République Algérienne Démocratique et Populaire Ministère de l'enseignement supérieur et de la recherche scientifique

Université Abou Bekr Belkaid – Tlemcen Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et de l'Univers Département de Biologie

Laboratoire Antibiotiques, Antifongiques

Physico-chimie, Synthèse et Activité Biologique

Option : Biochimie Appliquée

THÈSE DE DOCTORAT

Etude multicentrique de la résistance aux antibiotiques chez *Acinetobacter baumannii*

Présentée le 24 Juin 2014 par

Mme MERAD BOUDIA née MESLI Esma

Dr KHELIL N. Université de Tlemcen Présidente du Jury Pr BAKOUR R. Université d'Alger Examinateur Pr KARAM N.E. Université d'Oran Examinateur Dr MESSAI Y. Université d'Alger Examinatrice Université de Tlemcen Pr MOUSSA BOUDJEMAA B. **Examinateur** Pr DRISSI M. Université de Tlemcen Directeur de thèse

Année Universitaire: 2013-2014

REMERCIEMENTS

J'adresse de sincères remerciements aux membres du jury qui ont accepté de juger ce travail.

Mes remerciements les plus sincères vont à Monsieur Mourad DRISSI, Professeur à l'université de Tlemcen pour avoir accepté de diriger ma thèse et permis le développement de mon sujet de recherche. Je vous remercie pour l'encadrement de ce travail, pour votre enseignement et vos encouragements. Vous m'avez soutenu dans mon travail de recherche depuis des années et j'ai appris de vous la rigueur scientifique. Toutes ces années d'études m'accompagneront tout au long de mon avenir professionnel.

J'adresse mes sincères remerciements à Madame Nihel KHELIL Maître de conférences à l'université de Tlemcen, qui m'a fait l'honneur d'accepter la présidence de ce jury.

Mes vifs remerciements s'adressent à Monsieur Noureddine KARAM, Professeur à l'université d'Oran, d'avoir accepté de faire partie du jury et d'examiner ce travail.

Mes sincères remerciements s'adressent à Monsieur Rabah BAKOUR, Professeur à l'université de Bab Ezzouar d'Alger pour avoir accepté d'être le rapporteur de cette thèse et de juger ce travail.

Je remercie profondément Madame Yamina MESSAI, Maître de conférences à l'université de Bab Ezzouar d'Alger de m'avoir fait l'honneur de participer à ce jury et d'examiner ce travail.

J'exprime mes sincères remerciements à Monsieur Boumediène MOUSSA BOUDJEMAA., Professeur à l'université de Tlemcen de m'avoir fait l'honneur d'être examinateur de ce travail de thèse.

J'adresse un remerciement particulier à Monsieur Jean-Marc ROLAIN, Professeur à l'université d'Aix-Marseille qui m'a accueilli et intégré dans son équipe, soutenu tout au long de mon stage, dont je garderai le meilleur souvenir. Je vous remercie de m'avoir accordé le temps pour puiser dans la formidable ambiance toutes vos connaissances et d'apprendre les techniques de la microbiologie moléculaire.

Je tiens à remercier Madame le Professeur Zahia BOUCHERIT Professeur et directrice du Laboratoire Antibiotiques Antifongiques : Physico-chimie, Synthèse et Activités Biologiques et Monsieur le Professeur Kebir BOUCHERIT. Veuillez trouver tout mon respect et ma gratitude de m'avoir intégré au laboratoire dans lequel j'ai pu réaliser mes travaux de thèse.

Je remercie tous les chefs de service de l'hôpital de Tlemcen, Oran et Sidi Bel Abbes, particulièrement un grand merci à Madame Souad BEKKHOUCHA Chef de service de Bactériologie à l'hôpital d'Oran pour sa collaboration et sa sympathie et à Madame Rachida BENHADDOUCHE Chef de service de réanimation à l'hôpital de Tlemcen pour sa collaboration.

J'adresse mes remerciements à mes amis avec lesquels ce travail n'a pu être réalisé. Enfin mes chaleureux remerciements vont à mes parents. Je vous remercie mes chers parents pour la confiance, le soutien inestimable et permanant et les précieux conseils que vous m'avez donnés. Je remercie mon époux Nassim qui m'a tant aidé et soutenu et pour l'irremplaçable soutien et encouragement. Cette thèse est la votre.

Je remercie également mes soeurs Amel et Ahlem, mes trois adorables nièces Meryem, Yousra et Nihel pour l'énergie et le bonheur que je puise dans leur présence ainsi que toute ma famille et ma belle-famille.

Table des matières

Liste des figures	
Liste des abréviations	
Liste des annexes Résumé	
INTRODUCTION	1
PREMIERE PARTIE : SYNTHESE BIBLIOGRAPHIQUE	
TREMIERE LAKTIE . STATILESE BIBLIOGRAFITQUE	
Chapitre I : Les antibiotiques	3
1. Les β-lactamines	3
1.1. Classification des β-lactamines	3
1.1.1. Les pénicillines	3
1.1.2. Les céphalosporines	4
1.1.3. Les carbapénèmes	6
1.1.4. Les monobactames	7
1.1.5. Les inhibiteurs de β -lactamases	8
1.2. La paroi et le mode d'action des β-lactamines	8
2. Les aminosides	9
2.1. Classification des aminosides	9
2.2. Mode d'action des aminosides	10
3. Les fluoroquinolones	11
3.1. Classification des fluoroquinolones	11
3.2. Mode d'action des fluroquinolones	11
4. La colistine	12
4.1. Mode d'action de la colistine	13
5. Les mécanismes de résistance aux β-lactamines	13
5.1. Inactivation enzymatique de l'antibiotique : Les β -lactamases	13
5.1.1. Classification d'Ambler	13
5.1.2. Mode d'action des β-lactamases	15
5.2. Diminution de la perméabilité membranaire	15
5.3. Modification de la cible	16
5.4. Mécanisme d'efflux actif	16
Chapitre II : Le genre Acinetobacter	18
1. Historique-taxonomie	18
2. Identification et classification	18
3. Aspect phylogénétique du genre	20
4. Morphologie, métabolisme et habitat	22
5. Virulence et pouvoir pathogène d' <i>Acinetobacter spp</i> .	23
6. Les infections à <i>Acinetobacter spp</i> .	24
6.1. Les infections nosocomiales	24
6.2. Les infections communautaires	25
7. Epidémiologie hospitalière	25

Chapitre III : Mécanismes de résistance aux β-lactamines chez <i>Acinetobacter</i>	27
baumannii	
1. Résistance naturelle	27
2. Résistance acquise aux β-lactamines	28
2.1. β-lactamase de classe A et βLSE	28
2.2. β-lactamase de classe C	28
2.3. Résistance acquise aux carbapénèmes	29
2.3.1. Les β -lactamases de Classe B	29
2.3.2. Les β –lactamases de Classe D	30
2.4. Diminution de la perméabilité membranaire	33
2.5. Efflux	34
2.6. Modification de PLPs	34
3. Résistance chez <i>Acinetobacter</i> non-baumannii	34
3.1. Résistance aux β-lactamines	34
3.2. Résistance aux aminosides	35
3.3. Résistance aux fluoroquinolones	36
3.4. Résistance aux autres antibiotiques	36
4. Les supports génétiques de la résistance aux antibiotiques	37
4.1. La résistance chromosomique	37
4.2. La résistance extra-chromosomique	38
4.2.1. Les séquences d'insertion	38
4.2.2. Les transoposons	39
4.2.3. Les intégrons	39
DEUXIEME PARTIE: MATERIEL ET METHODES	
1. Lieu de l'étude	40
2. Les prélèvements	40
3. Isolement et identification	40
4. Antibiogramme	40
5. Concentrations minimales inhibitrices	41
6. Analyse statistique	42
7. Analyses phénotypiques des mécanismes de résistance aux carbapénèmes	42
8. Recherche des gènes de résistance par PCR standard et qPCR	42
9. Séquençage	43
10. Typage moléculaire par MALDI-TOF MS	43
11. Conjugaison	43
11.1. Technique	43
11.2. Lecture	44
12. Extraction de l'ADN plasmidique	44
12.1. Technique	44
13. Electrophorèse sur gel d'agarose	45
13.1. Préparation du gel d'agarose	45
13.2. Dépot des échantillons	45
13.3. Migration et révélation	45

TROISIEME PARTIE: RESULTATS

Chapitre I : Epidémiologie de la résistance chez Acinetobacter spp.	46 49 52 52 55 57 57 57 6 dans le typage moléculaire 60 62 69 72
1. Répartition des souches	46
2. Sensibilité des souches d'Acinetobacter spp. aux antibiotiques	49
3. Etude des mécanismes de résistance	52
3.1. β-lactamines	52
3.2. Aminosides	55
3.3. Fluoroquinolones	57
4. Transfert de l'antibiorésistance	57
Chapitre II : Application de la spectrométrie de masse dans le typage moléculaire et dans la détection des mécanismes de résistance	60
Discussion et perspectives	62
Conclusion	69
Références bibliographiques	72
Annexes	94

LISTE DES TABLEAUX

- **Tableau 1.** Classification des β -lactamases
- Tableau 2. Classification du genre Acine tobacter
- Tableau 3. Nombre de prélèvements et de souches durant la période de l'étude
- **Tableau 4.** Test de Chi²
- Tableau 5. Nombre et pourcentage des souches IPM R durant les 4 années d'étude
- Tableau 6. Taux de résistance et niveaux de CMI des souches d'Acinetobacter spp.
- Tableau 7. Détection des oxacillinases chez les souches d'Acinetobacter spp
- Tableau 8. Génotypes de résistance des aminosides
- **Tableau 9.** Résultats des CMIs (µg/ml) des transconjugants comparés avec les CMI des souches réceptrices

LISTE DES FIGURES

- **Figure 1.** Le noyau β -lactame
- Figure 2. Strucutre générale d'une pénicilline
- Figure 3. Structure générale d'une céphalosporine
- Figure 4. Structure générale de différentes carbapènèmes
- Figure 5. Structure générale des monobactames
- Figure 6. Paroi des bactéries à Gram négatif
- Figure 7. Structure générale d'un aminoside
- Figure 8. Structure générale de l'acide nalidixique (gauche) et de la ciprofloxacine (droite)
- **Figure 9.** Structure de la colistine A et B (polymyxine E1 et E2)
- Figure 10. Mécanisme d'action des β -lactamases à sérine active
- Figure 11. Les différentes familles des pompes à efflux
- **Figure 12.** Dendrogramme de 73 β-lactamases de classe D
- Figure 13. Nombre de souches d'Acinetobacter spppar année et par hôpital
- Figure 14. Taux des différentes espèces sur l'ensemble des BGN
- Figure 15. Nombre de souches des différents BGN au niveau de chaque hôpital
- **Figure 16.** Antibiogramme d'une souche d'*A.baumannii* multirésistante (gauche) et de phénotype sauvage (droite)
- Figure 17. Résultat positif (gauche) et négatif (droite) d'une souche d'A.baumannii
- **Figure 18.** Amplification du gène *bla*_{NDM-1} des cinq souches d'*A.baumannii*
- **Figure 19.** Alignement des acides aminés de bla_{NDM-1} identifiés chez les cinq souches d'*A.baumannii* (Les motifs conservés des β-lactamases sont indiqués en rouge).
- **Figure 20.** Arbre phylogénétique des cinq souches NDM-1 (PubMed Database)
- Figure 21. Résultat du test à l'EDTA d'une souche MβL positive
- Figure 22. Profil de résistance d'un transconjugant
- Figure 23. Visualisation des plasmides sur gel d'agarose
- **Figure 24.** Dendrogramme MSP (Mean spectra projection) des souches d'Acinetobacter spp.
- **Figure 25.** Détection de carbapénèmases par MALDI-TOF MS. Spectre de masse des souches d'*Acinetobacter baumannii* IPM R (gauche), Spectre de masse des souches d'*Acinetobacter baumannii* IPM S (droite).

LISTE DES ABBREVIATIONS

ADC: Acinetobacter-derived cephalosporinase

ADN: Acide Désoxyribonucléique

AME: Aminoglycoside modifying enzyme

ARN: Acide Ribonucléique

BEt: Bromure d'éthidium

BGN: bacille à Gram négatif

BGN-MR: bacille à Gram négatif multirésistant

BJ: Bouvet et Jeanjean

βLSE: β-Lactamase à Spectre Etendu

BMR: bactérie multirésistante

CASFM: Comité de l'Antibiogramme de la Société Française de Microbiologie

CHDL: carbapenem-hydrolyzing class D β -lactamase

CMI: Concentration Minimale Inhibitrice

EDTA: acide éthylène diamine tétraacétique

gen.sp.: espèce génomique

IS: insertion sequence (séquence d'insertion)

IPM R: souche résistante à l'imipénème

IPM S: souche sensible à l'imipénème

Kb: kilobase (=1000 pb)

LB: Luria Broth (Bouillon Luria)

LPS: lipopolysaccharide

MALDI-TOF MS: Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass

spectrometry

MβL: métallo-B-lactamase

NaCl: chlorure de sodium

NDM: New-Delhi Métallo-B-lactamase

OMP: outer membrane protein (protéine de la membrane externe)

Pb: paire de bases

PCR: polymerase chain reaction

PLP: protéine liant les pénicillines

rpm: Round per minute

rpoB: RNA polymerase β- subunit

SBA: Sidi Bel Abbes

spp.: espèce

TBE: Tris-borate-EDTA

TC: transconjugant

TE: Tris-EDTA

Tn: transposon

TU: Tjernberg et Ursing

UFC: unite formant colonie

LISTE DES ANNEXES

- **Annexe 1.** Concentration, diamètres critiques et règles de lecture interprétative pour *Acinetobacter spp., Stenotrophomonas maltophilia et Burkholderia cepacia.*
- Annexe 2. Préparation des solutions d'antibiotiques.
- Annexe 3. Amorces et sondes utilisées en PCR.
- Annexe 4. Solutions et tampons pour l'extraction de l'ADN plasmidique.
- Annexe 5. Solutions et tampons pour l'électrophorèse de l'ADN plasmidique.
- Annexe 6. Données cliniques des patients porteurs de souches NDM-1.
- Annexe 7. Amplification des gènes de résistance aux carbapénèmes et aux aminosides

RESUME

Au cours de ces dernières années, les bactéries du genre *Acinetobacter*, notamment *A. baumannii*, ont joué un rôle croissant dans les infections nosocomiales, avec un haut risque épidémique ayant pour conséquences des difficultés thérapeutiques. Son épidémiologie dans le monde est marquée par la dissémination d'un clone majoritaire hébergeant des gènes codant pour la résistance aux carbapénèmes.

Cette étude multicentrique se propose d'analyser la fréquence d'isolement, l'importance par rapport aux autres BGN et les niveaux de résistance aux antibiotiques des souches d'*Acinetobacter spp.* isolées à partir de patients et de l'environnement au niveau de trois hôpitaux de l'ouest Algérien (Tlemcen, Oran et Sidi Bel Abbes) sur une période de 04 ans (2009-2012).

Nos objectifs étaient d'explorer de nouveaux gènes de résistance (bla_{OXA-23} , bla_{OXA-24} et bla_{NDM-1}) par amplification génique et séquençage, l'étude de leur support génétique et le transfert de l'antibiorésistance par une conjugaison et une électrophorèse sur gel d'agarose.

Enfin, l'utilisation de la technique de spectrométrie de masse (MALDI-TOF MS) nous a permis d'identifier les souches au niveau de l'espèce, de faire une étude épidémiologique par typage moléculaire et une détection plus rapide des gènes de résistance aux carbapénèmes.

Mots-clés : *Acinetobacter*, *A.baumannii*, carbapénème, carbapénèmase, NDM-1, étude multicentrique, MALDI-TOF MS.

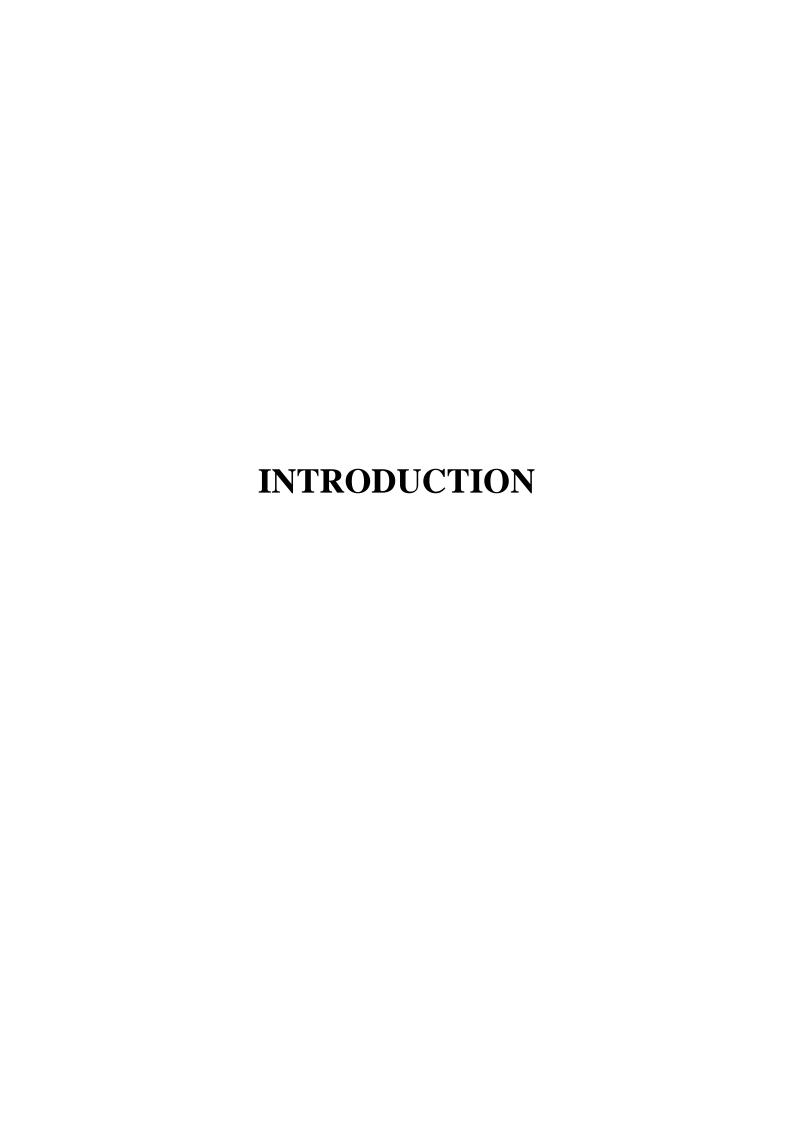
ABSTRACT

During these last years, the bacteria of the genus Acinetobacter including *A. baumannii*, have played an increasing role in nosocomial infections with a high epidemic risk having consequences like therapeutic difficulties. Its epidemiology in the world is marked by the release of a majoritary clone harboring genes encoding resistance to carbapenems. This multicentric study was proposed to analyze the prevalence, the importance relative to the other Gram negative bacilli and resistance levels to antibiotics of *Acinetobacter spp.* strains isolated from patients and the environment at three hospitals in western Algeria (Tlemcen, Oran and Sidi Bel Abbes) over a period of 04 years (2009-2012).

