basé sur l'hypothèse que le système visuel humain (HVS) est très adapté pour extraire les informations structurelles.

La similarité compare la luminance, le contraste et structure entre chaque couple de vecteurs, d'où l'indice de similarité structurelle (*SSIM*) entre deux signaux x et y est donné par l'expression suivante [49],[50]:

$$SSIM(x, y) = l(x, y).c(x, y).s(x, y)$$
 [19]

La comparaison de la luminosité est déterminée par l'expression suivante:

$$l(x, y) = \frac{2\mu_x \mu_y + C_1}{\mu_x + \mu_y + C_1}$$

Où l'intensité moyenne de signal x est donnée par: $\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$

 $C_1 = (k_1 L)^2$ La constante $K_1 << 1$ et L indique la ligne dynamique de la valeur des pixels (255 pour une image en niveaux de gris codé sur 8 bits).

- La fonction de comparaison de contraste prend la forme suivante:

$$c(x, y) = \frac{2\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2 + C_2} \text{ Avec } : \sigma_x = \sqrt{\mu_x(x^2) - \mu_x^2} : 1 \text{ 'écart-type du signal original } x.$$

 $C_2 = (K_2 L)^2$, la constante $K_2 \ll 1$

- La fonction de comparaison de structure est donnée par l'expression suivante:

$$s(x, y) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3} = \frac{\operatorname{cov}(x, y) + C_3}{\sigma_x \sigma_y + C_3} \text{ or } \operatorname{cov}(x, y) = \mu_{xy} - \mu_x \mu_y, C_3 = \frac{C_2}{2}$$

Alors, l'expression de l'indice de similarité structurelle devient:

SSIM (x, y) =
$$\frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2\sigma_y^2 + C_2)}$$

Finalement la mesure de qualité peut fournir une carte spatiale de la qualité de l'image locale, qui fournit plus d'informations sur la dégradation de qualité de l'image, ce qui est utile dans les applications de l'imagerie médicale.

Pour l'application, on exige une seule mesure totale de la qualité de toute l'image qui est donnée par la formule suivante:

$$MSSIM(I,\hat{I}) = \frac{1}{M} \sum_{i=1}^{M} SSIM(I_i,\hat{I}_i)$$

Où *I* et *I*[^] sont respectivement les images de référence et dégradée, *I i* et *I*[^] *i* sont les contenus des images à la i^{ème} fenêtre locale.

M : le nombre total de fenêtres locales dans l'image.

Les valeurs de l'*MSSIM* exposent une meilleure consistance avec l'apparence visuelle qualitative.

1.5.2.3 Temps de calcul

La contrainte du temps est un facteur essentiel dans l'évaluation des performances de toute méthode de compression, elle revient à calculer le temps pris par la compression et la décompression des images. Cette contrainte est plus au moins imposée selon l'application visée par la compression (transmission ou archivage). En effet, il serait dommage, dans une application de transmission, que le temps gagné par une réduction de la taille des données à transmettre soit inférieur au temps passé à la compression décompression [68]. Cette qualité sera cependant moins cruciale dans des applications visant l'archivage de données.

I.6. Etat de l'art sur la compression d'images médicales :

En préambule, il est important de souligner que la comparaison des performances fournies par toutes les méthodes de compression n'est pas une tâche facile. En effet, contrairement à la compression d'images naturelles, il n'existe pas de bases de données dites de référence pour tester les méthodes. Ainsi, les chercheurs utilisent leurs propres images médicales pour évaluer leurs algorithmes. Or un résultat valable pour une modalité et un organe ne l'est pas nécessairement pour une autre modalité ou un autre organe. Cette partie essaie cependant de résumer les principaux résultats en compression sans et avec perte qui ont été publiés à ce jour.

I.6.1 Compression sans perte :

De nombreuses études [51], [52], [53], [54] ont testé les méthodes de référence 2D (CALIC) et les standards de compression actuels (JPEG sans perte, JPEG - LS, JPEG 2000, PNG ...) Kivijärvi et al dans [53] examinent la compression sans perte sur 3147 images de différentes modalités (scanner, IRM, échographie, PET, SPECT). CALIC [55], [56] qui est un codeur prédictif basé sur contexte donne les meilleurs performances en un temps raisonnable (TC = 2,98 : 1 en moyenne) alors que JPEG-LS [57] est presque aussi efficace (TC = 2,81 : 1 en moyenne) et beaucoup plus rapide (4 fois plus rapide). PNG et JPEG sans perte apparaissent en retrait.

Clunie dans [51] teste les mêmes méthodes en évaluant en plus le standard JPEG2000 [58]. Sur 3679 images de différentes modalités et parties anatomiques, il arrive à la conclusion que CALIC est légèrement supérieur (TC = 3,91 : 1 en moyenne) à JPEG LS et JPEG2000 (TC = 3,81 en moyenne pour les 2). JPEG-LS est cependant plus simple à implanter, consomme moins de mémoire et est plus rapide que JPEG 2000 et CALIC. JPEG 2000 possède lui le plus de fonctionnalités pour l'imagerie médicale. Les autres algorithmes testés (LZW, Huffman adaptatif, JPEG sans perte, PNG, Unix compress) présentent de mauvaises performances.

En résumé, l'ensemble des études 2D confirme que JPEG LS, JPEG 2000 et CALIC constituent l'état de l'art pour les algorithmes 2D de compression sans perte d'images médicales. Cependant, remarquons que ces taux de compression restent limités. L'ensemble de ces techniques correspond aux méthodes présentées dans le paragraphe précédent. Tous ces méthodes sont basées sur une transformée en ondelettes 2D.

Néanmoins, l'utilisation des méthodes 2D ne permet pas d'atteindre de très forts taux de compression lorsqu'il s'agit de compression sans perte. La compression avec pertes maîtrisées peut donc être une réponse à cette limitation.

I.6.2 Compression avec perte

La compression avec pertes est plus que jamais à l'ordre du jour en imagerie médicale, et ce pour les raisons suivantes. Tout d'abord, les études bien que peu nombreuses ont montrées [2], [3] que les images médicales possédaient des tolérances à la compression avec perte. On

définit cette **tolérance** comme le maximum de taux de compression pour lequel l'image compressée est jugée acceptable, tant pour l'interprétation humaine que pour celle assistée par ordinateur (CAD). Ainsi par exemple, les radiographies de poitrine digitalisées sont très tolérantes à la compression [2] (au moins 40 : 1 pour une compression avec la méthode SPIHT 2D [28] par exemple). Les films d'os digitalisés sont moyennement tolérants (entre 20 : 1 et 40 : 1). Les images de scanner, IRM et d'échographie sont plus faiblement tolérantes (de 10 : 1 à 20 : 1).Les études sur les scanners ont indiqué que la précision du diagnostic était préservée jusqu'a un taux de compression de 10 : 1 à la fois pour le thorax [59] et le foie [60], et jusqu'à 20 : 1 pour le colon [61]. Enfin, citons une étude très récente sur l'impact de la compression avec pertes (par SPIHT et JPEG2000) des mammographies. Cinq radiologues expérimentés ont localisé et noté les agglutinements de micro calcifications et les masses dans 120 mammographies [62]. Il en ressort que la précision des données mesurées est préservée jusqu'à des taux de compression de 80 : 1.

Notons que toutes ces études ont été effectuées sur des méthodes 2D. Malheureusement, aucune étude n'a encore déterminé un taux de compression référence unique pour un type d'images (une modalité et un organe) et une méthode de compression. Cependant, nous pouvons déjà constater les gains en taux de compression offerts par rapport à ceux de la compression sans perte. Comparer les algorithmes de compression avec pertes en imagerie médicale est un problème très complexe. Dans l'introduction, nous avons évoqué les difficultés pour évaluer les pertes, la qualité de l'image reconstruite, la précision du diagnostic. Dans le même temps, nous avons décrit brièvement un certain nombre d'outils statistiques et subjectifs permettant d'évaluer les performances des méthodes.

Malheureusement, la quasi totalité des publications actuelles de référence en compression d'images médicales n'utilisent pas ces techniques car elles sont souvent très coûteuses en temps et en moyens humains. De plus, il n'y a à notre connaissance presque aucun travail récent où l'évaluation subjective de la qualité des images compressées a été réalisée par des professionnels de la radiologie.

I.7 CONCLUSION

Nous avons abordé dans ce chapitre un état de l'art sur les différentes techniques de compression d'images médicales. On distingue deux catégories des méthodes de compression, les algorithmes qui conservent l'information (compression sans perte), et ceux qui en éliminent (compression avec perte sans dégradation dans l'image reconstruite). Afin d'évaluer

la qualité d'une méthode de compression pour l'image médicale plusieurs paramètres classiques ou basés sur le système visuel humain ont été présentés.

Dans cette thèse, nous nous intéressons à la compression avec perte d'information basée sur la transformée en ondelettes de nouvelle génération qui sera étudiée dans le chapitre II, et a la compression hybride par la DWT et la transformée en cosinus et ou la transformée de Walsh qui sera présentée dans le chapitre III.

Chapitre II

Transformée en Ondelettes de seconde génération

II .1 INTRODUCTION :

La représentation efficace de l'information visuelle est au cœur de nombreux problèmes en traitement d'images incluant la compression, le filtrage, et l'extraction de primitives pertinentes. Par représentation efficace on entend la description compacte et précise, par un nombre restreint d'échantillons, de l'information significative contenue dans une image [69]. En effet, une transformée efficace peut capturer l'essence d'un signal donné par un nombre minimal de fonctions de base. En pratique, cette description doit être générée par des transformations structurelles et des algorithmes rapides [70]. La transformée en ondelettes [71], récemment intégrée dans le standard de codage d'images JPEG2000, constitue un exemple typique pour ces représentations. Leur application à l'imagerie médicale date de 1992 .Depuis leur introduction il y a deux décennies, les ondelettes ont fait l'objet de beaucoup d'attention dont elles y ont démontré leur force dans des domaines aussi diversifiés que le débruitage, la compression, le codage, l'imagerie médicale ou satellitaire...

Récemment, il est apparu évident que les transformations usuelles de type séparable, telles que la transformée en ondelettes, semblent former une catégorie restreinte et limitée des possibilités de représentations des images et de signaux multidimensionnels. Cette limitation est due en premier lieu au fait que de telles représentations ne prennent pas en compte la régularité des structures géométriques d'une image. Comprendre comment représenter les structures géométriques complexes est devenu donc un enjeu important pour améliorer l'état de l'art du traitement d'images. Le besoin de disposer d'outils permettant l'identification de la structure géométrique d'une image se fait ainsi sentir. Par ailleurs, les communautés de chercheurs en traitement d'images et en vision par ordinateur ont plutôt tendance à privilégier les représentations d'images exhibant une sensibilité directionnelle au spectre fréquentiel. Cette caractéristique tant désirée trouve sa justification dans les aspects orientationnels du système de perception visuelle humain.

Basés sur cette observation, des travaux récents montrent qu'il est possible de définir des cadres théoriques de représentations multi-échelles plus vastes donnant naissance à de nouvelles transformées directionnelles dites ondelettes de secondes générations plus adaptées à la structures géométriques de l'image.

27

Dans ce Chapitre, nous allons faire un tour d'horizon des nouvelles transformées conçues récemment pour pallier aux problèmes induits par la transformée en ondelettes et les autres transformées de type séparable. Ce tour d'horizon est loin d'être exhaustif. Nous mettrons l'accent en effet sur les approches les plus proéminentes en les situant les unes par rapport aux autres et en présentant leurs principaux avantages et inconvénients dans le domaine de la compression d'image. Il existe cependant d'autres transformations capables de fournir des décompositions multi-résolution mieux adaptées à la représentation des images. Ce chapitre présente et permet d'évaluer les performances en compression d'images médicales de deux nouvelles transformées telles que :

- La structure lifting, qui permet d'étendre la théorie des ondelettes dans un cadre nonlinéaire et autorise simplement la construction de transformées non-linéaires et inversibles.
- les ondelettes non séparable basées sur l'échantillonnage en quinconce qui sont convenables pour analyser l'intégralité de l'image

II.2 Transformée en ondelettes continue CWT [72]:

Cette transformation consiste à des translations et des dilatations d'une seule fonction fixée, l'ondelette $\psi \in L^2(R)$. Dans la transformée en ondelette continue, les paramètres de translation et de dilatation varient continûment. Cela signifie que nous utilisons les fonctions :

$$\psi_{ab}(x) = \frac{1}{\sqrt{|a|}} \psi\left(\frac{x-b}{a}\right) \quad \text{Avec} \quad a \in R - \{0\}, \ b \in R$$
 II.1

Ces fonctions sont mises à l'échelle de telle sorte que leur norme dans $L^2(R)$ soit indépendante de *a*. La CWT d'une fonction $f \in L^2(R)$ est défini par :

$$W(a,b) = \langle f, \psi_{a,b} \rangle$$
 II.2

En utilisant l'identité de Parseval, on peut aussi l'écrire sous forme :

$$W(a,b) = \frac{1}{\sqrt{2\pi}} \langle F, \Psi_{a,b} \rangle$$
 II.3

Où

$$\Psi_{a,b}(\omega) = \frac{1}{\sqrt{|a|}} e^{-i\omega b} \Psi(a\omega)$$
 II.4

On notera que la CWT convertit une fonction à une variable en une fonction à deux variables. La représentation d'une fonction par sa CWT est redondante et la transformée inverse n'est donc pas toujours unique. De plus, toutes les fonctions W(a,b)ne sont pas forcément la CWT de la fonction f. Si l'ondelette Ψ satisfait la condition d'admissibilité

$$C_{\psi} = \int_{-\infty}^{+\infty} \frac{\left|\hat{\Psi}(\omega)\right|^2}{|w|} d\omega < \infty$$
 II.5

Alors, la transformée d'ondelette continue W(a,b) admet un inverse

$$f(x) = \frac{1}{C_{\psi}} \int_{-\infty-\infty}^{+\infty+\infty} W(a,b) \psi_{ab}(x) \frac{da \, db}{a}$$
 II.6

D'après la condition d'admissibilité, nous observons que $\hat{\Psi}_{(0)=0}$ et par conséquent, Ψ doit osciller. Cette transformée est souvent représentée par une image 2D (en couleurs ou en niveaux de gris) correspondant en module et phase de la transformée W(a,b). L'avantage de cette caractérisation par rapport à la transformée de Fourier est qu'elle ne donne pas seulement une information sur le type de singularité mais aussi sa localisation dans le temps.

II. 3 Transformée en ondelettes discrète DWT [72], [73]:

La transformée en ondelette continue est très redondante. Il suffit en pratique de quelques coefficients pour couvrir entièrement le plan temps échelle. Les paramètres a et bsont fondamentalement continus. Leur discrétisation ne s'effectue pas selon un critère bien défini. Quant à la transformée en ondelettes discrète le concept est différent. En effet, numériquement nous devons savoir comment discrétiser cette transformée de telle manière à conserver les propriétés intéressantes. Nous donnons donc que les paramètres de dilatation a et de translation b puissent être discrétisés sans perte d'information. Nous pouvons donc formuler le problème de l'existence d'une famille $\{\Psi_{a_m,b_n}\}$ dénombrable, formant une base de L^2 et permettant une reconstruction exacte du signal en question. Cette famille redondante d'ondelettes discrètes, a été introduite dans le cadre des frames ou structures obliques par Ingrid Daubechies [74]. La redondance d'informations contenues dans cette transformée peut être généralement intéressante dans le cadre de l'analyse des signaux. En effet, elle est intéressante dans la mesure où les conditions que doivent vérifier les ondelettes ne sont pas trop contraignantes [75]. La reconstruction numérique du signal est stable. D'autre part, avec l'introduction des bases orthonormées d'ondelettes [76], la théorie des ondelettes a pris un tournant décisif dans le sens où cette notion de base orthonormée constitue un outil clef en traitement du signal ; elle a des contraintes de rapidité nécessitant le minimum de données possible [73]. Dans la cadre de la théorie des frames, I. Débauchies a proposé une discrétisation des facteurs d'échelle a et de translation b telle que :

$$a_m = a_0^m, m \in \mathbb{Z} \text{ et } a_0 > 1$$
 II.7

Alors la famille d'ondelettes est de la forme:

$$\psi_{m,n}(x) = a_0^{-\frac{m}{2}} \psi(a_0^{-m} x - nb_0)$$
 II.9

Une telle discrétisation permet à la famille, à chaque échelle a_m , de couvrir tout le support de signal sans trop de redondance, chaque ondelette étant essentiellement concentrée sur l'intervalle $\left[a_0^m nb_0, a_0^m (n+1)b_0\right]$. Par contre la transformée ne sera plus invariante en translation comme la transformée continue, raison de la dépendance des paramètres. Pour exprimer les coefficients de la transformée en ondelette discrète, nous les notons par d_n^m

$$d_n^m = \left\langle \psi_{m,n}, f \right\rangle = a_0^{-\frac{m}{2}} \int \overline{\psi} \left(a_0^{-m} x - n b_0 \right) f(x) \, dx \qquad \text{II.10}$$

Nous montrons dans la littérature spécialisée [77] que si la famille $\{\psi_{m,n}, m, n \in Z\}$ est une frame, alors nous aurons :

$$\frac{b_0 Log(a_0)}{\pi} A \le \int_{-\infty}^{+\infty} \frac{|\Psi(\omega)|^2}{|\omega|} d\omega \le \frac{b_0 Log(a_0)}{\pi} B$$
 II.11

Où A et B sont deux constantes positives d'une frame donnée.

Cette expression nous montre simplement que la condition d'admissibilité est vérifiée et l'ondelette $\Psi_{m,n}$ est analysante. Dans ce cas, la construction des algorithmes numériquement stable pour reconstruire le signal à partir des ses coefficients ondelettes d_n^m est possible:

$$f(x) = \frac{2}{A+B} \sum_{m,n} \langle \psi_{m,n}, f(x) \rangle \psi_{m,n} + R$$
 II.12

Avec : $||R|| \le O\left(\frac{B}{A} - 1\right) ||f(x)||$, il exprime un terme d'erreur.

Si la base est orthonormée alors le terme R sera nul. Cependant, il est préférable de réduire au maximum la redondance de cette représentation. Dans ce cas, on choisit des valeurs de $a_0 = 2$, $b_0 = 1$ (dyadique) pour lesquelles les ondelettes $\Psi_{a_0 b_0}$ constituent une base orthonormée. Nous concluons que l'orthonormalité est une condition nécessaire pour le passage de la transformée en ondelettes continue vers la transformée en ondelettes discrète. [78]. Après ces quelques définitions sur la théorie des ondelettes, nous allons maintenant nous intéresser à l'analyse multirésolution (AMR), qui permet de réaliser de manière concrète la décomposition du signal.

II. 4 ANALYSE MULTIRESOLUTION :

L'analyse multi résolution (*AMR*) est un formalisme mathématique qui permet de construire aisément des bases orthonormées d'ondelettes. Le principe consiste à décomposer le signal à analyser en une suite de coefficients d'approximation et de détails, chaque suite d'approximation se décomposant à nouveau en approximation et détail. A chaque niveau de cette décomposition, les coefficients de détails correspondent aux coefficients en ondelettes du signal à une échelle donnée. **[72]**, **[79]**, **[77]**

On appelle l'analyse multi résolution toute suite $(V_j)_{j \in \mathbb{Z}}$ décroissante de sous espace emboîtés : $V_1 \subset V_0 \subset V_{-1}$... de $L^2(R)$ qui vérifie les propriétés suivantes :

- i) l'intersection des V_j est nulle soit $\bigcap_{j=-\infty}^{+\infty} V_j = \{\phi\}$
- **ii**) l'union des V_j est dense dans $L^2(R)_{\text{soit}} \bigcup_{j=-\infty}^{+\infty} V_j = L^2(R)$

iii) f(x) est dans V_j si seulement si sa version contracte par un facteur 2 est dans V_{j-1} , c'est-à-dire : $f(x) \in V_j \Leftrightarrow f(2x) \in V_{j-1} \Leftrightarrow f(2^j x) \in V_j$

- iv) Si f(x) et dans V_j , ses translates 'entières' sont dans V_j , $f(x) \in V_j \Leftrightarrow f(x-k) \in V_j$
- v) Il existe une fonction $\phi(x)$ de V_0 , telle que la famille $\{\phi(x-k); k \in Z\}$ est une base orthonormée de V_0 .

Les espaces V_j constituent des espaces d'approximation. La projection d'une fonction f(x) de $L^2(R)$ sur ce sous espace constitue une approximation de f(x) à l'échelle 2^{-j} .

La condition (iii) assure que toute fonction de $L^2(R)$ peut être approchée dans cette analyse. La dernière condition implique qu'une base orthonormée de V_j peut se déduire de la base V₀ à partir d'une seule fonction $\phi(x)$ appelée fonction d'échelle, en construisant la

formule :
$$\phi_{j,k}(x) = 2^{-j/2} \phi(2^{-j} x - k), \ k \in \mathbb{Z}$$
 II.13

Ceci implique encore que :
$$\phi_{j,k}(t) = 2^{-j/2} \phi(2^{-j}t - k), \ j,k \in \mathbb{Z}$$
 II.14

Est une base orthonormée de $U_j V_j = L^2(R)$. On adopte la convention d'indexation de Danbechies [76] pour l'AMR : $V_j \rightarrow L^2(R)$ que $j \rightarrow -\infty$. Dans cette convention, le signal échantillonné appartient à V_0 et l'échelle de l'ondelette croît avec j. quand on passe de V_j à V_{J+1} , on dilate l'ondelette par un facteur de deux et on divise sa bande fréquentielle par deux. Les coefficients d'approximation au niveau de résolution j sont obtenus par projection du signal sur les éléments de la famille $\{\phi_{j,k}, j, k \in Z\}$:

$$A_{j,k} = \int_{-\infty}^{+\infty} f(x)\phi_{j,k}(x)dx \qquad \text{II.15}$$

La différence d'information entre deux résolutions successives conduit à introduire les coefficients de détail de sorte que les coefficients d'approximation à une résolution donnée se retrouvent à partir ceux d'approximation et de détail à la résolution suivante.

Si l'on attribue aux détails un espace d'existence W_j , on aura à un niveau de résolution j :

$$V_{j-1} = V_j \bigoplus_{j=-\infty}^{+\infty} W_j$$
 II.16

Ce qui signifie que W_j est le complémentaire orthogonal de V_j dans V_{j-1} . Par construction, les W_j sont orthogonaux entre eux et leur somme directe couvre $L^2(R)$:

$$L^{2}(R) = \bigoplus_{j=-\infty}^{+\infty} W_{j}$$
 II.17

De façon similaire aux V_j , les W_j vérifient un certain nombre de conditions :

i)
$$\bigcap_{j=-\infty}^{+\infty} W_j = \{\phi\}$$

ii)
$$\bigcup_{j=-\infty}^{+\infty} W_j = L^2(R)$$

iii)
$$f(x) \in W_j \Leftrightarrow f(2x) \in W_{j-1}$$

iv)
$$f(x) \in V_j \Leftrightarrow f(x-k) \in V_j, \forall k \in Z$$

Le problème suivant est celui de savoir si l'on dispose d'une base orthonormée dans les W_j de sorte qu'une collection : $\{\psi_{j,k}(x) = 2^{-j/2}\psi(2^{-j}x-k); (j,k) \in Z^2\}$ II.18

constitue une base orthonormée de $L^2(R)$. Pour cela, il suffit d'avoir une fonction $\psi(x)$ de W_0 telle que la famille $\{\psi(x-k), k \in Z\}$ soit une base orthonormée de W_0 . Cette fonction sera donc appelée ondelette. Nous avons donc maintenant deux fonctions : une fonction d'échelle et une fonction d'ondelette. Des propriétés intéressantes propres à ces deux fonctions rendent leur utilisation aisée.

A)- Fonction d'échelle : La fonction $\phi(x)$ est appelée fonction d'échelle. L'analyse multi résolution lui confirme des propriétés intéressantes. Puisque $V_0 \subset V_{-1}$ alors n'importe quelle fonction dans V_0 peut s'écrire comme combinaison linéaire des fonctions de V_{-1} .

On considère donc $\phi(x)$ dans V_0 et $\phi(2x - k) \forall k \in Z$ dans V_{-1} , reliées selon :

$$\phi(x) = \sqrt{2} \sum_{n} h_n \phi(2x - n)$$
 II.19

Les h_n sont les coordonnées de $\phi(x)$ dans la base $\{\sqrt{2}\phi(2x-k), k \in Z\}$.

Pour une base orthonormée les coordonnées vérifient :

$$h_n = \sqrt{2} \int_{-\infty}^{+\infty} \phi(x) \phi(2x - n) dx \qquad \text{II.20}$$

et
$$\sum_{-\infty}^{+\infty} h_n^2 = 1$$
 II.21

La transformée de Fourier de l'équation (II.19) conduit :

$$\Phi(v) = \sqrt{2} \sum_{n} h_{n} \frac{1}{2} \Phi\left(\frac{v}{2}\right) e^{-\pi i v n}$$
 II.22

On pose $H(v) = \frac{\sqrt{2}}{2} \sum_{n} h_n e^{-2\pi i v n}$, qui est une fonction complexe périodique

$$\Phi(v) = H\left(\frac{v}{2}\right)\Phi\left(\frac{v}{2}\right)$$
 II.23

La condition d'orthogonalité sur la base $\{\phi_{0,n}(x)\}_{n \in \mathbb{Z}}$ se traduit pour la séquence (h_n) par la

condition:
$$\sum_{k \in \mathbb{Z}} h_k h_{k+2n} = \delta_{n,0}$$
 II.24

Et la condition de Mallat Meyer [80] suivante: $|H(w)|^2 + |H(w + \pi)|^2 = 2$ II.25

B)- Fonction d'Ondelette : On peut de la même façon que la fonction d'échelle caractériser l'ondelette $\Psi(x)$ qui est dans $W_0 \subset V_{-1}$ en introduisant le filtre discret g(n) tels que :

$$\psi(x) = \sqrt{2} \sum_{n} g_{n} \phi(2x - n)$$
 II.26

En produisant de même que la fonction d'échelle, on écrit :

$$\Psi(v) = G\left(\frac{v}{2}\right) \Phi\left(\frac{v}{2}\right)$$

$$II.27$$

$$G(v) = \frac{\sqrt{2}}{2} \sum_{n} g_{n} e^{-2\pi i v n}$$

Avec :

Les conditions d'orthogonalité sur h (équation (II.24)) et sur les espaces V_J et W_J permettent de mettre en évidence la relation entre les deux séquences (h_n) et (g_n) [81].

$$g_n = (-1)^n h_{-n+1}$$
 II.28

Ce qui signifie qu'on peut retrouver les coefficients du filtre passe – haut par les coefficients du filtre passe - bas.

II.5. Transformée en ondelettes unidimensionnelle rapide :

Les ondelettes sont des fonctions de bases qui représentent un signal donné sur plusieurs niveaux de résolution de détails. La transformée en ondelettes rapide combine les concepts d'analyse multi résolution et des ondelettes. La transformée en ondelettes rapide est mise en œuvre a l'aide d'un banc de filtres, qui est composé d'un filtre passe-bas pour l'approximation basse résolution et d'un filtre passe-haut retournant les coefficients d'ondelettes. Le filtrage est suivi d'un sous-échantillonnage de facteur 2.

La transformée en ondelettes peut s'étendre sur plusieurs niveaux de résolution en itérant l'application de la transformée aux approximations successives. Ainsi, elle permet d'obtenir une approximation a la résolution 2^{-k} , en partant d'un signal de résolution 2^{-j} avec j < k.

Il en résulte une approximation à la résolution 2^{-k} et des ensembles de coefficient d'ondelette aux diverses échelles. Les coefficients d'ondelettes sont a la fois nécessaires et suffisants pour reconstruire le signal de départ a partir de l'approximation basse résolution.

II.5.1. Banc de filtres orthogonaux :

L'analyse multi résolution orthogonale est associée à un banc de filtres orthogonaux (h, g) correspondant aux séquences :

$$h_n = \left\langle 2^{-1/2} \phi\left(\frac{t}{2}\right), \phi\left(t-n\right) \right\rangle \quad \text{et} \quad g_n = (-1)^n h_{-n+1} = \left\langle 2^{-1/2} \psi\left(\frac{t}{2}\right), \phi(t-n) \right\rangle$$
 II.29

L'équation (II.24) se développe en $\Phi(v) = \Phi(0) \prod_{m} H(2^{-m}v)$. Il faut que $\Phi(0)$ soit non nul pour éviter d'avoir $\Phi(0) = 0, \forall v$. Pour v = 0, on $a^{\Phi(0)} = H(0) \cdot \Phi(0)$. Ce qui implique que H(0) = 1 et que $H(\frac{1}{2}) = 0$. Ces conditions donnent un comportement passe-bas au filtre H.

De la même façon, on peut montrer que G a comportement d'un filtre passe-haut qui est l'image miroir du filtre passe-bas. H et G sont appelés les filtres miroir en quadrature (*FMQ*), ils sont présentés sous la figure ci-dessous (Figure .II.2).

En résumé, le filtre correspondant à la fonction d'échelle est de type passe-bas, il donne donc une version grossière ou approximative du signal. Le deuxième ; correspondant à l'ondelette mère, son rôle est de donner les composantes les plus fines ou ce qu'on appelle les détails.

II.5.2.Transformée en ondelette rapide :

Mallat **[82]** a mis au point une transformée en ondelettes pyramidale a l'aide d'un banc de filtres numériques. Pour représenter le signal f de $L^2(R)$ sur plusieurs niveaux de résolution, nous supposons que sj[n] représente la projection de f sur l'espace Vj et d dj[n] représente la projection de f sur l'espace complémentaire de Vj :

$$s_{j}(n) = \left\langle f, \phi_{j,n} \right\rangle et \ d_{j}(n) = \left\langle f, \psi_{j,n} \right\rangle$$
 II 30

La transformée en ondelettes rapide, appliquée a un signal de résolution 2^{-j+1} retourne deux signaux de résolution 2^{-j}, l'un décrivant une approximation du signal 2 fois plus grossière et l'autre les coefficients d'ondelettes :

$$s_{j}(n) = \sum_{n=1}^{\infty} h_{p-2n} s_{j-1}(p) = s_{j-1} * h(-2n)$$
 II.31

$$d_{j}(n) = \sum_{n=-\infty}^{+\infty} g_{p-2n} s_{j-1}(p) = s_{j-1} * g(-2n)$$
 II.32

Comme pour la transformée directe par les équations (II. 31) et (II.32),il est possible de montrer la relation suivante, utile pour la reconstruction de signal original :

$$s_{j-1}(n) = \sum_{p=-\infty}^{+\infty} h_{n-2p} s_j(p) + \sum_{p=-\infty}^{+\infty} g_{n-2p} d_j(p)$$
 II.33

Notons que les filtres h et g sont utilisés à la fois pour la décomposition en ondelettes et la reconstruction. La reconstruction exacte est assurée pour un banc de filtres obtenu à partir d'une analyse multirésolution orthogonale. Une condition suffisante pour générer une analyse multirésolution orthogonale est que le filtre h vérifie la condition de l'équation (II. 25).

La construction d'un filtre g tel que le couple (h, g) définit un banc de filtres orthogonaux, impose la condition (II.27) sur g. La base d'ondelettes orthonormées associée est alors définie à l'aide des équations (II.26) et (II.29). Rappelons qu'une transformée en ondelettes rapide réalise la convolution d'un signal s_0 avec un filtre passe-bas h et un filtre passe-haut g, un changement de résolution est réalisé au cours du filtrage. Les deux signaux de sortie sont ensuite sous-échantillonnés par un facteur 2. Pour descendre en résolution, le filtrage est appliqué à nouveau sur les sorties successives s_j jusqu'à atteindre la résolution souhaitée. Les séquences des filtres (h, g) peuvent alors s'identifié respectivement aux réponses impulsionnelles d'un filtre passe bas et d'un filtre passe haut d'un banc de filtre a reconstruction parfaite.

Fig. II.1 .la transformée en ondelette par banc de filtre en QMF d'Analyse -Synthèse

Fig.II.2: Filtres miroirs en quadrature

II.5.3. Propriétés Fondamentales d'une Ondelette [77], [72], [80] :

De nombreux critères peuvent intervenir dans le choix d'une ondelette, tels que l'orthogonalité, son support et l'oscillation. Cependant en ce qui concerne la propriété d'orthogonalité, celle-ci est implicite puisque la projection du signal discret de l'image pour obtenir les signaux des détails ne s'est fait que sur des bases d'ondelettes orthogonales.

Nous allons en particulier nous intéresser aux trois critères les plus significatifs dans le choix d'une ondelette : support compact, oscillation et régularité.

- Support compact : Une fonction d'échelle est une ondelette à support compact qui permet d'avoir des filtres *H* et *G* qui sont à réponse impulsionnelle finie. Nous aurons donc des sommes finies au niveau de l'implémentation avec l'algorithme pyramidal de calcul rapide de la transformée en ondelettes.
- Oscillation : Ce critère est lié au nombre de moments nul de l'ondelette, en effet le nombre de moments nul conditionne le degré d'oscillation de l'ondelette. Plus le nombre de moments nul est grand, plus on peut mettre de coefficients à zéro sans nuire à la qualité de l'image reconstruite. Cependant il faut faire attention à la taille des filtres choisis, en effet celle-ci est proportionnelle au nombre nul de l'ondelette et la complexité en temps de calcul de l'algorithme augmente avec la taille des filtres.
- **Régularité :** Une ondelette est dite régulière d'ordre *n* si elle est *n* fois continûment dérivable, i.e. elle appartient à la classe C^n . Par ailleurs, la transformée de Fourier d'une fonction sommable est continue et tend vers 0 à l'infini donc présente un comportement au moins en $\frac{1}{v}$ à l'infini. Or la dérivation temporelle d'ordre *n* revient à multiplier la transformée de Fourier du facteur v^n . Ceci impose donc une décroissance en $\frac{1}{v^{n+1}}$ de la transformée de Fourier si l'on veut que la dérivée énième de l'ondelette soit sommable. Il en résulte que plus une ondelette est régulière, plus son spectre décroît rapidement à l'infini. Par conséquent, si l'on prend le cas inverse d'une ondelette peu régulière, la décroissance spectrale sera lente, introduisant des fréquences élevées dans le signal ce qui est cohérent avec une certaine irrégulière.