Our objectives were to explore new resistance genes (bla_{OXA-23} , bla_{OXA-24} and bla_{NDM-1}) by gene amplification and sequencing, study of the genetic support and the transfer of antibiotic resistance by conjugation and agarose gel electrophoresis.

Finally, the use of the technique of mass spectrometry (MALDI -TOF MS) has allowed us to identify strains to the species level, an epidemiological study by molecular typing and faster detection of resistance genes encoding carbapenemase.

Keywords : *Acinetobacter*, *A.baumannii*, carbapenem, carbapenemase, NDM-1, multicentric study, MALDI-TOF MS.


ملخص

خلال السنوات الأخيرة ، البكتيريا من جنس A. baumannii لعبت دورا متزايدا في عدوى المستشفيات مع ارتفاع مخاطر حدوث وباء مع عواقب الصعوبات العلاجية .ويتميز علم الأوبئة في العالم من خلال الافراج عن استنساخ الأغلبية إيواء الجينات ترمي ن مقاومة carbapenem .

وكانت هذه الدراسة متعددة المراكز لتحليل الترددات من العزلة ، الأهمية النسبية لهستويات أخرى ل BGN و سلالات مقاوم مقاوم المضادات الحيوية من النيابة الراكدة . المعزولة من المرضى والبيئة في ثلاثة مستشفيات في غرب الجزائر (تلمسان وو هران وسيدي بلعباس) على مدى فترة 04 عاما (2009-2012).

كانت أهدافنا لاستكشاف الجينات الجديدة المقاومة (24 blaOXA -23blaOXA و1- blaODM) التضخيم الجينات وتسلسلهـها، ودعم الأبحاث الجينية ونق لل المقاوم قلم المضاوم ا

كلمات مفتاحية: NDM -1 'carbapenemase 'carbapenem 'A.baumannii ,Acinetobacter' دراسة متعددة المراكز، NDM -1 'Carbapenemase 'carbapenem 'A.baumannii ,Acinetobacter' المراكز، NDM -1 'carbapenemase 'carbapenem' 'A.baumannii ,Acinetobacter' دراسة متعددة

A la fin du XIX siècle, les travaux de grands microbiologistes comme Pasteur et Koch ont changé l'approche du traitement des maladies infectieuses. En 1929, la découverte de la pénicilline par Alexander Fleming venait d'ouvrir l'ère des antibiotiques. En peu de temps, le développement et l'utilisation d'agents antimicrobiens comme les sulfamides (dans les années 1930) et la pénicilline (vers la fin des années 1940) ont remplacé l'utilisation thérapeutique de composés beaucoup plus toxiques comme le mercure. Par la suite, de nombreux antibiotiques ont été découverts ou synthétisés permettant de traiter des maladies autrefois mortelles.

Les problèmes liés à l'émergence de bactéries résistantes aux antibiotiques, ainsi qu'à leur dissémination, constituent des préoccupations apparues peu après la première utilisation thérapeutique des antibiotiques. Du fait de l'évolution des systèmes de soins, nous avons progressivement assisté à l'apparition de bactéries multirésistantes (BMR). Depuis maintenant plusieurs années, elles représentent un problème de santé majeur, tant en termes de mortalité ou de morbidité induites qu'en termes de coûts financiers, particulièrement dans le secteur hôspitalier (Quale *et al.*, 2002).

La vitesse avec laquelle les gènes de résistance sont apparus dans les souches cliniques s'est avérée fulgurante d'un point de vue évolutif. L'apparition fréquente, en moins de 50 ans, d'une variété très grande de gènes de résistance suggérait alors leur acquisition via un réservoir de gènes préexistants (Recchia *et al.*, 1997) parfois beaucoup moins impliqués en pathologie humaine (Poirel *et al.*, 2008a).

Restées longtemps méconnues en raison de leur faible pouvoir pathogène et de leur taxonomie imprécise, les bactéries du genre *Acinetobacter* sont marquées par une évolution impressionnante de la résistance aux antibiotiques en termes de rapidité et de diversité des mécanismes et de matériels génétiques mis en jeu (Decré, 2012).

L'espèce *A.baumannii* apparaît comme l'un des pathogènes les plus problématiques au sein des établissements de soins. C'est une bactérie opportuniste multirésistante responsable d'un nombre croissant d'infections nosocomiales et souvent mortelles notamment les pneumopathies dans les services de réanimation. Les patients les plus fragiles sont généralement les cibles de ce pathogène.

L'existence de souches résistantes à tous les antibiotiques utilisés en thérapeutique humaine place *A. baumannii* parmi les organismes qui menacent l'arsenal thérapeutique actuel. Compte tenu du nombre et de la diversité des déterminants de résistance identifiés chez cette bactérie, le choix des molécules lors du traitement est un réel problème. Les carbapénèmes ont été longtemps considérées comme le traitement de choix des infections à

Acinetobacter, et aujourd'hui l'utilité clinique de cette classe est menacée par l'émergence de résistances favorisées par son utilisation de plus en plus importante (Delbos, 2012).

La résistance aux carbapénèmes a été rapportée dans les années 1990. Elle était alors extrêmement limitée géographiquement, essentiellement au Japon et due à un type particulier de carbapénèmase (enzymes ayant une forte activité d'hydrolyse des carbapénèmes) : une métallo-β-lactamase de type IMP (Walsh *et al.*, 2005). Puis, progressivement, l'impact clinique et la diversité des carbapénèmases se sont accrus considérablement pour devenir significatifs au milieu des années 2000. Elles constituent désormais une préoccupation majeure de santé publique (Nordmann, 2010). L'explosion de ces résistances et l'émergence de bactéries multirésistantes constituent un problème qui touche le milieu hospitalier au niveau mondial.

Dans le cadre de nos activités sur la résistance d'*Acinetobacter* aux antibiotiques et face à des situations épidémiologiques graves concernant ces BMR pathogènes émergentes, il est essentiellement impératif de mener une étude multicentrique afin de surveiller l'émergence de nouveaux gènes de résistance et son évolution dans le temps sur différentes régions géographiques. Les principaux objectifs sont :

- -Prévalence des souches d'*Acinetobacter spp.* isolées des trois hôpitaux de l'ouest algérien (Tlemcen, Oran et Sidi Bel Abbes).
- -Evaluation des niveaux de résistance aux antibiotiques.
- -Détection de carbapénèmases naturelles et de nouveaux gènes de résistance aux carbapénèmes (par amplification génique et MALDI-TOF).
- -Etude du support génétique et du transfert de l'antibiorésistance.
- -Utilisation de la technique MALDI-TOF MS pour l'identification des espèces au sein du même genre, la détection rapide des gènes de résistance et le typage moléculaire des souches d'*Acinetobacter spp*.

PREMIERE PARTIE SYNTHESE BIBLIOGRAPHIQUE

Chapitre I : Les antibiotiques

Les antibiotiques sont des substances antibactériennes d'origine biologique c'est à dire produites par des micro-organismes (champignons et bactéries) ou semi-synthétiques capables, à faible concentration, d'inhiber la multiplication ou de détruire d'autres microorganismes.

1. Les β-lactamines

Les β-lactamines constituent la famille d'antibiotiques la plus importante, aussi bien par le nombre et la diversité des molécules utilisables que par leur indication en thérapeutique et en prophylaxie des infections bactériennes. Cette famille, qui regroupe les pénicillines, les céphalosporines, les carbapénèmes et les monobactames, est caractérisée par la présence constante du cycle β-lactame associé à des cycles et des chaînes latérales variables qui expliquent les propriétés pharmacocinétiques et le spectre d'activité des différents produits. La grande variété de leur mode d'administration, leur large spectre d'activité antibactérien associé à une action bactéricide, une bonne diffusion tissulaire, une bonne tolérance et un faible nombre d'interactions médicamenteuses expliquent leur popularité et l'importance de leur utilisation, seules ou en associations (Cavallo *et al.*, 2004).

1.1. Classification des β-lactamines

La base commune à toutes les β-lactamines est le noyau β-lactame (Figure 1). Ce noyau est associé à un hétérocycle permettant de différencier quatre sous-familles qui ont été développées par adjonction de chaînes latérales : les pénicillines (ou pénames), les céphalosporines (ou céphèmes), les monobactames et les carbapénèmes (Bryskier, 1999).

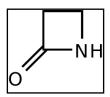


Figure 1. Le noyau β-lactame

1.1.1. Les pénicillines

Elles possèdent un cycle thiazolidine (à 5 côtés) accolé au noyau β-lactame (Figure 2). Elles diffèrent par la nature de leur chaîne latérale (Ruppé, 2010).

- ✓ Benzylpénicillines (les pénicillines naturelles G et V): La pénicilline G est lapremière pénicilline découverte par Fleming. Elle est produite par *Penicillium notatum*. Elle est active sur les cocci (à l'exception des staphylocoques dont la majorité produisent une pénicillinase), la plupart des bacilles à Gram positif, les anaérobies et les spirochètes. Elle est en revanche inactive sur la plupart des bacilles à Gram négatif.
- ✓ Pénicillines du groupe M (iso-oxazolyl pénicillines) : la méticilline fut le premier dérivé de la pénicilline capable de résister à la pénicillinase du staphylocoque. D'autres molécules sont également administrées lors d'infections à staphylocoque telles que l'oxacilline et la flucloxacilline.
- ✓ Aminopénicillines : leur spectre d'activité est élargi par rapport à la pénicilline G vers certains bacilles à Gram négatif. Mais elles restent sensibles aux β-lactamases. Nous pouvons citer l'ampicilline et l'amoxicilline.
- ✓ Carboxypénicillines : elles ont un spectre beaucoup plus étendu que celui des pénicillines A vers certains bacilles à Gram négatif. Elles restent sensibles aux pénicillinases mais sont moins sensibles aux céphalosporinases. La première molécule fut la carbénicilline, remplacée maintenant par la ticarcilline.
- ✓ Uréidopénicillines : elles comprennent principalement la mezlocilline et la pipéracilline. Leur spectre est assez proche de celui des carboxypénicillines.
- ✓ Amidinopénicillines : elles comprennent le mécillinam et le pivmécillinam. Ces produits sont actifs sur certaines entérobactéries et sont utilisés que dans les infections urinaires (Nauciel, 2001).

Figure 2. Strucutre générale d'une pénicilline

1.1.2. Les céphalosporines

Les céphalosporines sont des dérivés de l'acide 7-amino-céphalosporanique et elles se distinguent chimiquement des pénicillines par un cycle dihydrothiazine hexa-atomique à la place du cycle thiazolidine (Figure 3). Nous distinguons quatre générations de

céphalosporines. Elles sont classées en fonction de leur date d'apparition, qui correspond à chaque fois à l'acquisition de nouvelles propriétés (Toure, 2004).

✓ Céphalosporines de première génération (C1G) :

Les céphalosporines de première génération ont un spectre d'action qui se limite aux cocci à Gram positif et à quelques bacilles à Gram négatif ne produisant pas de céphalosporinase. Ces molécules sont, d'autre part, aisément dégradées par les β-lactamases (Bryskier. 1999). Il existait plus d'une dizaine de céphalosporines dites de première génération mais certaines ne sont plus commercialisées. Exemple: Céfaclor, Céfadroxil, Céfalexine, Céfalotine, Céfatrizine, Céfazoline, Céfazoline, Céfazoline.

✓ Céphalosporines de deuxième génération (C2G):

Les céphalosporines de deuxième génération comprennent le céfuroxime, le céfamandole. Elles sont caractérisées par une meilleure résistance aux β -lactamases et un spectre d'action plus large, une activité à faible concentration, une bonne diffusion tissulaire (Allain, 2008).

Les céphamycines ou 7-alpha-méthoxycéphèmes : les principales molécules sont la céfoxitine et le céfotétan qui sont rattachées, du fait de leurs propriétés, aux céphalosporines de deuxième génération (Ruppé, 2010). Elles sont caractérisées par un radical α -méthoxy en position 7. Ce radical protège le noyau β -lactame de l'hydrolyse par les β -lactamases, mais est responsable d'un effet inducteur intense sur les céphalosporinases chromosomiques (Cavallo *et al.*, 2004).

✓ Céphalosporines de troisième génération (C3G):

L'amélioration la plus importante fut apportée par l'apparition des céphalosporines de troisième génération. L'addition de différents groupements chimiques a permis d'augmenter de façon considérable la stabilité de ces molécules et leur activité antibactérienne vis-à-vis des bacilles à Gram négatif. Ces molécules restent cependant hydrolysées par les céphalosporinases hyperproduites ainsi que par les β-lactamases à spectre étendu (βLSE). Les C3G sont peu actives sur les *Acinetobacter spp.*, inactives sur les *Stenotrophomonas spp.*et sur les bactéries hyperproductrices de céphalosporinases (Nauciel, 2001). Exemple : le céfotaxime, la ceftazidime, le ceftriaxone, le céfopérazone (Toure, 2004).

✓ Céphalosporines de quatrième génération (C4G):

Elles restent actives sur les entérobactéries ayant acquis une résistance aux C3G par hyperproduction d'une céphalosporinase.

Les céphalosporines dites de quatrième génération possèdent la propriété de résister à l'hydrolyse des céphalosporinases hyperproduites grâce à une double caractéristique. Elles possèdent une très faible affinité pour ces céphalosporinases ainsi qu'une bonne affinité pour les protéines liant les pénicillines (PLP). Ainsi, elles agissent avant que les enzymes bactériennes n'aient eu le temps de les dégrader. Ces molécules sont particulièrement efficaces vis-à-vis des bacilles à Gram négatif (Bryskier. 1999). Même si les céphalosporines de quatrième génération sont plus stables à l'hydrolyse par les β-lactamases à spectre étendu, elles demeurent néanmoins hydrolysées par les plus efficaces d'entre elles. Exemple: le céfépime, le cefpirome (Hincky *et al.*, 2008).

Figure 3. Structure générale d'une céphalosporine

1.1.3. Les carbapénèmes

Les carbapénèmes sont des β -lactamines qui présentent un très large spectre d'activité et une grande stabilité vis-à-vis de la plupart des β -lactamases. L'imipénème, le méropènème et l'ertapénème ont été les trois premiers représentants disponibles en clinique (Figure 4) (Zhanel *et al.*, 2005).

Parmi les nouvelles carbapénèmes, le doripénème garde une meilleure activité sur les bacilles à Gram négatif et particulièrement sur les aérobies stricts (Zahar *et al.*, 2010).

Figure 4. Structure générale de différentes carbapènèmes

1.1.4. Les monobactames

Les monobactames sont des β-lactamines monocycliques inactifs sur les bactéries à Gram positif et les anaérobies. Ils sont caractérisés par une forte stabilité en présence de β-lactamases. Cette stabilité est due au groupement SO₃H encombrant protecteur du cycle β-lactame (Figure 5). Ces antibiotiques sont, en revanche, très actifs sur les entérobactéries et l'espèce *P. aeruginosa*. L'activité anti Gram-négatif de l'aztréonam, chef de file de cette classe, est globalement comparable à celle des céphalosporines de 3ème génération comme la ceftazidime. L'aztréonam présente une bonne stabilité vis-à-vis des β-lactamases de spectre restreint. De plus, les monobactames constituent les seules β-lactamines non hydrolysées par les métallo-β-lactamases (Cavallo *et al.*, 2004).

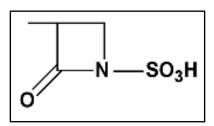


Figure 5. Structure générale des monobactames

1.1.5. Les inhibiteurs de β -lactamases

Les inhibiteurs des β -lactamases possèdent une faible activité antibactérienne intrinsèque. En se liant de manière irréversible à la β -lactamase, ils permettent l'activité de la β -lactamine à laquelle ils sont associés. Il en résulte une action synergique et une augmentation de l'activité de la β -lactamine. Actuellement, sont disponibles les associations suivantes:

- ✓ amoxicilline-acide clavulanique (Augmentin)
- ✓ pipéracilline-tazobactam (Tazocillin)
- ✓ Ticarcilline-acide clavulanique (Claventin)

En plus de son effet inhibiteur irréversible sur les β lactamases, le sulbactam a une activité antibiotique intrinsèque sur quelques germes, mais il est toujours utilisé en association avec les antibiotiques détruits par les β -lactamases (Allain, 2008).

1.2. La paroi et le mode d'action des β -lactamines

Les β-lactamines agissent en inhibant la synthèse de la paroi bactérienne par le biais d'une liaison à des cibles moléculaires spécifiques appelées les protéines liant les pénicillines (PLP). Le peptidoglycane est un polymère réticulé fait de chaines polysaccharidiques reliées par des peptides (Figure 6). Ses précurseurs sont synthétisés dans le cytoplasme et assemblés à l'extérieur de la membrane cytoplasmique. Lorsque les bactéries sont en phase de croissance, il existe simultanément des phénomènes de synthèse et de destruction du peptidoglycane. L'équilibre entre ces deux phénomènes est rompu par les antibiotiques inhibant la synthèse du peptidoglycane (Nauciel, 2001).

Le blocage de la phase finale de polymérisation représente le mode d'action des β -lactamines. Chez les bactéries à Gram négatif, les β -lactamines doivent traverser la membrane externe pour atteindre leurs cibles. Cette membrane agit comme une barrière hydrophobe et les β -lactamines, qui sont le plus souvent des molécules hydrophiles, vont traverser cette barrière essentiellement par la voie des porines (Cavallo *et al.*, 2004).

Après avoir traversées la membrane externe des bactéries à Gram négatif, les β -lactamines diffusent facilement à travers le peptidoglycane, se trouvant ensuite dans l'espace périplasmique.

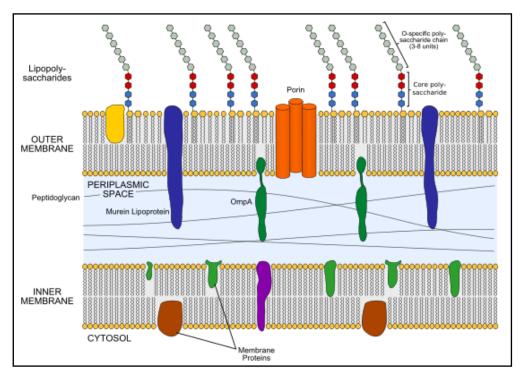


Figure 6. Paroi des bactéries à Gram négatif

Les β -lactamines présentent une analogie structurale entre leur noyau β -lactame et le dipeptide terminal D-alanine-D-alanine du pentapeptide constitutif du peptidoglycane. Leur reconnaissance par les transpeptidases et les carboxypeptidases (PLP) aboutit à la fixation du cycle β -lactame sur le site actif de ces enzymes. Cette fixation entraîne la formation d'un complexe pénicilloyl-enzyme covalent provoquant l'inactivation de l'enzyme, l'inhibition de la synthèse du peptidoglycane et enfin l'arrêt de la croissance bactérienne (Livermore, 1995).

2. Les aminosides

Les aminosides sont constitués par plusieurs cycles glycosidiques liés à un aminocyclitol qui peut être la streptidine ou le plus souvent la 2-désoxystreptamine (Figure 7) (Bismuth, 2006). Ils agissent par inhibition des synthèses protéiques, ils sont bactéricides rapides et leur activité est concentration-dépendante. La figure 7 montre la structure générale d'un aminoside.

2.1. Classification des aminosides

Ils sont divisés en trois classes:

✓ Les désoxystreptamines bisusbstituées 4-5 qui comprennent: Néomycine B ou C, Paromomycine, Lividomycine A ou B, Ribostamycine, Framycétine.

- ✓ Les désoxystreptamines bisubstituées 4-6 qui comprennent: Kanamycines A, B, C et dérivés, Amikacine, Tobramycine, Dibékacine, Gentamicine, Sisomycine, Nétilmicine.
- ✓ Les autres : Streptomycine, Streptidine, Spectinomycine (Ezaitouni et al., 1999).

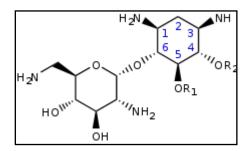


Figure 7. Structure générale d'un aminoside

2.2. Mode d'action des aminosides

Les aminosides agissent au niveau du ribosome bactérien et perturbent la synthèse protéique. La pénétration des aminosides à l'intérieur de la bactérie se fait en 3 étapes :

- -La première étape est un passage passif permettant la traversée de la membrane externe (pour les bactéries à Gram négatif) via les porines, puis la traversée du peptidoglycane. Les aminosides se concentrent alors au niveau de la membrane cytoplasmique (Changeur *et al.*, 2009).
- -La deuxième étape requiert une énergie métabolique délivrée par un gradient entre l'intérieur et l'extérieur de la cellule et cette étape peut être bloquée par mutation. Elle peut également être perturbée, si les conditions strictes exigées par la production d'énergie oxydative pour le transport des aminosides ne sont pas respectées. Ceci explique la sensibilité réduite des anaérobies aux aminosides (Bryskier, 1999).
- -La troisième et dernière étape est rapide, les aminosides se fixent sur des sites des sousunités 30S et ou 50S des ribosomes bactériens entraînant une déformation du ribosome perturbant ainsi la synthèse des protéines. Les aminosides induisent également des erreurs de lecture de l'ARN messager provoquant ainsi la synthèse de protéines anormales.

3. Les fluoroquinolones

Les antibiotiques de la famille des fluoroquinolones se caractérisent par la présence d'une structure bicyclique, avec un azote en position 1, un carboxylate en position 3, un carbonyle en position 4 et d'un atome de fluor en position 6 et d'un cycle azoté (Figure 8) (Soussy, 2006).

3.1. Classification des fluoroquinolones

Elles sont composées de quatre générations :

Les quinolones de première génération (l'acide nalidixique et l'acide pipémidique).

Les quinolones de deuxième génération (La ciprofloxacine, la norfloxacine, la péfloxacine, l'ofloxacine, lévofloxacine).

Les quinolones de troisième génération (trovafloxacine, gémifloxacine, moxifloxacine).

Les quinolones de quatrième génération (garénoxacine) (Lafaurie, 2008).

Figure 8. Structure générale de l'acide nalidixique (gauche) et de la ciprofloxacine (droite)

3.2. Mode d'action des fluroquinolones

Le mécanisme d'action de cette classe pharmacologique consiste en une inhibition de l'ADN gyrase (topoisomérase II bactérienne) composée de deux sous-unités A et deux sous-unités B et la topoisomérase IV. Ces enzymes sont essentielles à la réplication et à la transcription de l'ADN bactérien, l'inhibition par les quinolones du complexe ADN bactérien - enzymes empêche le surenroulement de l'ADN, le relâchement de l'ADN surenroulé et entraîne la séparation de la double chaîne hélicoïdale de l'ADN.

Les quinolones sont spécifiques à l'ADN bactérien et exercent une activité bactéricide pendant la phase de multiplication et de repos des bactéries (Larouche, 2001).

4. La colistine

Découverte dans les années 1940, la colistine a été un des premiers antibiotiques doté d'une activité significative vis-à-vis des bactéries à Gram négatif (BGN) et particulièrement envers *Pseudomonas aeruginosa* (Kipnis et *al.*, 2010). En raison de sa toxicité rénale présumée, elle a été peu à peu remplacée par d'autres antibiotiques considérés moins toxiques (Frasca *et al.*, 2008). Elle connaît un regain d'intérêt dans les années 1980-1990 avec son utilisation croissante chez les patients atteints de mucoviscidose ayant des surinfections respiratoires récidivantes par des BGN de résistance croissante.

La colistine faisant partie de la classe des polymyxines, des antibiotiques produits naturellement par certaines variantes de *Bacillus polymyxa* (var. *colistinus*). Au sein des polymyxines, subdivisées en dénominations A à E, la colistine a la désignation polymyxine E et se distingue uniquement par un acide aminé (D-phénylalanine au lieu de la D-leucine) de la polymyxine B, antibiotique apparenté et la seule autre polymyxine utilisée chez l'homme.

La colistine est un polypeptide cationique constituée d'un décapeptide cyclique lié à un acide gras (Turkoglu et *al.*, 2011). La colistine naturelle est constituée de nombreux composés qui se distinguent selon l'acide gras et/ou certains acides aminés constitutifs. Les composés majoritaires sont la colistine A et B qui se distinguent uniquement par l'acide gras constitutif (Kipnis et *al.*, 2010) (Figure 9)

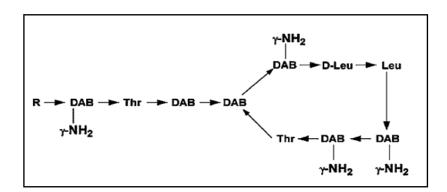


Figure 9. Structure de la colistine A et B (polymyxine E1 et E2) (Frasca et al., 2008)

Ces molécules ont un poids moléculaire relativement élevé et sont chargées positivement avec comme conséquences une diffusion faible dans le milieu d'Agar, entraînant des difficultés de détermination de sensibilité *in vitro*.

4.1. Mode d'action de la colistine

Les polymyxines sont des agents cationiques qui se fixent sur la membrane anionique externe de la bactérie produisant un effet détergeant de l'intégrité de cette membrane.

L'activité bactéricide des polymyxines serait due à l'interposition des polymyxines dans les membranes phospholipidiques entre les protéines membranaires et phospholipides membranaires des BGN grâce aux interactions entre charges cationiques des groupements amines et charges anioniques du LPS, puis grâce aux propriétés hydrophobes de l'acide gras (Kipnis *etal.*, 2010), déplaçant préférentiellement les ions Mg²⁺ et Ca²⁺ qui stabilisent les molécules du LPS, modifiant ainsi la perméabilité de la membrane externe. il s'en suit une fuite des composés cellulaires (Ganapathy *et al.*, 2010).

5. Les mécanismes de résistance aux β-lactamines

Nous distinguons quatre principaux mécanismes de résistance, chacun pouvant être lié aux caractéristiques génétiques d'une espèce bactérienne donnée (résistance naturelle) ou être acquis suite à des modifications génétiques (résistance acquise) :

- -Inactivation de l'antibiotique : production de β -lactamases.
- -Défaut de pénétration de l'antibiotique : diminution de la perméabilité.
- -Modification de la cible : modification des PLPs.
- -Excrétion de l'antibiotique : efflux.

5.1. Inactivation enzymatique de l'antibiotique : Les β-lactamases

Les β-lactamases constituent toujours le principal mécanisme de la résistance naturelle et acquise aux β-lactamines, en particulier chez les bactéries à Gram négatif (Philippon et al., 2006). Plusieurs centaines de β-lactamases sont identifiées à ce jour dans diverses espèces bactériennes et peuvent êtres classées en fonction de leur spectre d'activité enzymatique ou de leur séquence en acides aminés (Ambler, 1980).

5.1.1. Classification d'Ambler

Cette classification proposée en 1980 permet de regrouper les β-lactamases en quatre classes en fonction de leurs homologies structurales (Ambler, 1980). Les enzymes appartenant aux classes A, C et D selon la classification d'Ambler sont des enzymes à serine active, celles de la classe B sont des enzymes zinc²⁺ dépendantes. Elles sont désignées comme métallo-β- lactamases (MβL) (Tableau 1).

Classe	groupe Fonctionnel (Bush)	Activité						Inhibée par	
structurale (Ambler)		Pénicil- line	Carbéni- cilline	Oxacil- line	Cephalo ridine	Cefota- xime	Aztréo- nam	Imi- pénème	l'acide clavulanique
A	2a	+++	+	-	+/-	-	-	-	++
	2 b	+++	+	+	++	-	-	-	++
	2be	+++	+	+	++	++	++	-	++
	2br	+++	+	+	+	-	-	-	-
	2c	++	+++	+	+	-	-	-	+
	2 ^e	++	++	-	++	++	++	-	++
	2 f	++	+	?	+	+	++	++	+
C	1	++	+/-	Inhibiteur	+++	+	Inhibiteur	-	-
D	2d	++	+	+++	+	-	-	-	+/-
Nondeterminé	4 ^c	++	++	++	V	V	-	-	-
В	3	++	++	++	++	++	-	++	-

Tableau 1. Classification des β-lactamases (Livermore, 1995)

- \checkmark Les β-lactamases de classe A, ou pénicillinases, constituent le groupe le plus important. Elles hydrolysent préférentiellement les pénicillines (amoxicilline, ticarcilline, pipéracilline) et sont sensibles aux inhibiteurs de β-lactamases (acide clavulanique, tazobactam).
- ✓ Les β-lactamases de classe B, ou métallo-β-lactamases, hydrolysent toutes les β-lactamines à l'exception de l'aztréonam. Ces β-lactamases sont résistantes aux inhibiteurs de β-lactamases classiques mais sont inactivées *in vitro* par des agents chélateurs d'ions bivalents comme l'EDTA.
- ✓ Les β-lactamases de classe C, ou céphalosporinases, hydrolysent préférentiellement les céphalosporines (céfalotine, ceftazidime, céfuroxime). Elles sont inhibées par la cloxacilline mais pas par les inhibiteurs de β-lactamases.
- ✓ Les β-lactamases de classe D, ou oxacillinases, constituent un groupe hétérogène. Elles sont caractérisées par une hydrolyse plus rapide de l'oxacilline et de la cloxacilline que de la benzylpénicilline. Les oxacillinases classiques sont inhibées *in vitro* par le chlorure de sodium.

5.1.2. Mode d'action des β-lactamases

Le mécanisme d'hydrolyse se déroule en trois étapes :

- \checkmark Liaison non-covalente et réversible entre la β-lactamase et la β-lactamine.
- ✓ Rupture du noyau β-lactame par acétylation covalente avec la sérine du site actif. (formation d'un complexe acyl-enzyme intermédiaire avec les β-lactamines).
- ✓ Intervention d'une molécule d'eau permettant l'hydrolyse de l'acyl-enzyme pour réactiver la β-lactamase et libérer la molécule d'antibiotique inactivée.

La figure 10 représente le mécanisme d'hydrolyse pour les enzymes à sérine active.

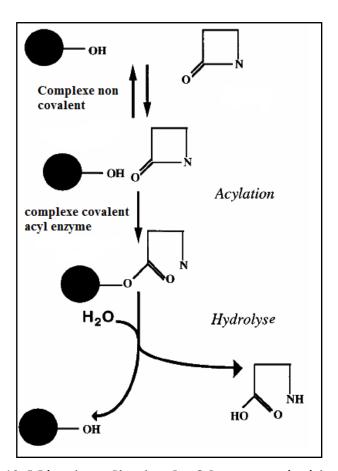


Figure 10. Mécanisme d'action des β-lactamases à sérine active

5.2. Diminution de la perméabilité membranaire

Les bactéries à Gram négatif possèdent une membrane externe composée de LPS et de phospholipides et forme une barrière qui empêche la pénétration des antibiotiques hydrophobes entrainant une résistance naturelle à ces antibiotiques, le plus souvent à bas niveau. Les substances hydrophiles peuvent tout de même traverser cette barrière en passant

par les porines. Ces porines permettent l'échange d'information essentielle et de matériels pour la survie des cellules dans l'environnement, mais elles permettent également aux antibiotiques de traverser la paroi bactérienne (Benz, 2004; Hancock, 1987; Nikaido, 1994 et 2003). Au cours des dernières décennies, les bactéries ont acquis une résistance par une combinaison de réactions enzymatiques et la modification de la perméabilité membranaire par des altérations dans l'expression des porines (Charrel *et al.*, 1996; Bradford *et al.*, 1997; Thiolas *et al.*, 2005). La régulation de l'expression des porines et les mécanismes de diffusion de substances peuvent jouer un rôle dans la résistance aux antibiotiques chez les bactéries. Trois mécanismes ont été rapportés: diminution de l'expression de la porine, altération de l'expression de la porine et la mutation de la porine.

L'imperméabilité semble constituer chez *Acinetobacter baumannii* un facteur important dans la résistance aux β-lactamines, en particulier aux carbapénèmes (Perez, 2007). Les travaux de Quale (Quale *et al.*, 2003) ont démontré que des isolats d'*Acinetobacter baumannii* résistants aux carbapénèmes ont une réduction de l'expression de porines OMP en plus d'une expression élevée de la céphalosporinase *Amp*C. De plus, l'absence naturelle de sensibilité à certaines β-lactamines résulterait d'une association de mécanismes incluant une taille réduite des protéines de membrane externe et une production limitée de porines (Poirel *et al.*, 2006a).

5.3. Modification de la cible

Pour être efficace, un antibiotique doit être en mesure de détecter sa cible à l'intérieur de la bactérie. Si la cible est modifiée ou remplacée de sorte que l'antibiotique n'est plus capable de se lier à elle, la bactérie devient alors résistante.

Ce mécanisme de résistance aux β -lactamines est très fréquent chez les bactéries à Gram positif. Les β -lactamines trouvent leur cible qui sont les PLP dans l'espace périplasmique après avoir traversées la membrane externe via les porines (Sauvage *et al.*, 2008).

Des mutations au niveau des PLPs peuvent engendrer une perte d'affinité de l'antibiotique pour sa cible, entraînant une réduction de sensibilité aux β-lactamines sans affecter leur fonction dans l'élaboration du peptidoglycane (Hedge *et al.*, 1985).

5.4. Mécanisme d'efflux actif

Les bactéries à Gram négatif qui sont pratiquement imperméables pour une grande variété de composés possèdent différents canaux protéiques impliqués dans leur transport. Parallèlement aux porines qui permettent aux nutriments de pénétrer dans la cellule, les

bactéries utilisent des pompes à efflux qui contribuent à diminuer la concentration intracellulaire de composés toxiques comme les médicaments, les détergents et sont donc impliqués dans le contrôle de la sensibilité aux antibiotiques. La première pompe à efflux qui a été raportée était responsable de la résistance à la tétracycline en 1980 (Nishino *et al.*, 2001). Depuis, cinq familles différentes de pompes à efflux ont été identifiées sur la base de la similarité en séquence (Figure 11). Ce sont les MATE (multi drug and toxic compound extrusion) MFS (major facilitator superfamily) SMR (staphylococcal multi résistance) RND (resistance-nodulation-cell division proteins) et ABC (ATP-binding cassette) (Nishino *et al.*, 2001; Piddock, 2006).

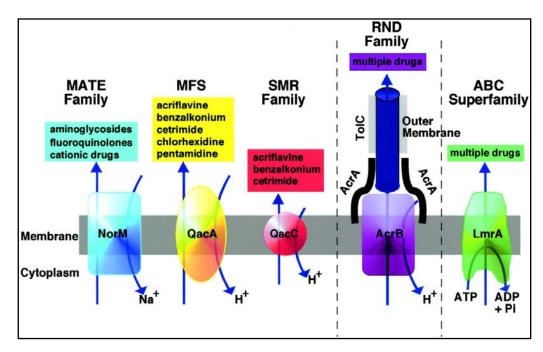


Figure 11. Les différentes familles des pompes à efflux

Chapitre II : Le genre *Acinetobacter*

1. Historique-taxonomie

L'histoire du genre *Acinetobacter a* débuté en 1911 avec la découverte par le microbiologiste néerlandais Beijerinck d'un microorganisme dénommé *Micrococcus calcoaceticus* à partir de prélèvement de sol (Beijerinck, 1911). En 1948, Schaub et Hauber redécouvrent cette bactérie à partir d'échantillons du système urinaire humain (Schaub et Hauber, 1948).

La position taxonomique de cette bactérie étant peu évidente, ils proposent de la nommer *Bacterium* qui est le nom donné aux bactéries dont le genre est inconnu. Cette bactérie se différenciant du plus grand nombre des autres bactéries à Gram négatif par son incapacité à réduire le nitrate, le nom d'anitratum lui fut donc ajouté. Ce nom provisoire de *Bacterium anitratum* sera ensuite changé en "*Moraxella lwoffi var. glucidolytica*" puis en *Moraxella glucidolytica* (Villecourt et Jacobelli, 1954)

Cette espèce a été transférée en 1953 dans le genre *Achromobacter* avec la nomenclature d'*Achromobacter anitratum*. C'est en 1954 que Brisou et Prévot créent le genre *Acinetobacter* pour rassembler, parmi les saprophytes à Gram négatif, ceux qui sont à coloration de Gram négative ne produisant pas de pigments et immobiles (Brisou et Prevot, 1954).