En revanche, ce critère est très important dans la phase de synthèse/ reconstruction car un manque de régularité de l'ondelette fait apparaître des **effets de blocs**. A l'opposé un degré de régularité élevé aboutit à des effets de bord suivi d'un lissage trop important.

Il faut remarquer que l'aspect phase linéaire des filtres caractérisé par la symétrie des coefficients est important en traitement d'image. La recherche du filtre à phase linéaire ayant conduit au développement des ondelettes bi orthogonales qui sont à la fois à support compact et symétriques, est nécessaire ce qui n'est pas le cas des ondelettes à support compact de Daubechies.

II. 6 transformée en ondelette bidimensionnelle Séparable:

II.6.1 Analyse multi résolution et ondelette bidimensionnelle Séparable :

L'analyse multi résolution de $L^2(R^2)$ est obtenue en la définissant comme une suite de sous espaces vectoriels V_j^2 de $L^2(R^2)$ qui satisfont une simple extension des propriétés (i) et (ii) dans le cas 1D. L'approximation du signal f(x, y) à la résolution j s'obtient toujours en projetant orthogonalement f(x, y) sur le sous-espace V_j^2 . Dans cette section on peut montrer qu'il existe une unique fonction d'échelle $\phi(x, y)$ dont l'ensemble des versions dilatées et translatées forme une base orthonormale de chaque sous-espace V_j . [77], [83], [72].

La famille des fonctions $\left\{\phi_{j,k,l}(x,y)=2^{-j}\phi\left(2^{-j}x-k,2^{-j}y-l\right)_{(k,l)\in\mathbb{Z}^2}\right\}$ II.34 est une base orthonormée de V_j . La construction de l'analyse multi résolution $\left(V_j^2\right)_{j\in\mathbb{Z}}$ de $L^2(\mathbb{R}^2)$ peut se faire en particulier par produit tensoriel d'une AMR $\left(V_j^1\right)_{j\in\mathbb{Z}}$ de $L^2(\mathbb{R}^2)$: $V_j^2 = V_j^1 \otimes V_j^1$, la fonction d'échelle $\phi(x, y)$ est alors également définissable sous forme d'un produit :

$$\phi(x, y) = \phi(x) \cdot \phi(y)$$
 II.35

Où $\phi(x)$ est la fonction d'échelle de $(V_j^1)_{j \in Z}$. L'analyse multi résolution de $L^2(\mathbb{R}^2)$ est alors dite séparable et elle a la particularité de mettre en évidence les orientations de direction verticale, horizontale et diagonale. Il est à noter également que la séparabilité adoptée par Mallat permet d'avoir un calcul plus rapide.

Les coefficients d'approximation s'obtiennent par projection sur la base des fonctions d'échelle :

$$A_{k,l}^{j} f = \langle f, \phi_{j,k,l} \rangle = \iint f(x, y) 2^{-j} \phi(2^{-j} x - k) \phi(2^{-j} y - l) dx dy$$
 II.36

De même, on peut définir les échantillons de détail à la résolution j comme les coefficients résultants de la projection du signal sur W_j , le complément orthogonal de V_j et V_{j-1} . On peut de cette façon définir une base orthonormale de W_j en translatant et dilatant trois fonctions d'ondelettes 2D définies comme suit :

$$\psi^{1}(x, y) = \phi(x)\psi(y),$$

$$\psi^{2}(x, y) = \psi(x)\phi(y),$$

$$\psi^{3}(x, y) = \psi(x)\psi(y)$$

Ces fonctions sont vérifiées, $\operatorname{si} \psi_{j,k,l}^{i}(x, y) = 2^{-j} \psi^{i} \left(2^{-j} x - k, 2^{-j} y - l\right)$. Alors $\left(\psi_{j,k,l}^{1}, \psi_{j,k,l}^{2}, \psi_{j,k,l}^{3}\right)_{(k,l)\in\mathbb{Z}^{2}}$ est une base orthonormée de W_{j} et $\left(\psi_{j,k,l}^{1}, \psi_{j,k,l}^{2}, \psi_{j,k,l}^{3}\right)_{(j,k,l)\in\mathbb{Z}^{3}}$ est une base orthonormée de $L^{2}(\mathbb{R}^{2})$. Les bases d'ondelettes 2D sont obtenues par translations et dilatations de trois ondelettes élémentaires $\left\{\psi_{D}, \psi_{V}, \psi_{H}\right\}$ qui oscillent dans les directions

horizontale, verticale, et diagonale. Ces ondelettes bidimensionnelles s'obtiennent par un produit séparable d'ondelettes monodimensionnelles. La Figure II.3 montre un exemple d'ondelettes 2D.

Fig. II.3: Exemple d'un triplet de fonctions ondelettes en 2D

La figure (II.4) donne un exemple de décomposition de l'image IRM "coupe sagitale" *via* une AMR, par la transformée en ondelettes de CDF9/7.

-a- Image originale

-b- Coefficients d'ondelette

Fig.II.4– Décomposition en ondelette séparables CDF 9/7 d'une coupe sagittale de cerveau sur 3 niveaux de résolution.

II.6.2. Transformée rapide en ondelette bidimensionnelle [77], [83], [80] :

Le but de l'algorithme d'analyse multi résolution est de calculer les coefficients de détails $D_j f$ ou coefficients d'ondelettes, à partir des différentes approximations. Les espaces V_j étant emboîtés, toute l'information contenue dans V_j est également contenue dans V_{j-1} .

Le signal des détails discret de f(x, y) à la résolution j est alors caractérisé par le produit scalaire de f(x, y) avec l'ensemble des vecteurs de la base définie par la relation $\psi_{j,k,l}^{i}(x, y) = 2^{-j}\psi^{i}(2^{-j}x - k, 2^{-j}y - l)$. En particulier si on considère $\psi_{j,k,l}^{1}$, $\psi_{j,k,l}^{2}$ et $\psi_{j,k,l}^{3}$ séparément, on voit que la différence d'information entre $A^{j-1}f$ et $A^{j}f$ est donnée par les trois images de détails suivantes :

$$D_{j}^{1}f = \left(< f(x, y), \psi_{j,k,l}^{1}(x, y) > \right)$$
 II.37

$$D_{j}^{2}f = \left(< f(x, y), \psi_{j,k,l}^{2}(x, y) > \right)$$
 II.38

$$D_{i}^{3}f = \left(< f(x, y), \psi_{i,k,l}^{3}(x, y) > \right)$$
 II.39

Qui mettent en évidence les détails dans les directions : horizontale, verticale et diagonale respectivement. Il est clair que le signal approché et les différents signaux des détails à la résolution j^{-1} en 2D se calculent par filtrages séparables du signal à la résolution j suivant les deux axes. De plus leur taille est de $\frac{N}{2} \times \frac{N}{2}$ chacun si le signal $A^{j-1}f$ est de taille $N \times N$.

L'introduction des filtres \tilde{H} et \tilde{G} permet d'aboutir à partir les produits scalaires précédents, aux formules d'implémentation de l'analyse d'une image.

$$A_{k,l}^{j}f = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \tilde{h}(2k-n)\tilde{h}(2l-m)A_{n,m}^{j-1}f$$
 II.40

$$D_{j,k,l}^{1} f = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \tilde{h} (2k-n) \tilde{g} (2l-m) A_{n,m}^{j-1} f$$
 II.41

$$D_{j,k,l}^{2} f = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \tilde{g} (2k-n) \tilde{h} (2l-m) A_{n,m}^{j-1} f$$
 II.42

$$D_{j,k,l}^{3} f = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \tilde{g} (2k-n) \tilde{g} (2l-m) A_{n,m}^{j-1} f$$
 II.43

a) Schéma de Décomposition

b) Schéma de Reconstruction

 \oplus : Convolution (ligne ou colonne) avec le filtre *X*

 $1 \downarrow 2$: Conserver une ligne ou colonne sur deux

 $1 \uparrow 2$: insérer une colonne de zéro entre deux lignes ou colonnes

Fig. II.5 : Transformée en ondelette 2D a) Schéma de décomposition ; b) Schéma de reconstruction

On remarque que l'algorithme de décomposition est le même que dans le cas 1D. En effet, l'algorithme unidimensionnel est appliqué successivement sur les lignes et les colonnes de l'image pour chaque type de coefficient (Figure II.5).

Cette constatation nous aide à comprendre la notion de détail vertical, horizontal et diagonal. $D_{j,k,l}^1 f$, par exemple, est obtenu par approximation sur les lignes, puis calculé à partir de coefficients d'ondelettes sur les colonnes. Ce sera donc le détail horizontal.

Comme dans le cas unidimensionnel, la reconstruction du signal se fait récursivement. Nous additionnons l'interpolation du signal approché $A^{j}f$ à la résolution *j* avec l'interpolation de chaque signal des détails $D_j^1 f$, $D_j^2 f$ et $D_j^3 f$ à la même résolution pour obtenir le signal approché à la résolution *j*-1. Ce processus est ensuite répété jusqu'à arriver à $A_1 f$ qui est le signal discret originale.

Les filtres interpolateurs sont H et G, nous avons à la formule de synthèse suivante :

$$A_{k,l}^{j-1}f = \sum_{n=-\infty}^{+\infty} \sum_{n=+\infty}^{+\infty} h(k-2n)h(l-2m)A_{k,l}^{j}f +$$

$$\prod_{n=-\infty}^{+\infty} \sum_{n=+\infty}^{+\infty} \left[h(k-2n)g(l-2m)D_{j,k,l}^{1}f + g(k-2n)h(l-2m)D_{j,k,l}^{2}f + g(k-2n)g(l-2m)D_{j,k,l}^{3}\right]$$

$$\prod_{n=-\infty}^{+\infty} \sum_{n=+\infty}^{+\infty} h(k-2n)g(l-2m)D_{j,k,l}^{1}f + g(k-2n)h(l-2m)D_{j,k,l}^{2}f + g(k-2n)g(l-2m)D_{j,k,l}^{3}f$$

II.6.3.Les ondelettes biorthogonales

Les ondelettes biorthogonales ont été introduites par Cohen et al. [84] dans le but de fournir un choix plus vaste d'ondelettes permettant une reconstruction parfaite avec des filtres à réponse impulsionnelle finie (RIF) ; pour cela, il a été nécessaire de relâcher la contrainte d'orthogonalité et d'envisager des bancs de filtres différents pour l'analyse $(h_n \text{ et } g_n)$ et pour la synthèse (h_n et g_n). Les filtres biorthogonaux sont tout de même choisis de façon à préserver la linéarité de la phase ; en d'autres termes, on souhaite qu'ils n'induisent pas de distorsion fréquentielle. Les bases d'ondelettes biorthogonales sont construites à partir de deux bases d'ondelettes mères $\psi_{m,n}$ et $\psi_{m,n}$ obtenues par dilatations et translations; elles engendrent les espaces W_m et \tilde{W}_m . Les fonctions d'échelle correspondantes $\phi_{m,n}$ et $\tilde{\phi}_{m,n}$ constituent une base non orthogonale des espaces d'approximation V_m et \tilde{V}_m . Les espaces et V_m et \tilde{V}_m ne sont pas orthogonaux à leur complément, mais au complément de l'espace dual : $V_m \perp \tilde{W}_m$ et $\tilde{V}_m \perp W_m$. Les conditions de bi-orthogonalité se traduisent sur les ondelettes mères par la relation : $\langle \psi_{m,n}, \psi_{m',n'} \rangle = \delta_{m,m} \delta_{n,n'}$ II.45

où $\delta_{m,m'}$ est le symbole de Kronecker.

Les ondelettes bi-orthogonales ne sont pas isométriques ; la conséquence la plus importante est la perte d'optimalité des algorithmes d'allocation de débit les plus couramment utilisés. De plus, dans certains cas, il est possible de construire des filtres bi-orthogonaux qui vérifient « presque » les propriétés d'orthogonalité. Dans le cas général, Vetterli a montré dans **[85, 86]** que les conditions nécessaires et suffisantes pour qu'un banc de filtres biorthogonaux soit à reconstruction exacte sont les suivantes, en notant $\hat{h}(w)$ la transformée de Fourier de h(t):

$$\begin{cases} \hat{h}(w)\hat{\tilde{h}}(w) + \hat{g}(w)\hat{\tilde{g}}(w) = 2, \\ \hat{h}(w)\hat{\tilde{h}}(w+\pi) + \hat{g}(w)\hat{\tilde{g}}(w+\pi) = 2 \end{cases}$$
 II.46

Il reste cependant difficile de construire un banc de filtres uniquement à partir de ces conditions **[87]**.Tout signal peut se décomposer sur l'une ou l'autre des deux bases, de manière duale.

II.6.4 Ondelettes couramment utilisées en compression

Parmi toutes les ondelettes utilisées en traitement d'images **[88, 89, 90]**, la majorité des codeurs d'images et de vidéos n'en utilisent que quelques unes bien adaptées.

Dans le cas d'une transformée spatiale, on pourra utiliser des filtres longs afin d'obtenir une bonne décorrélation, malgré la présence d'effets de « Ringing » ; pour la transformée temporelle, des filtres plus courts sont nécessaires, en particulier en raison de la présence de mouvement qu'il faut compenser ; mais un filtre trop court obtiendra de moins bonnes performances. De fait, les codeurs utilisent principalement les ondelettes suivantes :

- L'ondelette de Haar [91], dont le support se limite à 2 échantillons, est la seule ondelette permettant de construire une transformée orthogonale, symétrique et à réponse impulsionnelle finie. Elle permet de simplifier de nombreux problèmes rencontrés en codage vidéo par transformée en ondelettes, dont la compensation en mouvement. Mais elle ne possède qu'un seul moment nul.
- Les ondelettes 5/3 possèdent un support de 5 échantillons à l'analyse (3 échantillons à la synthèse) et deux moments nuls ; cependant, elles restent d'utilisation assez simple. Il s'agit d'ondelettes biorthogonales symétriques très utilisées pour le filtrage temporel compensé en mouvement.
- Les ondelettes 9/7 [92] possèdent un support plus large de 9 échantillons à l'analyse et 7 à la synthèse, ainsi que quatre moments nuls, ce qui améliore leur pouvoir de décorrélation.
 Elles sont biorthogonales, mais aussi quasiment orthogonales.

La transformée en ondelettes 9/7, très efficace, est utilisée dans de nombreux schémas de codage d'images, notamment JPEG2000. Antonini et al. **[93]** ont montré leur supériorité pour

le codage d'images naturelles. On pourra trouver une description plus précise de ces ondelettes dans **[89, 94]** par exemple.

II.7. Limites des ondelettes bidimensionnelles de première génération :

L'extension à la dimension 2 de la transformée en ondelettes ouvre toutefois certaines interrogations en terme de description de l'information dans l'espace «transformé». En effet, la décomposition en ondelettes 2D, qui n'est qu'une simple extension de l'algorithme 1D, ne prend pas en compte les spécificités de l'image (notion de contour, textures, couleur, etc.).

Ce qui se traduit par une inadéquation entre la base utilisée et l'information à coder. Ceci étant dû au fait que les ondelettes bidimensionnelles (2D) séparables soient bien adaptées pour représenter des singularités ponctuelles mais elles échouent généralement sur les discontinuités linéaires que constituent les contours d'un objet. En effet, les ondelettes 2D séparables peuvent capturer des singularités isolées le long d'un contour mais elles sont aveugles vis-à-vis la régularité géométrique des singularités de l'image [95]. Elles n'exploitent donc pas complètement la régularité qui existe le long d'un contour pour le représenter. De plus, le nombre d'orientations (qui est une caractéristique très importante pour les signaux multidimensionnels) est limité et fixe. En effet, par construction, les ondelettes 2D séparables sont conçues uniquement pour représenter les singularités horizontales, verticales, ou diagonales et ne peuvent pas détecter les connections entre les points voisins du contour. Par conséquent, l'analyse de contours qui ne sont pas parfaitement horizontaux, verticaux ou diagonaux conduit à une représentation sous-optimale de l'information : les coefficients d'ondelettes représentant de tels contours se retrouvent éparpillés dans les différentes sousbandes au lieu d'être fortement présents dans une sous-bande unique. L'orthogonalité de la décomposition et l'échantillonnage critique font aussi apparaître des effets d'aliasing visibles autour des contours qui sont redondants d'un niveau de résolution à un autre, ce qui requiert un grand nombre de coefficients d'ondelettes pour les représenter.

En conséquence, les bases d'ondelettes sont capables de résoudre un problème essentiellement 1D, celui de l'analyse des singularités ponctuelles.

En 2D, le problème devient beaucoup plus complexe, à cause de la présence de singularités curvilignes. Les ondelettes classiques ne sont pas capables de représenter de telles singularités de façon efficace à cause de leur support carré **[96]**.

Cependant, il a été constaté **[95]** que, la Figure II.4 révèle en fait une faiblesse des ondelettes plutôt qu'une force, en montrant que les ondelettes détectent des points de contour isolés plutôt que le contour lui-même.

42

II.8 Solution :

Pour montrer comment l'on peut améliorer la transformée en ondelettes 2D séparables pour représenter les images contenant des contours réguliers, considérons le scénario suivant **[95]**. Imaginons qu'il existe deux peintres désirant peindre une scène naturelle, l'un utilise le style-«ondelettes» et l'autre utilise un nouveau style qu'on appelle «X-let». Tous les deux appliquent une technique pour augmenter la résolution suivant la stratégie grosse échelle vers échelle fine (*coarse-to-fine*). Ici, l'efficacité est mesurée par la vitesse, c'est-à-dire le nombre minimal de coups de pinceau, avec laquelle la scène peut être fidèlement reproduite.

Fig. II.6: Comparaison des performances de l'approximation non linéaire par les ondelettes classique et les 'X-let

Considérons le cas d'un contour régulier comme l'illustre la Figure II.6.Les ondelettes versus la nouvelle méthode illustrant comment les ondelettes ayant des supports carrés peuvent capturer des discontinuités ponctuelles seulement, tandis que la nouvelle méthode ayant des supports allongés peuvent capturer des segments de contours linéaires et peuvent, ainsi, représenter efficacement les contours lisses avec moins de coefficients. **[95]**

Parce que les ondelettes 2D résulte du produit tensoriel de deux transformées en ondelettes 1D, le peintre utilisant le style-ondelettes est limité à utiliser des coups de pinceau carrés le long du contour, avec de différentes tailles correspondant à la structure multi-résolution des ondelettes. Plus la résolution devient plus fine, plus la limitation du style-ondelettes, qui demande de nombreux points fins pour capturer le contour, devient claire. D'autre part, le peintre utilisant le nouveau style-''X-let'', exploite de manière efficace la régularité du contour en utilisant des coups de pinceau de différentes formes allongées et dans différentes directions suivant le contour. Par conséquent, le style-«X-let» est beaucoup plus efficace que le style-ondelettes. On retrouve cette intuition dans la construction des *Curvelet* par Candès et Donoho [97,98]. La conclusion qui peut être dégagée à partir de ce scénario est que les ondelettes 2D séparables échouent sur la régularité des frontières.

Ainsi, basées sur cette observation, les nouvelles transformées, proposées pour améliorer les inconvénients de la transformée en ondelettes 2D conventionnelle, doivent être riches en directions et avoir des fonctions de bases aux supports allongés suivant la discontinuité, pour pouvoir s'adapter à la géométrie des images. On peut aller plus loin pour voir ce que l'on peut apprendre de la nature. En effet, l'information visuelle est très bien capturée et représentée par le système visuel humain. Des études de physiologie montrent que l'oeil humain est capable de prendre un taux de 20 bits par seconde **[99]**. Avec ce taux, seulement 100 bits suffisent pour prendre une scène visuelle en quelques secondes.

En revanche, pour représenter une image typique de taille 512x512 pixels avec le système de compression d'images le plus avancé, à savoir JPEG-2000 basé sur les ondelettes, on a besoin d'au moins de dix kilo-octets !

Qu'est-ce qui rend le système visuel humain très efficace à représenter l'information visuelle? Des études de physiologie **[100, 101]** montrent que les champs réceptifs du cortex visuel sont localisés, orientés, et passe-bande. D'autres études de neurophysiologie plus récentes montrent aussi l'existence de neurones qui répondent à certaines formes de géométrie. Le système visuel humain est ainsi adapté de manière à capter l'information essentielle d'une scène naturelle en n'utilisant qu'un nombre minimal de cellules visuelles actives (neurones excités). Par conséquent, pour qu'une représentation d'images soit efficace, elle doit être basée sur une expansion *local, directionnelle,* et *multirésolution* **[95].**

Inspirés par le scénario des peintres, les études relatives au système visuel humain et les statistiques des images naturelles, Minh Do et Martin Vetterli **[95]** ont établi une «liste de souhaits» pour de nouvelles représentations d'image :

- I. **Multirésolution.** La représentation doit permettre aux images d'être approximées successivement, de la résolution grossière à la résolution fine.
- II. Localisation. Les éléments de base de la représentation doivent être localisés à la fois en espace et en fréquence.
- III. Echantillonnage critique (*Critical sampling*). Garantit la compacité en un nombre minimal d'échantillons de représentation.
- IV. Directionalité. La représentation doit contenir des éléments de base orientés selon une grande variété de directions, beaucoup plus que les trois directions offertes par les ondelettes séparables.
- V. **Anisotropie.** Pour capturer les contours lisses dans les images, la représentation doit contenir des éléments de base possédant une variété de formes allongées.

Parmi ces desiderata, les trois premières sont garanties avec succès par les ondelettes 2D séparables. Toutefois, les deux dernières exigent de nouvelles constructions non-séparables.

II.9. ETAT DE L'ART SUR LES ONDELETTES SECONDE GENERATION

La discussion menée dans la section précédente présente une forte motivation pour de «vraies» représentations 2D directionnelles plus adaptées aux structures géométriques lisses et continues telles que les contours d'objets, et pouvant faciliter la prochaine génération des applications de traitement d'images. En ce sens, de nombreuses idées innovatrices ont été étudiées, depuis quelques années, pour pallier aux défauts de la transformée en ondelettes 2D séparables tout en conservant ses avantages, à savoir sa multirésolution, sa bonne localisation en espace et en fréquence, ainsi que sa décimation critique. Parmi ces nouvelles représentations directionnelles cherchant à remédier aux problèmes induits par les ondelettes 2D séparables, on peut trouver deux approches différentes dans la littérature : les transformées adaptatives et les transformées à bases fixes ou non-adaptatives.

D'autres suivent une approche adaptative décrite par un modèle géométrique donnant explicitement la direction d'analyse locale. Nous allons dans cette partie faire un tour d'horizon des transformées directionnelles existantes, en les situant les unes par rapport aux autres et en présentant leurs principaux avantages dans notre domaine de compression en particulier. Nous donnons simplement cette liste à titre indicative.

II.9.1 APPROCHES NON-ADAPTATIVES

Nous présentons tout d'abord les approches pour lesquelles la décomposition ne dépend pas du signal à analyser. Ces approches ont le mérite de ne pas nécessiter de surcoût pour spécifier, lors de la synthèse, la configuration utilisée à l'analyse. En revanche, la plupart de ces transformées ont l'inconvénient d'être redondantes, ce qui est désavantageux pour leur application en compression d'image.

a) RIDGELETS

Les Ridgelets (crêtelette) forment une extension naturelle de la transformée de Radon [102;103] pour un nombre limité de directions, en se basant sur des fonctions d'ondelettes pour contrôler la précision en orientation et garantir la reconstruction parfaite. [104,105,106,107].L'idée générale pour calculer les coefficients Ridgelets est de voir cette transformée comme une analyse par ondelettes dans le domaine de Radon. En effet, en 2D, les lignes (discontinuités linéaires) se projettent sous forme de points (singularités ponctuelles) par l'intermédiaire de la transformée de Radon. Si l'on applique la transformée en ondelettes unidimensionnelle (1D) sur les différentes projections issues de Radon, nous obtenons un codage supposé optimal des contours des objets d'une image.

Les fondements de l'analyse par Ridgelets sont documentés dans la thèse de Candès (Stanford) [102]. Mais, les quelques travaux sur les Ridgelets menés depuis 1998 sont en général théoriques et les propriétés sont présentées dans un cadre continu. Le chemin menant

à une réelle implantation discrète reste complexe. En effet, lors du calcul d'une transformée Ridgelets numérique, l'étape «transformée en ondelettes discrète» ne pose aucune difficulté puisqu'elle est stable est inversible. En revanche, la discrétisation de la transformée de Radon est plus ardue. A cette fin, diverses versions discrètes de la transformée en Ridgelets, menant à des implantations algorithmiques, ont été développées **[109]**, **[110]**, **[111]**, **[108]**. Des représentations discrètes typiques incluent des expansions dans des bases orthonormales.

Pour la compression d'image médicale, les ridgelets apparaissent donc comme un outil extrêmement efficace en termes de taux de compression, la qualité de l'image compressée est supérieure pour des très bas débits ; par contre un effondrement du PSNR impliquant une mauvaise qualité de compression pour les hauts débits est constaté. Cependant la méthode n'est pas exempte de défauts. En particulier pour les très bas débits, nous observons des artefacts de type oscillatoire autour des contours ce qui est particulièrement désagréable pour la vision. Ces oscillations sont dues à la structure spectrale des fonctions de base (moins que l'ondelette) : lorsque le débit disponible est trop faible les quantifications correspondantes sont élevées et ont tendance à éliminer des coefficients de faible amplitude qui servent à compenser les oscillations des fonctions utilisées pour représenter les contours.[112];[113]. Malheureusement, par construction, la transformée en Ridgelets ne s'avère efficace que pour la caractérisation des contours rectilignes. Cependant, les contours dans une image sont rarement rectilignes et aussi longs que les dimensions même de l'image. Pour résoudre ce point, la transformée est appliquée par blocs avec les mêmes problématiques d'effets de blocs que la transformée en cosinus discrète. On peut toutefois considérer qu'une image comporte, de manière locale, des contours rectilignes et c'est ce qui nous amène à la transformée en Curvelets.

b) CURVELETS

Motivés par les limitations de la méthodologie des Ridgelets, Candès et Donoho en 1999 [114], [109], [115] ont innové un nouveau système de représentation dans l'espace 2D continu, \mathbf{R}^2 , nommé *Curvelets* (courbelettes) qui apporte une solution mathématique et algorithmique très élégante pour s'adapter à la régularité des images. Elle se décrit en deux étapes : le support de l'image est tout d'abord partitionné en carrés de taille variable avec recouvrement, pour éviter les effets de bords, et ces carrés sont alors décomposés par une analyse en Ridgelets discrète.

Comparées aux ondelettes, les curvelets peuvent représenter un contour lisse avec moins de coefficients pour la même précision grâce à leur forte anisotropie. **[102]**

Durant cette transformée, les contours non capturés par l'analyse en ondelettes séparables se retrouvent dans les sous-bandes de détail. Un partitionnement suffisamment fin des sous-bandes permet alors d'obtenir des blocs où ces contours forment des lignes droites et sont donc adaptés à l'analyse en Ridgelets.

En effet, les curvelets 99 est inversible mais redondante car l'analyse en Ridgelets discrète sous-jacente est réalisée au moyen d'une FFT du plan polaire, nécessitant plus de points que ceux disponibles dans la grille rectangulaire , en plus elle ne sont pas orthogonales ; donc on ne peut pas les utiliser dans le domaine de la compression d'image. Récemment, la deuxième génération de curvelet est une transformée multi échelle multi directionnelle avec des atomes indexés par un paramètre de position d'échelle et de direction [Candes & Donoho 1999, Candes & Donoho 2002, Candes et al. 2006]. [**116,117,118,119**]. Leur préoccupation est de construire une transformée rapide, stable et moins redondante. Pour une application de compression d'image médicale IRM. Dans [**113**] la transformée de curvelet de 2^{eme} génération donne de bons résultats en termes de PSNR, de taux de compression, et de qualité de l'image compressée avec un temps de calcul dépassant pas la seconde.

C) CONTOURLETS

La transformée en contourlets a été introduite au milieu des années 2000 par Do et Vetterli [95]. L'image est décomposée dans une pyramide Laplacienne avec des bancs de filtres directionnels non-séparables [121,122],qui permet l'analyse multi-résolution. Ensuite, un banc de filtres directionnels est utilisé sur chacun des niveaux de la pyramide ce qui permet l'analyse multi-directionnelle. La pyramide Laplacienne introduit un facteur de redondance de 4/3. La combinaison de ces outils permet de construire une base de Contourlets offrant 21 orientations possibles. La transformation en Contourlets est inversible mais la pyramide Laplacienne sous-jacente crée cependant une petite redondance (allant jusqu'à 33 %) qui réduit l'intérêt de son utilisation en compression d'image fixe. Notons qu'un schéma appliquant la transformée directionnelle sur des sous-bandes d'ondelettes séparables a été présenté dans [123]. Ce codeur utilise un codeur de type SPIHT [124] modifié pour coder les sous-bandes directionnelles obtenues. La transformée en contourlets présente de plus l'intérêt notable d'avoir la meilleure sélectivité directionnelle. De plus, elle est peu redondante ce qui en fait une bonne candidate pour son application à la compression.

Des travaux plus récents sur les CRISP-contourlets **[125]** permettent de s'affranchir de ce problème en proposant une transformée en Contourlets inversible et non-redondante mais aucun résultat expérimental de compression n'est présenté.

II.9.2 APPROCHES ADAPTATIVES

Ces approches présentent une plus grande flexibilité que les approches non adaptatives. Plutôt que d'utiliser une base fixe, de nombreuses constructions font appel à une base dont les fonctions sont choisies pour s'adapter au mieux à une image donnée. On parle alors d'ondelettes géométriques adaptatives. Le point commun de ces décompositions réside dans une étape d'estimation préalable de la géométrie de l'image (par triangulation, détection de contours, estimation de régularité...) avant de procéder à la décomposition.

a) Paquets d'ondelettes:

Dans les techniques par paquets d'ondelettes **[126,127]**, l'ensemble des décompositions par ondelettes dyadiques du signal est considéré (au lieu d'itérer la décomposition uniquement sur la bande basse). Dans les applications de codage, la base offrant le meilleur compromis débit-distorsion est sélectionnée **[128]** par optimisation lagrangienne.

Le coût de codage de la base choisie est pris en compte lors de cette minimisation.

b) Beamlets

La décomposition en beamlets **[129]** considère un partitionnement de l'image en quadtree, puis effectue une transformée de Radon dans chaque bloc. Les coefficients de beamlets sont liés par une relation multiéchelle, où chaque beamlet à un niveau donné est décomposée en trois beamlets connexes au niveau suivant. Cette transformée permet d'approximer les courbes dans les images et d'en extraire les contours par sélection dans le graphe de connexité des beamlets.

c) Wedgelets

La décomposition en wedgelets [130] représente une image par un quad-tree dans lequel chaque bloc est séparé en deux régions d'intensité différentes par une ligne. Elle est donc, en quelque sorte, duale à la décomposition en beamlets en considérant les intégrales de l'image de chaque coté du segment représentant le contour plutôt que l'intégrale le long du segment. Bien que cette décomposition fournisse une approximation assez grossière des images, elle a été combinée dans [131] avec une décomposition en ondelettes séparables et un codeur SFQ [132] pour la compression. Cette transformée a été généralisée en dimension plus élevée sous le nom de surfflets [133]. Enfin, les platelets [134] sont une extension des wedgelets considérant un modèle affine de l'intensité des régions des deux cotés du segment de contour.

d) BANDELETTE :

La décomposition en bandelettes a été introduite par Le Pennec et Mallat [135]. Elle allie une décomposition en ondelettes et des estimations d'informations à caractère géométrique.

L'estimation de la géométrie se fait en étudiant les contours présents dans une image f. Un contour est alors vu comme une courbe paramétrique C que l'on va caractériser par ses tangentes. Pour ce faire, on recherche les gradients d'importance significative (c-à-d dont la valeur est supérieure à un certain seuil) dans l'image. Afin d'éviter des problème de non différentiabilité, l'image peut être convoluée avec un noyau lissant. Cette étude permet d'approximer les "flots" de l'image en considérant la direction orthogonale au gradient. Ensuite, une étape de rectification est menée. Elle consiste à déformer la courbe pour la rendre horizontale (respectivement verticale) si elle était plutôt horizontale (respectivement verticale) à l'origine. En notant cette opération D, D_f représente alors la version rectifiée de l'image. Enfin, une transformation en ondelettes est appliquée sur D_f. Dans la pratique, il faut dans un premier temps segmenter l'image en régions où la direction du contour n'est jamais verticale (respectivement horizontale).

Les bandelettes de deuxième génération ont ensuite été introduites par Peyré et Mallat [136]. L'idée est à nouveau de construire une base orthogonale adaptée à une image 'f '. Cependant, cette fois la recherche de géométrie ne se fait pas sur f directement mais dans les différentes sous-bandes obtenues après la décomposition en ondelettes de 'f'. Afin d'améliorer l'étape de détection de la géométrie, les relations inter-échelles peuvent être prises en compte (via la construction d'un arbre reliant les coefficients, à chaque niveau de détail, correspondant à la même localisation spatiale).Dans la thèse de [136] il a constaté qu'a Rc=0.2bpp ; un gain typique des bandelettes par rapport aux ondelette de l'ordre 0.6db pour l'image léna et 1.6db pour l'image barbara. Nous pensons qu'il s'agit là d'une voie prometteuse pour la conception de transformées directionnelles adaptées à la compression.

II.10. Nouvelle représentation adaptatives a la compression d'image

La formulation en banc de filtres et l'algorithme de transformée en ondelettes rapide, décrits précédemment, permettent une réalisation effective de la transformée en ondelettes discrète. Cependant, les décompositions multirésolutions classiques autrement-dit, les ondelettes séparables semblent former une catégorie restreinte et limitée des possibilités de représentations multi échelles de signaux multidimensionnels. L'inconvénient majeur est que la transformée séparable privilège les directions verticale, horizontale et diagonale et néglige les autres directions de l'image et cela, constitue une contradiction avec la nature de l'image dans laquelle l'information s'évolue dans toutes les directions. Afin de pallier à ce problème, de nouvelles décompositions multirésolution mieux adaptées à la représentation des images médicales ont été introduites **[137]**.

II.10.1.Structure Lifting [138,139]

Comme pour la transformée en ondelette classique, le principe du lifting est d'exploiter les corrélations présentes dans le signal pour aboutir à un ensemble d'information plus compact et ainsi diminuer l'entropie du signal. L'avantage de schéma lifting réside dans la possibilité de mettre au point des transformées en ondelettes sans passer par le domaine de Fourier. Le processus est simple, rapide et réversible.