En 1968, Baumann et ses collaborateurs ont entrepris une étude de taxonomie numérique qui caractérise les propriétés nutritionnelles et biochimiques de plus de 100 souches de *Moraxella* oxydase négatives. Cette analyse a conduit les auteurs à regrouper l'ensemble des souches de *Moraxella* oxydase négatives sous l'appellation générique *Acinetobacter* (Baumann *et al.*, 1968).

Le genre *Acinetobacter* est actuellement défini comme appartenant à la famille des *Moraxellaceaes* au sein de l'ordre *Gammaproteobacteria* et qui regroupe les genres *Moraxella*, *Acinetobacter* et *Psychrobacter* (Rossau *et al.*, 1991).

2. Identification et classification

Une avancée majeure dans l'histoire du genre *Acinetobacter* a été réalisée en 1986 grâce aux techniques d'hybridation ADN/ADN de Bouvet et Grimont qui sont parvenus à distinguer 12 espèces génomiques ou genomic species, certaines étant clairement dénommées comme *Acinetobacter baumannii*, *Acinetobacter calcoaceticus*, *Acinetobacter haemolyticus*,

Acinetobacter johnsonii, Acinetobacter junii et Acinetobacter lwoffii (Bouvet et Grimont, 1987).

En 1988, une espèce nouvelle a été identifiée par hybridation ADN/ADN. la nouvelle espèce a été phénotypiquement distinguée des autres espèces du genre *Acinetobacter* et nommée *Acinetobacter radioresistens* (Nishimura *et al.*, 1988).

Cinq nouvelles espèces génomiques (*Acinetobacter gen. sp.13BJ*, *Acinetobacter gen. sp.* 14BJ, *Acinetobacter gen. sp.* 15 BJ, *Acinetobacter gen. sp.* 16, et *Acinetobacter gen. sp.* 17) ont ensuite été identifiées (Bouvet et Jeanjean, 1989).

Simultanément, trois nouvelles espèces génomiques (*Acinetobacter gen. sp. 13TU*, *Acinetobacter gen. sp. 14TU*, *et Acinetobacter gen. sp. 15TU*) ont été identifiées par Tjernberg, Ursing en 1989. Ces auteurs ont également reclassé *Acinetobacter radioresistens* et *Acinetobacter gen. sp. 12* comme une seule espèce.

De plus, certaines espèces décrites sont très proches les unes des autres et sont difficiles à être distinguées phénotypiquement, notamment *A. calcoaceticus*, *A. baumannii*, *A.* gen. sp.3, et *A.* gen.sp.13TU. En raison de leur haute similitude, le terme de complexe *A.calcoaceticuse-A.baumannii* (ACB) a été inventé par Gerner-Smidt *et al.* (1992) pour englober ces quatre espèces. Certains auteurs ont proposé également de nommer les espèces ne portant pas de dénomination propre : *Acinetobacter* genomic species 3 (*A. pittii* sp. nov.), *Acinetobacter* genomic species 13TU (*A. nosocomialis* sp. nov.), *Acinetobacter* genomic species 10 *Acinetobacter bereziniae* sp. nov.), *Acinetobacter* genomic species 11 (*Acinetobacter guillouiae* sp. nov.) (Nemec *et al.*, 2011).

Plus récemment, d'autres espèces bactériennes ont été décrites chez l'homme comme Acinetobacter parvus, Acinetobacter schindleri et Acinetobacter ursingii (Nemec et al., 2001 et 2003) ou dans l'environnement comme Acinetobacter baylyi, Acinetobacter bouvetii, Acinetobacter towneri, Acinetobacter tandoii, Acinetobacter grimontii, Acinetobacter tjernbergiae et Acinetobacter gerneri (Carr et al., 2003).

Tout dernièrement, de nouvelles espèces d'Acinetobacter spp. ont été décrites en pathologie humaine : Acinetobacter septicus sp. nov. (Kilic et al., 2008), Acinetobacter beijerinckii sp.nov. et Acinetobacter gyllenbergii sp. nov. (Nemec et al., 2009) ou dans l'environnement : Acinetobacter marinus sp. nov. et Acinetobacter seohaensis sp. nov (Yoon et al., 2007), Acinetobacter soli sp. nov. (Kim et al., 2008), Acinetobacter venetianus sp. nov. (Vaneechoutte et al., 2009) Acinetobacter antiviralis sp. nov. (Lee et al., 2009a), Acinetobacter kyonggiensis sp. nov. (Lee et al., 2010), Acinetobacter brisouii sp. nov.

(Anandham et al., 2010), Acinetobacter oleivorans sp.nov (Kang et al., 2011), Acinetobacter rudis sp. nov (Vaz-Moreira et al., 2011)

A ce jour, 33 espèces dans le genre *Acinetobacter* ont été décrites, dont 22 espèces nommées et 11 actuellement décrites comme espèces génomiques (tableau 2).

Des méthodes moléculaires ont été développées pour l'identification des espèces chez *Acinetobacter*: analyse par restriction du gène codant pour l'ARNr 16S amplifié (ARDRA) (Vaneechoutte *et al.*, 1995), analyse du polymorphisme de longueur de fragments amplifiés (AFLP) (Janssen *et al.*, 1997; Nemec *et al.*, 2001), ribotypage (Gerner-Smidt *et al.*, 1992), tRNA spacer fingerprinting (Ehrenstein *et al.*, 1996), analyse de séquences des espaces intergéniques entre les gènes ARNr 16S et 23S obtenues après restriction (Dolzani *et al.*, 1995) ou non (Chang *et al.*, 2005), et le séquençage du gène *rpoB* (RNA polymerase β-subunit) et de son environnement (La Scola *et al.*, 2004). D'autres méthodes basées sur des techniques de PCR ayant pour but soit la détection du gène *bla*_{OXA-51} codant l'oxacillinase intrinsèque d'*A. baumannii* soit l'analyse des gènes *gyrB* pour distinguer *A. baumannii* de *Acinetobacter genomospecies* 13TU (Higgins *et al.*, 2007) ont été développées.

3. Aspect phylogénétique du genre

L'analyse de l'ensemble des grands groupes bactériens, montre la position phylogénétique du genre *Acinetobacter* par rapport aux principaux genres bactériens. Les bactéries du genre *Acinetobacter* ont une plus grande proximité phylogénétique avec les *Pseudomonas* dont un certain nombre de représentants partagent avec les *Acinetobacters* un même mode de vie et sont retrouvés également largement répandus dans l'environnement, en particulier dans le sol et l'eau. En s'éloignant du point de vue évolutif, une proximité avec des gamma-protéobactéries pathogènes de plantes (*Xanthomonas*), des beta-protéobactéries (*Ralstonia*) ou des pathogènes humains tels que les *Neisseria* est observée. De plus, l'analyse phylogénétique montre que le genre le plus proche des *Acinetobacters* est celui des *Psychrobacters* (Barbe *et al.*, 2004).

Tableau 2. Classification du genre *Acinetobacter* (Dijkshoorn *et al.*, 2007, Nemec *et al.*, 2009, Nemec *et al.*, 2010, Nemec *et al.*, 2011)

Nom de l'espèce	Espèce génomique	Source
Acinetobacter calcoaceticus	1	Environnement et humains
Acinetobacter baumannii	2	Environnement, humains, viande et légumes
Acinetobacter haemolyticus	4	Humains
Acinetobacter junii	5	Humains
Acinetobacter johnsonii	7	Humains et animaux
Acinetobacter lwoffii	8, 9	Humains et animaux
Acinetobacter radioresistens	12	Environnement, humains et cotton
Acinetobacter ursingii		Humains
Acinetobacter schindleri		Humains
Acinetobacter parvus		Humains et animaux
Acinetobacter baylyi		Environnement et boue
Acinetobacter bouvetii		Boue
Acinetobacter towneri		Boue
Acinetobacter tandoii		Boue
Acinetobacter grimontii		Boue
Acinetobacter tjernbergiae		Boue
Acinetobacter gerneri		Boue
Acinetobacter venetianus		Eau de mer
Acinetobacter pittii	3	Humains, environnement

Acinetobacter nosocomialis	13TU	Humains
Acinetobacter bereziniae	10	Humains, environnement et légumes
Acinetobacter guillouiae	11	Humains et animaux
	6	Humains
	13 BJ, 14 TU	Humains
	14 BJ	Humains
	15 BJ	Humains
	16	Humains et legumes
	17	Humains et environnement
	15TU	Humains et animaux
	Entre 1 et 3	Humains
	Proche de 13 TU	Humains

4. Morphologie, métabolisme et habitat

Les bactéries du genre *Acinetobacter* sont des gamma-protéobactéries, bacilles ou coccobacilles à Gram négatif, aérobies strictes, oxydase négatives, catalase positives, immobiles et non-fermentants (Jans *et al.*, 2004). Elles ne produisent pas de spores et apparaissent au microscope sous la forme de courts bacilles ou de cocci (en phase stationnaire). Leur contenu ADN en G+C est compris entre 39 et 47% (Peleg *et al.*, 2008). Les bactéries appartenant au genre *Acinetobacter* sont souvent considérées comme des microorganismes ubiquitaires et peuvent être isolées à partir du sol et des eaux (Baumann *et al.*, 1968). En effet, ce ne sont pas toutes les espèces d'*Acinetobacter* qui vivent dans l'environnement (Peleg *et al.*, 2008), elles font aussi partie de la flore cutanée de l'homme, de la salive, ainsi que du tractus respiratoire (Fournier *et al.*, 2006). Dans une enquête épidémiologique réalisée pour étudier la colonisation de la peau humaine et des muqueuses, jusqu'à 43% d'individus non hospitalisés ont été trouvés colonisés par *Acinetobacter spp*.

avec A. lwoffii (58%), A. johnsonii (20%), A. junii (10%) et Acinetobacter espece génomique 3 (6%). Chez les patients hospitalisés, le taux de portage cutané de ces espèces atteint 75% (Seifert et al., 1997). Dijkshoorn et al. ont étudié le portage fécal des Acinetobacter et ont montré un taux de 25% chez des sujets sains, avec principalement A. johnsonii et Acinetobacter genomic species 11 (Dijkshoorn et al., 2005).

En revanche, *A.baumannii*, l'espèce responsable d'infections nosocomiales au sein du genre *Acinetobacter*, n'a été isolée que très rarement sur la peau avec 0.5% et 3% (Berlau *et al.*, 1999a; Seifert *et al.*, 1997 respectivement) et dans les selles humaines avec 0,8% (Dijkshoorn *et al.*, 2005).

Chez l'animal, A. baumannii a été occasionnellement responsable d'infections (Vaneechoutte et al., 2000; Francey et al., 2000) et A. parvus a été isolé chez le chien (Peleg et al., 2008). Dans les végétaux, les espèces les plus fréquemment isolées sont A. baumannii et Acinetobacter genomic species 11 ainsi que A. calcoaceticus et Acinetobacter genomic species 3 (Berlau et al., 1999b).

5. Virulence et pouvoir pathogène d'Acinetobacter spp.

Bien qu'un certain nombre des membres du genre *Acinetobacter*, tels que *A. haemolyticus*, *A. johnsonii*, *A. junii*, *A. lwoffii*, *A. radioresistens* et *A. parvussp. nov.* ait été isolé à partir de spécimens cliniques (Bergogne-Berezin et Towner, 1996; Nemec *et al.*, 2003), seul *Acinetobacter baumannii* est un agent pathogène (Bergogne-Berezin et Towner, 1996; Joly-Guillou, 2005). Les souches d'*A. Baumannii* sont, de plus, fréquemment retrouvées dans les hôpitaux essentiellement dans les services de soins intensifs. Etant considérées relativement comme agents peu pathogènes (Bergogne Bérézin et Towner, 1996), certaines caractéristiques peuvent accroître la virulence des souches impliquées dans les infections, ces caractéristiques comprennent :

- ✓ La présence d'une capsule de polysaccharide formée de L-rhamnose, le D-glucose, D-acide glucuronique et le D-mannose, rendant la surface des souches plus hydrophiles.
- ✓ La propriété d'adhérence aux cellules épithéliales humaines en présence de fimbriae ou de capsule polysaccharidique.
- ✓ La production d'enzymes qui peuvent endommager les lipides tissulaires.
- ✓ Le rôle potentiellement toxique du lipopolysaccharide de la paroi de la cellule et la présence du lipide A.

La capacité d'A. baumannii à former des biofilms lui permet de croître dans des conditions d'environnement défavorables. En effet, A. baumannii a été démontré à former des biofilms sur des surfaces abiotiques, telles que le verre et l'équipements utilisés dans les unités de soins intensifs, et sur des surfaces biotiques telles que les cellules épithéliales (Gaddy et al., 2009). Les facteurs les plus courants qui contrôlent la formation de biofilm sont la disponibilité des éléments nutritifs, la présence de pili, de protéines de la membrane externe (OMPs) et les sécrétions macromoléculaires. L'assemblage des pili et la production des protéines appelées biofilm-associated protein (BAP) contribuent ensemble à l'initiation de la production et à la maturation du biofilm après l'attachement d'A. baumannii à la surface.

6. Les infections à Acinetobacter spp.

Parmi les bactéries à Gram négatif, *Acinetobacter spp.* possède des caractéristiques uniques qui favorisent sa persistance dans le milieu hospitalier. Ce microorganisme se propage facilement dans l'environnement et peut persister dans ce milieu pendant plusieurs jours, un facteur qui peut expliquer sa capacité à entrainer des épidémies.

6.1. Les infections nosocomiales

Les infections dues à *A. baumannii* sont le plus souvent nosocomiales, rarement communautaires (bergogne-berezin et towner, 1996). Les principales infections nosocomiales sévères dues à *A. baumannii* sont les pneumopathies. Le nombre de pneumonies acquises en réanimation est préoccupant. Les infections sont associées aux patients immunodéprimés, avec des taux d'infection étant souvent plus élevés dans les unités de soins intensifs et les services de chirurgie. Il a été rapporté que 15% de toutes les infections nosocomiales sont des pneumonies nosocomiales avec un taux de mortalité dépassant 30% (Timsit *et al.*, 1996). Cependant, la ventilation mécanique est un facteur de risque majeur pour la survenue de pneumonie chez les patients qui nécessitent une ventilation mécanique prolongée (plus de 48 heures). *A. baumannii* peut provoquer des infections de la peau et des tissus mous, notamment au niveau des plaies chez les blessés de guerre (Johnson *et al.*, 2007) et les grands brûlés (Trottier *et al.*, 2007).

Les bactériémies, les méningites secondaires sont également responsables d'infections nosocomiales (Peleg *et al.*, 2008), plus rarement les infections de l'appareil urinaire (Gaynes *et al.*, 2005). Les cas de méningites à *A. baumannii* surviennent, pratiquement exclusivement, sous une forme secondaire après un traumatisme crânio-cérébral ou après intervention

neurochirurgicale (Metan *et al.*, 2007). Quelques cas cliniques rapportent des endocardites, des endophtalmies ou des kératites (Menon *et al.*, 2006 ; Corrigan *et al.*, 2001).

6.2. Les infections communautaires

Les infections communautaires dues à *A. baumannii* sont le plus souvent des pneumonies survenant dans les régions tropicales d'Asie et d'Australie (Peleg *et al.*, 2008). La source de l'infection peut être due au portage de la gorge survenant chez les patients ayant une maladie sous-jacente grave, comme la maladie pulmonaire chronique obstructive, le diabète sucré, une consommation excessive d'alcool et le tabagisme (Anstey *et al.*, 2002).

Les enquêtes épidémiologiques impliquant les espèces d'*Acinetobacter* ont montré qu'*A. baumannii* est de loin, la cause la plus fréquente d'infection (Lim *et al.*, 2007, Boo *et al.*, 2009). L'importance clinique d'*Acinetobacter* autre que *A. baumannii* a été moins démontrée, les infections nosocomiales sont principalement attribuées aux espèces génomiques 3 (*A.pittii*) et 13 (*A.nosocomialis*) (Higgins *et al.*, 2010; Wisplinghoff 2004).

Bien que *A. pittii* et *A. nosocomialis* ont tendance à causer des infections sporadiques, ils sont le plus souvent relativement sensibles aux antibiotiques.

Les taux de mortalité pour les espèces autre que *Acinetobacter baumannii* ont été trouvés relativement faibles, avec des valeurs comprises entre 7% et 18% (Seifert *et al.*, 1994, Choi *et al.*, 2006). Toutefois, les taux de mortalité pour *A. baumannii* ont été rapportés entre 8% et 43% (Falagas *et al.*, 2006). En outre, la durée du séjour à l'hôpital associée aux infections à *A. baumannii* était significativement plus longue que celle des autres espèces d'*Acinetobacter* (Choi *et al.*, 2006).

7. Epidémiologie hospitalière

L'hôpital peut être considéré comme un microcosme dans lequel sont concentrés des patients porteurs d'une flore bactérienne soumise à une pression antibiotique et entourés d'un certain nombre de niches écologiques (matériel médical, points d'eau, autres patients..), relais permettant l'échange d'informations génétiques entre les espèces. Sont rajoutés à cela des vecteurs (gouttelettes, mains du personnel hospitalier...) qui vont véhiculer des bactéries et leurs informations génétiques d'un patient à l'autre. Tout cela concourt à la création d'un véritable écosystème et une émergence et persistance de bactéries résistantes.

La réanimation est le meilleur modèle intrahospitalier de la résistance bactérienne aux antibiotiques, les raisons sont nombreuses parmi elles ; une forte prévalence de la résistance

bactérienne, une surconsommation des antibiotiques, l'équipement des patients par des dispositifs invasifs divers, le contexte économique entraînant une certaine difficulté à maintenir un nombre de personnel paramédical par patient suffisant, ce qui augmente la charge en soin et le risque de transmission croisée (Boyer, 2012).

Chapitre III : Mécanismes de résistance aux \(\beta \)-lactamines chez \(Acinetobacter baumannii \)

1. Résistance naturelle

Dans les années 1970, l'espèce A. baumannii était décrite comme sensible à tous les antibiotiques à l'exception de la pénicilline. L'analyse du génome de cette bactérie a modifié le point de vue du bacteriologiste. En effet, Acinetobacter possède dans son génome un gène codant pour la production d'une β -lactamase de type céphalosporinase. Bien qu'il y ait eu des controverses, à la différence des espèces d'entérobactéries du groupe 3 et de Pseudomonas aeruginosa, cette enzyme n'est pas inductible en raison de l'absence d'un régulateur en amont du gène bla_{ampC} (Bou et al., 2000a).