Le schéma lifting est constitué de deux phases l'une pour l'analyse ou la décomposition et l'autre pour la synthèse ou la reconstruction, et chacune des phases est constituée de trois étapes de division, de prédiction et de mise à jour.

Trois étapes essentielles constituent la forme de schéma lifting:

Transformée polyphasé (division) : La transformée polyphase en deux bandes est une opération triviale. Son mécanisme est simple. Elle prend un signal en entrée, qu'elle sépare en deux composantes polyphases, paire et impaire. Plus exactement, l'application de la transformée polyphase au signal original a_j[k] va simplement partitionner a_j[k] en deux sous-ensembles disjoints a_j[2k] (l'ensemble des échantillons appartenant a a_j[k] d'indice pair) et a_j[2k+1] (l'ensemble des échantillons appartenant a a_j[k] d'indice impair). Voir (Fig. II.7.a).

Fig. II.7- Structure en lifting a) analyse ;b) Synthèse

Lifting: Dans cette étape, Dans cette étape, l'opération de prédiction P est utilisée pour estimer a_j[2k+1] à partir de a_j[2k], le résultat est le signal d'erreur d⁰_{j+1}[k] qui représente le détail du signal original, où on peut définir un opérateur P tel que :

$$d_{j+1}^{0}[k] = a_{j}[2k+1] - P\left(\left\{a_{j}[2k]\right\}_{k \in \mathbb{Z}}\right)$$
 II.47

On met à jour $d_{j+1}^{0}[k]$ en lui appliquant l'opération de mise à jour U et le signal résultant est combiné avec $a_{j}[2k]$ pour obtenir le signal $a_{j+1}^{0}[k]$ qui représente l'estimation de la partie lisse du signal original. Le signal $a_{j+1}^{0}[k]$ peut s'écrire sous la forme suivante :

$$a_{j+1}^{0}[k] = a_{j}[2k] + U\left(\left\{d_{j+1}^{0}[k]\right\}_{k \in \mathbb{Z}}\right)$$
 II.48

Scaling: est une opération de normalisation appliqué à d⁰_{j+1}[k] et a⁰_{j+1}[k], respectivement. En ce qui concerne les échantillons pairs a⁰_{j+1}[k] est multipliée par un facteur de normalisation K_e pour produire la sous-bande en ondelettes a_{j+1}[k]. De même, dans la partie impaire, le signal d'erreur d⁰_{j+1}[k] est multiplié par K₀ afin obtenir la sous-bande en ondelettes d_{j+1}[k]. Dans le cas d'ondelettes de Daubechies (5,3), on a K₀=K_e=1 , tandis que K_e=1/K₀ avec K₀=1.23017 pour les ondelettes de Daubechies (9,7).

II.10.1.1. Propriétés de schéma lifting :

(

- Calcul « sur place » : Le lifting permet d'exécuter les calculs « sur place ». En d'autres termes, le signal de sortie est codé sur le même emplacement mémoire que le signal d'entrée. Cette méthode permet de faire une économie importante au niveau de la mémoire.
- *Efficacité* : Dans la plupart des cas le nombre d'opérations est réduit par rapport à un filtrage indépendant des deux sous-bandes. En effet, le lifting calcule simultanément les bandes basses et haute fréquences, et les sous-expressions sont réduites du fait qu'elles soient réutilisées.
- *Réversible* : La réalisation du schéma lifting inverse est triviale. Quels que soient les opérateurs de prédiction et de mise à jour utilisés, la transformation par schéma lifting est inversible et on peut retrouver le signal original ^a_j à partir de ses composantes ^a_{j+1} et d_{j+1}. En effet, La phase de reconstruction constituée aussi de trois étapes : prédiction inverse (undo predict), mise à jour inverse (undo update) et fusion (merge), comme illustrée par la Fig. II.7.b
- Mise à jour inverse (undo update) : si nous avons d_{j+1}[k] et a_j[2k], on peut récupérer les échantillons pairs par la soustraction des informations de mise à jour :

$$a_{j}[2k] = a_{j+1}^{0}[k] - U\left(\left\{d_{j+1}^{0}[k]\right\}_{k \in \mathbb{Z}}\right)$$
 II.49

• Prédiction inverse (undo predict) : pour récupérer les échantillons impairs.

$$a_{j}[2k+1] = d_{j+1}^{0}[k] + P\left(\left\{a_{j}[2k]\right\}_{k \in \mathbb{Z}}\right)$$
 II.50

• Fusion (merge) : maintenant, nous avons les échantillons pairs et impairs, nous pouvons reconstruire le signal original en définissant l'opérateur de fusion *Merge* :

$$a_j = Merge(a_j[2k], a_j[2k+1])$$
 II.51

II.10.1.2. Compression d'image médicale par la structure lifting couplée avec SPIHT

Afin de réduire les limites des ondelettes classiques à banc de filtre, nous avons introduit une nouvelle représentation multiéchelle d'ondelette bi-orthogonale CDF9/7 par la structure lifting couplée a un codeur SPIHT .

Nous nous somme intéressés dans cette thèse à la compression des images médicales ou nous avons appliqué notre algorithme. Pour cela, nous avons choisi une coupe de cerveau (coronal) de taille 512× 512 (niveau de gris) codée sur 8bpp enregistrée par le biais d'un scanner IRM (Fig.II.8) de type BMP. Cette image est prise de la base de données GE Medical System .

Fig.II.8 image original (coupe coronal)

La méthode proposée basée sur la structure lifting couplés avec le codage SPIHT pour deux ondelettes bi-orthogonales différentes : la CDF 9/7 et Gall 5/3 est comparée aux deux méthodes suivantes : CDF9/7 (Lifting Scheme) couplée avec le SPIHT et EZW, Gall 5/3 (Lifting Scheme) couplée avec le SPIHT, CDF9/7 (banc de filtre) couplée avec le SPIHT. Afin d'étudier l'influence du choix de la méthode, nous faisons varier le débit binaire de

0.125 à 2 bpp et nous calculons les paramètres d'évaluation. Notre but apparait

particulièrement intéressant de réduire les débits pour lesquels la qualité de l'image reste acceptable.

Les résultats obtenus sont donnés dans le tableau suivant. En comparant les différents paramètres (PSNR, MSSIM), nous pouvons montrer que l'algorithme proposé donne des résultats satisfaisants par rapport aux ondelettes classiques (ondelettes à banc de filtre).

Les résultats obtenus sont présenté dans la figure (II.9)

La figure (II.10) indiquée ci-dessous illustre la qualité d'image compressée pour différentes valeurs de débit binaire. Selon les valeurs des paramètres, nous remarquons qu'à partir de 0.5bpp, la reconstruction de l'image devient presque parfaite.

Table II.1– Variation des paramètres d'évaluations (PSNR, MSSIM) pour différents méthodes de compression (coupe coronal) (level=5)

Rc (bpp)	CDF9/7 (lifting) +SPIHT			Gall5/3 (lifting)+ SPIHT			CDF9/7 (filter bank)+SPIHT			CDF9/7(lifting) +EZW		
	PSNR	MSSIM	Tc(s)	PSNR	MSSIM	Tc(s)	PSNR	MSSIM	Tc(s)	PSNR	MSSIM	Tc(s)
0.125	25.55	<u>0.66</u>	3.27	24.79	0.59	3.12	23.40	0.54	3.52	23.39	0.52	3.60
0.25	29.92	0.81	5.96	29.27	0.77	6.06	26.95	0.75	6.10	26.54	0.70	6.25
0.5	34.93	<u>0.90</u>	<u>16</u>	<u>34.31</u>	<u>0.88</u>	<u>16.55</u>	32.26	0.82	17.1	32.02	0.80	18.2
0.75	<u>38.40</u>	<u>0.93</u>	<u>28.08</u>	<u>38.42</u>	<u>0.92</u>	<u>26.65</u>	35.25	0.90	29.2	34.19	0.88	31.05
1	40.40	0.94	52.6	40.64	0.94	49.9	36.60	0.92	52.5	35.74	0.90	53.8
1.5	43.91	0.98	117	44.96	0.98	118.3	38.52	0.95	119	38.33	0.94	120.4
2	46.02	0.99	197.1	49.87	0.99	197.1	42.80	0.97	198	40.42	0.95	198.2

Fig.II.9- Variation des paramètres d'évaluation (PSNR, MSSIM) pour différents méthodes

Rc=0.125bpp,PSNR=25.55 dB, MSSIM = 0.66

Rc=0.25bpp, PSNR=29.92 dB, MSSIM = 0.81

Rc=0. 5bpp, PSNR=34.93 dB, MSSIM = 0.90

Rc=0.75bpp,PSNR=38.40 dB, MSSIM = 0.93

Rc=1bpp, PSNR=40.40 dB, MSSIM = 0.94

Rc=2bpp, PSNR=46.02 dB, MSSIM = 0.99

II.10.2 Ondelettes Quinconces :

L'analyse par ondelette quinconce ne nécessite qu'une seule fonction d'ondelette pour représenter un signal bidimensionnelle, et le facteur de dilatation soit 2 entre deux résolutions successives **[140]**, Ceci c'est un avantage par rapport à l'analyse séparable dyadique par ondelette qui nécessite trois familles d'ondelettes, et son facteur de dilatation entre deux échelles successives est de 4, ce qui peut sembler élevé.

La matrice de dilatation sera dans ce cas : $M = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

La figure (II.11) illustre ce type de décomposition en "quinconce".

Fig. II.11 : décomposition en ondelettes quinconce

Les ondelettes bidimensionnelles en quinconce sont associées à une analyse multi résolution avec un facteur de résolution de $\sqrt{2}$ [141].

II.10.2.1 Echantillonnage en quinconce et banc de filtre :

Soit $x[\vec{n}], \ \vec{n} = (n_1, n_2) \in \mathbb{Z}^2$ une image numérique. La transformée en Z 2D de $x[\vec{n}]$ est donnée par : $X(\vec{z}) = \sum_{\vec{n} \in \mathbb{Z}^2} x[\vec{n}] \vec{z}^{-\vec{n}}$ avec $\vec{z}^{\vec{n}} = \vec{z}^{n_1} \vec{z}^{n_2}$ II.52 La transformée de Fourier discrète 2D de $x[\vec{n}]$ de taille $N \ge N$ $(n_1, n_2 = 0, 1, ..., N-1)$ est exprimée par la formule suivante : $X[\vec{k}] = \sum_{\vec{n} \in \mathbb{Z}^2} x[\vec{n}] e^{-j2\pi(\vec{k},\vec{n})/N}$, avec $(k_1, k_2 = 0, 1, ..., N-1)$.

La version simplifiée en quinconce de $x[\vec{n}]$ est :

$$[x]_{\downarrow_M} [\vec{n}] = x[M \vec{n}] \quad avec \quad M = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 II.53

La grille l'échantillonnage en quinconce est représentée dans la figure II.12.

Nous remarquons que $|\det(M)|=2$, ce qui indique que la réduction de la taille de l'image est de 2 (non séparable) au lieu de 4 dans le cas séparable. Dans le domaine de Fourier l'équation : II.53 s'écrit alors :

$$[x]_{\downarrow_{M}}[\vec{n}] \leftrightarrow \frac{1}{2} \left[X\left(e^{jM^{-T}\vec{\omega}} \right) + X\left(e^{j\left(M^{-T}\vec{\omega} + \vec{\pi}\right)} \right) \right]$$
 II.54

avec $\vec{\pi} = (\pi, \pi)$.

Le sur-échantillonnage est défini par :

$$[x]_{\uparrow_M} [\vec{n}] = \begin{cases} x[M^{-1}\vec{n}], & si \ n_1 + n_2 \ est \ pair \\ 0 & ailleurs \end{cases}$$
 II.55

Dans le domaine de Fourier on obtient :

$$[x]_{\uparrow_{M}}[\vec{n}] \longleftrightarrow X(e^{jM^{T}\vec{\omega}})$$
 II.56

D'après (II.53) et (II.56), on déduit une formule d'un sous-échantillonnage suivi d'un suréchantillonnage décrit comme suit :

$$[x]_{\downarrow_M\uparrow_M}[\vec{n}] = \begin{cases} x[\vec{n}], & \text{si } n_1 + n_2 \text{ est pair} \\ 0 & \text{ailleurs} \end{cases}$$
II.57

Ce qui donne dans le domaine de Fourier :

$$[x]_{\downarrow_{M\uparrow M}}[\vec{n}] = \frac{1}{2} \Big[X(e^{j\vec{\omega}}) + X(e^{j(\vec{\omega}+\vec{\pi})}) \Big]$$
 II.58

Tant que l'échantillonnage en quinconce réduit la taille de l'image par un facteur de 2, alors le banc de filtres associé à deux canaux (Fig. II.13). Le filtre passe-bas \tilde{H} réduit la résolution par un facteur de $\sqrt{2}$. Les coefficients de l'ondelette correspondent à la sortie du filtre passe-haut \tilde{G} .

Fig. II.12 – a) grille quinconce et b) sa correspondance dans le domaine de Fourier

Fig. II.13– La reconstruction parfaite du banc de filtre avec l'échantillonnage en quinconce

En appliquant la formule (II.57) au diagramme de la Fig. II.13, on obtient la condition pour la reconstruction parfaite :

$$\begin{cases} \widetilde{H}(\vec{z}) H(\vec{z}) + \widetilde{G}(\vec{z}) G(\vec{z}) = 2\\ \widetilde{H}(-\vec{z}) H(\vec{z}) + \widetilde{G}(-\vec{z}) G(\vec{z}) = 0 \end{cases}$$
 II.59

Où H et G (respectivement \tilde{H} et \tilde{G}) sont les fonctions de transfert des filtres de synthèse (respectivement d'analyse). Ces filtres correspondent aux bases de décomposition et reconstruction des ondelettes [142]. La reconstruction parfaite nous indique qu'il n'y a pas une

perte d'informations au cours des itérations d'analyse. Dans notre cas l'analyse sera orthogonale c'est-à-dire les filtres d'analyse et de synthèse sont les mêmes.

II.10.2.2 Filtres fractionnaire en quinconce:

Pour générer les filtres quinconce, on applique la transformée de diamond McClellan dans notre implémentation, nous obtenons une nouvelle famille de filtres orthogonaux **[143]** qui ont été d'abord construits en une seule dimension sous la forme :

$$H_{\alpha}(z) = \frac{\sqrt{2}(z+2+z^{-1})^{\frac{\alpha}{2}}}{\sqrt{(z+2+z^{-1})^{\alpha} + (-z+2-z^{-1})^{\alpha}}} = \frac{\sqrt{2}(2+2\cos\omega)^{\frac{\alpha}{2}}}{\sqrt{(2+2\cos\omega)^{\alpha} + (2-2\cos\omega)^{\alpha}}}$$
II.60

qui est indexé par la variation continue du paramètre d'ordre α .

Ces filtres sont symétriques et sont conçus pour avoir des zéros de l'ordre α à z=-1; le numérateur est une puissance fractionnaire de $(z+2+z^{-1})$ (le filtre simple raffinement symétrique d'ordre 2). La variation de α peut ajuster la réponse fréquentielle [145]. A noter également que ces filtres sont au maximum à plat à l'origine, ils se comportent essentiellement comme $H_{\alpha}(z)/\sqrt{2}=1+O(\omega^{\alpha})$. Leur réponse en fréquence est similaire aux filtres des Daubechies avec deux différences importantes: 1) les filtres sont symétriques, 2) l'ordre ne se limite pas à des valeurs entières [144], [145].

Pour extrapoler en 2D, on applique la transformée de diamond McClellan [146],[147] qui remplace $\cos \omega$ par $(1/2)(\cos \omega_1 + \cos \omega_2)$ en (II.60). Ainsi, le filtre fractionnaire en quinconce devient :

$$H_{\alpha}(e^{j\bar{\omega}}) = \frac{\sqrt{2} \left(2 + \cos \omega_1 + \cos \omega_2\right)^{\frac{\alpha}{2}}}{\sqrt{\left(2 + \cos \omega_1 + \cos \omega_2\right)^{\alpha} + \left(2 - \cos \omega_1 - \cos \omega_2\right)^{\alpha}}}$$
II.61

Ce filtre reste donc orthogonal grâce à la propriété de la transformée de McClellan de préserver la biorthogonalité **[148]**. Ainsi, le $\alpha^{\text{ème}}$ zéro à $\omega = \pi$ se retrouve à $(\omega_1, \omega_2)^T = (\pi, \pi)^T$, ce qui est nécessaire pour pouvoir remplir la condition d'une transformée en ondelettes 2D. Le filtre da la transformée orthogonale en ondelettes $G_{\alpha}(z)$ est obtenu par modulation c'est-à-

dire :
$$G_{\alpha}(\vec{z}) = z_1 H_{\alpha}(-\vec{z}^{-1})$$
 II.62

La fonction d'échelle correspondante $\phi_{\alpha}(\vec{x})$ est définie par la résolution de l'équation $\phi_{\alpha}(\vec{x}) = \sqrt{2} \sum_{\vec{n} \in \mathbb{Z}^2} h_{\alpha}[\vec{n}] \phi_{\alpha}(M \vec{x} - \vec{n})$ II.63

Puisque le filtre d'amélioration est orthogonal par rapport à la grille quinconce, il s'ensuit que $\phi_{\alpha}(\vec{x}) \in L_2(\mathbb{R}^2)$. En outre, pour $\alpha > 0$, il saura satisfaire la partition de l'état de l'unité, qui

vient comme une conséquence directe de la disparition du filtre à $(\omega_1, \omega_2) = (\pi, \pi)$ Ainsi, nous avons la garantie que notre structure donnera les bases d'ondelettes orthogonales de $L_2(R^2)$. L'ondelette en quinconce sous-jacent est donnée par:

$$\psi_{\alpha}(\vec{x}) = \sqrt{2} \sum_{\vec{n} \in \mathbb{Z}^2} g_{\alpha}[\vec{n}] \phi_{\alpha}(M \ \vec{x} - \vec{n})$$
 II.64

Où $g_{\alpha}[\vec{n}]$ est la version spatiale du filtre $G_{\alpha}[\vec{\omega}]$.

L'avantage de cette approche, est que les filtres pour les petites valeurs de α sont presque isotropes (Fig .II.14.), c'est-à-dire, les coefficients de la transformée en ondelettes obtenus n'ont aucune orientation préférentielle, et cela reflète la qualité de l'analyse.

Fig. II.14– L'isotropie du filtre $H_{\alpha} = (e^{j\bar{\omega}})$ pour différentes valeurs du paramètre d'ordre α

Fig. II.15– L'ondelettes ψ_{α} pour différentes valeurs du paramètre d'ordre α

II.10.2.3 Implémentation dans le domaine de Fourier [143], [137]

L'implémentation de notre algorithme dans le domaine de Fourier pour gagner en temps de calcul, ainsi que la convolution par la réponse impulsionnelle des filtres dans le domaine spatial devient une simple multiplication avec la réponse fréquentielle de ces derniers dans le domaine fréquentiel. Le passage du domaine spatial au domaine fréquentiel et vice versa s'effectue par la transformée de Fourier rapide (FFT) dont la complexité de calcul est de $O\left(\frac{1}{2}N\log_2 N\right)$ au lieu $O\left(N^2\right)$ pour la transformée de Fourier normale.

D'après le schéma bloc de la Fig. II.16, la première étape consiste à calculer la FFT de l'image originale $x[\vec{n}]$, supposons que cette image est de taille $N \times N$, et de calculer la réponse fréquentielle des filtres d'analyse correspondants $\tilde{H}[\vec{u}]$ et $\tilde{G}[\vec{u}]$ en utilisant (II.62) et (II. 63). La FFT de l'image $x[\vec{n}]$ est donnée par :

$$X_{i}[\vec{u}] = \sum_{\vec{n}} x_{i}[\vec{n}] e^{-j\frac{2\pi\langle\vec{n},\vec{u}\rangle}{N}}, \ \vec{u} = \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix} \text{ telle que } u_{1}, u_{2} = 0...N - 1$$
 II.65

Pour les itérations impaires la FFT des coefficients de la transformée en quinconce est donnée par : $X'_{i+1}[\vec{u}] = \sum_{\vec{x}} x'_{i+1}[\vec{n}] e^{-j\frac{2\pi\langle \vec{n},\vec{u}\rangle}{N}}$ II.66

Fig. II.16– Schéma de décomposition de l'algorithme de transformée en quinconce pour deux itérations.

$$Y_{i+1}'\left[\vec{u}\right] = \sum_{\vec{n}} y_{i+1}'\left[\vec{n}\right] e^{-j\frac{2\pi\langle \vec{n},\vec{u}\rangle}{N}}, \quad \vec{u}_1, \vec{u}_2 \in [0, N-1]^2$$
 II.67

Le sous-échantillonnage suivi par le sur-échantillonnage, permet d'introduire des zéros dans le domaine spatial et de garder la taille de l'image. Mais, il introduit des redondances dans le domaine fréquentiel. Seulement la moitié des coefficients sera calculée. Cela donne :

$$Y_{i+1}'[v_1, v_2] = \frac{1}{2} \left(\tilde{G}[v_1, v_2] X_i[v_1, v_2] + \tilde{G}\left[v_1 + \left(\frac{N}{2}\right), v_2 + \left(\frac{N}{2}\right) \right] X_i\left[v_1 + \left(\frac{N}{2}\right), v_2 + \left(\frac{N}{2}\right) \right] \right)$$
 II.68

$$X_{i+1}'[v_1, v_2] = \frac{1}{2} \left(\tilde{H}[v_1, v_2] X_i[v_1, v_2] + \tilde{H}\left[v_1 + \left(\frac{N}{2}\right), v_2 + \left(\frac{N}{2}\right) \right] X_i\left[v_1 + \left(\frac{N}{2}\right), v_2 + \left(\frac{N}{2}\right) \right] \right)$$
 II.69
Où $\vec{v} = (v_1, v_2)$, $\vec{v} \in \left[0, \frac{N}{2} - 1 \right] \times [0, N - 1]$

La variable $z_{i+1}[\vec{n}]$ est utilisée comme un artifice pour gagner le temps de calcul dans le calcul de la transformée de Fourier inverse IFFT. Ainsi, l'image se sépare en deux sous images, l'une contient les lignes paires et l'autre contient les lignes impaires. Les images paires et impaires constituent les parties réelles et imaginaires successivement d'une variable $z_i[\vec{n}]$:

$$Z[\vec{m}] = Y'_{i+1}[\vec{m}] + Y'_{i+1}\left[\vec{m} + \left(0, \frac{N}{2}\right)\right] + j\left(Y'_{i+1}[\vec{m}] - Y'_{i+1}\left[\vec{m} + \left(0, \frac{N}{2}\right)\right]\right)e^{\frac{-j2\pi(m_1+m_2)}{N}}$$
II.70

Avec $\vec{m} \in [0, (N/2) - 1]^2$

$$Z_{i+1}[\vec{m}] = y_{i+1,even}[\vec{n}] + jy_{i+1,odd}[\vec{n}]$$
 II.71

Où $z_{i+1}[\vec{n}]$ constitue la IFFT de la variable $z_{i+1}[\vec{m}]$. Le coefficient $y_{i+1}[\vec{n}]$ est obtenu par $y_{i+1}[n_1, 2n_2 + 1] = \operatorname{Re}\{z_{i+1}[\vec{n}]\} et y_{i+1}[n_1, 2n_2] = \operatorname{Im}\{z_{i+1}[\vec{n}]\}.$

Pour les itérations impaires, les filtres $\tilde{G}_p[\vec{m}]$ et $\tilde{H}_p[\vec{m}]$ sont obtenus par l'échantillonnage par *M* de la version précédente des filtres impairs $\tilde{G}[\vec{u}]$ et $\tilde{H}[\vec{u}]$, cela va donner :

$$\widetilde{H}_p\left[\vec{m}\right] = \widetilde{H}\left[D\vec{m} \operatorname{mod}(N,N)\right] et \widetilde{G}_p\left[\vec{m}\right] = \widetilde{G}\left[D\vec{m} \operatorname{mod}(N,N)\right].$$

La transformée de Fourier de la sortie des itérations paires est donnée par :

$$Y_{i+2}[\vec{m}] = \sum_{\vec{n}} y_{i+1}[\vec{n}] e^{-j\frac{2\pi\langle\vec{n},\vec{m}\rangle}{N}}, \quad X_{i+2}[\vec{m}] = \sum_{\vec{n}} x_{i+1}[\vec{n}] e^{-j\frac{2\pi\langle\vec{n},\vec{m}\rangle}{N}} \text{ pour } \vec{m} = \binom{m_1}{m_2} \text{ et } m_1, m_2 = 0, \dots, \frac{N}{2} - 1$$

et les operations de intrage sont données par :

$$X_{i+2}[\vec{m}] = \frac{1}{2} \left(\tilde{H}_{p}[\vec{m}] X_{i+1}'[\vec{m}] + \tilde{H}_{p}\left[\vec{m} + \left(0, \frac{N}{2}\right)\right] \vec{X}_{i+1}\left[\vec{m} + \left(0, \frac{N}{2}\right)\right] \right)$$
$$Y_{i+2}[\vec{m}] = \frac{1}{2} \left(\tilde{G}_{p}[\vec{m}] X_{i+1}'[\vec{m}] + \tilde{G}_{p}\left[\vec{m} + \left(0, \frac{N}{2}\right)\right] \vec{X}_{i+1}\left[\vec{m} + \left(0, \frac{N}{2}\right)\right] \right)$$
II.72

L'algorithme itère jusqu'à une résolution plus fine. A la fin de cette opération, nous obtenons $y_1[\vec{n}], y_2[\vec{n}], \dots, y_i[\vec{n}]$ comme coefficients de la transformée en quinconce.

Pour l'obtention des coefficients pour les itérations paires, nous appliquons les mêmes artifices appliqués pour les itérations impaires.

La Fig. II.17 illustre 4 exemples représentant les coefficients de la transformée en quinconce avec un nombre d'itération égal à 6 pour: $\alpha = 0.75$, $\alpha = \sqrt{2}$, $\alpha = \pi$ et $\alpha = 10$. Nous remarquons d'après cet exemple que les détails sont clairs, autrement dit cette transformée en quinconce donne une bonne représentation pour un paramètre d'ordre α petit.

Fig. II.17– Résultats de la transformée en quinconce avec 6 itérations pour différentes valeurs du paramètre d'ordre α (coupe axiale du cerveau)

II.10.2.4 Compression d'image par QWT couplée avec SPIHT

Dans notre deuxième contribution, nous avons proposé une nouvelle méthode de compression basée sur la transformée en ondelettes quinconce (QWT). Nous avons couplé la QWT au codeur SPIHT [152]. Notre objectif est de trouver une représentation optimale par ondelettes quinconce (améliorer les limites des ondelettes dans la phase de compression) en utilisant des filtres non séparable, symétrique et plus étendus. Nous avons opté pour un nombre d'itération $\lambda=6$ pour la décomposition en ondelettes quinconce (Fig. II.18).

Le choix de paramètre d'ordre du filtre α est très important, pour cela nous avons calculé le PSNR pour différentes valeur de α varié de 0 à 10, pour différents valeurs de bitrates Rc varié entre 0.125 à 2 bpp (figure II.19). D'après cette figure nous constatons d'avoir un bon PSNR pour une valeur de $\alpha=3$.

Fig. II.18– Relation parent enfants de l'algorithme SPIHT pour la décomposition par ondelettes quinconce (nombre d'itération 6)

Fig. II.19–Relation entre le paramètre d'ordre de filtre α et le PSNR pour différentes valeurs de bit rate Rc (l'image de teste : la coupe coronale)

Afin de montrer l'efficacité de cet algorithme, nous avons appliqué notre algorithme sur la coupe coronale présentée en figure (II.8), avec un paramètres d'ordre de filtre α =3. La figure (II.20) indiquée ci-dessous illustre la qualité d'image compressée pour différentes valeurs de débit binaire. Selon les valeurs des paramètres, nous remarquons qu'à partir de 0.5bpp, la reconstruction de l'image devient presque parfaite.

Rc=0.125,PSNR=25.98 dB, MSSIM = 0.68

Rc=0. 25,PSNR=29.47 dB, MSSIM = 0.68

Rc=0. 75, PSNR=37.96dB, MSSIM = 0.94

Rc=1, PSNR=40.53 dB, MSSIM =0.96

Rc=2, PSNR=49.32dB, MSSIM = 0.99

Rc=0. 5,PSNR=34.18dB,

MSSIM = 0.89

Fig.II.20- Compression d'image (coupe coronale) par QWT couplée avec le codeur SPIHT

Nous allons maintenant faire une comparaison entre les différents types de transformées cités précédemment pour montrer les performances de la méthode proposée, nous faisons varier le débit binaire de 0.125 à 2 et nous calculons les paramètres d'évaluation. Les résultats obtenus sont donnés par la Figure II.21

Nous observons d'après la variation des paramètres (PSNR, MSSIM), que notre algorithme donne des valeurs importantes par rapport aux autres algorithmes, surtout à bas débit dont le bit-rate varié de 0.125 à 0.75bpp. Pour cela nous pouvons dire que la transformée en ondelette quinconce couplée au codeur SPIHT est mieux adapté à la compression d'images médicales.

Fig.II.21– Variation des paramètres d'évaluation (PSNR, MSSIM) pour différents méthodes pour la coupe coronale

II.11 Conclusion :

Récemment, il est apparu évident que les transformées en ondelettes et les autres décompositions multi résolution classiques ne représentent pas la panacée des outils de traitement d'images. Des travaux récents ont montré qu'il est possible de définir des cadres théoriques de représentations multi-échelle plus vastes donnant naissance à de nouvelles transformées plus intéressantes et plus adaptées à la compression d'image médicale.

Dans ce chapitre, nous avons présenté quelques notions importantes sur la théorie des ondelettes classiques, dites ondelettes séparables, Nous avons mis en avant les propriétés de ces dernières, ainsi que leurs avantages et leurs inconvénients.

Nous avons passé en revue certaines de ces nouvelles transformées, dites de secondes génération, et leurs applications dans la compression d'image. Ce sont des décompositions multi-échelle, qui opèrent selon une multitude d'orientations fréquentielles et qui offrent un bon compromis entre la représentation éparse (ou compacte) de l'information visuelle et la qualité perceptuelle de l'image reconstruite. Nous avons opté dans cette thèse particulièrement, la transformée en d'ondelette par le schéma lifting et la transformée en ondelette quinconce couplée par le codeur SPIHT. Les résultats obtenus par la transformée de quinconce sur la coupe coronale est très satisfaisants par rapport à la structure lifting, et aux différentes méthodes classiques avec un taux de compression de 93,75% et un temps de calcule de 15 secondes, et ceci c'est un inconvénient. Nous souhaitons par la suite de chercher d'autres méthodes adaptatifs a la compression d'image médicale pour augmenter ce taux de compression avec un temps de calcul réduit, et une bonne qualité d'image compressé. Ceci fera l'objet du chapitre suivant.

64

Chapitre III

Compression Hybride des Images Médicales

III.1.Introduction :

Ces derniers temps, le développement de systèmes hybrides pour améliorer la qualité de l'image compressé a acquis une énorme popularité parmi les chercheurs. Certaines études récentes montrent que la méthode hybride par l'approche fondée sur la DCT et les ondelettes classiques conduit à un meilleur taux de compression [153]. D. Rawat, S. Meher , 2009 [154] propose Une hybridation SPIHT et les RN. La décomposition d'image par les ondelettes bi-orthogonales; puis la compression par le SPIHT, qui résulte un Plan de bits qui est alimenté au codage de QV basé sur SOFM.

Les méthodes hybrides sont une combinaison de plusieurs techniques de compression (spatiales et/ou transformées) visant à jumeler les avantages et inconvénients de celles-ci, afin d'avoir un taux de compression élevé, une meilleure qualité de restitution de l'image et un temps de calcul minimal lors du processus de codage.

Dans cette these nous proposons deux algorithmes développés par Mohamed mostapha siddeq ;le premier algorithme basé sur la transformé de DWT couplée par la DCT (2010)[**155**]; et le 2eme basé sur la DWT et la transformé de walsh (2012)[**156**].

Nous allons tester ces deux algorithmes sur les images médicales (niveau de gris et couleur) pour différentes types d'ondelettes choisit et nous allons implémenter l'ondelette Biorthogonale CDF 9/7 dans les deux algorithmes .

III.2. LA TRANSFORMÉE DISCRÈTE EN COSINUS (DCT)

La transformée discrète en cosinus a prouvé son utilité dans de nombreux domaines du traitement numérique du signal et de l'image [158]-[161], [163], [164], [166]. En ce qui suit, nous allons présenter les formes directes et inverses de la transformée de DCT les plus utilisées ainsi que quelques propriétés de la DCT.

La transformée discrète en cosinus est l'une des techniques permettant la conversion du signal temporel en composantes fréquentielles. Cette technique est largement utilisée dans la compression des données et de l'image. Les standards, JPEG de Joint Picture Expert Group, MPEG de Moving Picture Expert group, H.261, H.263 et H.264 de l'Union International de Télécommunication utilisent la technique de base DCT qui est très proche de la DFT [**159**]. La transformation DCT est la projection de l'image sur une base de fonctions cosinus.

L'intérêt de cette méthode réside dans le fait qu'uniquement les hautes fréquences spatiales, auxquelles les systèmes visuel humain est le moins sensible, sont comprises dans les coefficients d'ordre supérieur. L'élimination des coefficients à partir d'un certain ordre revient alors à un filtrage passe-bas. Plus le nombre de coefficients retenus sera faible, plus la compression sera importante , et moins de détails seront conservés.

III.2.1 La Transformée discrète en cosinus monodimensionnelle

Il y a huit variantes de la transformée discrète en cosinus, mais les plus utilisées sont quatre. La plus courante parmi ces quatre est la DCT type II et est appelée DCT et son inverse est la DCT type III et est appelée IDCT [163]. Nous allons présenter ces quatre variantes DCT I, DCT II,DCT III et DCT IV dans ce qui suit.

III.2.1.1 Transformée discrète en cosinus type I (DCT I)

Les formules des transformations directe et inverse de DCT I sont présentées ci-dessous : Transformation directe:

$$X_C[k] = \sqrt{\frac{2}{N}} \alpha_n \sum_{n=0}^N \alpha_n x(n) \cos\left(\frac{\pi nk}{N}\right) \quad ; k = 0, \dots, N$$
 III.1

Transformée inverse:

$$x[n] = \sqrt{\frac{2}{N}} \alpha_n \sum_{k=0}^{N} \alpha_n X_C[k] \cos\left(\frac{\pi nk}{N}\right) \quad ; n = 0, \dots, N$$
III.2
Avec, α_k constante définie comme suit : $\alpha_k = \begin{cases} \frac{1}{\sqrt{2}} & pour \ k = 0 \ ou \ N \\ 1 & autrement \end{cases}$

Cette forme de DCT I est définie pour les valeurs N entières supérieures à 2.

La forme orthonormée matricielle de la transformation directe DCT type I peut être exprimée comme suit

$$\left[C_{N+1}^{I}\right]_{k,n} = \sqrt{\frac{2}{N}} \left[\alpha_{n}\alpha_{k}\cos\left(\frac{\pi nk}{N}\right)\right] \quad , \quad k,n = 0,1,\dots,N-1$$
 III.3

et celle de sa transformée inverse peut être exprimée comme : $\begin{bmatrix} C_{N+1}^I \end{bmatrix}^{-1} = \begin{bmatrix} C_{N+1}^I \end{bmatrix}^T = C_{N+1}^I$ ou ,[.]⁻¹représente la matrice inverse et [.]¹représente la matrice transposée.

III.2.1.2 Transformée discrète en cosinus type II (DCT II)

Les formules des transformations directe et inverse de DCT II sont présentées ci-dessous : *Transformation directe:*

$$X_{c}[k] = \sqrt{\frac{2}{N}} \alpha_{n} \sum_{n=0}^{N-1} x[n] \cos\left(\frac{\pi (2n+1)k}{2N}\right) \quad ; k = 0, \dots, N-1$$
 III.4

Transformation inverse :

$$x[n] = \sqrt{\frac{2}{N}} \sum_{n=0}^{N-1} \alpha_n X_c[k] \cos\left(\frac{\pi (2n+1)k}{2N}\right) \quad ; n = 0, \dots, N-1$$
 III.5

Cette forme est définie pour toutes les valeurs N positives. Elle est généralement désignée par DCT c'est la forme la plus utilisée.

La forme orthonormée matricielle de la transformation directe DCT type II peut être exprimée comme suit,

$$\left[C_{N}^{H}\right]_{k,n} = \sqrt{\frac{2}{N}} \left[\alpha_{k} \cos\left(\frac{\pi(2n+1)k}{2N}\right)\right] , \quad k, n = 0, 1, \dots, N-1$$
 III.6

Et celle de sa transformée inverse peut être exprimée comme : $[C_N^{II}]^{-1} = [C_N^{II}]^T = C_N^{III}$, ou [.]⁻¹représente la matrice inverse et [.]¹représente la matrice transposée.

III.2.1.3 Transformée discrète en cosinus type III (DCT III)

Les formules des transformations directe et inverse de DCT III sont présentées ci-dessous :

Transformation directe:

$$X_{c}[k] = \sqrt{\frac{2}{N}} \sum_{n=0}^{N-1} \alpha_{n} x[n] \cos\left(\frac{\pi (2k+1)n}{2N}\right) \quad ; k = 0, \dots, N-1$$
 III.7

Transformée inverse:

$$x[n] = \sqrt{\frac{2}{N}} \alpha_n \sum_{n=0}^{N-1} X_c[k] \cos\left(\frac{\pi (2k+1)n}{2N}\right) \quad ; n = 0, \dots, N-1$$
 III.8

Cette forme est définie pour toutes les valeurs de N positives.

La forme orthonormée matricielle de la transformation directe DCT type III peut être exprimée comme suit,

$$\left[C_{N}^{III}\right]_{k,n} = \sqrt{\frac{2}{N}} \left[\alpha_{k} \cos\left(\frac{\pi(2k+1)n}{2N}\right)\right] , \quad k,n = 0,1,\dots,N-1$$
 III.9

et celle de sa transformée inverse peut être exprimée comme : $[C_N^{III}]^{-1} = [C_N^{III}]^T = C_N^{III}$

III.2.1.4 Transformée discrète en cosinus type IV (DCT IV)

Les formules des transformations directe et inverse sont présentées ci-dessous :

Transformation directe:

$$X_{c}[k] = \sqrt{\frac{2}{N}} \sum_{n=0}^{N-1} x[n] \cos\left(\frac{\pi (2k+1)(2n+1)}{4N}\right) \quad ; k = 0, \dots, N-1$$
 III.10

Transformée inverse:

$$x[n] = \sqrt{\frac{2}{N}} \sum_{n=0}^{N-1} X_c[k] \cos\left(\frac{\pi (2k+1)(2n+1)}{4N}\right) \quad ; n = 0, \dots, N-1$$
 III.11

La forme orthonormée matricielle de la transformation directe DCT type IV peut être exprimée comme suit,

$$\left[C_{N}^{VI}\right]_{k,n} = \sqrt{\frac{2}{N}} \left[\cos\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)\right] , \quad k,n = 0,1,\dots,N-1$$
 III.12

et celle de sa transformée inverse peut être exprimée comme : $[C_N^{IV}]^{-1} = [C_N^{IV}]^T = C_N^{IV}$

L'analyse de ces formes montre les points suivants:

- 1. Les transformées en cosinus de type I et de type IV sont représentables par des matrices involutives dont les inverses sont des matrices de la transformation directe elle-même,
- 2. La transformée inverse de type II est similaire à la transformée directe de type III.

La DCT II est très utilisée en traitement du signal et de l'image et spécialement en compression[163], [165].

Remarque : Si la séquence du signal est supérieure à N, il est possible de diviser le signal en sous-séquences et ainsi la DCT peut être appliquée indépendamment sur toutes les séquences. On note que la valeur du point de la fonction de base ne change pas mais seulement la valeur de x(n) dans chaque sous-séquence. Donc, il est souhaitable de calculer les fonctions de base qui se répètent et les faire multiplier par les sous-séquences. Ceci permet la réduction des opérations mathématiques [167].

III.2.2.La Transformée discrète en cosinus bidimensionnelle

La transformée discrète bidimensionnelle est une extension directe de la DCT monodimensionnelle. Pour la transformation directe bidimensionnelle, la DCT II est utilisée et pour la transformation inverse bidimensionnelle, la DCT III est utilisée. Elles sont données comme suits :

Transformation directe:

$$X_{c}[k_{1},k_{2}] = \frac{2}{\sqrt{N_{1}N_{2}}} \alpha_{k_{1}} \alpha_{k_{2}} \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} x[n_{1},n_{2}] \cos\left(\frac{\pi (2n_{1}+1)k_{1}}{2N_{1}}\right) \cos\left(\frac{\pi (2n_{2}+1)k_{2}}{2N_{2}}\right)$$
 III.13

Transformation inverse :

$$x[n_{1}, n_{2}] = \frac{2}{\sqrt{N_{1}N_{2}}} \sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} \alpha_{k_{1}} \alpha_{k_{2}} X_{c}[k_{1}, k_{2}] cos\left(\frac{\pi (2n_{1}+1)k_{1}}{2N_{1}}\right) cos\left(\frac{\pi (2n_{2}+1)k_{2}}{2N_{2}}\right)$$
III.14
Avec : $(n_{1}, n_{2}) = 0, 1, \dots, N-1; (k_{1}, k_{2}) = 0, 1, \dots, N-1;$ et $\alpha_{p} = \begin{cases} \frac{1}{\sqrt{2}} & pour \ p = 0\\ 1 & autrement \end{cases}$

III.3. Propriétés de la DCT

Dans cette section nous soulignons quelques propriétés de la transformée discrète en cosinus et en particulier celles qui sont importantes pour la compression des signaux bidimensionnels.

III.3.1 Décorrélation

La DCT-II bidimensionnelle est la transformée de décorrélation utilisée dans le standard decodage international de l'image et de la vidéo [163]. Le but de la compression est de minimiser la redondance de l'information ceci revient à minimiser la corrélation des coefficients du signal. La corrélation d'une image dénotée $R_{ff}(k_1, k_2)$ définie par:

$$R_{ff}(k_1,k_2) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^*(m,n) f(k_1+m,k_2+n)$$
 III.15

Ou, $0 \le k_1 \le 2(M-1), 0 \le k_2 \le 2(N-1)$ et (.)* représente-le conjugué de la fonction

Pour visualiser l'effet de la décorrélation sur une image, nous allons prendre comme exemple image médicale de rachis-cervical et on calcule l'auto-corrélation de ces images, puis on applique la transformation DCT sur le résultat de l'auto-correlation normalisée de chaque image.

Fig. III.1 : a) Image rachis-cervical, b) Auto-corrélation normalisée de l'image rachiscervical, c) DCT de l'auto-corrélation normalisée de l'image rachis-cervical.

La figure III.1.b représente l'auto-correlation normalisée de l'image rachis-cervical et la Figure III.1.c représente la DCT de la figure III.1.b.

Il faut noter que les données de l'image sont représentées par une matrice et que toute opération de traitement est appliquée sur les éléments de cette matrice. Aussi, l'application de la transformation DCT sur une image produit une matrice dont les éléments sont appelés coefficients DCT. Dans ce qui suit nous allons utiliser ces notions.

Alors, comme montré dans figure III.1, en normalisant les éléments de la matrice de l'auto corrélation des images,

 on remarque que la DCT permet de réduire l'amplitude de ces coefficients et aussi de les réorganiser de telles sortes que les premiers coefficients de DCT soient à haute amplitude et les derniers coefficients soient de très faible amplitude, très proche de zéro.

III.3.2 Concentration de l'énergie

L'efficacité d'une transformée est mesurée par sa capacité de concentrer les données d'entrée dans le plus petit ensemble de coefficients possible. La DCT est capable de concentrer l'énergie du signal dans les premiers coefficients DCT donc dans les basses fréquences. Ceci permet au quantificateur d'éliminer les coefficients de haute fréquence et à faible amplitude sans ou en introduisant de très faible distorsion lors de la reconstruction de l'image non visible à l'oeil nu (en utilisant un simple filtrage passe-bas).

Les figures ci-dessous montrent la concentration de l'énergie pour image rachis_ scoliose :

Fig. III.2 : a) Image rachis_ scoliose, b) DCT de l'image rachis_ scoliose

Les coefficients DCT à haute amplitude sont représentés par des points rouges, les coefficients DCT à très faible amplitude sont représentés par des points verts et les coefficients DCT à haute amplitude mais de signe négative sont représentés par des points bleus.

On voit bien que l'énergie de l'image rachis_scoliose (figure III.2.b) est concentrée en haut de l'image sur le côté gauche dans les faibles fréquences. Nous avons une variation faible de l'intensité sur une large surface et le détail spatial est assez faible.

III.3.3 Séparabilité

Une transformée est séparable si les conditions suivantes sont satisfaites:

$$X(k_1, k_2, n_1, n_2) = X_1(k_1, n_1) X_2(k_2, n_2) \text{ et } x(k_1, k_2, n_1, n_2) = x_1(k_1, n_1) x_2(k_2, n_2)$$
 III.16

Avec x étant la transformée inverse de X et x1 étant la transformée inverse de X1.

Aussi, l'équation (III.13) de la transformée discrète en cosinus peut aussi s'écrire de la façon suivante:

$$X[k_1, k_2] = \sqrt{\frac{2}{N_1 N_2}} \alpha_{k_1} \alpha_{k_2} \sum_{n_1=0}^{N_1-1} \cos\left(\frac{\pi (2n_1+1)k_1}{2N_1}\right) \sum_{n_2=0}^{N_2-1} x[n_1, n_2] \cos\left(\frac{\pi (2n_2+1)k_2}{2N_2}\right)$$
 III.17

Donc, la transformée discrète en cosinus est séparable.

/

Cette propriété a pour avantage de calculer Xc en deux séquences à une dimension, transformation des lignes puis transformation des colonnes successivement.

L'équation (III.14) de la transformée discrète en cosinus inverse peut aussi être calculée de la même manière:

$$x[n_1, n_2] = \sqrt{\frac{2}{N_1 N_2}} \sum_{k_1=0}^{N_1-1} \alpha_{k_1} \cos\left(\frac{\pi (2n_1+1)k_1}{2N_1}\right) \sum_{k_2=0}^{N_2-1} \alpha_{k_2} X_c[k_1, k_2] \cos\left(\frac{\pi (2n_2+1)k_2}{2N_2}\right)$$
 III.18

La transformée discrète en cosinus inverse est séparable.

III.3.4. Symétrie

La transformation est symétrique si elle est séparable et satisfait la condition suivante: $X_1(k_2, n_2) = X_2(k_2, n_2)$ III.19

C'est-à-dire, la fonction X1 est équivalente à la fonction X2.

La relation entre les propriétés de symétrie et de séparablilité peut être donnée par la forme: $T = A^T X A$

Où A étant la matrice de transformation symétrique de N* N avec l'entrée a(i,j) est donnée par :

$$a(i, j) = \alpha_i \sum_{j=0}^{N-1} \cos\left(\frac{\pi(2j+1)i}{2N}\right)$$
 III.20

Et X est la matrice d'image de N*N et (.)Test la transposée.

Cette propriété permet de calculer au préalable, la matrice de la transformée en offline, puis de l'appliquer à l'image, ce qui produirait une amélioration de l'efficacité de calcul.

III.3.5 Orthogonalité

La transformée est orthogonale, si et seulement si la transformée de la matrice est orthogonale :

 $A^{T}A = I$ où I est la matrice identité.

Cette propriété aussi permet de réduire la complexité de calcul de la transformée.

III.4 l'algorithme proposé de WCT (Wavelet Cosinus transform) :

L'algorithme se compose en trois étapes :

- Décomposition par ondelette avec un niveau 3, ensuite nous éliminons les détails de 1^{er} niveau par zéro. On sauvegarde l'approximation LL3 et les détails des deux niveaux 2 et 3.
- 2. Quantifications les détails des deux niveaux 2 et 3 et élimination de zéros pour chaque sous bandes suivie d'un codeur arithmétique appliqué à chaque sous bandes indépendamment.
- 3. Appliquer la DCT 1 dimension sur l'approximation LL3, et appliquer un codeur arithmétique après quantification

a) 1^{er} étape; décomposition par DWT (CDF 9.7) avec un niveau L=3

b) 2^{eme} étape; quantification et élimination de zéros pour chaque sous bandes suivie d'un codeur arithmétique

c) 3^{eme} étape; compresser la sous bande LL3. Fig.III. 3. (a, b, c), compression par WCT

Après la décomposition par ondelette par un niveau de décomposition L=3, éliminons les détails de 1^{er} niveau par zéro. On sauvegarde l'approximation LL3 et les détails des deux niveaux 2 et 3.

Dans la deuxième étape, les détails HL3, LH3, HH3 et HL2, LH2, HH2 doivent être quantifiées à l'aide d'une quantification scalaire adaptative, et d'éliminer sous forme de zéros chaque sous-bande, et ensuite comprimer chaque sous-bande par un codage arithmétique.

Pour les images en niveau de gris, les valeurs de quantification adaptative ce sont de [0.01 à 0.1]. Pour les images couleurs (R. G. B), on choisit une valeur de quantification à chaque espace. Pour cette raison nous allons tester notre algorithme pour différentes valeurs de quantification, pour avoir une bonne qualité d'image médicales compressé. Voir les résultats dans la section suivante.

Par la suite ; nous appliquons la transformée en cosinus discrète unidimensionnelle de type II sur l'approximation LL2 suivi par une quantification scalaire, et ensuite comprimer la matrice résultante par un codage arithmétique.

III.5. Compression hybride d'image Médicale par WCT (wavelet cosinus Transform)

Dans cet algorithme, nous avons couplé la transformée en ondelette discrète a base de banc de filtre avec la transformée de cosinus discrète couplée a un codeur arithmétique. Afin de montrer l'efficacité de cet algorithme, nous avons utilisé la coupe coronale de taille 512*512 codée sur 8bits/pixels (786.432 Koctets) .On varie le facteur de quantification de 0.01 jusqu'à 0.1 et on va calculer le PSNR ; MSSIM, Tc et TFC (taille de fichier compressé) pour 6 types d'ondelettes bi orthogonale choisit : db15,coif5,sym5, bior4.4 ; bior 6.8 et la CDF9/7.

Variation of PSNR

74

Fig. III.4. Variation des paramètres d'évaluation pour différents types d'ondelettes :a) variation de PSNR ;b) variation de MSSIM ; c) variation de la taille de fichier compréssé ;d) variation de temps de calcule pour différents types d'ondelettes .

Afin d'avoir un bon compromis PSNR-TC ; nous constatons de bonne qualité d'image compressé avec l'ondelette CDF9/7 avec Q=0.04 ou 0.05 et un très bon rapport de compression (Tc=95% avec Rc=0.4 bpp) avec un temps de compression réduit qui ne dépasse pas 10 sec.

Nous généralisons notre algorithme avec la CDF9/7 sur différentes images médicales en niveau de gris et couleur (les mêmes bases de données d'images médicales utilisé auparavant).

Nous constatons de bonne qualité d'image compressé avec l'ondelette CDF9/7 pour Q=0.03, Q=0.04; et Q=0.05.les résultats sont illustrées dans la figure III.5.

Q=0.03, PSNR=32.01 dB, MSSIM=0.96; FTC=35.29 kbytes ; tc=13.39sec

Q=0.04, PSNR=31.91 dB, MSSIM=0.952; FTC=31.958 kbytes ; tc=10.32 sec

Q=0.05, PSNR=31.89 dB, MSSIM=0.948; FTC=29.605 kbytes ; tc=9.31 sec

III.6.La transformé de Walsh-Hadamard :

La transformée d'Hadamard (aussi connue sous le nom de « transformée de Walsh-Hadamard ») est un exemple d'une classe généralisée d'une transformée de Fourier. Elle est nommée d'après le mathématicien français Jacques Hadamard. Cette transformée est utilisée pour éliminer le bruit et préserver la structure de l'image dans une image échantillonnée et dans des applications de codage, compression d'images et reconnaissance de formes [178]

III.6.1. Transformation d'Hadamard [168]:

Elle est nommée d'après le mathématicien français Jacques Hadamard et effectue une opération linéaire et involutive avec une matrice orthogonale et symétrique sur 2^m nombres réels (ou complexes, bien que les matrices utilisées possèdent des coefficients réels). Ces matrices sont des matrices de Hadamard.

III.6.1.1 Définition :

Une matrice de Hadamard est une matrice carrée dont les coefficients sont tous 1 ou -1 et dont les lignes sont toutes orthogonales entre elles. Le nom retenu pour ces matrices rend hommage au

mathématicien français Jacques Hadamard, même si les premiers exemples systématiques sont dus à James Joseph Sylvester.

Les matrices d'Hadamard sont définies comme suit:

D'une manière générale la matrice d'Hadamard d'ordre n est définie en fonction de la matrice

d'ordre inférieur par : $H_n = \begin{pmatrix} H_m & H_m \\ H_m & -H_m \end{pmatrix}$ III.21

$$\text{Pour n=8, m=4 on obtient :} H_8 = \begin{bmatrix} +1 & +1 & +1 & -1 & +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 & +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 & +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 & +1 & -1 & -1 & +1 \\ +1 & +1 & +1 & +1 & -1 & -1 & +1 & +1 \\ +1 & +1 & -1 & -1 & -1 & -1 & +1 & +1 \\ +1 & -1 & -1 & +1 & -1 & -1 & +1 & +1 \end{bmatrix}$$
 III.22

Les lignes d'une matrice de Hadamard forment des fonctions de Walsh détaillés dans la partie III.6.2. Pour une matrice H d'ordre n, la propriété d'orthogonalité des colonnes peut également s'écrire sous la forme : $H^tH = nI_n$ III.23

Où I_n est la matrice identité d'ordre n et H^t est la matrice transposée de H.

III.6.1.2 Principe de transformation d'Hadamard :

La transformée de Hadamard H_m utilise une matrice $2^m \times 2^m$ (une matrice de Hadamard) multipliée par un facteur de normalisation, et transforme 2^m nombres réels x_n en 2^m nombres réels X_k . La transformée peut être définie de deux manières : récursivement ou en utilisant une représentation binaire des indices **n** et **k**. Récursivement, on définit une première transformation 1×1 via une matrice H_0 qui est la matrice identité avec un seul élément (1). On définit ensuite H_m pour m > 0 grâce à la relation suivante :

$$H_m = \frac{1}{\sqrt{2}} \begin{pmatrix} H_{m-1} & H_{m-1} \\ H_{m-1} & -H_{m-1} \end{pmatrix}$$
 III.24

 $Ou \frac{1}{\sqrt{2}}$ est un facteur de normalisation qui est parfois omis. Ainsi, à l'exception de la normalisation, les coefficients de la matrice sont égaux à 1 ou -1.

De manière équivalente, on peut définir l'élément (k,n) d'une matrice de Hadamard grâce à :

Et
$$k = k_{m-1}2^{m-1} + k_{m-2}2^{m-2} + \dots + k_12^1 + k_0$$
$$n = n_{m-1}2^{m-1} + n_{m-2}2^{m-2} + \dots + n_12^1 + n_0$$

Où k_j et n_j sont le bit j (0 ou 1) de respectivement k et n. Dans ce cas, on obtient

$$(H_m)_{k,n} = \frac{1}{2^{m/2}} (-1)^{\sum_j k_j n_j}$$
 III.25

III.6.1.3 Transformée d'Hadamard unidimensionnelle (1D):

Les transformées d'Hadamard unidimensionnelles directe et inverse sont alors définies comme suit :

 Si x(k) est une suite périodique finie de N = 2^k éléments alors la transformée d'Hdamard X_h est donnée par :

$$X_h(n) = \frac{1}{N} H(k). x(k) \text{ avec } n, k \text{ entiers} \in [0 \dots 2^k - 1]$$
 III.26

La transformée inverse est réalisée par la même transformation :

$$x(k) = H(k).X_h(n) \quad avec \ n, k \ entiers \in [0 \dots 2^k - 1]$$
 III.27

III.6.2. Transformée de Walsh [170] ; [176]:

III.6.2.1 Définitions :

Les fonctions de Walsh sont des fonctions réelles n'ayant que deux états +1 et -1, elles sont définies dans l'intervalle 0 a 1.

Toute fonction du temps définie dans l'intervalle 0 à 1 peut être développée sur la base de Walsh :

$$f(t) = \sum_{k} a_{k} Wal_{k}(t) \quad avec \quad a_{k} = \int_{0}^{1} f(t) Wal_{k}(t) dt \qquad \text{III.28}$$

La transformation de Walsh est dans certains cas être utilisée à la place de la transformée de Fourier, elle n'en a pas les propriétés car les fonctions de Walsh ne sont pas fonctions propres de l'opérateur linéaire, mais la transformation est bien plus rapide car :

- Toutes les opérations s'effectuent avec des nombres réels

- Il n'y a pas de multiplications sinon par +/-1

- Il n'y a qu'additions ou soustractions.

Exemple des 8 premières fonctions de Walsh :

$$walsh_{0}(t) = 1 \ \forall t \in [0,1]$$

$$walsh_{1}(t) = \begin{cases} 1 & t \in [0,\frac{1}{2}] \\ -1 & t \in [\frac{1}{2},1] \end{cases}$$
III.29
III.30

 $walsh_{k}(t) = \begin{cases} walsh_{m}(t - \frac{1}{2^{m}}) & pour \ k = 2^{m} \ (k \ est \ une \ puissance \ de \ 2) \\ walsh_{k-n}(t) \ washl_{n}(t) & avec \ n = 2^{i} \ (la \ puissance \ de \ 2 \ la \ plus \ proche \ de \ k) \end{cases}$ III.31

Fig. III.6 : Les 8 premières fonctions de base de Walsh.

Il est facile de vérifier que deux fonctions d'indices différents sont orthogonale c'est à dire que leur produit scalaire est constant:

$$\int_0^1 W_k(t) \cdot W_j(t) dt = \delta_{kj}$$
 III.31

Ces fonctions peuvent être représentées d'une manière matricielle comme suit:

Chaque ligne de la matrice matérialise une fonction de Walsh. Son indice k est le nombre de fois que le tracé coupe l'axe des temps (ou le nombre de transitions ± 1)

Les fonctions de Walsh sont générées par :

• D'une manière matricielle :

Chacun des termes walsh_{pq} de la matrice de Walsh est donné par la relation :

$$Walsh_{pq} = (-1)^{(s(p),q)}$$
 $p,q = 0, ..., N - 1$ III.33

$$(s(p),q) = \sum_{i} s_{i}(p).q_{i}$$
 $i = 0, ..., r - 1$ et $N = 2^{r}$ III.34

Sachant que \oplus est l'addition modulo 2:

$$S_{0(p)=}p_{r-1}$$

$$S_{1(p)=}p_{r-1} \oplus p_{r-2}$$

$$\vdots$$

$$S_{r-1(p)=}s_{1}(p) \oplus s_{0}(p)$$
III.35

 $Ou\ p_i\ (resp.\ q_i\)\ est\ le\ (i+1)^{ieme}\ bit\ dans\ la\ représentation\ binaire\ de\ p\ (resp.\ q)$ Les fonctions de Walsh peuvent également être crées à partir de certaines matrices de Hadamard.

Les matrices d'Hadamard font apparaître les fonctions de Walsh dans un ordre qualifié de Naturel. Pour passer de l'ordre naturel (le numéro de la ligne de la matrice) au coefficient k de la fonction de Walsh il faut :

- Transcoder le numéro naturel en code binaire
- Inverser le nombre obtenu
- effectuer un ou exclusif du bit k et le bit d'ordre k-1 et ceci pour les 3 bits du poids faible.

Le bit du poids fort est mis à 0.

Table III.1 -L'obtention des fonctions de Wal	lsh à partir des matrices d'Hadamard
---	--------------------------------------

Walsh	Hadamard		
$W_1 = [1]$	$H_1 = [1]$		
$W_2 = \begin{bmatrix} +1 & +1 \\ +1 & -1 \end{bmatrix}$	$H_2 = \begin{bmatrix} +1 & +1 \\ +1 & -1 \end{bmatrix}$		
$W_4 = \begin{bmatrix} +1 & +1 & +1 & +1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 \\ +1 & -1 & +1 & -1 \end{bmatrix}$	$H_4 = \begin{bmatrix} +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 \end{bmatrix}$		
$W_8 = \begin{bmatrix} +1 & +1 & +1 & +1 & +1 & +1 & +1 & +1$	$H_8 = \begin{bmatrix} +1 & +1 & +1 & +1 & +1 & +1 & +1 & +1$		

Indice de la	Conversion	Inversion	Bits après	Conversion binaire décimal		
matrice	binaire	des bits	Ou exclusif	(Indice de la matrice de		
d'Hadamard				Walsh)		
0	0000	0000	0000	0		
1	0001	1000	0100	4		
2	0010	0100	0110	6		
3	0011	1100	0010	2		
4	0100	0010	0011	3		
5	0101	1010	0111	7		
6	0110	0110	0101	5		
7	0111	1110	0001	1		

Table III.2 –Passage d'indice de Hadamard à l'indice de la fonction de Walsh

III.6.2.2 Transformée de Walsh 1D :

Les transformées de Walsh directe et inverse sont alors définies comme suit :

Si x(k) est une suite périodique finie de $N = 2^k$ éléments alors la transformée de Walsh X_w est donnée par :

$$X_{w}(n) = \frac{1}{N} \sum_{k=0}^{N-1} x(k). W(n,k) \quad avec \ n \ varie \ de \ 0 \ a(N-1)$$
 III.36

La transformée inverse est réalisée par la même transformation :

$$x(k) = \sum_{n=0}^{N-1} X_W(n). W(n,k) \text{ avec } n, k \text{ entiers} \in [0 \dots 2^k - 1]$$
 III.37

Comme pour Fourier il existe un algorithme de calcul rapide FWT (Fast Walsh Transform) dont l'algorithme est reproduit ci-dessous :

Fig. III.7 : l'algorithme de la transformé de Walsh rapide

Cet algorithme comporte d'abord un renversement digital qui est nécessaire pour obtenir en sortie les transformées dans le bon ordre (celui des indices n). Il est suivi d'un papillon et d'une étape intermédiaire. C'est lors de cette étape qu'apparaissent dans la FFT les termes exponentiels qu'ici ne sont plus que +/-1.

L'exemple suivant présente la transformée de Walsh(FWT) (sans l'étape de réorganisation des indices) d'un ensemble de 8 échantillons.

Fig. III.8 : Exemple de la transformé de Walsh 1D pour un vecteur (1,0,1,0,0,1,1,0)

III.6.2.3 Fonctions de Walsh Bidimensionnelles

La fonction de Walsh bidimensionnelle Wal(j,k) est représentable par un carré dont chaque case est le produit de l'abscisse et de l'ordonnée qui sont les fonctions de Walsh

unidimensionnelles Wal(j) et Wal(k).

Les fonctions de Walsh bidimensionnelles sont données par :

$$W_{2D}(j,k) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} W(j,u). W(v,k)$$
 III.38

Avec j et k varient de 0 à N-1 La figure suivante représente les 8 premières fonctions bidirectionnelles de Walsh analogique.

Fig. III.9 : Fonctions de Walsh Analogique à 2 dimensions

			П	П		II	
walsh(0,1)	walsh(1,1)	walsh(2,1)	walsh(3,1)	walsh(4,1)	walsh(5,1)	walsh(6,1)	walsh(7,1)
			- 11				
walsh(0,2)	walsh(1,2)	walsh(2,2)	walsh(3,2)	walsh(4,2)	walsh(5,2)	walsh(6,2)	walsh(7,2)
		Q	00	- 00	00	Ŵ	- MX
walsh(0,3)	walsh(1,3)	walsh(2,3)	walsh(3,3)	walsh(4,3)	walsh(5,3)	walsh(6,3)	walsh(7,3)
=	- 5	8	- 28	- 28	- 88	- XX	///
walsh(0,4)	walsh(1,4)	walsh(2,4)	walsh(3,4)	walsh(4,4)	walsh(5,4)	walsh(6,4)	walsh(7,4)
=	- 8	8	- 8	- 88	- 88	- 88	
walsh(0,5)	walsh(1,5)	walsh(2,5)	walsh(3,5)	walsh(4,5)	walsh(5,5)	walsh(6,5)	walsh(7,5)
=	- 5	8	- 28	- 28 -	- 88	- 88	
walsh(0,6)	walsh(1,6)	walsh(2,6)	walsh(3,6)	walsh(4,6)	walsh(5,6)	walsh(6,6)	walsh(7,6)
≡	1	8	- 28 -	- 22	- 88		
walsh(0,7)	walsh(1,7)	walsh(2,7)	walsh(3,7)	walsh(4,7)	walsh(5,7)	walsh(6,7)	walsh(7,7)
≡	3	8	8				

Fig. III.10: Fonctions de Walsh à 2 dimensions

Pour une image I (x,y) la transformée est donnée par:

$$Iw(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} I(x,y). W_{2D}(x,y,u,v)$$
 III.38

Avec **W**_{2D} est le noyau de la transformation ; **Iw** est la transformée de Walsh de I Puisque le noyau est séparable et symétrique alors :

$$W_{2D}(x, y, u, v) = W_{1D}(x, u). W_{1D}(u, v)$$
 III.39

Ce qui permet d'effectuer le calcul en 1 en 2 étapes :

$$\phi(u, y) = \sum_{x=0}^{N-1} I(x, y). W_{1D}(x, u)$$
 III.40

Puis
$$Iw(u, v) = \sum_{v=0}^{N-1} \phi(u, y) \cdot W_{1D}(y, v)$$
 III.41

La transformée plane est ainsi obtenue par deux applications successive d'une transformation à une dimension (linéaire) sur les lignes de l'image d'origine puis sur les colonnes de l'image intermédiaire $\phi(u,y)$.

La séparabilité de la transformation facilite la mise en œuvre du calcul tandis que la symétrie garantit que les relations de corrélation entre les points de l'image dans les directions horizontales et verticale interviennent de la même manière dans le calcul de la transformée plane. **[179]**

La transformée inverse est obtenue de la même manière.

$$I(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} Iw(u,v). W_{2D}(x,y,u,v)$$
 III.42

On peut écrire cette transformation sous une forme matricielle :

$$Iw = \frac{1}{N}W_{1D}.I.W_{1D}$$
 III.43

Avec W_{1D} est la fonction de Walsh unidimensionnelle.

Exemple :

Soit l'image originale I qui est une imagette de 8*8 pixels. La transformée de Walsh de cette image est représentée en figure III.11

W_{1D} est une matrice de taille 8*8 qui contient les 8 fonctions de Walsh.

la transformée de Walsh de l'image l

Fig.III.11: Transformée de Walsh d'une imagette de 8*8 pixels.

III.6.2.4. Propriétés communes aux transformées de Walsh et Hadamard.

- Les transformées de Walsh et Hadamard sont des transformées de Fourier binaires (c'est-à-dire que le noyau de la transformation vaut +1 ou -1), séparables , orthogonales et symétriques. De plus, ces transformées présentent un avantage indéniable, par rapport à une transformée de Fourier classique : les calculs ne comportent que des additions et des soustractions sur des nombres réels. Leur emploi sera donc plus simple et plus rapide.
- La séparabilité de toutes ces transformées va permettre d'effectuer les transformées bidimensionnelles en effectuant deux transformées monodimensionnelles. Une sur les lignes puis une autre sur les colonnes.
- L'approche matricielle est très pratique pour ces deux transformées. Les matrices des transformées sont obtenues par discrétisations des fonctions des transformées. De plus, c'est la factorisation des matrices des transformées qui justifie l'existence des algorithmes rapides.

- Les matrices de Walsh et Hadamard sont des matrices de symétries orthogonales et par conséquent les transformées directe et inverse s'obtiennent par le même algorithme (à un coefficient multiplicateur près).
- En codage d'image cette dernière est en général découpée en zones de 8x8 pixels, la transformée de Walsh pourrait être calculée extrêmement vite, mais compte tenu du faible nombre de points une transformée de Fourier peut être obtenue presque aussi rapidement.

Les principaux avantages d'une telle méthode sont les suivantes :

- Moyennant le choix convenable de la fonction de transformation, les propriétés de corrélation entre les points de l'image d'origine se manifestent par des propriétés stationnaires de concentration d'énergie en un petit nombre de points de l'espace transformé, ce qui conduit à des procédés de compression particulièrement simple dans cet espace.
- La transformation inverse qui permet de restituer l'image réalise une opération d'éclatement de points, de l'espace transformé.