Plusieurs types de céphalosporinases ont été caractérisés chez *A. baumannii*. Elles sont maintenant appelées ADC (*Acinetobacter*-derived-cephalosporinase) et sont à l'origine de la résistance aux aminopénicillines et aux céphalosporines de première et de deuxième génération. Comme les autres enzymes de la classe C, elle n'est pas sensible aux inhibiteurs de β-lactamase comme l'acide clavulanique. Outre cette céphalosporinase, *A. baumannii* possède un gène codant une enzyme de classe D ou oxacillinase chromosomique naturelle OXA-51, identifiée comme ubiquitaire chez A. *baumannii* et utilisée comme marqueur d'identification de l'espèce. Il existe des variants d'OXA-51 comme OXA-69 et OXA-66. Le rôle de ces enzymes dans l'expression de la résistance aux antibiotiques est aujourd'hui très faible voire inexistant (Héritier *et al.*, 2005).

Comme *P. aeruginosa*, *A. baumannii* dispose d'un nombre de porines inférieur à celui retrouvé chez *E. coli* et, de ce fait, présente une imperméabilité naturelle (Sato *et al.*, 1991). Cette imperméabilité est associée a une pompe a efflux appartenant au système RND, Ade/IJK, naturellement active vis-à-vis d'un large spectre d'antibiotiques incluant notamment le chloramphénicol et le triméthoprime mais excluant les aminoglycosides (Damier-Piolle *et al.*, 2008). La présence de cette pompe explique les niveaux de CMI d'emblée élèvés que l'on retrouve dans cette espèce vis-à-vis de nombreux antibiotiques. *A. baumannii* est également naturellement résistant à l'értapénème, à la fosfomycine, au triméthoprime, à l'acide pipémidique, à la norfloxacine (mais pas à l'acide nalidixique), aux furanes et est peu sensible à l'aztréonam.

2. Résistance acquise aux β-lactamines

2.1. \(\beta\)-lactamase de classe A et \(\beta\)LSE

Elles sont décrites dès le début des années 1980 avec l'identification de la pénicillinase TEM-1 (Goldstein *et al.*, 1983) puis du variant TEM-2 (Devaud *et al.*, 1982). Une large gamme de pénicillinases, y compris les variants à spectre étroit (TEM-1, TEM-2, CARB-5, et SCO-1), à spectre étendu (TEM-92, TEM-116, SHV-2, SHV -5, SHV-12, CTX-M-2, CTX-M-3, CTX-M-43, PAR-1, PAR-2, PAR-6, VEB-1, VEB-1a, VEB-3, GES -11 et GES-12) et à activité carbapénèmase (GES-14, KPC-2, KPC-3, KPC-4 et KPC-10) a été identifiée principalement chez *A. baumannii*, mais aussi parmi les autres espèces d'*Acinetobacter* (Dijkshoorn *et al.*, 2007 ; Celenza *et al.*, 2006 ; Park *et al.*, 2009 ; Gordan *et al.*, 2010). Cette catégorie de β-lactamase est généralement considérée comme moins répandue chez *Acinetobacter* par rapport aux espèces d'entérobactéries.

L'acquisition d'une β-lactamase à spectre élargi (βLSE) est également rare chez cette espèce. Les plus classiques sont VEB-1 (Poirel *et al.*, 2003) et PER-1 (Vahaboglu *et al.*, 1997), mais d'autres βLSE plus rares ont été décrites comme SHV-12 (Huang *et al.*, 2004), SHV-5 (Naas *et al.*, 2007), TEM-92 (Endimiani *et al.*, 2007) ou CTX-M-2 (Nagano *et al.*, 2004).

Les βLSE de type GES ont aussi été décrites chez *A. baumannii*, certains variants comme GES-11 et surtout GES-14 pouvant conférer une résistance à toutes les β-lactamines, incluant les carbapénèmes (Bonnin *et al.*, 2011). Plus récemment, la βLSE la plus répandue dans le monde, CTX-M-15, a été identifiée chez *A. baumannii* (Poirel *et al.*, 2011; Shakil *et al.*, 2010).

2.2. β-lactamase de classe C

Les β-lactamases de classe C (céphalosporinases *AmpC*) sont des enzymes capables, lorsqu'elles sont surexprimées, d'hydrolyser la plupart des pénicillines, la céphalotine, la céfazoline, la céfoxitine, la ceftazidime et l'association des inhibiteurs de β-lactamase/ β - lactamines, mais pas le céfépime ou les carbapénèmes (Jacoby, 2009). Jusqu'à présent, le gène de la céphalosporinase chromosomiques n'a été identifié que dans quelques espèces d'*Acinetobacter* (*A. baumannii, A. pittii et A. baylyi*) (Ribera *et al.*, 2004 ; Jacoby, 2009). En conséquence, ces enzymes représentent une famille distincte des β-lactamases de classe C appelées *Acinetobacter*-derived cephalosporinases (ADCs). Bien que la céphalosporinase *AmpC* d'*A.baylyi* (désignée comme ADC-8) était considérablement moins similaire que celle

d'A. pittii (ADC-5) et d'A. baumannii (ADC-7), la phylogénétique de toutes les céphalosporinases semblait évoluer d'un ancêtre commun (Beceiro et al., 2007). Les gènes bla_{ADC} à A. baumannii sont normalement exprimés à bas niveau (Jacoby, 2009). L'expression de ces gènes aux niveaux élevés est basée sur la présence d'un promoteur fort au sein d'une séquence d'insertion en amont dit ISAba1 (Jacoby, 2009). C'est le principal mécanisme responsable de la résistance à la ceftazidime et d'autres céphalosporines à large spectre dans A. baumannii (Hujer et al., 2006). À ce jour, au moins 44 gènes de bla_{ADC} ont été identifiés (Huang et al., 2010).

2.3. Résistance acquise aux carbapénèmes

Commercialisés depuis plus de 15 ans, l'imipénème, ou encore le méropénème, restent toujours des molécules très actives, donc apparaissent souvent comme dernier recours thérapeutique. Cependant, quelques signes d'inquiétude montent suite à la découverte d'enzymes nouvelles, majoritairement transférables, dénommées IMP, VIM, SPM, GIM, KPC, GES, OXA (Philippon *et al.*, 2006).

2.3.1. Les β-lactamases de Classe B (métallo-β-lactamases, MβL) conférent des niveaux de résistance élevés aux carbapénèmes ainsi qu'à toutes les autres β-lactamines à l'exception de l'aztréonam (Poirel et al., 2006a). Elles ne sont pas inactivées par les inhibiteurs classiques des \(\beta\)-lactamases, mais sont inhibées in vitro par l'EDTA. Les M\(\beta\)L sont caractérisées par la sensibilité à l'EDTA due à l'exigence des ions de zinc (Zn²⁺) qui se trouvent dans le site actif de l'enzyme (Poirel et al., 2006a). Au moins 9 types différents de MBLs acquises ont été décrits à ce jour. Les déterminants les plus importants sont les dérivés de type IMP, VIM, SPM et NDM. Plusieurs variants d'IMP (IMP-1, IMP-2, IMP-4, IMP-5, IMP-6, IMP-8, IMP-11) et de VIM (VIM-1, VIM-2, VIM-4 et VIM-11) ont été détectés parmi les isolats du complexe A. baumannii - A. calcoaceticus (Lim et al., 2007; Huang et al., 2010; Poirel et al., 2006a; Di Popolo et al., 2011). SIM -1 a été décrite pour la première dans des isolats d'A. baumannii en Corée (Lee et al., 2005). Les niveaux de résistance aux carbapénèmes conférés par SIM-1 sont inférieurs par rapport à ceux conférés par IMP et VIM (Lee et al., 2005). Tous les différents variants de bla_{IMP}, bla_{VIM}, et bla_{SIM} chez A. baumannii ont été trouvés sur des intégrons de classe 1 (Poirel et al., 2006a). Un des derniers déterminants décrits, NDM-1 (New-Delhi Métallo-β-Lactamase), a notamment largement été médiatisé et son importante capacité de dissémination cause un réel problème de santé publique (Rolain et al., 2010). Cette métallo-β-lactamase a été récemment trouvée dans les isolats des entérobactéries,

particulièrement dans le sous-continent indien ainsi que dans d'autres pays du monde, mais a rapidement été détectée chez *A. baumannii* (Karthikeyan *et al.*, 2010; Chen *et al.*, 2011). NDM- 2, un variant de NDM- 1 a récemment été trouvé dans des souches d'*A. baumannii* chez une patiente en Allemagne venant de l'Égypte (Kaase *et al.*, 2011).

2.3.2. Les β-lactamases de Classe D (appelées oxacillinases) ont la capacité d'hydrolyser de manière significative les aminopénicillines (l'ampicilline et l'amoxicilline) et les carboxypenicillines (carbénicilline et ticarcilline) (Poirel *et al.*, 2010).

Les β -lactamases de classe D ne sont pas inhibées (à part de très rares exceptions) par l'acide clavulanique, le tazobactam et le sulbactam, cependant leur activité peut être inhibée *in vitro* par le chlorure de sodium (NaCl). Cette propriété n'est pas partagée par les β -lactamases des autres classes, ce qui est une bonne caractéristique pour leur identification *in vitro*.

Certains Variants de ces β -lactamases ont également la capacité d'hydrolyser les céphalosporines à spectre étendu tandis que d'autres, décrits comme oxacillinase à activité de carbapénèmase (Carbapenem Hydrolysing class D β -Lactamases) sont capables d'hydrolyser les carbapénèmes (Poirel *et al.*, 2010).

La plupart de ces enzymes ont été décrites chez A. baumannii. Les gènes codant ces enzymes ont un support chromosomique (Héritier et al., 2005) ou plasmidique (Donald et al., 2000). Elles peuvent être divisées en quatre sous-groupes phylogénétiques ($bla_{OXA-23-like}$, $bla_{OXA-24-like}$, $bla_{OXA-51-like}$ et $bla_{OXA-58-like}$). Les variants au sein de chacun des quatre sous-groupes principaux ont une identité en acides aminés de \geq 96 %. Les sous-groupes $bla_{OXA-51-like}$, bla_{OXA-23} et le variant $bla_{OXA-134}$ sont intrinsèquement présents dans A.baumannii, A.radioresistans et A.lwoffii, respectivement (Brown et al., 2005; Poirel etal., 2008b ; Figueiredo et al., 2010).

La figure 12 montre un dendrogramme des principaux groupes et les variants de 73 oxacillinases.

✓ Le sous-groupe OXA -23

OXA-23, à l'origine appelée ARI-1 pour "Acinetobacter resistant imipenem ", elle a été identifiée en Ecosse en 1985 et isolée à partir d'un plasmide d'une souche d'*A.baumannii*, qui possédait une CMI de l'imipénème de 16µg/ml (Paton *et al.*, 1993 : Donald *et al.*, 2000).

OXA-23 partage 99% d'identité en acides aminés avec OXA-27, qui a été mise en évidence à Singapour (Afzal-Shah *et al.*, 2001). Le gène a été identifié dans de nombreux pays à travers le monde, il est intrinsèquement présent et situé sur le chromosome chez *A. radioresistens*

alors qu'il est acquis et porté par un plasmide chez *A. baumannii*. Il a été trouvé uniquement chez l'espèce *Acinetobacter* à l'exception de *Proteus mirabilis* (Bonnet *et al.*, 2002).

✓ Le sous groupe OXA-40

OXA-40 est une β-lactamase qui a une capacité d'hydrolyser principalement les pénicillines et beaucoup moins les céphalosporines et l'imipénème. Elle est résistante à l'inhibition par l'acide clavulanique, le tazobactam et le sulbactam (Bou *et al.*, 2000b ; Afzal-Shah *et al.*, 2001; Heritier *et al.*, 2003) et aussi au NaCl (Héritier *et al.*,2003) contrairement aux autres oxacillinases. Appelée précédemment OXA-24, elle a été identifiée en Espagne chez des souches d'*A.baumannii* résistantes aux carbapénèmes et elle présente 63% et 60% d'identité en acides aminés avec OXA-51/69 et OXA-23 respectivement (Bou *et al.*, 2000b). Ce groupe comprend aussi les variants OXA-24, OXA-25, OXA-26, OXA-33, OXA-72 OXA-139 et OXA-160 (Tian *et al.*, 2011).

Le gène OXA-40 a été trouvé chez plusieurs espèces d'*Acinetobacter spp.* ainsi que chez *Pseudomonas aeruginosa*, et peut être chromosomique ou plasmidique (Quinteira *et al.*, 2007; Sevillano*et al.*, 2009.). L'enzyme a été rapportée en Espagne et en Asie (Ruiz *et al.*, 2007, Wang *et al.*, 2007) mais la péninsule ibérique montre la plus grande prévalence pour la diffusion d'OXA-40 (Quinteira *et al.*, 2007; Ruiz *et al.*, 2007; Da Silva *et al.*, 2004).

Les OXA-25 et OXA-26 sont des mutants ponctuels d'OXA-40, ces enzymes ont été caractérisées à partir d'isolats d'A. baumannii en provenance d'Espagne et de Belgique (Afzal-Shah et al., 2001). OXA-72 a été identifiée dans des isolats d'A. baumannii de Chine (Wang et al., 2007), Corée du Sud (Lee et al., 2009b), Taiwan (Lu et al., 2009) et Bahreïn (Mugnier et al., 2009). OXA-160, un nouveau variant d'OXA-40, a récemment été identifié dans une souche d'A. baumannii isolée aux Etats-Unis (Tian et al., 2011).

Récemment, deux nouvelles carbapénémases, OXA-143 et OXA-182 ont été identifiées. OXA-182 partage 93% d'identité en acides aminés avec OXA-143 et 89% avec OXA-40 (Kim *et al.*, 2010). La carbapenemase OXA-143 partage 88% d'identité en acides aminés avec OXA-40, 63% avec OXA-23 et 52% avec OXA-58 (Higgins *et al.* 2009).

✓ Le sous groupe OXA-51

OXA-51 est une β-lactamase qui est intrinsèque et ubiquitaire chez *A.baumannii* (Brown *et al.*, 2005; Turton *et al.*, 2006a). Le premier rapport d'OXA-51, était en 2005 dans des souches isolées en Argentine en 1996 (Brown *et al.*, 2005) et un grand nombre de variants d'enzymes

ont depuis été découverts. OXA-51 présente moins de 63% d'identité en acides aminés avec les sous-groupes 1 (OXA-23-like), sous-groupe 2 (OXA-40-like) et moins de 50% avec le sous-groupe 4 (OXA-58-like). Les enzymes OXA-51-like représentent actuellement l'un des plus grands groupes de β-lactamases, avec 81 enzymes actuellement identifiées, elles ne sont pas inhibées par l'acide clavulanique ou le tazobactam et leur activité est inhibée par le NaCl (Poirel *et al.*, 2008a).

Le gène OXA-51 a initialement été identifié sur un support chromosomique et est non-transférable. Cependant, de récentes études et analyses par PCR pour bla_{OXA-51} indiquent que le gène est localisé sur un plasmide (Chen *et al.*, 2010).

Les gènes du sous groupe OXA-51 identifiés chez *A.baumannii* à l'exception d'OXA-138, ont été identifiés aussi chez *A.nosocomialis* dans des souches isolées au Taiwan, suggérant que ces gènes peuvent être transférés entre les espèces du complexe *A.baumannii-calcoaceticus* (Lee *et al.*, 2009c).

✓ Le sous groupe OXA-58

Le gène bla_{OXA-58} a été identifié pour la première en France à partir d'une souche isolée à Toulouse (France) en 2003 (Poirel *et al.*, 2005). L'enzyme hydrolyse les pénicillines, l'oxacilline mais pas les céphalosporines à spectre étendu, et elle hydrolyse l'imipénème deux fois plus efficacement que l'OXA-40.

OXA-58 possède un faible pourcentage d'identité en acides aminés avec les autres oxacillinases. Les gènes codant pour OXA-58 ont été trouvés chez de nombreuses espèces d'*Acinetobacter* et sont généralement portés par un plasmide, bien que la localisation chromosomique a également été décrite (Bogaerts *et al.*, 2006 ; Poirel *et al.*, 2006b). Les isolats portant ce groupe de gènes sont les plus fréquemment rapportés en Europe même s'ils ont été rapportés aussi en Amérique du Sud, en Amérique du Nord, en Asie et en Australie (Marqué *et al.*, 2005 ; Bogaerts *et al.*, 2006 ; Coelho *et al.*, 2006 ; revu par Peleg *et al.*, 2006 ; Wang *et al.*, 2007 ; Zarrilli *et al.*, 2008 ; Lee *et al.*, 2009b ; Mendes *et al.*, 2009a).

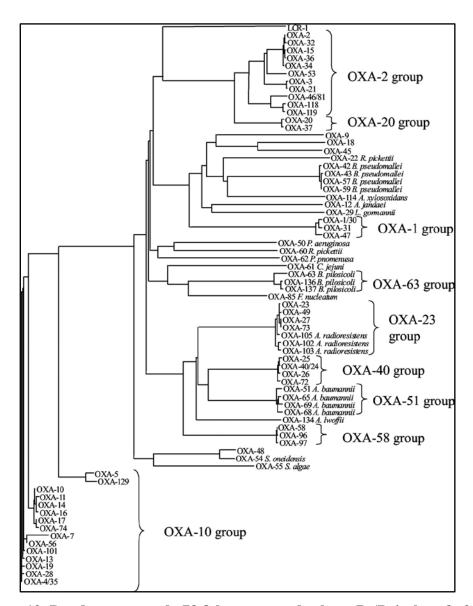


Figure 12. Dendrogramme de 73 β-lactamases de classe D (Poirel et al., 2010)

2.4. Diminution de la perméabilité membranaire

Une membrane externe imperméable, un faible nombre de porines et plusieurs autres caractéristiques constitutives jouent un rôle dans le comportement des *Acinetobacters* en ce qui concerne la capacité de résistance aux antibiotiques et la survie dans l'environnement. Une diminution des porines associée avec le mécanisme d'efflux empêchent l'absorption des antibiotiques chez *A.baumannii* (Hooper, 2005 ; Vila *et al.*, 2007). Des modifications de la perméabilité membranaire d'*A. baumannii* peuvent entrainer une résistance aux carbapénèmes. La protéine de la membrane externe la plus importante chez *Acinetobacter* est HMP-AB, un membre de la famille des OmpA (Walzer *et al.*, 2006). Elle partage une identité

de séquence et des similitudes structurelles avec OprF de *P.aeruginosa* et OmpA d'*E.coli* (Gribun *et al.*, 2003).