III.6.3. L'algorithme de WWT (Wavelet Walsh Transform)

L'algorithme se compose en 4 étapes :

- 1. Appliquer une décomposition par ondelette en deux niveaux.
- 2. Appliquer la transformée de Walsh-Hadamard 2D sur chaque block 8x8 de la sous bande de la basse fréquence (approximation).
- 3. Diviser tous les valeurs de DC formé par chaque transformées 8x8 blocs
- 4. Compresser chaque sous-bande en utilisant un codage arithmétique

Fig. III. $12 / 1^{er}$ étape de L'algorithme de compression WWT.

Décomposition par ondelette en deux niveaux.

Fig. III.13 : 2^{eme} étape : Transformé de Walsh 2D

Dans la première étape de l'algorithme ; on applique la transformée en ondelette sur notre image avec un niveau de décomposition 2.on élimine toutes les sous bandes de 1^{er} niveau. Diviser chaque sous bande des détails restantes par un facteur2 et appliquer un codeur arithmétique à chaque sous bande.

Ensuite ; une transformé de Walsh 2D appliquer sur chaque bloque 8*8 de l'approximation LL2, puis divisez chaque bloc quantifié par un facteur choisi par un utilisateur / programmeur.
Chaque 8x8 bloc séparé en; une Valeur DC et 63 coefficients de AC, toutes les valeurs AC sont stockés dans un nouveau tableau et enregistrés dans le fichier compressé. Les 63 coefficients sont stockés dans la nouvelle matrice, et compressés par un Codeur arithmétique.

III.6.4. Compression hybride d'image Médicale par WWT (Wavelet Walsh Transform)

Dans cet algorithme, nous avons couplé la transformée en ondelette discrète à base de banc de filtre avec la transformée de Walsh discrète couplée avec un codeur arithmétique.

Pour cela nous avons utilisé la coupe coronale de taille 512*512 codée sur 8bits/pixels (786.432 Koctets).

Afin d'étudier l'influence du choix de type d'ondelette, nous avons choisi 4 types d'ondelettes : db15, coif5, bior6.8 et CDF9/7, et on va varier les deux paramètres de quantifications facteur1 et facteur2.

Avec Facteur1 : désigne la sous bande de l'approximation (basse fréquence) (LL2) ; et le Facteur2 : pour les sous bande de hautes fréquences (HL2, LH2, and HH2)

En comparant les différents paramètres (PSNR, MSSIM, Taille de fichiers compressé « FTC » et le temps de calcul « Tc »), nous pouvons montrer que l'algorithme proposé à base de l'ondelette de CDF9/7 donne des résultats satisfaisants par rapport aux autres ondelettes testées. Les résultats obtenus sont présenté dans les figures (III.14,III.15,III.16) pour différentes variations des facteurs F1 et F2.

Fig. III.14 – Compression hybride d'image (coupe coronale) par ondelette Walsh discrète (WWT) couplée avec le codeur arithmétique avec F1=0.01 et F2 allant de 0.01 jusqu'à 0.1

Fig. III.15. – Compression hybride d'image (coupe coronale) par ondelette Walsh discrète (WWT) couplée avec le codeur arithmétique avec F2=0.01 et F1 allant de 0.01 jusqu'à 0.1

94

Fig. III.16. Compression hybride par ondelette Walsh discrète (WWT) avec F1 et F2 allant de 0.01 jusqu'à 0.1

Dans la figure suivante (figure III.16) nous présentons la Variation des paramètres d'évaluation (PSNR, MSSIM, FCT et tc) utilisant l'ondelette bi-orthogonale CDF9/7 pour différentes variations de facteur pour la coupe coronale.

Nous obtenons une bonne qualité d'image par fact1 ou fact2 égale : 0.02-0.03-0.04 ; et un bon rapport de compression avec fact1 ou fact2 varié de 0.05 jusqu'à 0.1

D'après la figure III.17, nous constatons d'avoir des meilleurs paramètres de PSNR et MSSIM pour la variation de facteur1 (désigne la sous bande de l'approximation (basse fréquence) varié de 0.01 à 0.05 et facteur 2 fixe à 0.01; avec une bonne qualité de l'image compressé et un mauvais rapport de compression avec un temps de calcule entre 11 à 13 secondes comparant avec les deux autres applications.

Fig.III.17. Variation des paramètres d'évaluation (PSNR, MSSIM, FCTet tc) par la CDF9/7 pour différentes variations de facteur pour la coupe coronale

Afin d'avoir un bon compromis entres ces parametres d'évaluation avec le temps de compression ; nous choissisons les résultats de graphe en bleu étoile de la figure III.17 (fact1= fac2 =0.01) ;car ils nous donnes des meilleurs paramètres de PSNR et MSSIM , FCT et tc avec une bonne qualité de l'image compressé et un bon rapport de compression avec un temps de calcul acceptable. Nous généralisons notre algorithme avec la CDF9/7 sur différentes images médicales en niveau de gris et couleur (les mêmes bases de données d'images médicales utilisé auparavant en chapitre IV). Nous constatons de bonne qualité d'image compressé avec l'ondelette CDF9/7 pour F=0.02,F=0.03 ;et F= 0.04.les résultats sont illustrées dans la figure III.18.

F1=F2=0.01, PSNR= 38.62dB, MSSIM= 0.962; FTC=27,7 kO ;TC=96.47% ; tc=12.97 sec

F1=0.03; F2=0.01, PSNR= 38.59dB, MSSIM= 0.961;

FTC=26,3 kO; TC=96.65% ; tc=11.42 sec

F1=0.01; F2=0.03, PSNR=37.58db, MSSIM= 0.945; FTC=20,4 Ko;TC=97,4% ; tc=10.27 sec

F1=0.03; F2=0.03, PSNR=37.55db, MSSIM= 0.944; FTC=19 kO ;TC=97.58%; tc=10.45 sec

F1=0.01; F2=0.07, PSNR=36.02db, MSSIM= 0.918; $FTC=16,7 \ \text{Ko}; \ TC=97.87\% \ ; \ tc=8.79 \ sec$

F1=0.1; F2=0.1, PSNR=35.45db, MSSIM= 0.9023; FTC=11.8 ko ;TC=98.49%; tc=6.24 sec

F1= F2=0.025; PSNR=37.84db, MSSIM=0.9481; FTC=20,2 KO ;TC=97.43% ; tc=9.65 sec

F1= F2=0.04; PSNR=37.07db, MSSIM=0.9359; FTC=16.9 KO ;TC=97.85% ; tc=7.32 sec

Fig. III.18.compression hybride par WWT (CDF9/7) couplée avec le codeur arithmétique

III.7. Conclusion :

La transformée en cosinus est bien sur la plus utilisée en compression d'image . Elle est à la base de la norme JPEG , ses coefficients sont réels , son facteur de décorréelation est intéressant (98,05%) et sa concentration de l'énergie l'est tout autant : un bloc 2×2 d'une imagette 8×8 contient 90,9% de l'information [177].

La transformée de Walsh Hadamard est la plus simple en complexité mais d'efficacité limitée (décorrélation de 94,86%, et 92,7 % de l'information est contenue dans un bloc 3×3 d'une imagette 8×8). Aussi, a-t-on proposé des transformées intermédiaires entre Walsh-Hadamard et la DCT, sous le nom de DCT à structure d'Hadamard, ou encore de transformation à forte corrélation (décorrélation de 96,72%, et 90,2% de l'information est concentrée dans un bloc 2×2 d'une imagette (8×8) [177].

Le niveau de concentration de l'information offert par la transformée de Walsh sera par contre inférieur à celui obtenu par la DCT ; nous allons faire une hybridation de ces deux transformées avec la transformée d'ondelette dont nous avons choisi l'ondelette bi orthogonale CDF9/7 et l'appliquer dans le domaine de la compression d'image médicale.

Parmi toutes ces méthodes, celles basées sur l'ondelette CDF9/7 et la transformé de Walsh donne les meilleurs résultats pour l'image médicale (coupe coronale) car elles réalisent un meilleur compromis entre le taux de compression (entre 96% jusqu'au 98% avec un bit-rate varie entre 0.32bpp à 0.16bpp), la qualité des images compressées et les temps de calcules.

Chapitre IV

RESULTATS EXPERIMENTAUX

IV.1 INTRODUCTION

Dans cette thèse, nous nous sommes intéressés aux méthodes de compression avec pertes (lossy) basées sur la transformée en ondelettes 2D car elles possèdent des propriétés intéressantes. En effet, la transformée en ondelettes 2D associe de bonnes localisations spatiales et fréquentielles. Comme nous travaillons sur des images médicales la localisation spatiale et fréquentielle sont importantes **[137]**,**[149]**,**[150]**.

Dans nos contributions, nous avons proposé des nouvelles transformées pour la compression des différentes images médicales de différentes modalités de type BMP.

Dans la 1^{ère} application nous avons introduit l'algorithme SPIHT à la structure Lifting afin de réduire les limites des ondelettes classique à banc de filtre. Ensuite nous allons tester une nouvelle transformée en ondelettes basée sur la structure quinconce couplée au codeur SPIHT sur les images médicales en niveau de gris et couleur.

Dans notre troisième contribution, nous avons proposé deux algorithmes hybride pour la compression des différentes images médicales, le premier algorithme basée sur la transformée en ondelette couplée avec la transformée de cosinus suivi d'un codeur arithmétique (WCT), et la 2^{eme} méthode basée sur la transformée en ondelette avec la transformée de Walsh couplée au codeur arithmétique (WWT).

IV.2 PRESENTATION DES DIFFERENTS RESULTATS SUR LES IMAGES MEDICALES EN NIVEAU DE GRIS

IV.2.1 Compression d'images médicales par QWT couplée avec SPIHT

Dans cette partie nous allons faire une synthèse des applications pour montrer l'efficacité de nos algorithmes. Nous avons récapitulé les résultats des trois algorithmes proposés dans les tableaux IV1 et IV.2, en calculant les paramètres d'évaluation en fonction de débit binaire (bitrate) varié de 0.125 à 0.75 (bas débit).

Ces images sont tester avec un PC Intel Core (I3) ; 2.13 GHz PC : 2GB de RAM utilisant Matlab 2012.

Type d'image	Rc (bpp)	Q	WT+SPIH	T	GA	LL5/3 (lifti +SPIHT	ing)	C	DF9/7 (lifti SPIHT	ng)+	
	× 117	PSNR	MSSIM	Tc(s)	PSNR	MSSIM	Tc(s)	PSNR	MSSIM	Tc(s)	
IRM1	0.125	24.29	0.70	2.81	22.03	0.72	3.36	20.91	0.65	3.56	
	0.25	29.19	0.77	5.03	27.56	0.81	5.96	25.98	0.72	5.48	
	0.5	<u>36.54</u>	0.89	12.09	<u>35.63</u>	<u>0.89</u>	<u>10.73</u>	34.78	0.86	10.81	
	0.75	<u>41.41</u>	<u>0.96</u>	21.52	<u>40.42</u>	<u>0.93</u>	<u>19.10</u>	40.01	0.92	19.09	
IRM2	0.125	31.24	0.75	2.47	31.02	0.78	3.12	31.08	0.74	3.29	
	0.25	36.98	0.89	5.32	35.42	0.88	6.60	35.92	0.84	5.99	
	0.5	<u>43.58</u>	<u>0.98</u>	<u>10.73</u>	39.57	0.93	16.98	<u>41.21</u>	<u>0.94</u>	<u>15.33</u>	
	0.75	<u>46.25</u>	<u>0.99</u>	<u>21.48</u>	41.82	0.95	29.75	<u>44.16</u>	<u>0.98</u>	<u>34.02</u>	
IRM3	0.125	28.17	0.68	2.53	28.75	0.72	3.08	28.66	0.68	3.46	
	0.25	32.59	0.82	5.52	32.27	0.84	6.87	32.56	0.81	6.88	
	0.5	<u>38.44</u>	<u>0.95</u>	<u>13.2</u>	35.33	0.91	18.73	<u>37.21</u>	<u>0.93</u>	<u>17.33</u>	
	0.75	<u>41.33</u>	<u>0.97</u>	<u>22.59</u>	38.45	0.95	36.92	<u>38.62</u>	<u>0.94</u>	<u>43.15</u>	
IRM4	0.125	37.56	0.90	2.02	36.52	0.89	2.96	36.18	0.84	2.90	
	0.25	41.75	0.97	4.71	40.03	0.95	6.06	40.26	0.94	6.10	
	0.5	<u>45.42</u>	<u>0.99</u>	<u>13.77</u>	43.30	0.97	15.52	<u>44.56</u>	<u>0.98</u>	<u>14.65</u>	
	0.75	<u>48.27</u>	<u>0.99</u>	<u>26.25</u>	44.56	0.98	39.25	47.24	<u>0.99</u>	<u>26.71</u>	
IRM5	0.125	29.17	0.79	2.06	29.31	0.84	3.26	29.30	0.81	3.27	
	0.25	33.85	0.87	5.06	34.00	0.91	6.40	34.36	0.90	5.96	
	0.5	<u>40.26</u>	<u>0.96</u>	<u>12.57</u>	40.03	0.97	14.58	<u>41.25</u>	<u>0.97</u>	<u>16.87</u>	
	0.75	<u>45.18</u>	<u>0.99</u>	<u>21.56</u>	43.26	0.98	31.81	<u>48.66</u>	<u>0.99</u>	<u>23.75</u>	
IRM6	0.125	25.98	0.68	2.58	24.79	0.59	3.12	25.55	0.66	3.27	
	0.25	29.95	0.81	5.22	29.27	0.77	6.06	29.92	0.81	5.96	
	0.5	<u>35.18</u>	<u>0.90</u>	<u>15.01</u>	34.31	0.88	16.55	<u>34.93</u>	<u>0.90</u>	<u>16</u>	
	0.75	<u>38.96</u>	<u>0.94</u>	<u>26.54</u>	38.42	0.92	26.65	<u>38.40</u>	<u>0.93</u>	<u>28.08</u>	
CT1	0.125	25.47	0.57	2.37	25.96	0.68	3.00	25.12	0.62	3.22	
	0.25	28.72	0.67	5.34	29.83	0.73	6.55	29.09	0.69	6.02	
	0.5	<u>33.14</u>	<u>0.82</u>	<u>14.27</u>	<u>34.70</u>	<u>0.86</u>	<u>15.87</u>	<u>34.02</u>	<u>0.82</u>	<u>17.54</u>	
	0.75	<u>36.62</u>	<u>0.91</u>	<u>28.24</u>	<u>38.17</u>	<u>0.90</u>	<u>27.69</u>	<u>38.08</u>	<u>0.89</u>	<u>35.14</u>	
CT2	0.125	23.44	0.79	2.21	30.66	0.87	3.05	30.12	0.83	3.14	
	0.25	37.91	0.94	4.94	36.47	0.93	5.72	37.36	0.93	5.63	
	0.5	<u>42.81</u>	<u>0.98</u>	<u>11.37</u>	41.47	0.97	15.54	44.53	<u>0.98</u>	<u>13.59</u>	
	0.75	<u>45.61</u>	<u>0.99</u>	<u>26.31</u>	44.48	0.98	35.87	<u>50.21</u>	<u>0.99</u>	<u>26.88</u>	
C13	0.125	24.68	0.52	2.29	24.81	0.55	2.99	24.20	0.48	3.23	
	0.25	29.52	0.77	4.85	29.07	0.65	6.00	28.76	0.61	6.59	
	0.5	35.35	0.93	13.53	<u>34.48</u>	0.91	14.79	34.35	0.91	16.19	
	0.75	<u>39.58</u>	0.97	24.61	<u>38.70</u>	0.97	<u>25.91</u>	39.16	0.97	27.69	
C14	0.125	32.23	0.78	6.34	35.52	0.87	3.43	35.43	0.82	4.05	
	0.25	37.24	0.88	6.69	41.19	0.94	6.29	41.06	0.92	5.98	
	0.5	43.66	0.96	15.64	45.77	0.97	<u>17.01</u>	<u>46.79</u>	0.98	17.41	
FCHO	0.75	47.80	0.98	29.81	<u>47.12</u>	0.78	<u>33.55</u>	<u>50.96</u>	0.99	28.99	
ECHO	0.125	28.50	0.76	2.67	27.50	0.78	3.95	27.82	0.76	3.14	
	0.25	31.92	0.84	5.78	31.05	0.85	1.12	30.19	0.83	/.63	
	0.5	<u>30.25</u>	0.91	14.09	<u>35.00</u>	0.92	<u>17.19</u>	34.55	0.90	18.54	
mamma	0.15	<u>39.12</u> 20.40	0.04	<u>30.77</u>	<u>30.05</u>	0.07	<u>40.03</u>	37.90	0.94	34.55	
mammo	0.125	39.49	0.94	2.11	41.90	0.97	3.32	41.90	0.95	5.04	
	0.25	44.89	0.97	5.54	45.5/	0.98	/.30	40.51	0.98	5.48	
	0.5	<u>50.68</u>	<u>0.99</u>	13.15	<u>47.10</u>	0.99	<u>18.02</u> 25.01	<u>50.92</u>	<u>0.99</u>	<u>10.01</u> 21.70	
Taux do portormonos	0.75	<u> 33.81</u>	1.00	22.93	<u>4/.10</u>	<u>0.99</u>	<u>35.01</u>	<u> </u>	<u>1.00</u> 22.220/	<u>31./0</u>	
1 aux de performance 1(%)			<u>00.00%</u>		<u>8.33% / 41.66%</u>			33.33%			

Table IV.1 – Variation des paramètres d'évaluations (PSNR, MSSIM,Tc) pour différents méthodes de compression (Base I)

Les bons résultats sont en noire gras souligné ; les moins bons sont en rouge gras souligné et les mauvais sont en bleu gras.

Type d'image	Rc (bpp)	QWT+	SPIHT		CDF9/ +SPIH	7 (lifting) T		GALL5/3 (lifting)+ SPIHT			
		PSNR	MSSIM	Tc(s)	PSNR	MSSIM	Tc(s)	PSNR	MSSIM	Tc(s)	
An01(112ko)	0.125	28.59	0.74	2.81	28.12	0.77	3.44	28.23	0.74	3.03	
	0.25	32.88	0.85	6.02	32.44	0.86	6.86	32.73	0.85	6.94	
	0.5	38.02	0.94	16.66	<u>38.91</u>	0.94	15.71	<u>38.37</u>	<u>0.93</u>	<u>21.28</u>	
	0.75	41.36	0.97	29.51	42.42	0.96	36.60	40.46	0.95	45.72	
An03 (186ko)	0.125	27.85	0.65	2.67	27.27	0.66	3.38	27.06	0.61	3.08	
	0.25	30.83	0.75	6.56	29.94	0.74	6.72	29.20	0.69	7.50	
	0.5	<u>34.19</u>	<u>0.87</u>	<u>19.65</u>	<u>33.23</u>	<u>0.81</u>	<u>19.28</u>	32.84	0.79	18.55	
	0.75	<u>36.66</u>	<u>0.93</u>	<u>38.73</u>	<u>34.92</u>	<u>0.84</u>	<u>49.05</u>	34.10	0.82	49.83	
An06(97.1ko)	0.125	33.57	0.91	2.11	33.42	0.92	3.07	32.24	0.91	3.02	
	0.25	39.32	0.96	4.81	38.47	0.96	5.59	39.31	0.96	5.08	
	0.5	44.59	<u>0.98</u>	<u>12.84</u>	44.03	0.98	14.06	<u>44.35</u>	<u>0.98</u>	<u>16.25</u>	
	0.75	47.39	<u>0.99</u>	<u>24.68</u>	45.08	0.99	37.64	<u>46.47</u>	<u>0.99</u>	<u>30.00</u>	
Ex03(238ko)	0.125	27.81	0.70	2.65	27.02	0.68	3.58	27.50	0.67	3.14	
	0.25	31.31	0.81	6.52	30.63	0.81	7.47	30.92	0.79	6.67	
	0.5	35.17	<u>0.91</u>	18.56	<u>35.13</u>	<u>0.92</u>	<u>19.52</u>	34.95	0.90	18.54	
	0.75	<u>38.19</u>	0.95	36.26	<u>39.26</u>	<u>0.96</u>	<u>43.63</u>	38.13	0.95	43.93	
Hd04(164ko)	0.125	28.70	0.72	2.45	28.23	0.70	3.44	28.43	0.69	2.93	
	0.25	33.38	0.87	5.54	32.80	0.87	7.14	33.14	0.85	6.06	
	0.5	38.35	0.95	14.19	<u>39.01</u>	<u>0.95</u>	<u>15.71</u>	<u>38.63</u>	<u>0.95</u>	<u>18.81</u>	
	0.75	41.67	0.97	27.85	<u>43.28</u>	<u>0.98</u>	<u>31.46</u>	<u>42.31</u>	<u>0.97</u>	<u>37.11</u>	
Hd09 (206ko)	0.125	27.28	0.79	2.65	26.84	0.78	3.33	26.32	0.73	3.29	
	0.25	32.28	0.89	5.66	31.29	0.88	6.72	32.15	0.88	5.60	
	0.5	37.38	0.95	14.27	<u>38.04</u>	<u>0.95</u>	<u>14.76</u>	<u>37.50</u>	<u>0.94</u>	<u>16.43</u>	
	0.75	40.30	0.97	30.26	<u>41.25</u>	<u>0.98</u>	<u>34.46</u>	<u>40.42</u>	<u>0.97</u>	<u>36.06</u>	
Nk01(260ko)	0.125	25.15	0.48	2.46	24.61	0.47	3.64	24.04	0.45	3.38	
	0.25	27.17	0.56	6.50	27.06	0.56	6.84	26.64	0.54	7.64	
	0.5	<u>29.37</u>	<u>0.67</u>	<u>18.92</u>	<u>28.47</u>	<u>0.66</u>	<u>33.48</u>	27.92	0.64	37.19	
	0.75	<u>30.77</u>	<u>0.75</u>	<u>46.03</u>	<u>29.97</u>	<u>0.76</u>	<u>68.7</u>	29.83	0.75	63.54	
Sp08(202ko)	0.125	24.32	0.59	2.28	24.48	0.61	2.99	23.85	0.59	3.17	
	0.25	27.58	0.67	5.81	27.40	0.68	6.32	26.81	0.66	5.90	
	0.5	<u>30.90</u>	<u>0.74</u>	<u>15.74</u>	<u>29.50</u>	<u>0.75</u>	<u>24.31</u>	29.95	0.74	18.10	
	0.75	<u>32.53</u>	<u>0.81</u>	<u>37.32</u>	<u>32.29</u>	<u>0.81</u>	<u>41.26</u>	31.94	0.80	43.59	
Sp09(167ko)	0.125	27.36	0.79	2.33	26.99	0.81	4.63	25.51	0.76	3.64	
TR/TE=600/15	0.25	31.81	0.88	7.95	32.34	0.89	6.72	31.90	0.87	5.80	
	0.5	36.95	0.94	13.31	<u>38.14</u>	<u>0.96</u>	<u>17.13</u>	<u>37.49</u>	<u>0.95</u>	<u>14.79</u>	
	0.75	40.41	0.97	29.40	<u>42.52</u>	<u>0.99</u>	<u>36.23</u>	<u>41.30</u>	<u>0.98</u>	<u>30.86</u>	
Sp09_1(149ko)	0.125	27.82	0.80	2.35	28.27	0.85	3.19	26.82	0.81	3.24	
TR/TE=4000/96	0.25	32.36	0.86	5.89	33.24	0.91	6.39	33.13	0.89	5.58	
	0.5	37.40	0.92	12.97	<u>39.65</u>	<u>0.96</u>	<u>13.13</u>	<u>39.07</u>	<u>0.95</u>	<u>13.16</u>	
	0.75	40.48	0.96	32.58	<u>43.46</u>	<u>0.98</u>	<u>24.95</u>	<u>42.82</u>	<u>0.97</u>	<u>25.01</u>	
Taux de performance 2 (%)		50%			50% /	40%		60%			
Taux de performance final(%)	I	TP=59	ГР=59.09%					27 27%			

Table IV.2 –Variation des paramètres d'évaluations (PSNR, MSSIM,Tc) pour différents méthodes de compression (Base II)

Nous constatons que d'après la variation des deux paramètres d'évaluation (PSNR, MSSIM), que notre algorithme (QWT+SPIHT) donne des valeurs importantes par rapport aux autres algorithmes pour la plupart des images médicales testées de la base **I**, et la base **II** avec un taux de performance de 59.09%.

Fig. IV.1- Variation du PSNR, MSSIM, par différentes méthodes avec un bit-rate de 0. 5 bpp sur la base I d'images médicales

Fig. IV.2- Variation du PSNR, MSSIM, par différentes méthodes avec un bit-rate de

0. 5 bpp sur la base II d'images médicales

Les résultats obtenus de la compression des images médicales utilisées avec QWT prouvent bien les bonnes performances de cette méthode. Evidemment, on remarque d'importante chute du PSNR pour les mêmes débits entre les différentes images médicales des deux bases. Ceci est dû essentiellement aux caractéristiques de chacune de ces images. En effet, si nous prenons le cas de l'image Mammographie nous remarquons de forts PSNR par rapport aux autres images et plus particulièrement l'image NK01 pour les mêmes débits (PSNR inférieur à 30db). Voire les figures IV.1 et IV.2.

L'image Mammographie par exemple présente de larges zones homogènes avec peu de contour et de détails aigus. C'est ce que l'on peut appeler une image basse fréquence ; au contraire la NK01présente un peu moins de zones homogènes et beaucoup de contours et de discontinuité. C'est le type d'image avec du caractère plutôt hautes fréquence ou de bande relativement larges. Ce type de spécificités influe beaucoup sur la qualité de la compression surtout quand il s'agit de techniques basées sur les transformations d'une manière générales.

D'après ces figures nous pouvons dire aussi que le changement dans les paramètres d'acquisition de l'image influence sur les valeurs des paramètres d'évaluation (PSNR, MSSIM) ainsi sur la qualité de l'image compressé.

On conclue que notre algorithme (QWT+SPIHT) nous donne de bons résultats dans la majorité des images médicales (13 images) testées en fonction de qualité d'image, taux de compression et temps de compression qui ne dépasse pas les 15 secondes.

La figure suivante (figure IV.3) présente la Compression de différents types d'images médicales par différentes méthodes (CDF9/7 (Lifting schème)+ SPIHT) ; (Gall5/3 (Lifting schème)+ SPIHT) et QWT +SPIHT pour un débit de 0.5 bpp (Tc=93.75%) pour voir la qualité de l'image compressé.

- QWT -PSNR=36.54 db; MSSIM = 0.89; Tc=12.09 sec

- **CDF9/7 -**PSNR=34. 78 dB ; MSSIM = 0.86; Tc=10.81 sec

- Gall 5/3 -PSNR=35. 63 dB ; MSSIM = 0.89; Tc=10.73 sec

- QWT -PSNR=33.14db; MSSIM = 0.82; Tc=14.27 sec

- Gall 5/3 -PSNR=34.70 dB ; MSSIM = 0.86; Tc=15.87 sec

-QWT-PSNR=43.66 dB, MSSIM = 0.96, Tc=15.64s

-CDF9/7-PSNR=46.79 dB, MSSIM = 0.98; Tc=17.41s

-Gall5/3-PSNR=45.77 dB, MSSIM = 0.97, Tc=17.01s

Résultats Expérimentaux

QWT -PSNR=36. 23 dB; MSSIM = 0. 91; Tc=14.09 sec

OWT -Tc=14.27 sec

CDF 9/7 -PSNR=35.06 dB; MSSIM = 0.90; Tc=18.34 sec

Gall 5/3 -PSNR=35.06 dB; MSSIM = 0.92; Tc=17.19 sec

CDF 9/7 -PSNR=37. 38 dB; MSSIM = 0. 95; PSNR=38. 04dB; MSSIM = 0. 95; Tc=14.76 sec

Gall 5/3 -PSNR=37. 5 dB ; MSSIM = 0.94; Tc=16.43 sec

Fig. IV.3- Compression de différents types d'images médicales par différentes méthodes.

IV.2.2 Compression hybride d'image médicale en niveau de Gris

IV.2.2.1. Compression hybride d'image médicale par WCT :

Afin de montré l'efficacité de cet algorithme ; nous allons tester notre approche sur les deux base d'image médicale en niveau de gris (base I et II) d'où nous appliquons la transformée en ondelette bi-orthogonale CDF9/7 couplée avec la transformée de cosinus suivi d'un codeur arithmétique. Nous avons récapitulé les résultats de notre algorithme proposés (WCT) dans les tableaux IV.3, IV.4, en calculant les paramètres d'évaluation PSNR ; MSSIM, Tc et TFC (taille de fichier compressé) et le taux de compression TC (%) pour les deux bases d'images médicales testées ; en fonction de facteur de quantification varié de 0.01 à 0.05.D'après les résultats de tableau IV.3, nous constatons que a Q=0.01 jusqu'à 0.03 nous obtenons de très bonne qualité d'image compressée et un bon taux de compression (dépassant 93.75%) avec un temps de compression qui ne dépasse pas 17 sec.

Et a Q=0.04 jusqu'à 0.05 ; nous obtenons une bonne qualité d'image compressée et un bon taux de compression (dépassant 94%) avec un temps de compression qui ne dépasse pas 14 sec. Nous constatons que notre algorithme est meilleur que des méthodes tester auparavant dans la partie IV.2.1.

Table IV.3 - Variation des paramètres d'évaluations (PSNR (db), MSSIM, FTC(Ko), TC(%), Tc(sec)) en fonction de facteur de quantification varié de 0.01 à 0.05.(Base I)

0	IRM	11 (TFC	D=786.	432 ko)	IR	M2(TF	O=786	.432 ko	o)	IRM3(TFO=786.432 ko)				
Q	PSNR (db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc(sec)	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)
0.01	38.96	0,96257	41.565	94.71	18.46	45.54	0.98067	61.570	92.17	27.71	42.73	0.98177	61.803	92.14	28.10
0.02	38.82	0,95702	37.624	95.21	14.48	45.3	0.9792	50.524	93.57	22.20	42.21	0.97911	50.972	93.51	22.57
0.03	38.62	0,95451	33.301	95.76	12.37	44.72	0.97713	44.450	94.34	18.88	41.54	0.97533	44.979	94.28	19.41
0.04	38.40	0,94673	30.388	96.13	10.88	44.25	0.97492	40.368	94.86	17.04	40.71	0.97026	40.838	94.80	17.17
0.05	38.16	0,94412	28.367	96.39	9.82	43.73	0.97215	37.266	95.26	15.30	39.81	0.96362	37.723	95.20	15.56
	IRM4(TFO=786.432 ko)					IR	M5(TFO	D=786.	IRN	A6(TFC) =786.4	432 koj)		
Q	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)	PSNR (db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)	PSNR (db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)
0.01	42.42	0.97989	48,032	93.89	20.90	47.75	0.98578	45,523	94.21	18.48	32.15	0.97	49,25	93.73	16.95
0.02	42.34	0.97909	37,726	95.20	15.45	46.13	0.98282	37,775	95.19	15.02	32.07	0.964	40,351	94.86	13.56
0.03	41.92	0.97523	32,05	95.92	12.41	44.43	0.97875	32,884	95.81	12.58	32.01	0.96	35,29	95.51	13.39
0.04	41.75	0.97408	28,185	96.41	10.17	42.66	0.97377	30,106	96.17	11.41	31.91	0.952	31,958	95.93	10.32
0.05	41.36	0.9705	25,59	96.74	8.64	41.31	0.96932	28,018	96.43	9.89	31.89	0.948	29,605	96.23	9.31
0	CT1(TFO=786.432 ko)					C	Γ2(TFC	=786.4	432 ko))	СТ	T3(TFO	=786.4	32 ko)	
Q	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc(sec)	PSNR (db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)
0.01	32.00	0.9437	50,969	93.51	19.24	40.84	0.98305	45,705	94.18	17.59	42.34	0.98554	52,009	93.38	20.30
0.02	31.97	0.94171	42,968	94.53	15.59	40.61	0.98101	37,325	95.25	13.20	42.10	0.98281	43,863	94.42	16.15
0.03	31.89	0.93816	38,533	95.10	13.54	40.09	0.97563	32,799	95.82	11.25	41.70	0.97905	39,443	94.98	14.32
0.04	31.8	0.93396	35,602	95.47	13.28	39.62	0.97084	29,637	96.23	9.33	41.20	0.97347	36,429	95.36	12.29
0.05	31.72	0.93062	33,374	95.75	10.79	39.23	0.96668	27,412	96.51	7.92	40.77	0.96916	34,192	95.65	11.84
0	СТ	4(TFO	=786.4	32 ko)		EC	HO(TF	O=786	.432 ko	o)	Mam	mog(TI	FO=786	5.432 k	(0)
Q	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc(sec)	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)
0.01	38.18	0.97063	34,779	95.57	13.08	38.83	0.95346	48,206	93.87	20.63	42.02	0.97978	43,497	94.46	18.07
0.02	38.10	0.96702	28,157	96.41	9.77	38.78	0.95092	40,038	94.90	15.99	41.89	0.97871	35,542	95.48	13.74
0.03	37.95	0.96353	24,981	96.82	7.98	38.61	0.94627	35,622	95.47	13.77	41.73	0.97698	31,23	96.02	11.40
0.04	37.76	0.95976	23,092	97.06	6.92	38.52	0.94171	32,563	95.85	12.29	41.45	0.97319	28,404	96.38	9.71
0.05	37.61	0.95585	21,847	97.22	6.06	38.35	0.93651	30,282	96.14	10.96	41.30	0.97191	26,372	96.64	8.79

Chapitre IV :

Les figures (IV. 4 et IV.5) présentée ci-dessous illustrent la variation du PSNR, MSSIM, pour différents types d'images médicales (Base I et II) compressée par l'algorithme hybride CDF9/7(banc de filtre) hybridé avec la transformée en cosinus discrète couplée avec le codage arithmétique.

Nous observons d'après la variation des paramètres (PSNR, MSSIM), que notre algorithme donne des valeurs importantes pour la base I par rapport à la base II.