Ainsi, la perte d'une autre protéine de membrane externe *CarO*, secondaire à l'interruption du gène *carO* par différentes séquences d'insertion (notamment IS*Aba825*) peut être à l'origine d'une résistance aux carbapénèmes (Mussi *et al.*, 2005).

2.5. Efflux

L'implication de systèmes d'efflux naturels ou acquis dans la multirésistance aux antibiotiques chez *A. baumannii* est de plus en plus étudiée (Coyne *et al.*, 2011). Parmi les superfamilles de pompes à efflux, les systèmes RND (Resistance-Nodulation-Division) sont les plus prévalents chez *A. baumannii*. Les systèmes "Multidrug And Toxic compound Extrusion" (MATE), et "major facilitator superfamily (MFS)" ont été également impliqués (Magnet *et al.*, 2001). Les pompes RND comme les pompes AdeABC, AdeDE, AdeIJK et AdeXYZ, contribuent à la virulence d'*Acinetobacter spp.* (Roca *et al.*, 2011).

La surexpression d'AdeABC est associée à une augmentation du niveau de résistance à l'imipénème et au méropénème, surtout lorsqu'elle est associée à l'expression d'enzymes de type CHDL (Héritier *et al.*, 2005). La pompe AdeIJK est capable d'effluer les β-lactamines, le chloramphénicol, les tétracyclines, l'érythromycine, les lincosamides, les fluoroquinolones, l'acide fusidique, la rifampicine, la novobiocine et le triméthoprime (Damier-Polle *et al.*, 2008).

2.6. Modification de PLPs

Une modification des PLPs à l'origine de la résistance aux carbapénèmes chez *A. baumannii* n'a été que très rarement investiguée mais il semble que la régulation de l'expression des PLPs puisse être associée à une diminution de sensibilité aux carbapénèmes (Fernandez-Cuenca *et al.*, 2003).

3. Résistance chez Acinetobacter non-baumannii

3.1. Résistance aux β-lactamines

De façon générale, les espèces d'*Acinetobacter* non-*baumannii* ont une plus grande sensibilité aux antibiotiques qu'*A. baumannii*. *Acinetobacter* genomic species 3 semble être l'espèce présentant le plus de résistance aux antibiotiques (Seifert *et al.*, 1993).

Les céphalosporinases de type ADCs ont été décrites chez *Acinetobacter* genomic species 3 et *Acinetobacter* genomic species 13 TU (Espinal *et al.*, 2011). Comme chez *A. baumannii*, la présence d'IS*Aba1* a été mise en évidence en amont de *bla*_{ADC} chez *Acinetobacter* genomic species 3 et associée à la résistance aux céphalosporines (Lin *et al.*, 2010).

Les β-lactamases du groupe A de Ambler ont aussi été décrites : pénicillinase à spectre étroit de type SCO-1 (Poirel *et al.*, 2007), enzymes de type βLSE (PER-1 notamment chez *Acinetobacter* genomic species 3, et même βLSE à activité de carbapénèmase comme KPC-10 identifiée à Porto Rico dans des souches appartenant au complexe *A. calcoaceticus-A. baumannii* (Robledo *et al.*, 2010).

Les Métallo-β-lactamases IMP-1, VIM-2, SIM-1 chez *Acinetobacter* genomic species 3, *Acinetobacter* genomic species 10, 13 TU et 14 (Kim *et al.*, 2010). IMP-4 a été identifiée chez *A. johnsonii* aux Philippines.

Les oxacillinases à activité de carbapénèmase (CHDLs) ont été rapportées chez A. baumannii. OXA-23 a été identifiée dans des souches d'Acinetobacter genomic species 3 et d'A. johnsonii.

OXA-58 a ainsi été décrite chez *A. junii* en Roumanie, *Acinetobacter* genomic species 3 en Italie, *Acinetobacter* phenon 6/ct 13TU en Espagne (Kim *et al.*, 2010), *Acinetobacter* genomic species 14TU et *A. radioresistens* en Inde (Mendes *et al.*, 2009b).

3.2. Résistance aux aminosides

Depuis 1995, 80% des souches d'A. baumannii isolées en Europe ainsi qu'aux Etats-Unis sont résistantes à au moins un des quatre principaux aminosides utilisés en pratique médicale (gentamicine, tobramycine, amikacine, netilmicine) (Bouvet et al., 2000). La résistance aux aminosides est essentiellement due à l'acquisition de plasmides, d'intégrons ou de transposons responsables de la production d'enzymes modificatrices (AMEs). Les trois types d'enzymes inactivant les aminosides ont été décrits chez A. baumannii : aminoside acétyltransférase AAC, aminoside nucléotidyltransférase ANT, aminosidephospho-transférase APH. En Europe, 84% des isolats d'A. baumannii expriment au moins deux enzymes d'inactivation des aminosides (Nemec et al., 2004).

Les enzymes les plus fréquemment rencontrées chez *A. baumannii* sont AAC(3)-I et ANT(3'')-I ou encore AAC(3)-II, AAC(6')-I, ANT(2''), APH(3')-I et APH(3')-VI. Des gènes codant pour des enzymes inactivant les aminosides au sein des intégrons de classe 1 chez *Acinetobacter* spp. ont été rapportés (Nemec *et al.*, 2004). Récemment, la méthylation de l'ARNr 16S par la protéine codée par le gène *armA* a été décrite au Japon, en Corée de Sud et

aux Etats-Unis (Peleg *et al.*, 2008). Ce gène plasmidique est associé au transposon Tn1548. Il a été également identifié chez des isolats cliniques d'*Acinetobacter baumannii* en co-existance avec bla_{OXA-23} et bla_{NDM-1} (Kumarasamy et al., 2010).

La résistance aux aminosides a également été associée à l'expression du système d'efflux de type RND (Resistance Nodulation-cell Division) AdeABC par *A. baumannii* (Magnet *et al.*, 2001). La gentamicine et la kanamycine sont également des substrats de la pompe AbeM, membre de la famille des transporteurs MATE (Multidrug and toxic compound extrusion).

3.3. Résistance aux quinolones

Acinetobacter spp. est naturellement résistant à l'acide pipémidique, mais était sensible à l'acide nalidixique jusque dans les années 1970. La résistance aux fluoroquinolones est apparue très rapidement après l'introduction de ces molécules en thérapeutique.

Les mécanismes de résistances décrits sont liés à des mutations dans la cible des quinolones que sont les topoisomérases de type II (ADN gyrase et topoisomérase IV) et notamment au sein de courtes régions répétées (Quinolone Resistant Determinant Region). Ces mutations se situent au niveau des gènes codant pour une sous-unité de l'ADN gyrase (Vila et al., 1995), ou pour une sous-unité de la topoisomérase IV, parC. Les mutations dans le gène parC interviennent dans des souches où gyrA est déjà muté entraînant des niveaux de résistance très élevés à la ciprofloxacine. Les systèmes d'efflux de type RND AdeABC, AdeIJK et la pompe AdeM de type MATE contribuent également à la résistance aux fluoroquinolones (Magnet et al., 2001; Damier-Piolle et al., 2008).

3.4. Résistance aux autres antibiotiques

Acinetobacter est naturellement résistant à bas niveau au triméthoprime (CMI = 16-32 μg/ml) (Bouvet *et al.*, 2000). La résistance à haut niveau est due à l'acquisition d'un gène de résistance *dhfrI*, porté par un plasmide qui porte également des gènes de résistance à l'ampicilline, au chloramphénicol, à la kanamycine, à la streptomycine et au sulfaméthoxazole. La résistance au triméthoprime est également associée à l'expression des systèmes d'efflux de type RND AdeABC et AdeIJK par *A.baumannii* (Magnet *et al.*, 2001; Damier-Piolle *et al.*, 2008).

Le gène *cat*, codant pour l'acétyltransférase I inactivant le chloramphénicol, est porté par un transposon se comportant en réplicon. Le gène est flanqué de répétitions de la séquence d'insertion IS *I* facilitant son amplification, donc l'expression phénotypique de la résistance et

la dissémination du gène de résistance. Le chloramphénicol est également un substrat des systèmes d'efflux de type RND AdeABC et AdeIJK (Magnet *et al.*, 2001 ; Damier-Piolle *et al.*, 2008).

Les souches d'*Acinetobacter* résistantes à la tétracycline expriment, en général, un mécanisme de résistance par un système d'efflux ou par un système de protection ribosomique. Comme la plupart des gènes de résistance à la tétracycline ont été rencontrés sur des plasmides ou des transposons, l'acquisition de résistance est, en général, médiée par transfert de gènes. Les gènes codant pour *TetA* et *TetB*, intervenant chacun dans un système d'efflux des tétracyclines énergie dépendant, ont été rencontrés dans des isolats cliniques et aquatiques d'*A. baumannii*. Le gène *tetM* codant pour une protéine de protection ribosomique a été rencontré dans un isolat clinique d'*A. baumannii* (Ribera *et al.*, 2003). La résistance intrinsèque à la tétracycline a été également associée à l'expression des systèmes d'efflux de type RND (Magnet *et al.*, 2001; Damier-Piolle *et al.*, 2008).

La rifampicine possède une activité intéressante sur *Acinetobacter*, mais les risques de mutations vers la résistance sont élevés. Le gène de résistance *arr-2* codant pour la rifampicine ADP-ribosyltransférase a cependant été identifié sous forme de cassette au sein d'intégrons de classe I (Vallenet *et al.*, 2008). La rifampicine est également un substrat du système d'efflux de type RND AdeIJK (Damier-Piolle *et al.*, 2008).

La colistine, de la classe des polymyxines, exerce un effet bactéricide par altération de la membrane cytoplasmique de la bactérie. Cet antibiotique, bien que responsable d'effets indésirables, présente un regain d'intérêt en thérapeutique suite à l'émergence de bactéries pathogènes résistantes aux traitements habituels. La résistance à la colistine reste rare parmi ces bactéries, cependant un système de régulation à deux composantes PmrAB est impliqué dans la résistance à la colistine chez *A. baumannii* (Adams *et al.*, 2009).

4. Les supports génétiques de la résistance aux antibiotiques

4.1. La résistance chromosomique

La résistance chromosomique compte pour au moins 5% de la résistance rencontrée en clinique. Elle est souvent stable et tire son origine soit d'un gène de résistance (ex : *ampC*) ou de mutations ponctuelles dans un gène bactérien qui altèrent la cible d'un antibiotique (Murray *et al.*, 2005).

Cette résistance, bien que de support chromosomique, n'est pas figée :

- ➤ Des enzymes *AmpC* présentant des modifications structurales, par mutations ou délétions de nucléotides, ont été décrites (Bernaud *et al.*, 2004).
- Ces enzymes peuvent être hyperproduites, par modification de leur régulation (Bagge *et al.*, 2002).
- Après mobilité, les gènes codant pour ces enzymes ont également été observés sur des plasmides : *AmpC* plasmidique (Philippon *et al.*, 2002).

4.2. La résistance extra-chromosomique

4.2.1. Les séquences d'insertion

Les séquences d'insertion (IS) sont la forme la plus simple d'un élément transposable, généralement de taille inférieure à 2,5kb, capables de se déplacer de façon autonome dans les génomes microbiens et ne codent que pour leur propre transposition (Mugnier *et al.*, 2009). Ces structures sont très répandues dans le genre *Acinetobacter* (Segal *et al.*, 2005). Elles ne constituent pas elles-mêmes un support de la résistance aux antibiotiques, mais sont susceptibles d'interférer dans la régulation de certains mécanismes qui y sont impliqués.

ISAba1 est une séquence d'insertion qui apporte une séquence promotrice importante et donc une surexpression de certains gènes intrinsèques (bla_{ADC} et $bla_{OXA-51-like}$) ou acquis ($bla_{OXA-23-like}$) d'A. baumannii (Héritier et al., 2006; Corvec et al., 2007).

IS*Aba1* pourrait également être responsable de la mobilité du gène OXA-23 en s'insérant sur les deux côtés du gène au sein du transposon composite Tn2006, ou en une seule copie située en amont ou en aval du gène au sein du transposon Tn2008 (Adams-Haduch *et al.*, 2008; Corvec *et al.*, 2007). IS*Aba2*, IS*Aba3*, IS18, et IS*Aba8*25 pourraient également fournir de forts promoteurs pour *bla*_{OXA-58-like} (Ravasi *et al.*, 2011) alors qu'une seule copie d'IS*Aba4* associée au gène *bla*_{OXA-23} au sein du transposon Tn2007 peut également être responsable de la surexpression et pourrait permettre la mobilisation du gène (Corvec *et al.*, 2007).

Une analyse de séquence de l'environnement génétique de $bla_{\text{NDM-1}}$ chez une souche d'A. baumannii isolée en Allemagne a révélé la localisation chromosomique de $bla_{\text{NDM-1}}$ de 10.5 kb flanquée entre deux copies d'ISAba125 (Pfeifer et~al., 2011).

De plus, ISAba825 et ISAba125 ont été trouvés responsables de la réduction de la sensibilité aux carbapénèmes par inactivation du gène carO, gène codant pour un canal

protéique de la membrane externe associée à l'afflux des carbapénèmes chez *A.baumannii* (Mussi *et al.*, 2005).

4.2.2. Les transoposons

Ils représentent un autre support génétique de la résistance. C'est un élément génétique mobile, formé d'une séquence d'ADN sans existence autonome stable, mais cette séquence est capable de promouvoir sa propre translocation grâce à la présence d'un gène codant pour une transposase. L'intégration d'un transposon est réalisée soit sur un plasmide, soit sur le chromosome, le plus souvent dans une région riche en AT.

Les plus célèbres transposons sont les transposons composés, Tn5, Tn9 et Tn10, ils ont acquis leur notoriété pour les gènes de résistance aux antibiotiques qu'ils portent et ont été retrouvés sur les plasmides de plusieurs souches cliniques.

4.2.3. Les intégrons

Les intégrons constituent un système de capture et d'expression de gènes sous forme de cassettes. Ces dernières sont des éléments mobiles capables de s'intégrer ou de s'exciser par un mécanisme de recombinaison, spécifique de site, lié à l'intégrase (Toussaint *et al.*, 2002). A la différence des plasmides, les intégrons sont incapables d'autoréplication. Ils sont obligatoirement portés sur un réplicon de nature chromosomique ou plasmidique. De même, ils différent des transposons par l'absence de gène codant pour une recombinase au sein des cassettes, également dépourvus de séquences inversées répétées à leurs extrémités.

DEUXIEME PARTIE MATERIEL ET METHODES

1. Lieu de l'étude

L'étude multicentrique a été réalisée sur trois centres hôspitalo-universitaires situés dans l'ouest du pays. L'hôpital de Tlemcen comprend 800 lits distribués sur 25 services de médecine et de chirurgie. L'hôpital d'Oran contient 2142 lits et dispose de 54 services, l'hôpital de Sidi Bel Abbes est composé de 627 lits avec 23 services.

Les services choisis sont la réanimation, la traumatologie, la chirurgie générale et infantile, la neurochirurgie, la Néonatologie et la Médecine interne.

2. Les prélèvements

Durant la période de l'étude, allant de l'année 2009 jusqu'à 2012, 1232 prélèvements ont été effectués à partir de malades et sur des surfaces inertes ou du matériel médical (520 à Tlemcen, 324 à Oran et 388 à Sidi Bel Abbes). Les différents types de prélèvements ont été réalisés par aspiration trachéale (pour les patients intubés trachéotomisés), par écouvillonnage (prélèvement rectal et de plaies), par prélèvement de cathéters et d'hémoculture et par prélèvement de sondes urinaires.

3. Isolement et identification

Les cultures ont été réalisées en milieux gélosés Mc Conkey (BioRad) et Trypticase-Caséine Soja (TS, BioRad, Marnes-La-Coquette, France), les incubations s'effectuant à 37°C pendant 24 heures.

Les techniques standards d'identification des espèces d'*Acinetobacter spp*. ont été l'aspect morphologique des colonies sur le milieur Mc Conkey, la galerie API d'identification 20E et 20NE (bioMérieux, France).

Sur le plan génotypique, le séquençage des gènes codant pour *rpoB* (La scola *et al.*, 2006) et *16S rRNA* (dijkshoorn *et al.*, 1998) a été réalisé afin de distinguer les *Acinetobacter non-baumannii*.

4. Antibiogramme

La sensibilité aux antibiotiques a été déterminée par la technique de diffusion en milieu gélosé (Mueller-Hinton agar, MH, Bio-Rad) selon les recommandations du comité de l'antibiogramme de la Société Française de Microbiologie (CA-SFM) (www.sfm.asso.fr) (Annexe 1). Les disques d'antibiotiques utilisés (Bio-Rad) sont :

Ticarcilline (TIC), ticarcilline/acide clavulanique (TCC), pipéracilline (PIP), pipéracilline/tazobactam (TZP), aztréonam (ATM), céfotaxime (CTX), ceftriaxone (CRO), ceftazidime (CAZ), céfépime (FEP), imipénème (IPM), méropénème (MEM), gentamycine (GM), tobramycine (TM), amikacine (AN), nétilmicine (NET), ciprofloxacine (CIP), colistine (CS), doxycycline (DO), norfloxacine (NOR).

5. Concentrations minimales inhibitrices

Les concentrations minimales d'inhibition CMIs ont été déterminées par la méthode de dilution en milieu gélosé. C'est une méthode quantitative qui permet d'évaluer la sensibilité des souches vis-à-vis des antibiotiques.

Une série de concentrations d'antibiotiques selon une progression géométrique de raison ½ est préparée (Annexe 2) pour distribuer 2 ml de chaque dilution dans des boites de 18 ml de Mueller Hinton. Une suspension bactérienne diluée à 10⁷ UFC/ml est ensemencée par spot de 2 μl, soit un inoculum de 10⁴ UFC/spot. La souche de référence *Pseudomonas aeruginosa* ATCC 27853 a été utilisée comme souche témoin.

Les antibiotiques en poudre utilisés sont les suivants : Ticarcilline (Glaxo SmithKline), Ticarcilline/acide clavulanique (Glaxo SmithKline), pipéracilline (Dakota Pharm), pipéracilline/tazobactam (Wyeth Pharmaceuticals), Aztréonam (Sanofi-Synthelabo), cefotaxime (Panpharma), ceftazidime (Glaxo SmithKline), céfépime (Bristol-Meyers Squibb), imipenème (MSD), cloxacilline (Bristol-Meyers Squibb), gentamycine (Panpharma), tobramycine (Merck), amikacine (Merck), nétilmicine (Merck), ciprofloxacine (Bayer Pharma).

La méthode de l'E-test (AB Biodisk, Solna, Sweden) permet de déterminer la CMI grâce à l'utilisation de bandelettes imprégnées d'un gradient exponentiel continu de l'antibiotique à tester (de 0.016 à 256 µg/ml ou de 0.002 à 32 µg/ml selon l'antibiotique). Les bandelettes sont appliquées sur la surface d'un milieu gélosé préalablement ensemencé avec un inoculum de la souche à tester. Après incubation, l'inhibition de la croissance se traduit par une ellipse d'inhibition dont les points d'intersection avec la bandelette définissent la CMI. Une échelle de lecture imprimée sur la bandelette permet une interprétation rapide. Dans cette étude, cette méthode a été utilisée seulement pour tester la sensibilité aux carbapénèmes.

6. Analyse statistique

L'évolution, pendant la période 2009-2012, des taux d'isolement des souches d'Acinetobacter spp au niveau des trois hôpitaux a été analysée par le test de Chi2. L'analyse statistique a été réalisée à l'aide du logiciel SPSS Statistics 17 Multilanguage. Le seuil de significativité a été fixé à 0,05.

7. Analyses phénotypiques des mécanismes de résistance aux carbapénèmes

La détection d'une carbapénèmase a été réalisée par le test de Hodge qui consiste à mettre en évidence l'hydrolyse de l'imipenème par la souche à tester à l'aide d'une souche indicatrice (*E.coli* 25922) (Lee *et al.*, 2003).

La différenciation des métallo- β -lactamases (M β L) des autres β -lactamases hydrolysant les carbapénèmes à été effectuée par le test à l'EDTA qui consiste en la propriété de ces enzymes à être inhibées par cet agent chélateur (Lee *et al.*, 2003).

8. Recherche des gènes de résistance par PCR standard et qPCR

La PCR est une technique bien établie qui amplifie, de façon sélective, certaines régions d'ADN génomique en fonction de la liaison d'amorces qui sont propres aux régions en question. La PCR quantitative (qPCR) ou PCR en temps réel est une méthode plus récente qui peut être utilisée pour déterminer le nombre de copies d'une séquence d'ADN (Aboura, 2010).

Le principe de la qPCR repose sur la possibilité de suivre la quantité d'ADN présente grâce à l'émission d'un signal fluorescent, qui permet de déterminer précisément à chaque étape de la PCR, le nombre de copies de la séquence cible dans un échantillon. Cette quantification se fait pendant la phase exponentielle d'amplification et est directement proportionnelle à la quantité d'amplicons générés et donc à la quantité d'ADN de départ.

La PCR en temps réel (CFX96, C1000 cycleur thermique, Bio-Rad) et la PCR standard étaient effectuées pour détecter les β -lactamases de classe D : bla_{OXA-23} , bla_{OXA-24} , bla_{OXA-58} , β -lactamase intrinsèque bla_{OXA-51} , et la M β L bla_{NDM-1} .

D'autres β-lactamases ($bla_{VIM-like}$, $bla_{GIM-like}$, $bla_{IMP-like}$, $bla_{KPC-like}$, $bla_{VEB-like}$, $bla_{CTX-M-like}$, $bla_{SHV-like}$, $bla_{TEM-like}$, $bla_{PER-like}$ et $bla_{GES-like}$) et de gènes de résistance aux aminosides appelés AME (Aminoglycoside Modifying Enzymes) (aac(3)-Ia, aac(6')-Ib, aadA, ant(2'')-I, aph(3')-VI, armA, rmtA, rmtF, arr-2) et aux fluoroquinolones (qnrA, qnrB) ainsi que les associations ISAba1-OXA-23, ISAba1-OXA-51 ont été recherchés.

Des contrôles positifs et négatifs pour chaque gène ont été utilisés. Les amorces d'oligonucléotides et des sondes utilisées sont énumérées respectivement dans l'annexe 3.

9. Séquençage

Les produits de PCR purifiés ont été séquencés selon la méthode de Sanger modifiée (Sanger, 1977) en utilisant le kit BigDye Terminator chemistry et le séquenceur automatique ABI3730 (PE Applied Biosystems, Foster City, CA, USA).

L'analyse des données a été effectuée à l'aide du Codon CodeAligner 3.7.1.1 sequencing analysis software.

10. Typage moléculaire par MALDI-TOF MS

Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) est une technique rapide utilisée en routine pour l'identification des espèces ou des sous espèces au sein du même genre (Espinal *et al.*, 2011). La technique est aussi utilisée pour déterminer les mécanismes de résistance aux carbapénèmes ainsi que pour la détermination de la clonalité des souches des différents hôpitaux.

11. Conjugaison

La conjugaison a été effectuée en utilisant une souche réceptrice résistante uniquement à la tobramycine et les souches donatrices à tester. Le milieu Mueller-Hinton additionné de 8µg/ml d'imipénème et 8µg/ml de tobramycine permet la sélection des transconjugants (TC).

11.1. Technique

- Mettre en bouillon la souche réceptrice et les souches donatrices et les incuber à 37°C pendant 24 heures.
- ➤ Réaliser un mélange donatrice/réceptrice dans un rapport de ½.
- Mélanger soigneusement par inversement puis les réincuber 18 à 24 heures.
- Ensemencer le mélange par strie sur le milieu de sélection.
- Vérifier la sélectivité du milieu de sélection en ensemençant la souche donatrice et la souche réceptrice par spot de 1 à 2 μl.
- ➤ Incuber pendant 24 heures.

11.2. Lecture

Après incubation, les boîtes pour lesquelles les transconjugants sont pris en considération, correspondent à celles où les souches donatrices et réceptrices ne se sont développées. Les transconjugants sont ensuite purifiés pour faire l'objet d'antibiogramme et de CMI.

12. Extraction de l'ADN plasmidique

La technique repose sur la lyse bactérienne par un traitement SDS (Sodium Dodécyl Sulfate) alcalin combinée à la chaleur suivie d'une élimination des protéines, ADN chromosomique et ARN de haut poids moléculaire par des solvants organiques puis l'ADN plasmidique se retrouve dans la phase aqueuse et sera visualisé par une électrophorèse (Kado et Liu, 1981, modifiée).

12.1. Technique

- ➤ Réaliser une culture bactérienne dans 5ml de LB et incuber 24 heures à 37°C.
- ➤ Centrifuger 3 ml de la culture à 14000 rpm pendant 2 minutes à température ambiante.
- Jeter le surnageant. Sécher le culot puis le remettre en suspension dans 100μl de solution Tris EDTA (TE). Bien vortexer.
- Ajouter 200 µl de solution de lyse et mélanger par inversion 5 à 10 fois.
- ➤ Incuber à 55°C pendant 30 minutes en agitant de temps à autre.
- Ajouter à chaud 600μ1 à l'échantillon le phénol-chloroforme isoamylalcool et mélanger doucement par inversion 5 à 10 fois.
- Séparer les phases par centrifugation à 14000 rpm pendant 15minutes à température ambiante et transférer délicatement la phase aqueuse supérieure dans un nouveau microtube (éviter l'interphase qui contient les débris).
- Ajouter 300µl d'acétate de sodium 3M pH 4,8.
- Mélanger par inversion 5 à 10 fois.
- ➤ Centrifuger à 14000 rpm pendant 10 min à 4°C.
- ➤ Récupérer le surnageant dans un nouveau microtube.
- ➤ Ajouter 1 ml d'éthanol absolue à -20°C.
- ➤ Précipiter 30 min à -20°C.
- ➤ Centrifuger à 14000 rpm pendant 10 min à 4°C.
- Laver le culot avec 500μ1 d'éthanol 70% à température ambiante.
- ➤ Centrifuger à 14000 rpm pendant 5 min à 4°C.

- Eliminer le surnageant et bien sécher le culot.
- Resuspendre le culot dans 40 µl de TE.

La préparation des solutions et des tampons pour l'extraction de l'ADN plasmidique et de l'électrophorèse est indiquée dans les annexes 4 et 5.

13. Electrophorèse sur gel d'agarose

L'électrophorèse sur gel d'agarose permet de séparer les fragments d'ADN en fonction de leur taille. Le tampon de migration utilisé est le TBE (Tris-Borate-EDTA). L'ADN est visualisé grâce à l'ajout d'un agent intercalant, le bromure d'éthidium (BEt), qui devient fluorescent sous les ultraviolets.

13.1. Préparation du gel d'agarose

- ➤ Pour un gel de 0,8%, dissoudre par chauffage jusqu'à ébullition 1,6g d'agarose (Sigma) dans 200ml de tampon TBE 1X.
- ➤ Refroidir la solution à 55°C dans un bain-marie
- Couler le gel dans un moule dont les 2 extrémités ont été préalablement fermées par du ruban adhésif
- Disposer le peigne nécessaire à la réalisation des puits dans le gel
- > Laisser se solidifier
- Enlever délicatement le peigne et le ruban adhésif
- Placer le moule avec le gel dans la cuve d'électrophorèse, les puits sont placés du côté de la cathode et la cuve est remplie de tampon TBE jusqu'à ce que le gel soit immergé.

13.2. Dépot des échantillons

- Répartir dans les tubes eppendorfs 20μl de chaque solution d'ADN en ajoutant 5μl de tampon de charge.
- Mélanger à l'aide d'une micropipette puis transférer les 25 μl dans les puits du gel.

13.3. Migration et révélation

Brancher le générateur après avoir raccordé la cuve. Appliquer un voltage de 90 volts pendant 4 heures. Le gel est immergé dans une solution de TBE 1X contenant du BEt à une concentration de 0,5 μ g/ml pendant 30 à 45 minutes. Le complexe fluorescent ADN-BEt est visualisé sous un transilluminateur à UV.

TROISIEME PARTIE RESULTATS

Chapitre I : Epidémiologie de la résistance chez Acinetobacter spp.

1. Répartition des souches

Sur un total de 1232 prélèvements effectués au niveau des 3 hôpitaux, 353 souches d'*Acinetobacter spp* ont été isolées quelque soit le service ou le type de prélèvement.

155 souches à partir de 520 prélèvements à Tlemcen, 126 souches à partir de 324 prélèvements à Oran et 72 souches à partir de 388 prélèvements à Sidi Bel Abbes (Tableau 3). Le degré de signification est inférieur à 5%, le test est donc significatif (Tableau 4). Il a été montré que les pourcentages des trois hôpitaux sont significativement différents avec, par ordre de décroissance, Oran (38,9%), Tlemcen (29,8%) et Sidi Bel Abbes (18,5%).

La figure 13 monre la fréquence d'isolement d'*Acinetobacter spp*. par année et par hôpital sur l'ensemble des prélèvements effectués.

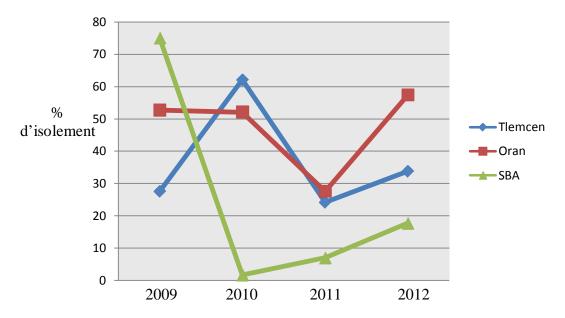


Figure 13. Nombre de souches d'*Acinetobacter spp.* par année et par hôpital

Tableau 3. Nombre de prélèvements et de souches isolées durant la période de l'étude

Hôpital	Service	Type de prélèvement	Année d'étude	Nombre de prélèvement	Nombre de souches isolées
Tlemcen	Réanimation, Neurochirurgie, Néonatologie, Traumatologie, Chirurgie générale et infantile, Médecine interne	Aspiration trachéale, sonde urinaire, urineplaie, écouvillonnage rectal, cathéter, drain	2009 2010 2011 2012 Total	264 37 157 62 520	73 23 38 21 155
Oran	Réanimation (médicale, urgence et pédiatrique), Chirurgie générale et infantile, Neurochirurgie	Aspiration trachéale, sonde urinaire, plaie, hémoculture, environnement	2009 2010 2011 2012 Total	36 46 188 54 324	19 24 52 31 126
Sidi Bel Abbes	Réanimation, Neurochirurgie, Chirurgie générale et infantile, Médecine interne	Aspiration trachéale, sonde urinaire, cathéter plaie, sonde, gastrique, drain, Environnement	2009 2010 2011 2012 Total	72 171 100 45 388	54 3 7 8 72

			_	~2
Tableau	4.	Test	de	('hi [*]

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	36,292 ^a	2	,000
Likelihood Ratio	37,074	2	,000
N of Valid Cases	1232		

1402 bacilles à Gram négatif ont été isolés durant la période de l'étude dont 546 à Tlemcen, 469 à Oran et 387 à SBA. Sur le total des souches isolées à partir de l'ensemble des prélèvements (1232), le nombre de souches isolées d'E.coli est de 292, 278 de *Pseudomonas aeruginosa*, 221 de *Klebsiella pneumoniae*, 145 d'*Enterobacter spp.* et 113 de *Proteus spp. Acinetobacter spp.* occupe donc la première place concernant le taux d'isolement par rapport aux autres BGN (Figure 14).

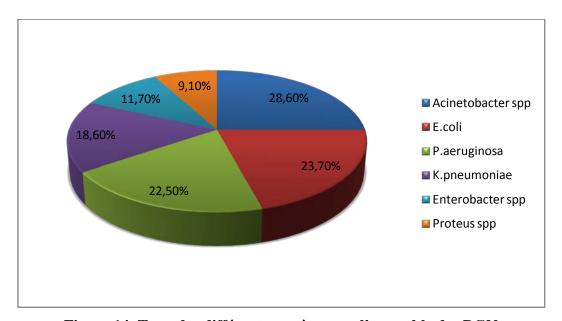


Figure 14. Taux des différentes espèces sur l'ensemble des BGN

Cependant, l'espèce prédominante diffère au niveau de chaque hôpital, *Acinetobacter spp.* est la prédominante à Tlemcen et à Oran, tandis qu'à Sidi Bel Abbes, *Pseudomonas aeruginosa* est l'espèce majoritaire.

En revanche, l'espèce la moins isolée à Tlemcen et à Sidi Bel Abbes est *Proteus spp.*, et à Oran *Enterobacter spp.* montre le plus faible taux d'isolement (Figure 15).

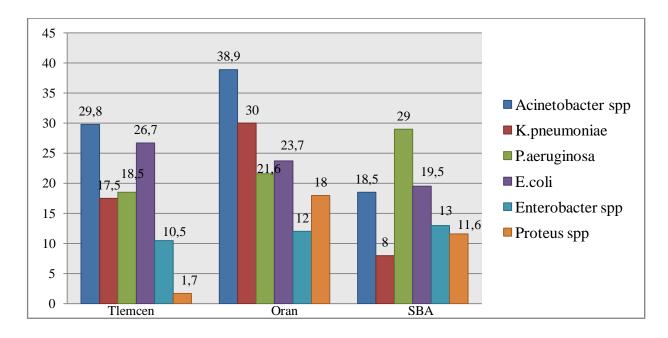


Figure 15. Nombre de souches des différents BGN au niveau de chaque hôpital

2. Sensibilité des souches d'Acinetobacter spp. aux antibiotiques

Sur l'ensemble des souches isolées, 95% sont multirésistantes, contre 5% présentant un phénotype sauvage. Les souches d'*Acinetobacter* ont présenté une résistance importante à toutes les classes d'antibiotiques (Figure 16) et en particulier une sensibilité diminuée à toutes les β -lactamines dont les carbapénèmes.

Pour l'imipénème le taux de résistance est de 68%, 61% à Tlemcen et Oran respectivement, il est relativement moins élevé au niveau de Sidi Bel Abbes avec un taux de 38%.

Figure 16. Antibiogramme d'une souche d'*A.baumannii* multirésistante (gauche) et de phénotype sauvage (droite)

PIP : pipéracilline ; TZP : pipéracilline + tazobactam ; TIC : ticarcilline; TCC : ticarcilline + acide clavulanique ; ATM : aztréonam ; CAZ : ceftazidime ; IPM : imipénème ; MEM : méropénème ; CRO : ceftriaxone ; GM : gentamicine ; TM : tobramycine ; AN : amikacine ; CIP : ciprofloxacine ; CS : colistine ; DO : doxycycline ; NOR : norfloxacine

L'évaluation du nombre et du pourcentage des souches IPM R a montré une tendance à l'augmentation pour l'année 2010 puis une augmentation significative en 2012 (Tableau 5).

Tableau 5. Nombre et pourcentage des souches IPM R durant lesquatre années d'étude

Année	Nombre de	Nombre total de	Pourcentage
	souches IPM R	souches	
2009	74	146	50,6%
2010	27	50	54%
2011	48	97	49,4%
2012	45	60	75%

Par ailleurs, la résistance aux aminosides est également observée avec des taux de résistance élevés pour les trois antibiotiques testés, à l'exception de la tobramycine qui conserve mieux son activité à l'hôpital de Tlemcen. La ciprofloxacine montre des taux élevés de résistance dans les trois institutions. La colistine demeure le seul antibiotique plus ou moins efficace avec de faibles taux de résistance (tableau 6).

Tableau 6. Taux de résistance et niveaux de CMI des souches d'Acinetobacter spp.

		PIF	P TZI	P TIC	TCC	CAZ	IPM	ATM	FEP	GM	TM	AN	CIP	CS
	R%	90	81	91	91	93	68	97	95	7 1	13	84	88	06
Tlemcen	μg/ml	4->512	4-256	4->512	4->512	1->512	2-256	4-512	4-128	2-128	1-16	4-256	0,5-16	-
	S%	10	19	09	09	07	32	03	05	29	87	16	12	92
	D ₀ /	05	01	00	00	00	<i>(</i> 1	00	00	7 0	5 4	70	02	07
	R%	95	81	98	98	98	61	98	98	59	54	79	92	07
Oran	μg/ml	4->512	4-512	4->512	4->512	1->512),25-512	4->512	256	1-128	1-32	4-256	0,5-32	-
	S%	05	09	02	02	02	39	02	02	41	46	21	08	93
	R%	91	86	91	91	97	38	95	94	79	42	71	45	24
	1170	7-	00	7-	7 -			,,,	•	• •		, _		
SBA	μg/ml	4->512	≤1-512	≤16->512	≤16->512	≤0,5->512	≤0,5-256	8-512	≤1-512	0,5-512	≤0,25-64	1-512	0,125-6	54 -
	S%	09	14	09	09	03	62	05	06	21	58	29	55	76

La sensibilité diminuée à l'imipénème est principalement liée à la production d'oxacillinases à activité de carbapénèmase (CHDL) ou de MβL. Les tests phénotypiques réalisés pour la détection de ces CHDL ont montré des résultats positifs pour le test de Hodge (Figure 17).