Nous remarquons d'après cette figure et les deux tableaux (IV.3 et IV.4) que l'algorithme proposé est mieux adapté à la compression des images médicales de grande tailles (base I) en générale ,et spécifiquement adaptatif aux images IRM. C'est pour cette raison, nous allons appliquer notre algorithme pour la compression des images médicales couleur. Voir la section IV. 3

Fig. IV.4 - Variation du PSNR, MSSIM, pour différents types d'images médicales (Base I) compressée par l'algorithme hybride WCT.

		ANG	(112ko	o).			ANG	3 (186k	.o)		ANG6(97.1ko)					
Q	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc(sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)	
0.01	33.82	0.96965	47,12	57.92	19.68	31.61	0.92454	49,39	73.44	20.76	34.48	0.98556	36,17	62.74	13.40	
0.02	33.73	0.96573	38,945	65.22	15.52	31.56	0.92128	40,806	78.06	16.30	34.38	0.98125	28,583	70.56	9.67	
0.03	33.60	0.95981	34,535	69.16	13.38	31.49	0.91726	36,103	80.58	13.93	34.23	0.97543	25,041	74.21	7.82	
0.04	33.42	0.95398	31,551	69.16	11.94	31.39	0.91175	32,876	82.32	12.26	34.06	0.96991	22,786	76.53	6.54	
0.05	33.20	0.94547	29,34	71.82	10.66	31.28	0.90682	30,424	83.64	11.14	33.94	0.96613	21,319	78.04	5.78	
		EX03	3 (238ko)			HDO	04 (164ko	o)			HD0	9 (206ko)		
Q	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc(sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)	
0.01	34.05	0.9852	54,44	77.12	24.31	34.27	0.97091	37,591	77.07	14.01	33.43	0.98568	56,593	72.52	25.04	
0.02	33.83	0.97787	43,739	81.62	18.80	34.15	0.96629	31,346	80.88	11.02	33.30	0.98052	45,757	77.78	19.34	
0.03	33.45	0.9646	37,859	84.09	15.70	33.96	0.95923	27,969	82.94	9.24	33.08	0.97154	39,802	80.06	16.41	
0.04	33.07	0.95085	33,803	85.79	13.37	33.73	0.9518	25,837	84.24	8.26	32.86	0.96309	35,808	82.61	14.24	
0.05	32.59	0.93229	30,738	87.08	11.73	33.50	0.94501	24,204	85.24	7.52	32.60	0.9533	32,956	84	12.69	
		NK01	(260ka)			SP0	8 (202k	o)	SP09 (167ko)						
Q	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc(sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)	
0.01	28.72	0.79995	58,714	77.41	26.10	28.50	0.85346	56,781	71.89	24.73	33.23	0.98393	44,329	73.45	17.81	
0.02	28.65	0.79444	47,723	81.64	21.19	28.44	0.84677	45,937	77.25	19.69	33.09	0.97897	36,101	78.38	13.63	
0.03	28.54	0.78865	41,642	83.98	17.90	28.34	0.83682	40,039	80.17	16.48	32.87	0.97089	31,743	80.99	11.55	
0.04	28.41	0.77754	37,506	85.57	15.66	28.21	0.82284	36,034	82.16	14.32	32.60	0.96086	28,815	82.74	11.35	
0.05	28.21	0.76552	34,421	86.76	13.26	28.06	0.80549	32,975	83.67	12.73	32.39	0.95319	26,742	83.98	8.83	

Table IV.4 - Var	iation des	paramètres	d'évaluations	(PSNR,	MSSIM,	FTC,	TC(%),	Tc(sec))	en
fonction de facte	ur de quar	ntification v	varié de 0.01 à	a 0.05.(Ba	ase II)				

Fig. IV.5 - variation du PSNR, MSSIM, pour différents types d'images médicales (Base II) compressée par l'algorithme hybride WCT.

IV.2.2.2. Compression hybride d'image médicale par WWT

Notre but apparait d'avoir une bonne qualité de l'image et un bon rapport de compression. D'après les résultats obtenus dans le chapitre III par l'application de notre algorithme sur l'image médicale (coupe coronale) ; nous constatons de bon résultats dans le cas ou facteur 1 égale à facteur2. Nous allons généraliser notre algorithme sur les deux bases d'images médicales. Nous avons récapitulé les résultats de notre algorithme proposés (WWT) dans les tableaux IV.5, IV.6, en calculant les paramètres d'évaluation PSNR ; MSSIM, Tc(sec) et TFC (taille de fichier compressé) et le taux de compression TC (%) pour les deux bases d'images médicales testées ; en fonction de facteur de quantification (fact1 = fact2) varié de 0.01 à 0.05.

Dans la compression hybride ; nous souhaitons d'avoir un bon compromis entre les paramètres d'évaluation et une meilleur qualité d'image compressé pour un taux de compression qui dépasse 94% (Rc=0.4bpp) .D'après les deux tableaux IV.5 et IV.6 ; nous constatons des meilleurs résultats pour les images médicales de la base I (grande taille) avec un taux de compression dépasse 97% (Rc=0.24bpp) et un temps de calcul réduit par rapport aux autres méthodes testées.

Les figures (IV. 6 et IV.7) présentées ci-dessous illustrent la variation du PSNR, MSSIM, pour différents types d'images médicales (Base I et II) compressée par l'algorithme hybride CDF9/7(banc de filtre) hybridé avec la transformée de Walsh couplée avec un codage arithmétique.

	IRM	/11 (TF	O=786.	432 k	0)	IRI	M2(TF	O=786.	.432 k	o)	IRI	M3(TF	O=786.	432 k	o)
F=fact1=fact2	PSNR (db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc(sec)	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)
0.01	39.02	0.958	30.396	96.13	8.36	46.88	0.982	26.848	96.58	7.82	44.45	0.9787	33.659	95.72	10.27
0.02	38.68	0.951	24.907	96.83	7.01	44.30	0.970	21.618	97.25	6.53	42.42	0.967	26.943	96.57	8.48
0.03	38.319	0.944	22.130	97.18	6.33	42.48	0.959	18.920	97.59	5.70	40.62	0.948	23.427	97.02	7.4
0.04	38.05	0.9405	20.580	97.38	5.88	41.258	0.95	17.303	97.79	5.24	39.23	0.932	21.182	97.30	6.77
0.05	37.77	0.936	19.305	97.54	5.55	40.465	0.944	16.325	97.92	4.99	38.24	0.919	19.606	97.50	6.29
	IRM	M4 (TF	O=786	.432 k	0)	IRM5 (TFO=786.432 ko)					IRM	/16 (TF	O=786.	432 k	o)
F=fact1=fact2	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)	PSNR (db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)	PSNR (db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)
0.01	45.73	0.982	22.637	97.12	6.44	50.32	0.993	30.243	96.15	7.83	38.62	0.962	32.755	95.83	8.94
0.02	45.17	0.978	18.493	97.64	5.44	45.53	0.983	24.631	96.86	6.57	38.07	0.953	26.551	96.62	7.52
0.03	44.76	0.976	16.851	97.85	5.01	42.41	0.97	21.315	97.28	5.75	37.55	0.944	23.385	97.02	6.66
0.04	44.40	0.973	15.879	97.98	4.69	40.64	0.958	19.242	97.55	5.32	37.07	0.935	21.244	97.29	6.04
0.05	44.05	0.971	15.133	98.07	4.51	39.50	0.949	17.791	97.73	5.18	36.61	0.929	19.747	97.48	5.63
	СТ	1 (TFC	D=786.4	432 ko)	СТ	C2 (TF	D=786.4	432 ko))	СТ	'3 (TFC	D=786.4	432 kc)
F=ract1=ract2	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc(sec)	PSNR (db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)
0.01	38.45	0.962	32.160	95.91	8.58	43.88	0.979	22.642	97.12	6.45	41.66	0.988	33.632	95.72	9.78
0.02	37.96	0.953	26.522	96.62	7.40	42.91	0.971	18.591	97.63	5.48	40.71	0.978	27.738	96.47	8.28
0.03	37.47	0.943	23.405	97.02	6.52	42.29	0.966	16.779	97.86	4.97	39.81	0.972	24.740	96.85	7.41
0.04	37.07	0.932	21.391	97.27	5.98	41.75	0.962	15.679	98	4.61	39.02	0.965	22.717	97.11	6.91
0.05	36.36	0.918	19.816	97.48	5.60	41.17	0.959	14.835	98.11	3.95	39.21	0.958	21.257	97.29	6.42
E-fact1-fact2	СТ	74 (TFC	D=786.4	432 ko)	ECH	HO (TH	FO=786	.432 k	co)	Mam	mog (Т	TFO=78	6.432	ko)
F=lact1=lact2	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc(sec)	PSNR(db)	MSSIM	TFC (KO)	TC(%)	Tc (sec)
0.01	44.47	0.981	20.566	97.38	5.19	38.75	0.948	30.574	96.11	8.13	48.45	0.988	15.483	98.03	4.15
0.02	43.89	0.975	17.118	97.82	4.52	38.19	0.935	24.423	96.89	6.62	47.40	0.983	12.569	98.40	3.62
0.03	43.33	0.97	15.615	98.01	4.25	37.60	0.923	21.116	97.31	5.89	46.89	0.98	11.545	98.53	3.44
0.04	42.59	0.965	14.574	98.14	4.04	37.02	0.911	18.966	97.58	5.32	46.45	0.978	10.946	98.60	3.32
0.05	42.46	0.963	13.761	98.25	3.88	36.66	0.901	17.417	97.78	4.87	46.10	0.976	10.425	98.67	2.86

Table IV.5-Variation des paramètres d'évaluations (PSNR (db), MSSIM, FTC(Ko), TC(%), Tc(sec)) en fonction de facteur de quantification (Fact1=Fact2) varié de 0.01 à 0.05.(Base I)

Fig.IV.6 -Variation du PSNR, MSSIM, pour différents types d'images médicales (Base I) compressée par l'algorithme hybride WWT.

		AN	IG1 (112ko).				A	NG3 (186ko)			ANG6(97.1ko)				
F=Fact1=Fact2	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc(sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)
0.01	44.27	0.983	31.208	72.13	8.76	37.89	0.926	31.815	82.89	9.72	46.47	0.984	23.295	76%	6.70
0.02	42.41	0.970	25.152	77.54	7.13	37.40	0.913	25.396	86.34	7.60	44.89	0.976	18.815	80.62	5.67
0.03	40.86	0.959	22.022	80.33	6.36	36.81	0.899	21.894	88.22	6.44	43.64	0.97	16.611	82.89	4.92
0.04	39.65	0.948	19.969	82.17	5.80	36.30	0.886	19.623	89.45	6.04	42.89	0.966	15.300	84.24	4.74
0.05	38.57	0.936	18.439	83.53	5.38	35.92	0.873	17.988	90.32	5.43	42.26	0.963	14.479	85.08	4.52
	EX03 (238ko)						Н	D04 (164ko)			н	009 (206ko)			
F=Fact1=Fact2	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc(sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)
0.01	44.28	0.983	36.075	84.84	11.33	44.71	0.987	28.512	82.61	7.91	43.80	0.98	32.259	84.34	10.61
0.02	41.50	0.958	28.490	88.02	9.08	43.25	0.979	23.431	85.71	6.75	41.89	0.962	25.598	87.57	8.90
0.03	39.20	0.927	24.067	89.88	7.67	41.82	0.969	20.616	87.42	5.98	40.66	0.951	22.483	89.08	7.25
0.04	37.91	0.90	21.351	91.02	7.10	40.83	0.963	18.972	88.43	5.74	39.60	0.943	20.477	90.05	6.82
0.05	37.00	0.881	19.403	91.84	6.75	40.04	0.957	17.771	89.16	5.35	38.86	0.936	19.117	90.71	6.30
		N	(01 (260ko)				P08 (202ko)	SP09 (167ko)							
F=Fact1=Fact2	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc(sec)	PSNR(db)	MSSIM	TFC (Kbytes)	TC(%)	Tc (sec)
0.01	34.01	0.79	38.287	85.27	11.41	35.59	0.845	37.079	81.64	11.64	43.67	0.983	31.123	81.36	9.51
0.02	33.64	0.77	30.488	88.27	9.09	35.12	0.822	29.233	85.52	8.86	41.93	0.968	24.687	85.21	7.97
0.03	33.20	0.74	25.998	90.00	7.95	34.69	0.79	24.874	87.68	7.51	40.65	0.954	21.528	87.10	7.09
0.04	32.83	0.70	22.769	91.24	7.01	34.39	0.764	21.991	89.11	6.68	39.61	0.941	19.456	88.34	6.40
0.05	32.56	0.672	20.323	92.18	6.14	34.16	0.745	20.008	90.09	6.14	38.93	0.932	18.081	89.17	5.90

Table IV.6 - Variation des paramètres d'évaluations (PSNR (db), MSSIM, FTC(Ko), TC(%) , Tc(sec)) en fonction de facteur de quantification (Fact1=Fact2) varié de 0.01 à 0.05.(Base II)

114

Fig. IV.7- Variation du PSNR, MSSIM, pour différents types d'images médicales (Base II) compressée par l'algorithme hybride WWT.

Nous remarquons d'après les figures (IV.6; IV.7) que l'algorithme proposé est mieux adapté à la compression des images médicales IRM4 ; Mammographie et Angiographie (An06).

La Figure IV.8 présente les résultats obtenus après l'application de deux nouveaux algorithmes proposés (WCT et WWT) sur différentes coupes. Ces résultats sont obtenus avec le même facteur de quantification de 0.03.

b- WCT

PSNR=38.62db, MSSIM=0.95, TC=95.76% ; Tc=12.37sec

a- WWT

PSNR=38.31db, MSSIM=0.944 , TC=97.18% ; Tc=6.33sec

d- WCT
PSNR=44.43db, MSSIM=0.978 ,
TC=95.81% ; Tc=12.58sec

c- WWT
PSNR=42.41db, MSSIM=0.97 ,
TC=97.28% ; Tc=5.75sec

f- WCT

PSNR=41.70db, MSSIM=0.979, TC=94.98% ; Tc=14.32sec

e- WWT

PSNR=39.81db, MSSIM=0.972, TC=96.85%; Tc=7.41sec

h- WCT

PSNR=38.61db, MSSIM=0.946, TC=95.47% ; Tc=13.77sec

PSNR=37.60db, MSSIM=0.923, TC=97.31% ; Tc=5.89sec

j- WCT

PSNR=41.73db, MSSIM=0.976, TC=96.02% ; Tc=11.40sec

PSNR=46.89db, MSSIM=0.98, TC=98.53% ; Tc=3.44sec

Fig. IV.8- Compression de différents types d'images médicales par WCT et WWT

IV.3 PRESENTATION DES DIFFERENTS RESULTATS SUR LES IMAGES MEDICALES COULEURS

IV.3.1. Définition de l'espace de couleurs

Un espace colorimétrique ou espace de couleurs associe des nombres aux couleurs visibles. Compte tenu des limites de la vision humaine, ces nombres se présentent généralement sous la forme de triplets **[179]**. Chaque couleur de lumière peut donc être caractérisée par un point dans un espace à trois dimensions.

Il y a plusieurs espaces de couleurs qui sont utilisés dans différents domaines. L'espace CIE XYZ sert en photométrie, CIE LUV en visualisation scientifique, CIELAB dans les textiles, RGB pour les moniteurs, CMY pour l'impression, YIQ pour la télévision, HSV, HSI et HLS sont utilisés pour la sélection de couleurs, Munsell en psychologie et Ostwald en peinture[**180**]. Il existe d'autres espaces encore, mais ceux-ci sont les principaux. Par conséquent, certains offrent une palette de couleurs très réduite (l'espace RAL par exemple utilisé en peinture ne dispose que d'environ 1900 couleurs), alors que les plus complets présentent plusieurs millions de couleurs [**181**].

IV.3.1.1.L'espace RGB

a) Définition :

L'espace RGB (Red , Green, Blue, pour Rouge Vert Bleu, en français RVB), mis au point en 1931 par la Commission Internationale de l'Eclairage (CIE) consiste à représenter l'espace des couleurs à partir de trois rayonnements monochromatiques de couleurs (rouge, vert et bleu) **[178] [179].**

Cet espace de couleurs correspond à la façon dont les couleurs sont généralement codées informatiquement, ou plus exactement à la manière dont les tubes cathodiques des écrans d'ordinateurs représentent les couleurs [179].

Le RGB est un espace de couleur additif (Figure IV.9) -c.-à-d., ses trois couleurs primaires (rouge, vert, et bleu) se combinent d'une manière additive pour produire toutes les couleurs désirées **[181].** Chaque couleur est représentée par un groupe de trois valeurs : une pour le rouge, une pour le vert et une pour le bleu. Chacune de ces valeurs varie dans l'intervalle [0 - 255]. Si ces trois valeurs sont égales à 0, la couleur correspondante est le noir, et le blanc si les trois valeurs sont égales à 255. Lorsque toutes les composantes ont une valeur égale, on obtient une nuance de gris neutre. Si vous vous représentez ce modèle comme des projecteurs, il est facile de comprendre que des couleurs faibles (valeurs basses) signifie couleurs plus sombres, et couleurs fortes (valeurs élevées) signifie couleurs plus brillantes **[181].**

RGB peut représenter plus de 16 millions de couleurs (Ce qu'on appelle souvent couleurs vraies (True colors)). Ceci concerne les images dont la profondeur est de 24 bits par pixel (8 bits pour chaque composante : 256 intensités). Toutefois, cette valeur n'est que théorique car elle dépend fortement du matériel d'affichage utilisé.

Fig. IV.9 - Composition additive des couleurs.

Le codage RGB repose sur trois composantes proposant la même gamme de valeurs, on le représente généralement graphiquement par un cube dont chacun des axes correspond à une couleur primaire **[179]** (Figure IV.10).

Fig.IV.10: Présentation des couleurs dans l'espace RGB.

b) Les espaces luminance-chrominance

Cette famille des espaces couleurs dissocie l'information chromatique des couleurs de leur intensité lumineuse. En effet ce type d'espaces décrits un stimulus couleur selon une composante de luminance, et deux autres composantes allouées à la quantification de l'aspect chromatique du stimulus [178]. Les composantes de ces espaces sont calculées à partir des composantes trichromatiques RGB. On distingue différents types d'espaces luminance-chrominance (YIQ, YCbCr, YDbDr, YPbPr, O1O2O3...).

D'après une étude énergétique **[185]** de chaque espace de couleurs, on peut résumer les différentes observations dans les points suivants :

- Degré élevé de corrélation entre les trois plans de l'espace RGB.
- Dans les espaces de types luminance/chrominance, l'énergie est concentrée dans la première composante (Y). C-à-d, elle contient les informations principales de l'image.
 Par exemple, dans l'espace YUV, l'énergie moyenne dans la composante Y est de 93.51%, mais dans les autres composantes (U, V) elles sont respectivement 1.65%,

4.82%. La majorité des informations de l'image couleur est dans la première composante (Luminance).

La meilleure performance peut être obtenue avec l'espace de couleurs YCbCr comparé aux autres espaces de couleurs dans le contexte de la compression d'image.

IV.3.1.2.L'espace YCbCr

a)Définition :

L'espace YCbCr défini par le IRCC (International Radio Consultative Committee), est souvent utilisé dans la compression des images. Cet espace se compose de Y qui est la composante de luminance (appelée aussi Luma), ainsi que Cb et Cr qui sont les composantes de chrominance (bleue et rouge) voir la figure IV.11 [182] [184].

L'espace de couleur choisi reste celui le plus classique en codage avec pertes, à savoir Y :Cr :Cb. Ce choix d'espace de représentation pour le codage des images couleur est motivé par la décorrélation de l'information contenue dans les composantes Y :Cr :Cb résultantes, par la repartition uniforme de l'entropie sur les composantes couleurs , par la simplicité de la transformation. et enfin par la simplicité d'utilisation de cet espace de représentation(transformation linéaire, espace a valeurs entières).

Il est largement appliqué dans la vidéo et la compression d'images telles que MPEG et JPEG.

b) Transformations :

• Transformation RGB YCbCr [185]

$$\begin{bmatrix} y \\ C_b \\ C_r \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.144 \\ -0.1687 & -0.33726 & -0.5 \\ 0.5 & -0.41869 & 0.08131 \end{bmatrix} \times \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

• Transformation YCbCr RGB [185]

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.402 \\ 1 & -0.34413 & -0.71414 \\ 1 & 1.772 & 0 \end{bmatrix} \times \begin{bmatrix} y \\ C_b \\ C_r \end{bmatrix}$$

Fig. IV.11: Une image RGB, avec ses composantes Y, Cb, et Cr.

IV.3.2- Compression d'images médicales couleur par la structure lifting couplée avec SPIHT.

Afin de réduire les limites des ondelettes classiques à banc de filtre, nous avons appliqué la transformée en ondelette CDF9/7 par la structure lifting couplée avec le codeur SPIHT a l'image médicale couleur [187] [188].

Le traitement est appliqué individuellement pour chaque composante couleur de l'espace de représentation YCrCb.

Sur notre image rétinienne, on va faire une conversion de l'espace de RGB au espace YCrCb , et on va appliquer sur chaque composante Y,Cr ,Cb ; la transformée de CDF9/7 (lifting schème) suivi d'un codeur SPIHT séparément et finalement on va collecter les 3 composantes YCrCb et ensuite la convertir en espace de RGB.(voir la figure IV.12).

Les résultats de simulation de l'algorithme proposé pour l'ondelette CDF 9/7 à l'image test 'image rétinienne couleur' de taille 512x512 codée sur 8bpp sont illustrés sur la figure (IV.12).

Fig.IV.12-algorithme de la compression d'image médicale couleur par la CDF9/7 (Structure lifting)

Cette figure (IV.13) nous montre la qualité de l'image compressée pour différentes valeurs du débit. Nous remarquons d'après cette figure qu'à partir de 0.5 bpp la reconstruction de l'image rétinienne devient quasi-parfaite. Pour mieux apprécier la pertinence des résultats obtenus, nous avons calculé deux paramètres d'évaluation (PSNR ; MSSIM).

R=0.125bpp,PSNR=34.94 db, MSSIM=0.797,Tc=10.22s

R=0. 5bpp, PSNR=37.95db , MSSIM=0.870, Tc=99.94s

R=0. 25bpp,PSNR=34.97db , MSSIM=0.815,Tc=29.38s

R=0. 75bpp, PSNR=38.51 db, MSSIM=0.89,Tc=178.16s

R=1 bpp, PSNR=38.83 db, MSSIM=0.901, Tc=338.35s

R=2 bpp, PSNR=43.29 db, MSSIM=0.956,Tc=1369.79s

Fig.IV.13- compression image rétinographie couplée par CDF9/7(lifting Scheme) couplée avec le codeur SPIHT

La méthode proposée basée sur la structure lifting couplés avec le codage SPIHT pour deux ondelettes biorthogonales différentes : la CDF 9/7 et Gall 5/3 est comparée aux deux méthodes suivantes : Gall 5/3 (Lifting scheme) couplée avec le SPIHT et ou EZW et la CDF9/7(Lifting scheme) couplée avec le SPIHT et ou le codage EZW.

Afin d'étudier l'influence du choix de la méthode, nous faisons varier le débit binaire de 0.125 à 2 et nous calculons les paramètres d'évaluation. Les résultats obtenus sont donnés par la Fig. IV.14.

Les résultats obtenus sont donnés dans le tableau IV.7. En comparant les performances des différents paramètres (PSNR, MSSIM), nous pouvons montrer que l'algorithme proposé donne des résultats satisfaisants par rapport aux ondelettes classiques (ondelettes à banc de filtre).

Rc			GA115/3	(lifting)	CDF9/7 (banc de	CDF9/7(lifting)+EZW			
(bpp)	CDF9/7(lif	fting)+SPIHT	+SPIE	IT	filtre)+	SPIHT				
	PSNR	MSSIM	PSNR	MSSIM	PSNR	MSSIM	PSNR	MSSIM		
0.125	34.75	0. 79	32.90	0.74	32.40	0.68	31.53	0.78		
0.25	34.97	0.81	33.55	0.79	33.02	0.70	34.51	0.80		
0.5	37.95	0.87	35.70	0.80	35.64	0.78	34.93	0.83		
0.75	38.51	0.89	36.89	0.84	36.70	0.82	36.08	0.86		
1	38.83	0.90	37.65	0.88	37.32	0.87	35.62	0.87		
1.5	42.33	0.94	39.88	0.89	39.25	0.88	35.48	0.88		
2	43.29	0.95	41.32	0.93	40.90	0.92	35.28	0.883		

Table. IV.7– Variation des paramètres d'évaluations (PSNR, MSSIM) pour différents méthodes de compression (coupe coronal) (level=5)

Les travaux ont montré qu'un nombre de décomposition égal à cinq est largement suffisant pour la majorité des cas et que nous ne pouvons pas espérer améliorer davantage en choisissant un nombre plus élevé. **[189]**

Nous observons d'après la variation des paramètres (PSNR, MSSIM), que notre algorithme donne des valeurs importantes par rapport aux autres algorithmes. Sur cela nous pouvons dire que l'algorithme proposé est mieux adapté à la compression d'images médicales couleur.

Fig. IV.14- Variation des paramètres d'évaluation pour différents méthodes
IV.3.3- Compression d'images médicales couleur par Quinconce couplée avec SPIHT

Dans notre deuxième contribution, nous avons proposé une nouvelle méthode de compression basée sur la transformée en ondelettes quinconce (QWT) sur les images médicales couleur. [186]

Par le même principe effectué dans la section IV.2.2 ; nous avons couplé la QWT au codeur SPIHT [152] [186] pour chaque espace couleur YCrCb indépendamment.

Nous avons opté pour un paramètre d'ordre du filtre $\alpha = 3$ est un nombre d'itération $\lambda = 6$ pour la décomposition en ondelettes quinconce et nous avons appliqué le codeur SPIHT sur les sous bandes de la décomposition en quinconce.

Afin de montrer l'efficacité de cet algorithme, nous avons utilisé l'image médicale couleur rétinographie. La Figure IV.15 nous illustre les résultats obtenus pour différentes valeurs de débit binaire. En calculant les paramètres d'évaluation cités précédemment, nous constatons qu'à partir de 0.5bpp, notre algorithme donne une qualité d'image acceptable.

R=0.125bpp, PSNR=36.47db, MSSIM=0.832, Tc=24.07s

R=0. 25bpp, PSNR=38.64db, MSSIM=0.831,Tc=33.78s

R=0. 5bpp, PSNR=40.56 db, MSSIM=0.918,Tc=68.87s

R=1 bpp, PSNR=42.78, MSSIM=0.949,Tc=234,54s

R=0.75bpp, PSNR=41.71db, MSSIM=0.938,Tc=143.68s

R=2 bpp, PSNR=46.51, MSSIM=0.97,Tc=1051.37sec

Fig IV.15- Compression d'image rétinienne par QWT couplée avec le codeur SPIHT

Afin de mieux confronter nos résultats, nous avons comparé l'algorithme proposé aux différents algorithmes utilisés précédemment (CDF 9/7 (banc de filtre) ; Gall5/3 (Lifting Schème) et CDF9/7 (Lifting Schème)) couplés avec le codage SPIHT avec notre algorithme QWT couplée avec le codeur SPIHT. Afin d'étudier l'influence du choix de la méthode, nous faisons varier le débit binaire de 0.125 à 2 et nous calculons les paramètres d'évaluation.

Les résultats obtenus sont donnés par la figure (IV.15). Nous remarquons d'après cette figure que l'algorithme proposé donne des valeurs importantes de PSNR, de MSSIM pour un débit binaire inférieur à 0.75 bpp. Nous pouvons dire que l'algorithme (QWT+SPIHT) est mieux adapté à la compression d'images médicales niveau de gris et couleur. Utiliser un codeur d'ondelette très performante comme SPIHT est très bénéfique par rapport à EZW.

Fig. IV.16- Variation des paramètres d'évaluation pour différents méthodes

Afin d'illustrer l'efficacité de l'algorithme proposé nous avons étendu notre étude à un ensemble d'images médicales couleur. La Figure IV.17 présente les résultats obtenus après l'application de deux nouveaux algorithmes proposés sur différentes coupes. Ces résultats sont obtenus avec un débit de 0.5 bpp.

Original colour image: Benign

Quincunx wavelet +SPIHT PSNR= 39.09 dB , MSSIM=0.946 ,Tc= 35.5s

CDF9/7 (lifting sheme) +SPIHT PSNR= 34.0942dB, MSSIM=0.917 ,Tc= 89s

Original colour image: Melanoma

Quincunx wavelet +SPIHT PSNR= 39.71dB , MSSIM=0.949 , Tc= 28.38s

CDF9/7 (lifting sheme) +SPIHT PSNR= 37.00dB , MSSIM= 0.933, Tc= 64.22s

Original colour image: Frottis sanguine

Quincunx wavelet +SPIHT

PSNR= 39.68 dB , MSSIM=0.95 , Tc= 78.38s

CDF9/7 (lifting Sheme) +SPIHT

PSNR= 38.25 dB , MSSIM= 0.92, Tc= 96.12s

Fig. IV.17- Compression de différents types d'images médicales couleur par CDF9/7 (Lifting Schème) et QWT couplée avec le codeur SPIHT

IV.3.4.Compression Hybride des Images médicales Couleur:

Dans notre troisième contribution ; nous allons tester deux algorithme de compression hybride comme nous avons fait pour les applications de la compression des images médicales en niveau de gris. Le 1^{er} algorithme WCT basée sur la transformée en ondelette hybridé avec la transformée en cosinus discrète couplée avec le codeur arithmétique. Le 2^{eme} algorithme basé sur la transformée en ondelette hybridé avec la transformée de Walsh discrète couplée avec le codeur arithmétique.[155] ;[156]

IV.3.4.1. Compression d'image médicale couleur par WCT : [190]

Cette méthode a déjà démontré son efficacité sur les images médicale en niveau de gris dans la partie IV.1.2.1. Nous allons maintenant appliquer cette méthode sur les images médicales couleur. On va faire une conversion de l'espace RGB à l'espace YCrCb, et on applique notre algorithme WCT sur chaque espace indépendamment. Pour cette application, nous faisons varie le paramètre de quantification Q de layer Y de 0.01 jusqu'à 0.1 et on fixe les deux autres paramètres de quantification pour les deux composantes Cr et Cb à 0.1 ; et nous calculons les deux paramètres d'évaluation (PSNR et MSSIM).

Les résultats de simulation de l'algorithme proposé pour différents types d'ondelette à l'image test 'image rétinienne couleur' de taille 1048.63ko (512x512 codée sur 8bpp) sont présentées dans la Figure IV.18. En comparant les performances des deux paramètres d'évaluation (PSNR et MSSIM), nous pouvons montrer que notre algorithme donne des résultats satisfaisants avec l'ondelette CDF9/7 par rapport aux autres ondelettes testées. Ces résultats sont présentés dans le tableau IV.8 pour l'ondelette CDF9/7.

Table. IV.8-Variation des paramètres d'évaluations (PSNR (db), MSSIM, FTC(Ko), TC(%), Tc(sec)) en fonction de facteur de quantification = [A ;0.1 ;0.1] avec A varié de 0.01 à 0.1

Α	PSNR	MSSIM	FTC (KO)	Tc (s)	TC(%)	Observation
0.01	48.31	0.995	75.145	68.35	92.83	VGQ +GC
0.02	48.18	0.990	68.685	65.01	93.45	VGQ +GC
0.03	48.06	0.985	65.280	63.28	93.77	GQ +GC
0.04	47.83	0.984	62.991	62.66	93.99	GQ +GC
0.05	47.53	0.980	61.464	61.58	94.13	GQ +GC
0.06	47.30	0.812	60.283	61.36	94.25	BQ+GC
0.07	47.00	0.723	59.354	60.95	94.33	BQ+GC
0.08	46.84	0.634	58.609	61.70	94.41	VBQ+GC
0.09	46.78	0.602	58.020	62.04	94.46	VBQ+GC
0.1	46.35	0.549	57.554	60.51	94.51	VBQ+VGC

Fig IV.18- Variation de paramètre d'évaluation pour différents type d'ondelette par la méthode WCT

D'après les résultats de tableau IV.8, nous constatons que a Q=0.04 jusqu'à 0.05 ; nous obtenons une bonne qualité d'image compressée et un bon taux de compression (dépassant 94%) avec un temps de calcule réduit par rapport aux autres méthodes testées.

Dans notre application ; Afin de montré l'efficacité de cet algorithme et pour obtenir de bonne qualités d'image médicale compressé et de bonne compression ; nous varions les valeurs de quantification pour chaque composantes (YCrCb). Pour cela nous effectuons 5 applications sur l'image teste 'image rétinienne' d'où nous appliquons la transformée en ondelette bi-orthogonale CDF9/7 couplée avec la transformée de cosinus suivi d'un codeur arithmétique. Ces résultats sont présentés dans le tableau IV.9.

Nous avons récapitulé les résultats de notre algorithme proposés (WCT) dans la figure IV.19, en calculant les paramètres d'évaluation PSNR ; MSSIM, Tc et TFC (taille de fichier compressé) et le taux de compression TC (%); en fonction de différentes variation de facteur de quantification .

	1) Q	e [0.05 ; B	;0.1] avec B	varié de	0. 1 jusqu	u'a 0.5		
B	PSNR	MSSIM	TFC (KO)	Tc (s)	TC(%)	observation		
0.1	47.53	0.98	61.464	71.58	94.13	GQ+GC		
0.2	47.43	0.97	56.946	70.97	94.56	GQ+GC		
0.3	47.35	0.80	55.300	68.55	94.72	GQ+GC		
0.4	47.28	0.78	54.478	68.29	94.80	BQ+VGC		
0.5	47.15	0.69	53.895	67.83	94.86	VBQ+VGC		
2) Q= [0.05 ;0.2;C] avec C varié de 0. 1 jusqu'a 0.5								
C	PSNR	MSSIM	TFC (KO)	Tc (s)	TC(%)	Observation		
0.1	47.43	0.95	56.946	70.97	94.56	GQ+GC		
0.2	47.35	0.87	52.523	68.91	94.99	GQ+GC		
0.3	47.14	0.64	50.824	68.22	95.15	BQ+GC		
0.4	47.02	0.63	49.988	67.65	95.23	VBQ+VGC		
0.5	46.86	0.52	49.269	68.39	95.30	VBQ+VGC		
	3) (Q = [0.1; 0]	.1;D] avec D	varié de	0. 1 jusqu	'a 0.5		
D	PSNR	MSSIM	TFC (KO)	Tc (s)	TC(%)	Observation		
0.1	46.35	0.72	47.554	71.81	95.46	VBQ+VGC		
0.2	46.29	0.78	53.131	70.81	94.93	VBQ+VGC		
0.3	46.13	0.70	51.442	70.59	95.09	VBQ+VGC		
0.4	46.02	0.69	50.496	68.80	95.18	VBQ+VGC		
0.5	45.9	0.66	49.877	67.88	95.24	VBQ+VGC		
	4)	Q= [0.1 ;0.	2;E] avec E v	arié de (). 1 jusqu'	a 0.5		
Е	PSNR	MSSIM	TFC (KO)	Tc (s)	TC(%)	Observation		
0.1	46.27	0.78	53.036	70.29	94.94	BQ+VGC		
0.2	46.21	0.76	48.613	67.80	95.36	BQ+VGC		
0.3	46.05	0.68	46.924	65.16	95.52	BQ+GC		
0.4	45.94	0.58	45.978	66.66	95.61	VBQ+GC		
0.5	45.80	0.52	45.359	65.89	95.67	VBQ+GC		
	5)	Q = [0.1; 0]	.3;F] avec F v	arié de (). 1 jusqu'	a 0.5		
F	PSNR	MSSIM	TFC (KO)	Tc (s)	TC(%)	Observation		
0.1	46.22	0.79	51.390	70.22	95.09	BQ+GC		
0.2	46.15	0.69	46.967	67.30	95.52	BQ+GC		
0.3	45.99	0.66	45.278	66.34	95.68	BQ+GC		
0.4	45.89	0.64	44.332	65.07	95.77	BQ+VGC		
0.5	45.75	0.59	43.713	65.05	95.83	VBQ+VGC		

Table. IV.9-Variation des paramètres d'évaluations en fonction de différents facteurs de quantification 'Q'

Fig IV.19- Variation de paramètre d'évaluation pour différentes valeurs de paramètre de quantification par la méthode WCT

Les résultats de simulation de l'algorithme proposé pour différents facteurs de quantification 'Q' à l'image test 'image rétinienne couleur' de taille 1048.63ko (512x512 codée sur 8bpp) sont présentées dans la Figure IV.19. La figure (IV.20) nous montre la qualité de l'image compressée par WCT avec les meilleurs facteurs de quantification. Nous remarquons d'après ces figures la reconstruction de l'image rétinienne devient quasi-parfaite avec un taux de compression dépasse a 94% et un temps de calcule réduit (moins de 65 sec)

Quantize=[0.01, 0.1, 0.1]; PSNR =48.31 db; MSSIM=0.995 ; Tc= 68.35s.

Quantize=[0.05, 0.1, 0.1]; PSNR =47.53db; MSSIM= 0.98 ; Tc= 61.58s.

Q=[0.05, 0.3, 0.1]; PSNR =47.35 db; MSSIM= 0.80 ; Tc= 68.55s.

Q=[0.05, 0.2, 0.2]; PSNR =47.35db; MSSIM= 0.87 ; Tc= 68.91s.

Nous allons maintenant généraliser notre algorithme sur les 3 images couleurs bénigne, mélanome, et frottis sanguine. Après diverse teste avec la variation de facteur de quantification 'Q' .Les meilleurs résultats obtenus avec Q=[0.05, 0.3, 0.1];sont illustrée sur la figure IV.20. Nous observons des taux de compression inferieur a 93% pour ces images couleurs ; donc nous concluons que notre algorithme s'adapte aux images médicales couleur de grande taille dépassent 1Mo (image rétinographie par exemple) pour atteindre des taux de compression supérieurs a 94%.

Q=[0.05, 0.3, 0.1]; PSNR =39.51db; MSSIM= 0.9633; Tc= 39.59;TC=88.15%

Q=[0.05, 0.3, 0.1]; PSNR =36.17db; MSSIM= 0.934; Tc= 30.72; TC=90.53%

Q=[0.05, 0.3, 0.1]; PSNR =35.21db; MSSIM= 0.951; Tc= 36.04s;TC=90.83%

Fig IV.21- Compression Différentes images médicales couleur par la méthode WCT

IV. 3.4.2. Compression d'image médicale couleur par WWT :

Nous allons maintenant dans cette partie tester l'algorithme basée sur la transformée d'ondelette couplée avec la transformée de Walsh couplée avec le codeur arithmétique sur les images couleur. L'image originale couleur est convertit de l'espace RGB a l'espace YCrCb, et nous appliquons notre algorithme sur chaque layer de l'espace YCrCb indépendamment comme il est illustré dans la figure ci –dessus.

Fig.IV. 22-algorithme de la compression d'image médicale couleur par WWT

Dans notre application ; Afin de montré l'efficacité de cet algorithme et pour obtenir de bonne qualités d'image médicale compressé et une bonne compression ; en calculant les paramètres d'évaluation PSNR ; MSSIM, Tc(sec) et TFC (taille de fichier compressé) et le taux de compression TC (%), nous effectuons 3 applications sur l'image teste 'image rétinienne couleur' de taille 1048.63ko, pour différentes valeurs variées de Facteur 1 et Facteur 2 ; dont nous appliquons la transformée en ondelette bi-orthogonale CDF9/7 couplée avec la transformée de Walsh suivi d'un codeur arithmétique. Les résultats sont présentés dans les tableaux IV.10, IV.11, IV.12.

Fact2	PSNR	MSSIM	TFC (Kbyte)	TC(%)	observation	Tc (s)
0.01	39.5136	0.91088	33.419	96.81	VGQ+GC	34.23
0.02	38.9374	0.89618	43.415	95.85	VGQ+GC	31.67
0.03	38.5364	0.89052	40.761	96.11	GQ+VGC	31.05
0.04	38.2338	0.88574	39.507	96.23	GQ+VGC	30.78
0.05	38.0589	0.88334	38.858	96.29	BQ+VGC	30.15
0.06	37.9095	0.88247	38.540	96.32	BQ+VGC	29.49
0.07	37.7691	0.88183	38.352	96.34	BQ+VGC	29.75
0.08	37.6441	0.88118	38.168	96.36	BQ+VGC	29.27
0.09	37.5061	0.88085	38.059	96.37	BQ+VGC	27.76
0.1	37.3874	0.88023	37.984	96.377	BQ+VGC	27.45
0.2	37.2518	0.8752	37.654	96.40	VBQ+VGC	22.04
0.3	37.2518	0.8752	37.654	96.40	VBQ+VGC	22.70
0.4	37.2518	0.8752	37.654	96.40	VBQ+VGC	22.00
0.5	37.2518	0.8752	37.654	96.40	VBQ+VGC	21.81

Table IV.10 - Variation des paramètres d'évaluations en fonction variation de facteur 2 de 0.01 jusqu'à 0. 5 avec factor1=0.01

Table IV.11 - Variation des paramètres d'évaluations en fonction variation de facteur 1 de0.01 jusqu'à 0. 5 avec factor2=0.01

Fact1	PSNR	MSSIM	TFC (Kbyte)	TC(%)	observation	Tc (s)
0.01	39.5136	0.91088	33.419	96.81	VGQ+VGC	34.23
0.02	39.4269	0.90873	51.241	95.11	VGQ+GC	32.69
0.03	39.3322	0.90741	49.735	95.25	VGQ+GC	33.24
0.04	39.2389	0.90572	48.431	95.38	VGQ+GC	33.42
0.05	39.1318	0.90403	47.381	95.48	VGQ+GC	32.02
0.06	39.0275	0.9023	46.378	95.57	VGQ+GC	31.30
0.07	38.9187	0.90051	45.558	95.65	VGQ+GC	31.65
0.08	38.8146	0.89867	44.765	95.73	VGQ+GC	31.20
0.09	38.7115	0.89692	44.100	95.79	VGQ+GC	30.41
0.1	38.5982	0.89497	43.545	95.84	VGQ+GC	30.17
0.2	37.5654	0.87999	39.606	96.22	VBQ+GC	29.61
0.3	36.6381	0.85609	37.484	96.42	VBQ+GC	28.31
0.4	35.8949	0.85399	36.208	96.54	VBQ+GC	28.32
0.5	35.1889	0.84381	35.218	96.64	VBQ+VGC	28.07

Fact	PSNR	MSSIM	TFC (Kbyte)	TC(%)	Observation	Tc (s)
0.01	39.5136	0.91088	33.419	96.81	VGQ+GC	34.23
0.02	38.8632	0.89415	41.342	96.05	VGQ+VGC	30.10
0.025	38.6023	0.89032	38.881	96.29	GQ+VGC	29.89
0.03	38.3939	0.88726	37.182	96.45	BQ+VGC	29.20
0.04	38.0163	0.88087	34.624	96.69	BQ+VGC	29.26
0.05	37.7748	0.8769	32.926	96.86	BQ+VGC	27.36
0.06	37.5549	0.87462	31.604	96.98	BQ+VGC	27.41
0.07	37.3441	0.87205	30.596	97.08	BQ+VGC	26.10
0.08	37.1647	0.86961	29.619	97.17	BQ+VGC	25.60
0.09	36.9672	0.86798	28.845	97.24	BQ+VGC	21.33
0.1	36.7863	0.86541	28.215	97.30	BQ+VGC	12.99
0.2	35.9214	0.84747	23.946	97.71	VBQ+VGC	10.05
0.3	35.2606	0.82465	21.824	97.91	VBQ+VGC	8.47
0.4	34.7208	0.82294	20.548	98.04	VBQ+VGC	8.31
0.5	34.1494	0.81351	19.558	98.13	VBQ+VGC	7.67

Table IV.12 - Variation des paramètres d'évaluations avec facteur 1=facteur2 varié de 0.01 jusqu'à 0. 5

D'après ces tableaux; nous constatons des meilleurs résultats dans le cas où les deux facteurs sont égaux avec un taux de compression de plus 96% (Rc=0.237bpp) et un temps de calcul réduit par rapport la méthode hybride WCT .La Figure IV.23 nous illustre les résultats obtenus pour différentes valeurs de facteur dont nous observons une qualité d'image acceptable.

Fact1=fact2=0.01,PSNR=39.51db; MSSIM=0.9108,TC=96.81%; Tc=34.23s

Fact1=fact2=0.02; PSNR=38.86db; MSSIM=0.894,TC=96.05%, Tc=30.1s

Fact1=fact2=0.025 ; PSNR=38.60db ; MSSIM=0.89,TC=96.29%; Tc=19.89s

Fig IV.23- Compression d'images médicales rétinographie couleur par la méthode WWT

Nous allons maintenant généraliser notre algorithme sur les 3 images couleurs bénigne, mélanome et frottis sanguine.La Fig. IV.24 nous illustre les résultats obtenus pour les meilleurs valeurs des facteurs de quantification égaux (F1=F2=0.025) . En calculant les paramètres d'évaluation cités précédemment, nous constatons que notre algorithme donne une qualité d'image acceptable et meilleurs avec un taux de compression supérieur a 94% et un temps de calcule réduit par rapport à la méthode WCT.

Fact1=fact2=0.025; PSNR=45.5db; MSSIM=0.931,TC=94.94%; Tc=30.01s

Fact1=fact2=0.025; PSNR=45.21db; MSSIM=0.924,TC=95.37%; Tc=33.2s

Fact1=fact2=0.025; PSNR=45.91db; MSSIM=0.952,TC=94.59%; Tc=35.2s

Fig IV.24- Compression différents images médicales couleur par la méthode WWT

IV. 4. CONCLUSION

L'objectif de cette thèse est indubitablement le rehaussement de la qualité des images médicales après l'étape de compression. Cette dernière est considérée comme étant un outil essentiel pour l'aide au diagnostic (stockage ou la transmission) en imagerie médicale.

Dans ce chapitre, nous avons fait une synthèse sur la compression d'images médicales en niveau de gris et couleur. Dans le premier volet, nous avons utilisé les méthodes de compression par transformation d'ondelette de secondes générations.

Pour cela, nous avons choisi deux catégories d'implémentation algorithmique adaptatif au codeur SPIHT, dont nous allons fait une comparaison entre la compression par l'ondelette biorthogonale CDF9/7 à base de lifting Schème et l'ondelette quinconce couplée avec le codage SPIHT.

Après diverses applications sur les différentes images médicales tester en niveau de gris et couleur, nous avons constaté que cet algorithme donne des meilleurs résultats que d'autres techniques de compression en fonction de taux de compression égale à 93.75%, bonne qualité de l'image compressé et un temps de calcule réduit.

Dans le deuxième volet, nous avons proposé deux nouveaux algorithmes de compression hybride ; le premier algorithme basé sur la transformé en ondelette de CDF9/7 couplée par la transformée en cosinus ,et la 2^{eme} basé sur la CDF9/7 hybridé avec la transformé de walsh. Nous avons couplé ces deux algorithme avec le codeur arithmétique.

Nous avons interprété nos résultats à l'aide des paramètres d'évaluation (PSNR,MSSIM) de qualité basés sur le système visuel humain ainsi que le TC et temps de calcule . Nous avons pu montrer que la compression hybride avec la transformé de Walsh est mieux adapté à la compression d'images médicales en niveau de gris et couleur avec un taux de compression qui dépassent 96%, et un temps de calcule très réduit par rapport aux autre méthode testée dans cette thèse .

CONCLUSION
GENERALE
┇ ╡ ╡ ╋ ╋╴┪╍╶┧╍╶┧╍╶┧╍╶┧╍╶┧╍╶┧╍╶┧╍╶┧╍╶┧╍╶┧╍╶┧╍╶┧╍╶┧╍

Conclusion Générale

La gestion des données dans les services hospitaliers est devenue un enjeu majeur pour la mise en place des PACS performants. Le volume de ces données, déjà impressionnant, continuera de croitre dans les années à venir du fait du développement de systèmes d'imagerie médicale de plus en plus performants, permet une investigation de plus en plus fine des organes humains. La compression "avec pertes" maîtrisées peut apporter une réponse à ce problème et permettre un stockage et une transmission plus efficace au sein ou au-delà du PACS. En témoigne par l'american college of radiologie (ACR) qui estime que ces technique peuvent être utilisé à des taux raisonnables, sous la direction d'un praticien qualifié ,sans aucune réduction significatif de la qualité de l'image pour le diagnostic clinique. L'intégration du nouveau standard JPEG2000 dans le format de gestion des images médicales DICOM et surtout le développement actuel de la partie 10 de standard JPEG2000 en cours de construction.

Dans ce manuscrit, nous avons exposé le fait que la compression dite "sans perte" ne permettait pas une réduction significative du volume de ces données. Nous avons ensuite investigué, à savoir les méthodes de compression qui reposent sur la transformée en ondelettes. Cependant, malgré le succès des ondelettes dans divers domaines de traitement d'images, des faiblesses ont été constatées quant à leur utilisation pour la détection et la représentation des contours d'objets de l'image. Les décompositions multirésolutions classiques semblent former une catégorie restreinte et limitée. Afin de pallier à ce problème, de nouvelles transformée mieux adaptées à la représentation des images ont été proposées. Ces méthodes offrent la possibilité d'augmenter considérablement les taux de compression à qualité image équivalente.

L'idée est d'élaborer un outil numérique capable de compresser une image médicale avec les principales contraintes suivantes:

- Le taux de compression assez important pour réduire l'occupation au niveau des canaux de transmission.
- Après l'opération inverse de la compression, il faut que le PSNR et MSSIM soient les plus élevés possibles car ils sont des paramètres permettant l'estimation de la qualité de l'image compressée.
- Réduction des coûts en temps lors des différents traitements.

L'objectif de ce travail est justement de tester une panoplie d'outils permettant la compression d'images médicales en niveau de gris et couleur. D'ailleurs, il n'est pas exclu que ces outils ont d'autres applications que nous n'avons pas abordées dans cette thèse ; nous pensons particulièrement au filtrage, opération cruciale en traitement d'images. Pour répondre à l'objectif fixé, nous avons insisté sur les techniques de compression par transformation et la compression hybride.

Nous avons passé en revue certaines de ces nouvelles transformées, dites de secondes génération, et leurs applications dans la compression d'image. Ce sont des décompositions multi-échelle, qui opèrent selon une multitude d'orientations fréquentielles et qui offrent un bon compromis entre la représentation éparse (ou compacte) de l'information visuelle et la qualité perceptuelle de l'image reconstruite. Nous avons opté dans cette thèse particulièrement, la transformée en d'ondelette par le schéma lifting et la transformée en ondelette non séparable quinconce couplée par le codeur SPIHT.

Le premier volet de cette thèse consiste en la compression par ondelettes à base de la structure lifting. Nous avons testé l'algorithme proposé sur des images médicales en niveau de gris et couleur dont, nous avons utilisé deux types d'ondelettes (CDF9/7, Gall5/3) et deux codeurs progressifs à savoir les algorithmes SPIHT et EZW. Nous avons introduit deux paramètres d'évaluation (PSNR, MSSIM) afin de juger la qualité de l'image reconstruite. Les différentes simulations nous ont montré que l'algorithme proposé donne des résultats satisfaisants et encourageants par rapport aux méthodes basées sur les bancs de filtre.

Dans notre deuxième contribution, Nous avons proposé une nouvelle transformée en ondelettes basée sur la structure quinconce dont le facteur de dilatation entre deux échelles successives égal à 2. Cette transformée permet de représenter une image avec moins de sousbande que les transformées précédente. Nous avons appliqué cette transformée non redondante couplée avec le SPIHT à la compression des différentes images médicales. En comparant les résultats obtenus, nous avons pu montrer que la méthode proposée (QWT+SPIHT) est mieux adaptée à la compression d'images médicales.

Afin de mieux confronter nos résultats, nous avons comparé l'algorithme proposé aux différents algorithmes utilisés précédemment (CDF 9/7 (Filter bank) ; Gall5/3 (Lifting scheme) et CDF9/7 (Lifting scheme)) couplés avec le codage SPIHT et la CDF9/7(Lifting scheme) couplée avec le codage EZW. Afin d'étudier l'influence du choix de la méthode, nous faisons varier le débit binaire (bit-rate) et nous calculons les paramètres d'évaluation.

Nous avons pu constater que l'algorithme proposé donne des valeurs importantes de PSNR, de MSSIM pour un débit binaire de 0.5 bpp. De ce fait, nous pouvons dire que l'algorithme (QWT+SPIHT) donne des résultats très satisfaisants dans le domaine médical en terme de taux de compression de 93.75%, et de qualité de l'image compressée par rapport aux méthodes classiques.

Dans la 3^{eme} contribution, Nous exposons d'autres méthodes hybride adaptatifs a la compression d'image médicale pour augmenter le taux de compression avec un temps de calcul réduit, et une bonne qualité d'image compressé. Le développement de systèmes hybrides pour améliorer la qualité de l'image compressé a acquis une énorme popularité parmi les chercheurs. Certaines études récentes montrent que la méthode hybride par l'approche fondée sur la DCT et les ondelettes classiques conduit à un meilleur taux de compression [153]. Pour cela ; nous avons proposé deux algorithmes ; le premier algorithme basé sur la transformé de DWT couplée par la DCT (2010)[155]; et le 2eme basé sur la DWT et la transformé de walsh (2012)[156]. Nous avons tester ces deux algorithmes sur les images médicales (niveau de gris et couleur) pour différentes types d'ondelettes choisit et nous avons implémenter l'ondelette Biorthogonale CDF 9/7 dans les deux algorithmes .

Les différentes simulations sur les images médicales en niveau de gris et couleur, nous ont montré que la compression hybride WWT donne des résultats satisfaisants et encourageants par rapport à la méthodes hybride WCT et aux méthodes testé auparavant par les ondelettes de secondes génération, en terme de taux de compression qui dépassent 96%, temps de calcule très réduit, et une bonne qualité de l'image compressée.

Pour conclure, ce manuscrit a investigué un sujet très peu étudié à notre connaissance : la compression avec pertes et la compression hybride des images médicales. Ce travail a montré que sous certaines conditions, la compression avec pertes des images médicales volumiques était possible, offrant ainsi des gains de compression significatifs par rapport aux méthodes sans pertes. Il ouvre ainsi de nombreux champs pour l'avenir de ce type de compression dans le domaine médical. En ce qui nous concerne, ces résultats prometteurs de la compression avec pertes nous encouragent à poursuivre nos collaborations dans ce domaine. Nous avons vocation à améliorer notre algorithme en lui insérant des fonctionnalités (telles que le codage sans perte, l'amélioration de la qualité par raffinement, ou encore les régions d'intérêt). D'autre part le traitement d'image en temps réel est envisageable.

Perspectives :

Le travail présenté dans cette thèse peut être étendu dans diverses directions. Nous présentons ici une liste non exhaustive des améliorations, applications et adaptations possibles. On peut citer :

- Il est souhaitable que cette étude soit exploitée aux images médicales en 3D et de la vidéo.
- Les résultats de la compression peuvent être améliorés par l'ajout d'un codeur EBCOT (Embedded Bit Plane Coding by Truncation) au lieu de SPIHT .
- Il sera intéressant de tester d'autre types d'ondelette tel que la transformée en ondelette quaternioniques et les ondelettes monogènes [192] dans la compression des images médicales couleur.

La transformée en quaternionique est très utilisé dans la classification de textures, elle nous donne un taux de reconstruction de 80% au lieu de 70% par les ondelettes classique. C'est une transformée redondante donc on peut l'utilisé dans la compression d'image médicale.[192]

La transformée en ondelette monogènes c'est une transformée non séparable (M-Unser et al .2009)

- il serait intéressant de coupler l'efficacité des deux types d'ondelettes : les ondelettes de seconde génération dans les zones plutôt géométriques à forts gradients, et les ondelettes classiques dans les zones à faibles variations de luminance, rejoignant ainsi le schéma utilisé pour les bandelettes (qui couple les ondelettes orientées suivant un flot, et les ondelettes classiques).
- Compression des images médicale couleur utilisant le lifting quinconce **[120]**: développement d'une décomposition 2D non-séparable de lifting qui peut :
 - mieux exploiter les caractéristiques bidimensionnelles des images médicales
 - offrir plus de flexibilité dans la conception
 - simplifier le problème d'optimisation
- Concernons la compression hybride, la mise en œuvre d'autres algorithmes est plus que nécessaire tel que d'appliquer la transformée en ondelette à base de la structure lifting ou en quinconce hybridé avec la transformée de DCT ou Walsh couplée avec le codeur arithmétique pour la compression des images médicales en niveau de gris et couleur de grand volume.

. *

ANNEXES

A.1- Codeur de Huffman :

Une chaine a compressé

Arbre d'Huffman

Octet	0	1	3	7	185	236	251	252	253	254	255
Codage binaire	0	00000001	00000011	00000111	10111001	11101100	11111011	11111100	11111101	11111110	11111111
Codage huffman	0	1100	111010	111011	111100	111101	1101	111110	11111	11100	10

Une chaine compressée

A.2- Codeur arithmétique :

Supposons qu'on veut coder une partie "acaab" d'une longue séquence avec une probabilité d'apparition indiquée dans le Tableau suivant :

Symbole	Probabilité	Intervalle
а	0.7	[0,0.7]
b	0.1	[0.7, 0.8]
c	0.2	[0.8, 1]

L'intervalle initial [0, 1] va être divisé en trois sous-intervalles suivant les probabilités des symboles de la séquence. Ce qui donne les sous-intervalles suivants:

[0, 0.7], [0.7, 0.8] et [0.8, 1.0].

Dans cette exemple, le 1^{er} symbole est 'a', l'étiquette appartient donc à l'intervalle [0, 0.7].

Après que le 1er symbole soit codé, les limites inférieures et supérieures de l'intervalle sont respectivement 0 et 0.7 pour le symbole suivant. L'intervalle [0, 0.7] va être divisé en trois sous-intervalles : [0, 0.49], [0.49, 0.56] et [0.56, 0.7] correspondant respectivement aux symboles "a", "b" et "c".

Le 2^{ème} symbole est "c", de probabilité 0.2. Ainsi, le nouveau sous-intervalle sera [0.56, 0.7]. Ce dernier va être divisé en trois sous-intervalles : [0.56, 0.658], [0.658, 0.672] et [0.672, 0.7].

Le 3^{ème} symbole est "a". Le nouveau sous-intervalle sera en conséquence [0.56, 0.658].

Le sous-intervalle [0.56, 0.658] va être partagé à son tour en trois sous-intervalles :

[0.56, 0.6286], [0.6286, 0.6286] et [0.6286, 0.658].

Le 4^{ème} symbole est "a", donc le nouvel intervalle est [0.56, 0.6286], on le divise en 3 sous-intervalles : [0.56, 0.60802], [0.60802, 0.61488], [0.61488, 0.6286].

Le 5^{ème} et dernier symbole est "b", le dernier intervalle est donc [0.60802, 0.61488].

Un nombre contenu dans l'intervalle final comme 0.60972 code sans ambiguïté le message 'acaab''. La figure I.1 est une représentation de ce processus.

Figure A.1 : Génération de l'étiquette pour la séquence "acaab"

La table contenant les probabilités d'occurrence des différents symboles doit être transmise. Pour le décodage, on prend le symbole correspondant à l'intervalle auquel appartient notre code, on lui soustrait la limite basse, et on divise par la longueur de l'intervalle pour avoir le code suivant.

Dans notre exemple, on reçoit le nombre 0.60972 qui appartient à l'intervalle [0, 0.7], le premier symbole est donc "a", on soustrait ensuite la limite basse (0) et on divise par la longueur de

l'intervalle (0.7), on obtient : 0.87103 qui appartient à [0.8, 1], le second symbole est donc "c", on soustrait ensuite la limite basse (0.8) et on divise par la longueur de l'intervalle (0.2), on obtient : 0.35514 qui appartient à l'intervalle [0, 0.7], le troisième symbole est donc "a". On continue ainsi jusqu'à obtenir notre séquence complète.

La longueur d'une séquence à coder avec le codeur arithmétique est limitée par la résolution de la machine qui assure le traitement

A.3 - L'ALGORITHME DE CODAGE SPIHT

Le codeur SPIHT est composé de deux passages. Le passage de commande et le passage d'amélioration. Dans le passage de commande SPIHT essaye de commander les coefficients selon leur grandeur. Dans le passage d'amélioration la quantification des coefficients raffinés. La commande et raffiner est faite relativement à un seuil. Le seuil est convenablement initialisé et sans interruption alors rendu plus petit avec chaque rond de l'algorithme.

SPIHT maintient trois listes de coordonnées des coefficients dans la décomposition.

Ce sont la liste de Pixel insignifiants (LÈVRE « LIP »), la liste des Pixel significatifs (LSP) et la liste des ensembles insignifiants (LIS). Pour décider si un coefficient est significatif ou pas le SPIHT utilise la définition suivante.

Un coefficient est considéré significatif à un certain seuil si sa grandeur est plus grande ou égale au seuil. En utilisant la notion d'importance de la LÈVRE « LIP », le LIS et le LSP peuvent être expliqués.

• La LÈVRE « LIP » contient des coordonnées des coefficients qui sont insignifiants au seuil courant.

- Le LSP contient des coordonnées des coefficients qui sont significatifs au même seuil.
- Le LIS contient des coordonnées des racines des arbres spatiaux de parent enfants.

Exemple sur le codeur SPIHT

26	6	13	10
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

Après la première passe de raffinement

$ \underbrace{\text{LIP}}_{(0,1) \to 6} \\ (1,0) \to -7 \\ (1,1) \to 7 $	$\underbrace{\mathbf{LSP}}_{(0,0) \to 26}$	$ \begin{array}{c} \underline{LIS} \\ (0,1)D \rightarrow \\ (1,0)D \rightarrow \\ (1,1)D \rightarrow \end{array} $	Significant {13, 10, 6, 4} {4, -4, 2, -2} {4, -3, -2, 0}
		(1,1) <i>D</i> →	{4, -3, -2, 0}

N = 3; T = 8

Pendant la seconde passe de tri

N=3; T = 8

Après la seconde passe de tri

Pendant la troisième passe de tri

T = 4

Après la troisième passe de tri

$$\begin{array}{c}
 LIP \\
 (3,0) \to 2 \\
 (3,1) \to -2 \\
 (2,3) \to -3 \\
 (3,2) \to -2 \\
 (3,3) \to 0
 \end{array}$$

$$\underbrace{\text{LSP}}_{(0,0) \to 26} \\
 (0,2) \to 13 \\
 (0,3) \to 10 \\
 (0,1) \to 6 \\
 (1,0) \to -7 \\
 (1,1) \to 7 \\
 (1,2) \to 6 \\
 (1,3) \to 4 \\
 (2,0) \to 4 \\
 (2,1) \to -4 \\
 (2,2) \to 4
 \end{cases}$$

LIS	
Empty	

B - Base de Données des images médicales

B.1. images médicales en niveau de gris

L'ensemble des images utilisées pour les tests en compression au cours de cette thèse sont des images Médicales de différentes modalités IRM, CT, MAMMOGRAPHIE, ECHOGRAPHIE, sont acquises de la base de données GE-SYSTEM présentées à l'adresse <u>http://www.gemedicalsystems.com</u>

Base I : taille de ces images 512× 512 (niveau de gris) codée sur 8bpp.

IRM2

IRM3

IRM4

IRM5

IRM6

CT1

CT2

:

BASE II: Les images de la base II sont regroupées par type d'examen, à savoir : radiographies conventionnelle, coupes tomographiques et images par résonance magnétique. Exceptées "angiot", "colon", et "us", toutes ces images sont issues de la base de donnée suivante :

CT4

- http://www.cis.rit.edu/htbooks/mri/inside.htm

Que leurs auteurs soient remerciés de la mise à disposition de leurs données cliniques.

Toutes les images présentées de la base II ont été prises à partir d'examens réels enregistrés sur un imageur 1,5 Tesla, GE (Milwaukee, WI) Signal par résonance magnétique. Paramètres d'acquisition spécifiques sont répertoriés avec chaque image, lorsqu'elles sont disponibles.

Angiographie

AN1. F-6y, la poitrine et le cou coronale, FOV 24 cm, 79,8 mm Thk, GE (30o), TR / TE = 6.4/1.4 ms, 1 Nex, 256x160 matrice.

AN3. Tête axiale, FOV 22 cm, matrice 256x224

<u>AN6</u>. La tête et le cou coronale, FOV 20 cm, 60 mm Thk, GE (200), TR / TE = 30/8.16 ms, matrice256x128

Extrémités

EX3. Genou sagittal, FOV 12 cm, 1,5 mm Thk, GE (300), 256x256 matrice, TR / TE = 37/17 ms, 1 Nex

Head & Neck (tete et le cou)

<u>HD4</u>. Tête axiale, FOV 22 cm, 5 mm Thk, 256x192 matrice, SE, TR / TE = 2300/15 ms, 2 Nex <u>HD9</u>. Tête axiale, FOV 22 cm, 5 mm Thk, SE, TR / TE = 2300/15 ms, 2 Nex, 256x192 matrice <u>NK1.</u> Cou sagittal, FOV 20 cm, 2 Nex, 512x256 matrice, SE TR / TE =2000/18.

Colonne vertébrale :

Sp08: Sagittal du rachis lombaire, FOV 34 cm, 3 mm Thk, 512x256 matrice, SE,

TR / TE = 4000/98 ms, 2 Nex.

<u>Sp09</u>: Sagittal lumbar spine, 32 cm FOV, 3 mm Thk, 256x256 matrix, 2 Nex, SE ; TR/TE = 600/15 et TR / TE = 4000/108 pour **SP09_1**.

Les images de la base II de taille 512 x 512

b.2. Les Images Médicales Couleurs

Base d'image Drive. Image couleur Rétinographie : 1048.63KO

Image Benign : 786.432Ko

Image mélanome: 42.754Ko

Image frottis sanguin: 58.069Ko

Les images médicales couleur de taille 512 x 512

Bibliographie

- A.W. Wong, R.K. Taira, and H.K. Huang, "Implementation of a digital archive system for a radiology department", in Proc. SPIE Conf. on Medical Imaging VI: PACS Design and Evaluation 1645, pp. 182-190, 1992.
- [2]. Bradley J.Erickson, "Irreversible Compression of Medical Images", Society for computer applications in radiology, 2000.
- [3]. P. Raf y, Y. Gaudeau, D. P. Miller, et J-M. Moureaux, "Computer Aided Detection (CAD) of Solid Lung Nodules in Lossy Compressed MDCT Chest Exams", ECR, Vienne, mars 2006.
- [4]. Denecker K, Van Overloop J, Lemahieu I, "An experimental comparison of several lossless image coders for medical images", Proc. 1997 IEEE Data Compression Conference.
- [5]. J. M. NGONO, "Compression des Images de Radar à Synthèse d'Ouverture dans le Cadre de leur Utilisation dans les Systèmes d'Information Géographique", Thèse de doctorat, Ecole Polytechnique de Yaoundé, Novembre 2001.
- [6]. J. STORER, "Image and Text Compression", Kluwer Academic Publishers, 1992.
- [7]. P. HOWARD and J. VITTER, "Practical Implementations of Arithmetic Coding", Appears in Image and text Compression, James A. Storer, ed., Kluwer Academic Publishers, Norwell, MA, pp 85-112,1992.
- [8]. J. ZIV and A. LEMPEL, "A universal algorithm for sequential data compression", IEEE Transactions on information theory, vol. 23, no. 3, pages 337–343, May 1977.
- [9]. A. LEMPEL and J. ZIV, "Compression of two-dimensional data", IEEE transactions on information theory, vol. 32, no. 1, pages 2–8, January 1986.
- [10]. D. HUFFMAN, "A method for the construction of minimum redundancy codes", in proceedings of IRE, pages 1098–1101.
- [11]. D. DUTTWEILER and C. CHAMZAS, "Probability estimation in arithmetic and adaptative-Huffman entropy coders", IEEE transactions on image processing, Vol. 4, No. 6, pp 237–246, June 1995.
- [12]. J. M. M. RODRIGUES, "Transfert sécurisé d'images par Combinaison de techniques de Compression, cryptage et marquage ", Thèse de doctorat, Université Montpellier II, Octobre 2006.
- [13]. T. TOTOZAFINY, "Compression d'Images Couleur pour Application à la Télésurveillance Routière par Transmission Vidéo à très bas Débit", Thèse de doctorat, Université de Pau et Des Pays de L'Adour, Juillet 2007.
- [14]. A. CZIHÓ, "Quantification vectorielle et compression d'image. Application à l'imagerie médicale", Thèse de doctorat, Université de Rennes1, Mai 1999.
- [15]. P. BEUREPAIRE, "Compression d'Images Appliquée aux Angiographies Cardiaques : Aspects Algorithmiques, Evaluation de la Qualité Diagnostiques", Génie Biologique et Médical, Thèse de doctorat de l'école doctorale des sciences pour l'ingénieur de Lyon, 1997.
- [16]. J.WAKU KOUOMOU, "Ondelettes et Applications en Imagerie et Calcul de Surface ", Thèse de doctorat de l'université Joseph Fourier, Grenoble1, Spécialité : Mathématique Appliquées, Novembre 1993.
- [17]. Y.MEYER, "Méthodes Temps-Frequence et Temps-Echelle en Traitement du Signal et de l'Image", INRIA, 1991.
- [18]. P.FLANDRIN, N. MARTIN, "Analyse Temps-Frequence et Temps-Echelle", Traitement du Signal et Image, Vol. 9, No.1, 1992.
- [19]. S. MALLAT, "A theory for multi-resolution signal decomposition: The wavelet representation", IEEE Trans. On Pami, Vol. 11, No.7, 1989.
- [20]. I. DAUBECHIES, "Othonormal bases of Compactily Supported Wavelet", com.pure Appl.Math.Vol.41, pp. 909-996, November 1988.
- [21]. M. BARRAT, O. LEPETIT, " Calcul Rapide de la Transformée en Ondelettes", Traitement du Signal et Image. Vol. 8. No.1 pp.43-49, 1991.
- [22]. J. C. FEAUVEAU, "Analyse Multi-résolution par Ondelettes non Orthogonales et Bancs de Filtres Numériques", Thèse de l'université, paris sud, Janvier 1990.
- [23]. A. MUNTEANU, J. CORNELIS, and P. CRISTEA, "Wavelet Lossy and Lossless Image Compression Techniques - use of the Lifting Scheme", Digital Signal Processing Department, Politehnica, University of Bucharest, Spl. Independentei 313, Bucharest 77206, Romania.
- [24]. S.Y. WANG, C. CHEUNG, K. WAI CHEUNG and L. MAN PO,"Successive Partition Zero Coder for Embedded Lossless Wavelet-based Image Coding", Dept. of Electronic Engineering City University of Hong Kong, Tat Chee Avenue, Hong Kong
- [25]. S. M. LOPRESTO, K. RAMCHANDRAN, and M. T. ORCHARD, "Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework", IEEE Data Compression Conference, pp. 221-230, 1997.
- [26]. J.SHAPIRO, "Embedded Image Coding using Zerotree of Wavelet Coefficients", IEEE trans. Signal processing. Vol. 41, pp. 3445-3463, December, 1993.
- [27]. E. SJÖBLOM, "Compression of Medical Image Stacks using Wavelets and Zero-Tree Coding", Master thesis, Division of Image Coding, Department of Electrical Engineering, Linköping University, junry, 2002.
- [28]. A. Said et W. Pearlman,"A new, fast, and efcient image codec based on set partitioning in hierarchical trees", IEEE Transactions Circuits Syst. Video Technol., vol. 6, pp. 243-250, juin 96.
- [29]. S.G. MIAOU, S.T. CHEN, and S.N. CHAO, "Wavelet-based lossy-to-lossless medical image compression using dynamic VQ and SPIHTcoding", Biomedical engineering-applications, basis & communications, Vol. 15 No3, p 235-242, December 2003.
- [30]. C. YEN-YU, T. SHEN-CHUAN, "Embedded medical image compression Using DCT based subband decomposition and modified SPIHT data organization", Proceedings of the Fourth IEEE, (BIBE'04), 2004.
- [31]. A. Said et W. Pearlman,"An Image Multiresolution Representation for Lossless and Lossy Compression",IEEE Trans. on Image Processing, vol. 5, pp. 1303-1310, sept 1996.
- [32]. B-J. Kim and W.A. Pearlman, "An Embedded Wavelet Video Coder Using Three-Dimensional Set Partitioning in Hierarchical Trees," IEEE Data Compression Conference, pp. 251-260, mars1997.

- [33]. Y.S.Kim and W.A. Pearlman, "Lossless volumetric Image Compression," in applications of Digital Image Processing XXII, Proceedings of SPIE vol. 3808, pp. 305-312, 1999.
- [34]. Zixiang Xiong,X.Wu,D.Y.Yun,and W.A.Pearlman.Progressive codeing of medical volumetric data using three-dimensional integer wavelet packet transform. Multimedia Signal Processing, 1998 IEEE Second Workshop on,pages 553-558,dec 1998
- [35]. Sungdae Cho, Dongyoum Kim, and William A.Pearlman, "Lossless compression of volumetric medical images with improved three-dimensional spiht algorithm", journal of Digital Imaging, 17(1):57-63, march 2004
- [36]. A.Abu –Hajar and R.Sankar .Integer-to-integer shapae adaptive wavelet transform for region of interest image coding.In Digital Signal Processing Workshop,2002 and the 2nd Signal processing Education Workshop.Proceeding of 2002 IEEE 10th,pages 94-97,oct,2002.
- [37]. A.Abu.Hajar and R.Sankar .Region of interest coding using Partial spiht .In Acoustics,Speech,and Signal Processing,2004 .Proceedings.(ICASSP'04).IEEE International Conference on,volume3,pages657-60 vol.3,may2004
- [38]. Wen-Jyi Hwang, Ching-Fung Chine, and Kuo-Jung Li.Scalable medical data compression and transmission using wavelet transform for telemedecine application. Information Technology in biomedicine, IEEE transactions on, 7(1):54-63, march2003
- [39]. B.Prabhakar and M.Ramasubba Reddy. HVS scheme for dicom image compression: Design and comparative performance evaluation. European Journal of Radiology,635issue1):128-135,July 2007.
- [40]. S.Yea,S.Cho,and W.A.Pearlman.Integrated lossy,near-lossless,and lossless compression of medical volumetric data.In Proc.SPIE5685,editor,Image and Video Communications and Processing 2005,Sumposium on Electronic Imaging,volume 2,pages 151-159,Jan,2005.
- [41]. S.Yea, S.Cho, and W.A.Pearlman. A wavelet –based two –stage near-lossless coder. Image Processing, IEEE Transactions on 15(11):3488-3500, Nov 2006.
- [42]. Jonathan Taquet, "Techniques avancées pour la compression d'images médicales", Thèse de doctorat, Université de Rennes1, 2011.
- [43]. A. CZIHÓ, "Quantification vectorielle et compression d'image. Application à l'imagerie médicale", Thèse de doctorat, Université de Rennes1, Mai 1999.
- [44]. P. Le Callet et D. Barba, "Modele de perception couleur : application a l'évaluation de la qualité", Traitement du signal, vol. 21, pp. 461-477, 2004.
- [45]. P. Le Callet, C. Viard-Gaudin et D. Barba, «A convolutional neural network approach for objective video quality assessment", IEEE Transactions on Neural Networks, Septembre, 2006.
- [46]. A. Przelaskowski, "Vector quality measure of lossy compressed medical images Vector quality measure of lossy compressed medical images", Computers in Biology and Medecine, 2003.
- [47]. W.S. GEISLER, M.S. BANKS, "Visual performance", in Handbook of Optics (M.Bass, ed.), McGraw-Hill, 1995.
- [48]. A.B. WATSON, L. KRESLAKE, "Measurement of visual impairment scales for digital video", in Human Vision, Visual Processing, and Digital Display, Proc. SPIE, Vol. 4299, 2001.
- [49]. Z. WANG, A.C. BOVIK, H.R. SHEIKH and E.P. SIMONCELLI, "Image quality assessment: From error visibility to structural similarity", IEEE Transactions on Image Processing, Vol.13, No.4, 2004.

- [50]. Z. WANG, A.C. BOVIK, "A universal image quality index", IEEE Signal Processing Letters, Vol. 9, pp. 81–84, 2002.
- [51]. David A. Clunie, "Lossless Compression of Grayscale Medical Images Effectiveness of Traditional and State of the Art Approaches", SPIE Medical Imaging, San Diego, Feb 2000.
- [52]. Denecker K, Van Overloop J, Lemahieu I, "An experimental comparison of several lossless image coders for medical images", Proc. 1997 IEEE Data Compression Conference.
- [53]. Kivijärvi J, et al, "A comparison of lossless compression methods for medical images", Computerized Medical Imaging and Graphics, 22, pp 323-339, 1998.
- [54]. W.Philips, S. Van Assche, D De Rycke et K Denecker, "State of-the-art for lossless compression of 3D medical images sets", Computerized Medical Imaging and Graphics, 2001.
- [55]. X. Wu and J.-H. Chen, "Context modeling and entropy coding of wavelet coefcients for image compression", in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal, pp. 3097-3100, New York, 1997.
- [56]. X.Wu, "Lossless compression of continuous-tone images via context selection, quantization and modeling", IEEE Transactions on Image Processing, vol. 6, pp. 656-664, 1997.
- [57]. M. Weinberger, G. Seroussi, G.Sapiro, "The LOCO-I lossless image compression algorithm : Principles and standardization into JPEG-LS", Technical Report HPL-98-193, HP Computer Systems Laboratory, novembre1998. http://www.hpl.hp.com/techreports/98.
- [58]. M.W. Marcellin, M.J. Gormish, A. Bilgin, and M. P. Boliek, "An overview of JPEG-2000", in Proc. DCC 2000, Snowbird, UT, pp. 523-541, mars 2000.
- [59]. Cosman,P.C.Tseng,C.Gray,R.M.Olshen,R.AMoses,L.E.Davidson,H.C.Bergin,C.J. Riskin,"Tree-structured vector quantization of CT chest scans : image quality and diagnostic accuracy",
- [60]. Goldberg MA, Gazelle GS, Boland GW, et al, "Focal hepatic lesions : effect of threedimensional wavelet compression on detection at CT". Radiology 1994, vol. 190, pp. 517-524.
- [61]. Zalis ME, Hahn PF, Arellano RS, et al, "CT colonography with teleradiology : effect of lossy wavelet compression on polyp detection - initial observations", Radiology, vol. 220, pp. 387-392, 2001.
- [62]. M Penedo et al, " Free-response receiver operating characteristic evaluation of lossy JPEG2000 and object-based set partitioning in hierarchical trees compression of digitized
 mammograms ", Radiology, vol. 237, N 2, pp. 450-457, 2005.
- [63]. V. Bristanak, P. Yip, K. R.Rao, ``Discrete cosine and sine transforms``, Elseiver, Amsterdam, 2007.
- [64]. M. Loève, ``Fonctions Aléatoires de Second Ordre,`` Processus stochastiques et Mouvement Brownien, P. Lévy, Ed. Hermann, Paris, 1948.
- [65]. K. Karhunen, ``Uber Lineare Methoden in der Wahrscheinlich-Keitsrechnung,`` Annales Academiae Sientiarum Fennicae, Ser. A137, 1947.
- [66]. Y. Q. SHi, H. Sun, ``Image and video compression for multimedia engineering,`` 2nd Ed, CRC press, Taylor & Francis group, 2008.
- [67]. K. Sayood, ``Introduction to data compression, `` 3nd Ed, Morgan Kaufmann, 2006
- [68]. D. Lingrand, "Introduction au traitement d'images", Edition Vuibert, Paris 2004
- [69]. M. N. Do and M. Vetterli, "The finite ridgelet transform for image representation," IEEE Trans. Image Processing, vol. 12, no. 1, pp. 16–28, Jan. 2003.

- [70]. Minh. N. Do, "Directional multiresolution image representations," D. Phil.Dissertation, Department of Communication Systems, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, October 2001.
- [71]. S. Mallat, A wavelet tour of signal processing, Academic Press, San Diego, 2nd edition, 1999.
- [72]. P.RAVIER, « Cours d'ondelettes », Espeo-université d'Orléans 2000.
- [73]. BELADGHAM.M, « Segmentation, Analyse et Compression d'image par Ondelettes : Application aux IRM », Mémoire de magister en électronique option : Signaux et systèmes, université de tlemcen. Octobre 2003
- [74]. B.DELYON, « ondelettes orthogonales et bi orthogonales », RR, N° 1985, 1993.
- [75]. P.G.LEMARIE, « les ondelettes en 1988 », Lecture Notes in Mathematics, No 1438 springer Verlag Publisher
- [76]. I.DAUBECHIES, « orthonormal bases of Compactily Supported Wavelet », com.pure Appl.Math. Vol.41, pp.909, Nov 1988.
- [77]. E. B .BOUCHEREAU, « Analyse d'images par transformées en ondelettes : Application aux images sismiques. », Thèse de doctorat de l'université Joseph Fourier, gronoble 1, Spécialité : « Mathématiques Appliquées », Mars 1997.
- [78]. P.J.BRUT, E.H.ADELSON, « the LAPLACIEN pyramid as a compact image code », IEEE Trans. On com. Vol. COM-31 (4), pp.337-345, April 1983.
- [79]. RAFAA, Représentation multi-résolutions et compression d'images : Ondelettes et codage scalaire et vectoriel, Thèse sous la direction de TOSSER et ROUSSEY, Metz, 1994
- [80]. Y. MEYER, "Ondelettes et Opérateurs", tome 1. Hermann, Paris, 1990.
- [81]. Ingrid Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conf. Series in Appl. Math., Vol. 61 Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
- [82]. S. MALLAT, "Multiresolution approximations and wavelet orthonormal bases of L2(R) ", Trans. Amer. Math. Soc., 315:69–87, Septembre 1989.
- [83]. J.WAKU.KOUOMOU, « ondelettes et application en imagerie et calcul de surface », Thèse de doctorat de l'université Joseph Fourier, gronoble 1, Spécialité : « Mathématiques Appliquées », Nov 1993.
- [84]. A. Cohen, I. Daubechies, et J. Fauveau. Bi-orthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 45 :485–560, 1992.
- [85]. M. Vetterli. Multi-dimensional subband coding : some theory and algorithms. Signal Processing, 6(2) :97–112, 1984.
- [86]. M. Vetterli. Filter banks allowing perfect reconstruction. Signal Processing, 10(3) :219–244, 1986.
- [87]. M. Vetterli et C. Herley. Wavelet and filter banks : Theory and design. IEEE Transactions on Signal Processing, 40(9) :2207–2232, 1992.
- [88]. C. Chui, J. Spring, et L. Zhong. Integer wavelet transforms. Rapport technique ISO/IEC JTC/SC29/WG1 N169, Teralogic Inc., Genève, Suisse, mars 1998.
- [89]. S. Mallat. A wavelet tour of signal processing. Academic Press, San Diego, USA, 1999.
- [90]. M. Unser et T. Blu. Mathematical properties of the jpeg2000 wavelet filters. IEEE Transactions on Image Processing, 12(9) :1080–1090, septembre 2003.
- [91]. A. Haar. Zur Theorie der orthogonal en Funktionensysteme. Mathematische Annalen, pages 331–371, 1910.

- [92]. M. Antonini. Transformée en ondelettes et compression numérique des images. Thèse de doctorat, Université de Nice-Sophia Antipolis, 1991.
- [93]. M. Antonini, M. Barlaud, P. Mathieu, et I. Daubechies. Image coding using wavelet transforms. IEEE Transactions on Image Processing, 1(2):205–220, avril 1992.
- [94]. I. Daubechies. Ten lectures on wavelets. SIAM, Philadelphia, PA, 1992.
- [95]. M. N. Do and M. Vetterli, "The contourlet transform: an efficient directional multiresolution image representation," IEEE Trans. Image Process., vol.14, no. 12, pp. 2091–2106, Dec. 2005.
- [96]. G. Peyré, "Géométrie multi-échelles pour les images et les textures," Thèse de Doctorat, Centre de mathématiques appliqués CMAP, Ecole Polytechnique, France, Décembre 2005.
- [97]. E.J. Candès and D.L. Donoho, "Curvelets a surprisingly effective non adaptive representation for objects with edges," in Curves and Surfaces fitting, A. Cohen, C. Rabut, and L. L. Schumaker (eds), Saint- Malo: Vanderbilt University Press, 1999.
- [98]. E.J. Candès and D.L. Donoho, "New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities," Commun. On Pure and Appl. Math., pp. 219–266, Feb. 2004.
- [99]. D. Gabor. Guest editorial. IRE Trans. Info. Theory, Sep. 1959.
- [100]. D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex," Journal of Physiology, vol. 160, pp. 106–154, 1962.
- [101]. J. Daugman, "Two-dimensional spectral analysis of cortical receptive field profile," Vision Research, vol. 20, pp. 847–856, 1980.
- [102]. E. J. Candes, "Ridgelets : Theory and Applications," Ph.D. thesis, Department of Statistics, Stanford University, 1998.
- [103]. M. N. Do and M. Vetterli, "Orthonormal finite ridgelet transform for image compression," in IEEE International Conference on Image Processing, vol. 2, pp. 367–370, 2000.
- [104]. S.Arivazhagan, L.Ganesan, T. G. Subash Kumar, « Texture classification using Ridgelet transform », 0-7695-2358-7/05. IEEE. 2005.
- [105]. F. Friedrich H. Führ, L. Demaret, "Beyond wavelets : New image representation Paradigms", in Survey article, preprint version, 2005P.
- [106]. L. Dragotti and M. Vetterli, "Wavelet footprints : Theory, algorithms and Applications", IEEE Transactions on Signal Processing, vol. 51(5), pp. 1306-1323, May 2003.
- [107]. V. Chappelier, « Codage progressif d'images par ondelettes orientées », Thèse de Doctorat, Université Rennes 1, 15 décembre 2005
- [108]. M. N. Do and M. Vetterli, "The finite ridgelet transform for image representation," IEEE Trans. Image Processing, vol. 12, no. 1, pp. 16–28, Jan. 2003.
- [109]. E.J. Candès, "Ridgelets: The key to higher-dimensional intermittency?,"Phil. Trans. R. Soc. Lond. A., vol. 357, pp. 2495–2509, 1999.
- [110]. E.J. Candès, "Monoscale ridgelets for the representation of images with edges," Tech. Report, Department of Statistics, Stanford University, 1999.
- [111]. D.L. Donoho, "Orthonormal ridgelets and linear singularities," SIAM J.Math Anal., vol. 31, no. 5, pp. 1062–1099, 2000.
- [112]. I.boukli hacene ; compression des images medicales par curvelet :application au images IRM Mémoire de magister en électronique biomédical , université de tlemcen. Septembre 2007

- [113]. I.boukli hacene ; « compression d' images medicales:application au images IRM. Etudes Comparatives entre les ondelettes, Ridgelets et curvelet ».éditions universitaires européennes,2013,ISBN :978-613-1-57598-3
- [114]. E.J. Candès, "On the representation of multilated Sobolev functions," Tech. Report, Department of Statistics, Stanford University, 1999.
- [115]. E.J. Candès and D.L. Donoho, "Curvelet, multiresolution representation, and scaling laws," in SPIE Wavelet Applications in Signal and Image Processing VIII, A. Aldroubi, A.F. Laine, and M.A. Unser, Eds., 2000, vol.4119.
- [116]. D.L. Donoho, "De-noising by soft-thresholding", IEEE Transactions on Information Theory, 1995.
- [117]. E.J. Candes, D.L. Donoho, "New Tight Frames of Curvelets and Optimal Representations of Objects with Smooth Singularities", Technical Report, Stanford University, 2002.
- [118]. E.J. Candes, L. Demanet, D.L. Donoho, L. Ying, "Fast Discrete Curvelet Transforms" Technical Report, Cal Tech, 2006.
- [119]. L. Ying, "CurveLab 2.0" California Institute of Technology, 2005.
- [120]. Annabelle Gouze « Schema lifting quinconce pour la compression d'image » these doctorat, université de nice sophia anti polis.2012
- [121]. R. H. Bamberger and M. J. T. Smith, "A filter bank for the directional decomposition of images: theory and design," IEEE Trans. Signal Process., vol. 40, no. 4, pp. 882–893, Apr. 1992.
- [122]. P. J. Burt and E. H. Adelson, "The Laplacian pyramid as a compact image code," IEEE Trans. Commun., vol. 31, no. 4, pp. 532–540, Apr. 1983.
- [123]. R. Eslami and H. Radha, "Wavelet-based contourlet coding using an SPIHT-like algorithm", in IEEE International Conference on Image Processing, Oct. 2004.
- [124]. A. Said and W. A. Pearlman, "A new, fast and efficient image codec based on set partitioning in hierarchical trees", IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, pp. 243_250, 1996.
- [125]. Y. Lu and M. N. Do, "Crisp-contourlets: a critically sampled directional multiresolution image representation", in SPIE Conference on Wavelet Applications in Signal and Image Processing, Aug. 2003.
- [126]. R. R. Coifman, Y. Meyer, and M. V. Wickerhauser, "Size properties of wavelet packets", in Wavelets and their applications, pp. 453_470. Jones and Bartlett, Boston, MA, 1992.
- [127]. R. R. Coifman, Y. Meyer, and M. V. Wickerhauser, "Adapted wave form analysis, waveletpackets and applications", in International Conference on Industrial and Applied Mathematics, pp. 41_50. 1991.
- [128]. K. Ramchandran and M. Vetterli, "Best wavelet packet bases in a rate-distorsion Sense", IEEE Transactions on Image Processing, vol. 2, pp. 160_175, Apr. 1993.
- [129]. D. L. Donoho and X. Huo, "Beamlet pyramids : a new form of multiresolution analysis, suited for extracting lines, curves and objects from very noisy image data", in SPIE Conference on Wavelet Applications in Signal and Image Processing, 2000, vol. 4119, pp. 434_444.
- [130]. D. L. Donoho, _Wedgelets : "Nearly minimax estimation of edges", in Annals of Statistics, 1999, vol. 27(3), pp. 859_897.
- [131]. M. Wakin, J. Romberg, H. Choi, and R. Baraniuk, "Rate-distortion optimized image compression using wedgelets", in IEEE International Conference on Image Processing, Sept. 2002.

- [132]. Z. Xiong, K. Ramchandran, and M. T. Orchard, "Space-frequency quantization for wavelet image coding", IEEE Transactions on Image Processing, vol. 6(5), pp. 677_693, 1997.
- [133]. V. Chandrasekaran, M. Wakin, D. Baron, and R. Baraniuk, "Surflets : A sparse representation for multidimensional functions containing smooth discontinuities, in IEEE International Symposium on Information Theory, Chicago, IL, June 2004.
- [134]. R. M. Willett and R. D. Nowak, "Platelets : A multiscale approach for recovering edges and surfaces in photon-limited medical imaging", Tech. Rep. TREE0105, Rice University, 2002.
- [135]. LE PENNEC, E. (2002). Bandelettes et représentation géométrique des images. Thèse de doctorat, École Polytechnique, France.
- [136]. PEYRÉ, G. (2005). Géométrie multi-échelles pour les images et les textures. Thèse de doctorat, École Polytechnique.
- [137]. BELADGHAM.M, « Construction d'une technique d'aide au diagnostic en Imagerie médicale. Application à la Compression d'images», thèse de doctorat en électronique, université de tlemcen. Décembre 2012
- [138]. W. SWELDENS, "The Lifting Scheme: A Custom-design Construction of Biorthogonal Wavelets", Applied and Computational Harmonic Analysis, Vol. 3, No. 2, pp. 186-200, April 1996.
- [139]. I. DAUBECHIES, W. SWELDENS, "Factoring wavelet transforms into lifting steps", Journal of Fourier Analysis and Applications, Vol.4, No.3, pp245–267,1998.
- [140]. D. SALOMON, "Data ompression", The Complete Reference, Fourth Edition, Springer-Verlag London, 2007.
- [141]. Y. TANAKA, M. IKEHARA and Q. N. TRUONG, "A New Combination of 1D and 2D Filter Banks for Effective Multiresolution Image Representation", IEEE, pp 2820-2823,2008.
- [142]. M. VETTERLI, J. KOVACEVÉ, "Wavelets and Subband Coding", Upper Saddle River, NJ: Prentice-Hall, 1995.
- [143]. F. MANUELA, VD. DIMITRI and U. MICHAEL, "An Orthogonal Family of Quincunx Wavelets With Continuously Adjustable Order", IEEE Transactions On Image Processing, Vol. 14, No. 4, APRIL 2005.
- [144]. VD. DIMITRI, B. THIERRY and U. MICHAEL,"On the Multidimensional Extension of the Quincunx Subsampling Matrix", IEEE Signal Processing Letters, Vol.12, No.2, FEBRUARY 2005.
- [145]. Y. CHEN, AD. MICHAEL and L. WU-SHENG, "Design of Optimal Quincunx Filter Banks for Image Coding", EURASIP Journal on Advances in Signal Processing, Vol. 2007.
- [146]. S. C. PEI, J. J. SHYU, "Design of 2-D FIR Digital Filters by McClellan Transformation and Least Squares Eigencontour Mapping", IEEE Transactions on Circuits and Systems- II: Analog and digital signal processing, Vol. 40, No. 9, pp.546-555, September 1993.
- [147]. L. Lee, V.A. Oppenheir, "Proprerties of approximate parks-McClellan filters", IEEE, pp.2165-2168, 1997.
- [148]. S. C. PEI, J. J. SHYU, "Design of two-dimensional FIR digital filters by McClellan transformation and least-squares contour mapping", Signal Processing, 44, pp. 19-26, 1995.
- [149]. R.W. BUCCIGROSSI, E.P. SIMONCELLI, "Image compression via joint statistical characterization in the wavelet domain", IEEE Trans. Image processing, Vol. 8, pp.1688–1701, December 1999.

- [150]. D. M. CHANDLER, S. S. HEMAMI, "Additivity models for suprathreshold distortion in quantized wavelet-coded images", in Human Vision and Electronic Imaging VII, Proc. SPIE, Vol. 4662, Jan. 2002.
- [151]. M. BELADGHAM, A.BESSAID, A. MOULAY LAKHDAR, M. BEN AISSA, A.BASSOU,
 "MRI image compression using biorthogonal CDF wavelet based on lifting scheme and SPIHT coding" CIGE'10, Proc. JRS, Vol. 2, N. 0,pp. 225-232, Université de Bechar, Novembre 2010.
- [152]. M. BELADGHAM, A. BESSAID, A. TALEB-AHMED, and I. BOUKLI HACENE, "Medical image compression using Quincunx wavelets and SPIHT coding", Journal of Electrical Engineering & Technology ,Vol.7, No.2, ISSN 1975-0102, pp.264-272, doi:10.5370/JEET.2012.7.2.264, Mars 2012.
- [153]. RAM LAUTAN VERMA, DEEPTI OJHA, PARUL GUPTA, MANISHA GUPTA "EXCELLENCE OF DCT- DWT A HYBRID APPROACH FOR IMAGE COMPRESSION". International Journal of Electrical, Electronics and Data Communication, ISSN (p): 2320-2084, Volume-1, Issue-, July-2013.
- [154]. Chandan Singh D. Rawat, Sukadev Meher "A Hybrid Coding Scheme Combining SPIHT and SOFM Based Vector Quantization for Effectual Image Compression". European Journal of Scientific Research ISSN 1450-216X Vol.38 No.3 (2009), pp.425-440
- [155]. M.M.Siddeq "Hybrid Color Image Compression Technique by using Discrete Wavelet Transformand Discrete Cosine Transform "Software Engineering Dept.TechnicalCollege– Kirkuk–IRAQ.2010
- [156]. M.M.Siddeq "Color Image Compression by usingWalsh andWaveletTransform (WWT) "Software Engineering Dept.TechnicalCollege–Kirkuk–IRAQ.2012
- [157]. K. V. Madisetti, ``The digital signal processing handbook. Digital signal processing fundamentals,`` 2nd Ed., Boca Raton, FL: CRC Press, 2010.
- [158]. R. C. Gonzalez, R. E. Woods, ``Digital image processing,`` 2nd Ed, prentice Hall, New jersey, 2002.
- [159]. Y. Q. SHi, H. Sun, ``Image and video compression for multimedia engineering,`` 2nd Ed, CRC press, Taylor & Francis group, 2008.
- [160]. K. Sayood, ``Introduction to data compression, `` 3nd Ed, Morgan Kaufmann, 2006
- [161]. L..Brechet, M.-F. Lucas, C. Doncarli et D. Farina, "Compression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selection," IEEE Trans on biomedical engineering, Vol. 54, No.12, pp.2186-2192, Dec 2007
- [162]. A. D. Poularikas, ``Transform and Applications Handbooks,`` 3nd Ed Boca Raton Fl, CRC Press 2010.
- [163]. V. Bristanak, P. Yip, K. R.Rao, ``Discrete cosine and sine transforms``, Elseiver, Amsterdam, 2007.
- [164]. D. S. Taubman, M. W. Marcellin, "JPEG2000: Image compression fundamentals, standards and practice," Kluwer Academic Publishers, Boston, 2002
- [165]. G. K. Wallace, ``The JPEG still Picture compression Standard,`` Communication of the ACM, 34(4): pp. 30-44, 1991.
- [166]. M. Rabbani, R. Joshi, ``An overview of the JPEG 2000 still image compression standard``, Elsevier, Signal processing: Image communication, pp-3-48, 2002.
- [167]. S. A. Khayam, ``The discrete Cosine Transform (DCT): theorie and application,`` Information théory and codage, ECE. 802-602 séminaire1-CEE, Mars 2003.

[168]. W.k.pratt,J.kan et H.C.Andrews « Hadamard transform image coding » ;proceeding of the IEEE .vol 57,No1,pp.58-67.january 1969.

[169]. Walsh, J. L. "A Closed Set of Normal Orthogonal Functions." Amer. J. Math. 45, 5-24, 1923.

- [170]. PEYRÉ, G. (2004). L'algèbre discrète de la transformée de Fourier. Ellipses. 19
- [171]. Tzafestas, S. G. Walsh Functions in Signal and Systems Analysis and Design. New York: Van Nostrand Reinhold, 1985.
- [172]. Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 573 and 1072-1073, 2002.
- [173]. Ritter, Terry (August 1996). "Walsh-Hadamard Transforms: A Literature Survey".
- [174]. Akansu, A.N.; Poluri, R. (July 2007). "Walsh-Like Nonlinear Phase Orthogonal Codes for Direct Sequence CDMA Communications" (PDF). IEEE Trans. on Signal Processing 55 (7): 3800–6. doi:10.1109/TSP.2007.894229.
- [175]. Pan, Jeng-shyang Data Encryption Method Using Discrete Fractional Hadamard Transformation (May 28, 2009)
- [176]. BEAUCHAMP, K. G. (1975). Walsh functions and their applications. Academic Press, London, UK. 17, 19
- [177]. R.Clarke, Transform Coding of Images, Academic Press, 1985.
- [178]. R. Heus, "Approches virtuelles dédiées à la technologie des puces à tissus «Tissue MicroArrays » TMA : Application à l'étude de la transformation tumorale du tissu colorectal", Thèse de doctorat, Université Joseph Fourier, 28 Septembre 2009.
- [179]. C. Bencheriet, A. Boualleg, H. Tebbikh, "Segmentation de la Couleur de Peau par Seuillage Selon Différents Espaces de Couleur", JIG'2007 - 3èmes Journées Internationales sur l'Informatique Graphique, Université 8 Mai 45 de Guelma, 2007.
- [180]. J. C. Russ, "The image processing –Handbook-", Third Edition. CRC Press, CRC Press LLC,1998.
- [181]. V. Risson,"Application de la Morphologie Mathématique à l'Analyse des Conditions d'Éclairage des Images Couleur", Thèse de doctorat, Ecole des Mines de Paris, 17 Décembre 2001.
- [182]. B. Rémi, N. François, "La compression JPEG", Rapport de Projet, Ecole nationale supérieure d'ingénieurs de Caen et centre de recherche (ENSICAEN), Université de Caen Basse-Normandie, Année 2005-2006.
- [183]. C. D. Bibhas, C. Bhabatosh, "Color image compression based on block truncation coding using pattern fitting principle", ELSEVIER, Vol.9, pp. 2408-2417, 2007.
- [184]. A. Anwander, "Segmentation d'images couleurs par opération gradient vectoriel multiéchelle et contour actif : application à la quantification des phases minéralogiques du clinker de ciment", Thèse de doctorat, Institut national sciences appliquées de Lyon, Décembre 2001.
- [185]. T. Totozafiny, "Compression d'images couleur pour application à la télésurveillance routière par transmission vidéo à très bas débit", Thèse de Doctorat, Université de Pau, juillet 2007.
- [186]. Ismail Boukli Hacene; Mohammed BELADGHAM, Abdelhafid BESSAID, "Color Medical Image Compression Using Quincunx Wavelets and SPIHT Coding". International Journal of computer & Technology (IJCT). Vol.8. No.2, pp.802-812.2013. ISSN 2277-3061.
- [187]. Ismail Boukli Hacene ;Mohammed BELADGHAM, , Abdelhafid BESSAID, "lossy color Medical Image Compression Using CDF wavelet lifting scheme" .International Journal image

graphics and signal processing (IJIGSP) . Vol.5.No.11, pp.53-60.2013. DOI:10-5815/ijigsp.2013.11.06 .ISSN Print:2074-9074,ISSN Online:2074-9082.

- [188]. I.boukli hacene .A.bessaid"Color Medical Image Compressed Using Biorthogonal CDF wavelet based on lifting scheme;quincunx Wavelets transform, A comparative study" 3^{eme} Journée Doctorale de génie Biomédical JD-GBM'13.TLEMCEN le 23 MAi2013.
- [189]. Beladgham Mohammed ;Habchi Yassine ;Moulay Lakhdar Abdelmouneim ;Taleb-Ahmed Abdelmalik "A Comparative Study between Bandelet and Wavelet Transform Coupled by EZW and SPIHT Coder for Image Compression".I.J. Image, Graphics and Signal Processing, 2013, 12, 9-17.October 2013 in MECS (http://www.mecs-press.org/).DOI: 10.5815/ijigsp.2013.12.02
- [190]. Ismail boukli hacene; Bessaid abdelhafid 'Hybrid colour medical image compression by CDF wavelet and cosine transforms'' I.J.Biomedical Engineering and Technology.Vol X,N°X ,2014.
- [191]. www. GE Healthcare.com (database).
- [192]. Raphael soulard, p.carré, c.fernandez « transformée en ondelettes analytique pour les images » réunion GDRISIS-Transformée géométrique multirésolution. laboratoire XLIM-SIC. Poitiers-Paris .1 avril 2011