Figure 17. Résultat positif (gauche) et négatif (droite) d'une souche d'A.baumannii

3. Etude des mécanismes de résistance

3.1. β-lactamines

La PCR en temps réel a été effectuée pour la détection des OXA et de NDM-1 chez les souches présentant un résultat positif pour le test de Hodge et le test à l'EDTA respectivement et avec une CMI de l'imipénème >8µg/ml.

113 souches, choisies parmi les 353 souches, ont été testées dont 106 *A. baumannii* et 7 *Acinetobacter non-baumannii* (4 *A.pittii*, 2 *A.nosocomialis* et 1 *A. radioresistans*). 80 souches sont résistantes à l'imipénème, 40 sont positives pour OXA-23 et 17 pour OXA-24 dont 5 souches au sein desquelles coexistent OXA-23 et OXA-24 (Tableau 7) (Annexe7).

Les PCR réalisées pour rechercher OXA-51 se sont révélées positives pour toutes les souches à l'exception de 2 souches (*A.nosocomialis* d'Oran et *A.pittii* de SBA). Les souches résistantes à l'imipenème et ne produisant aucune carbapénèmase (4 à Tlemcen, 8 à Oran et 1 à SBA) ont fait l'objet de PCR pour IS*Aba1*-bla_{OXA-51}. Toutes les souches se sont révélées positives.

Tableau 7. Détection des oxacillinases chez les souches d'Acinetobacter spp

	Souches	bla _{OXA-23}	bla _{OXA-24}	bla _{OXA-23/-24}
	A.baumannii	31	04	04
Tlemcen	A.pittii	00	00	00
	A.baumannii	07	11	01
Oran	A.pittii	00	00	00
	A.nosocomialis	01	00	00
	A.baumannii	01	01	00
SBA	A.pittii	00	00	00
	A.radioresistens	01*	01	01

^{*}Présence naturelle chez *A. radioresistens*

Par ailleurs, aucune OXA-58, ni les autres β LSE testées ($bla_{VEB-like}$, $bla_{CTX-M-like}$, $bla_{SHV-like}$, $bla_{TEM-like}$, $bla_{PER-like}$, et $bla_{GES-like}$) n'ont été détectées. Les M β L de type bla_{VIM} , bla_{GIM} , bla_{IPM} et bla_{KPC} recherchées sont également négatives.

*bla*_{NDM-1} est la seule MβL détectée chez 5 souches provenant De l'hôpital d'Oran (Figure 18). Le gène a été séquencé et a révélé 99 % d'identité avec la séquence rapportée sur Genbank database (accession number JQ739157.1).

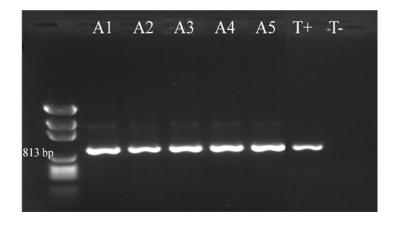


Figure 18. Amplification du gène *bla*_{NDM-1} des cinq souches d'*A.baumannii* A1(OA95), A2 (OA96), A3 (OA100), A4 (OA106), A5 (OA123) T+ (témoin positif), T- (témoin négatif)

Les quatre souches les plus anciennes ont été isolées chez des patients de la réanimation, tandis que la plus récente été isolée en neurochirurgie, cependant aucune corrélation n'a été observée entre les séquences du gène avec les données cliniques des patients (service, nature du prélèvement, âge, sexe, date d'isolation) (Figure 19 et 20 et annexe 6).

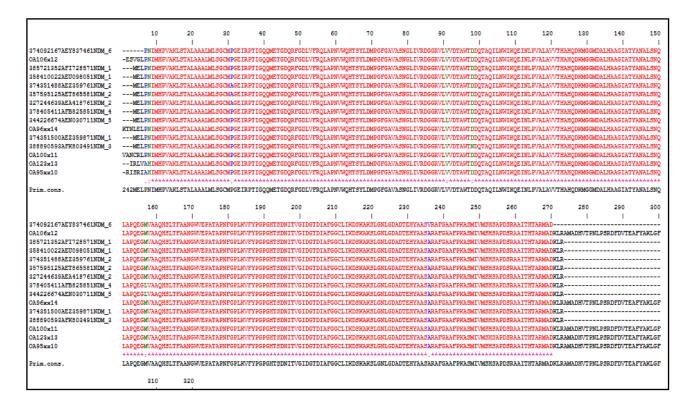


Figure 19. Alignement des acides aminés de $bla_{\text{NDM-1}}$ identifiés chez les cinq souches d'A.baumannii (Les motifs conservés des β -lactamases sont indiqués en rouge)

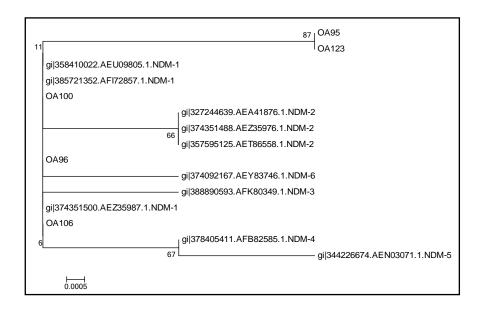


Figure 20. Arbre phylogénétique des cinq souches NDM-1 (PubMed Database)

Les souches productrices de M β L ont été testées phénotypiquement par le test à l'EDTA. Un accroissement de la zone d'inhibition autour du disque d'imipénème additionnée d'EDTA met en évidence la production de la β -lactamase (Figure 21).

Figure 21. Résultat du test à l'EDTA d'une souche MβL positive

3.2. Aminosides

La résistance aux aminosides a été observée pour toutes les souches multirésistantes. La recherche des gènes codant pour la résistance aux aminosides (AMEs) a révélé la présence de aac(3)-Ia (77 souches), aadA (57 souches), ant(2")-I (60 souches), aph(3") (74 souches) et aac(6")-Ib (1 souche).

Il a été suggéré que le gène aac(6') a été identifié uniquement chez l'espèce A.haemolyticus et est responsable de la résistance à l'amikacine et il est utilisé comme marqueur d'identification pour cette espèce (Lambert *et al.*, 1993).

Aucun gène correspondant à *armA*, *rmtA*, *rmtF* et *arr-2* (gène de résistance à la rifampicine) n'a été détecté. Les différents génotypes de résistance sont montrés dans le tableau 8.

Tableau 8. Génotypes de résistance des aminosides

Génotypes communs des souches d'Acinetobacter spp.								
Tlemcen	Oran	SBA						
aac(3)-Ia	aac(3)-Ia	aac(3)-Ia						
ant(2'')-I	ant(2'')-I	ant(2'')-I						
aac(3)- $Ia + aadA$	aac(3)- $Ia + aadA$	aac(3)- $Ia + aadA$						
aac(3)-Ia +ant(2'')-I	aac(3)-Ia +ant(2'')-I	aac(3)-Ia +ant(2'')-I						
ant(2'')-I +aph(3')	ant(2'')-I +aph(3')	ant(2'')-I +aph(3')						
aac(3)-Ia+ant(2'')-I +aph(3')	aac(3)-Ia+ant(2'')-I +aph(3')	aac(3)-Ia+ant(2'')-I +aph(3')						
aac(3)-Ia +aadA+aph(3')	aac(3)-Ia +aadA+aph(3')	aac(3)- $Ia + aadA + aph(3')$						
aac(3)-Ia+aadA+ant(2'')-I+aph(3')	aac(3)- Ia + $aadA$ + $ant(2)$ ')- I + $aph(3)$	aac(3)-Ia+aadA+ant(2'')-I+aph(3')						
-	aph(3')	aph(3')						
aac(3)- $Ia + aph(3')$	aac(3)- $Ia + aph(3')$	-						
nd	nd	nd						

Génotypes spécifiques des souches d'Acinetobacter spp. à chaque hôpital						
aadA	-	aac(3)- Ia + $aac(6')$ - Ib + $aadA$ + $aph(3')$				
aac(3)-Ia +aadA+ant(2'')-I	-	-				

nd : non détecté (absence de gène chez des souches résistantes à au moins un aminoside)

3.3. Fluoroquinolones

Aucun gène de résistance aux fluoroquinolones (*qnrA*, *qnrB*) n'a été détecté. La résistance pourrait être expliquée soit par une mutation de la gyrase et de la topoisomérase soit par un mécanisme non enzymatique.

4. Transfert de l'antibiorésistance

Pour déterminer la localisation chromosomique ou plasmidique des gènes de type CHDL ou NDM-1, une conjugaison a été effectuée entre des souches donatrices résistantes à l'imipénème, aux aminosides et à la ciprofloxacine et des souches réceptrices sensibles à l'imipénème.

Les transconjugants obtenus sont analysés par CMI (tableau 9) et antibiogramme (Figure 22). Les profils de résistance ont montré un co-transfert de la résistance à l'imipénème, aux aminosides et à la ciprofloxacine.

Tableau 9. Résultats des CMIs (µg/ml) des transconjugants comparés avec les CMI des souches réceptrices

	SA21	TC21+18	SA23	TC23+17	SA31	TC31+4	SA24	TC24+12
IPM	2	64	2	64	2	64	2	64
CAZ	64	>512	64	>512	128	128	256	256
GM	8	512	16	512	32	128	512	512
TM	16	64	16	64	4	64	4	64
CIP	1	16	1	16	64	128	64	128

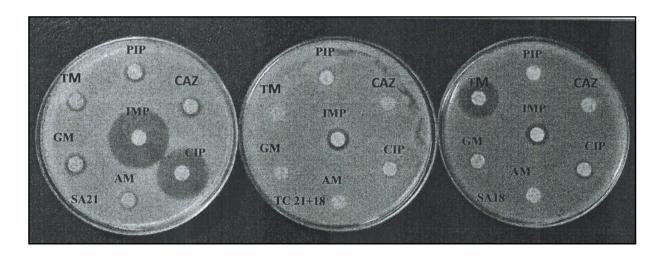


Figure 22. Profil de résistance d'un transconjugant

Après l'extraction des plasmides des souches et leurs transconjugants, une électrophorèse sur gel d'agarose a été réalisée, les résultats sont représentés dans la figure 23. Pour les souches SA18, SA21 et leur transconjugant, nous observons que sur les 8 plasmides existant dans la souche donatrice, 6 plasmides ont été transférés dans la souche réceptrice, ce qui est en faveur d'un support plasmidique.

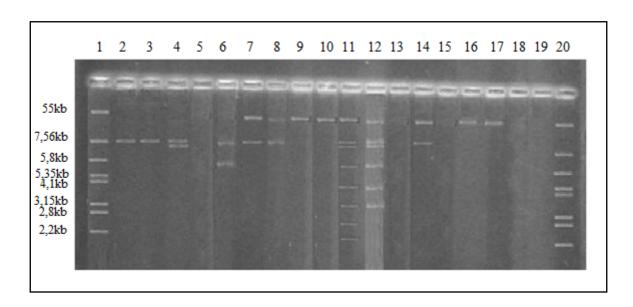


Figure 23. Visualisation des plasmides sur gel d'agarose

1 (V517); **2** (SA24); **3** (TC 12+24); **4** (SA12); **5** (SA17); **6** (TC 23+17); **7** (SA23); **8** (SA31); **9** (TC 4+31); **10** (SA4); **11** (SA 18); **12** (TC 21+18); **13** (SA 21); **14** (SA38); **15** (SA49); **16** (SA29); **17** (SA43); **18** (SA27); **19** (SA14); **20** (V517)

D'autres souches ont fait l'objet d'une visualisation plasmidique, les profils montrent que les souches d'*A.baumannii* peuvent héberger d'un plasmide jusqu'à 4 avec des tailles allant de 7,56 à 55 kb. De plus, toutes les souches portant des plasmides présentent une même bande plasmidique de taille approximative de 55 kb.

Chapitre II : Application de la spectrométrie de masse dans le typage moléculaire et dans la détection des mécanismes de résistance

Tout d'abord, le MALDI-TOF MS est une technique qui a été utilisée pour identifier les différentes espèces d'*Acinetobacter spp.* de la collection. 113 souches ont été identifiées avec un log score >2,0 comprenant 106 *A. baumannii* et 7 *Acinetobacter* non-*baumannii* (4 *A.pittii*, 2 *A.nosocomialis* et 1 *A. radioresistans*). Les résultats sont analysés et obtenus sous forme de spectres qui seront ensuite comparés avec une banque de spectres incluant un grand nombre de bactéries enregistrées pour permettre une identification plus précise des espèces. Les spectres de toutes les souches étudiées à cet effet sont obtenus par le logiciel Biotyper (version 2; Bruker Daltonics) et analysés en utilisant un logiciel statistique. Le dendrogramme MSP obtenu nous a permis de faire un typage et a révélé 5 clusters en fonction d'une limite arbitraire à une distance de 500, dont 2 clusters correspondant à *A.baumannii* et les 3 autres clusters pour chacune des trois autres espèces d'*Acinetobacter* non-*baumannii* (*A.pittii, A.nosocomialis* et *A.radioresistens*) (Figure 24).

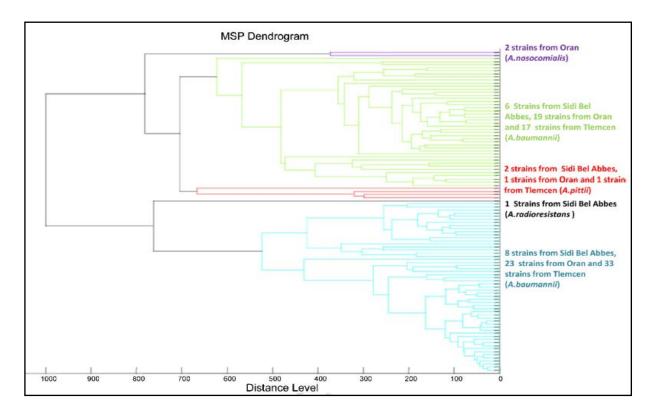


Figure 24. Dendrogramme MSP (Mean spectra projection) des souches d'Acinetobacter spp.

En second lieu, cet outil a été utilisé pour la détection phénotypique des souches porteuses de carbapénèmases. Après avoir incubé les souches mélangées à l'imipénème pendant environ 4 heures, le surnageant obtenu après une centrifugation est analysé. La présence et l'absence des pics représentant l'imipénème et son métabolite naturel sont analysées. Si le pic spécifique pour l'imipénème à 300,0 m/z disparait pendant le temps d'incubation et est remplacé par le pic du métabolite naturel à 254,0 m/z, le résultat est considéré positif. Ce test a été appliqué sur une large série de 106 souches cliniques d'*A.baumannii* de différentes origines (Algérie et France) dont 20 souches appartenant à la collection de cette étude. Sur toute la série, 63 sont résistantes à l'imipénème et sont testées pour la détection de carbapénèmases. 57 souches ont exprimé le gène *bla*OXA-23, 3 ont exprimé le gène *bla*OXA-24 et 3 ont exprimé *bla*OXA-23 + *bla*OXA-24. Sur les 20 souches de notre étude, 14 souches sont IMP R (12 souches sont productrices d'OXA-24) et 6 souches sont IMP S (Figure 25).

La méthode a montré une sensibilité de 100%, une spécificité de 100% et est rapide pour la détection de la production de carbapénèmases (moins de 2.5h).

Figure 25. Détection de carbapénèmases par MALDI-TOF MS. Spectre de masse des souches d'*Acinetobacter baumannii* IPM R (gauche), Spectre de masse des souches d'*Acinetobacter baumannii* IPM S (droite).

Chapitre I : Epidémiologie de la résistance chez Acinetobacter spp.

Depuis quelques décennies, les bactéries du genre *Acinetobacter* ont été impliquées dans de nombreuses maladies infectieuses. Bien qu'elles soient principalement associées aux infections nosocomiales, elles ont également été impliquées dans des cas d'infections acquises communautaires. *Acinetobacter baumannii* représente aujourd'hui un modèle d'adaptation particulièrement efficace en termes d'antibiorésistance, sa capacité à survivre de façon prolongée en milieu hospitalier associée à l'émergence de résistances potentialise sa capacité de propagation nosocomiale.

De ce fait, nous avons étudié un panel de souches de 353 souches d'*Acinetobacter spp*. isolées aux trois centres hôspitalo-universitaires. Cette étude multicentrique réalisée entre 2009 et 2012 a montré la fréquence d'isolement la plus élevée pour le genre *Acinetobacter* par rapport aux autres BGN isolés des mêmes prélèvements.

L'étude relative au nombre de souches d'*Acinetobacter spp*. répertoriées a permis de distinguer la prépondérance de son isolement au service de la réanimation parmi les bacilles à Gram négatif isolés. Ce résultat concorde avec les données de la littérature qui décrit l'importance de cette espèce surtout en unité de soins intensifs (Dijkshroon, 2007).

Cette spécialité clinique est en effet grande pourvoyeuse de BMR parmi les espèces d'Acinetobacter spp. qui y trouvent de nombreuses circonstances favorisant leur émergence. Les principaux facteurs de risque d'acquisition de cette espèce sont la ventilation mécanique, l'antibiothérapie à spectre large, la sévérité de la pathologie sous-jacente, la durée prolongée du séjour, l'utilisation préalable des antibiotiques, la durée du cathétérisme artériel (D'Agata et al., 2000 ; Del Mar Tomas et al., 2005). Il est à noter que les voies aériennes sont le site de prédilection d'Acinetobacter baumannii.

La situation épidémiologique hospitalière est variable suivant les régions, avec des épidémies de plus ou moins grande ampleur. Les taux d'isolement étaient les plus importants à l'hôpital d'Oran puis à l'hôpital de Tlemcen et enfin l'hôpital de Sidi Bel Abbes.

Une distribution saisonnière des souches n'a cependant pas été observée et il n'y a pas eu de corrélation entre l'isolement des souches avec le sexe et l'âge des patients, la nature et la date des prélèvements.

Cette augmentation de fréquence des *Acinetobacters* s'accompagne d'une augmentation de la résistance aux antibiotiques.

La diversité des mécanismes de résistance développés par cette espèce est impressionnante. L'un des exemples les plus marquants est la diversité des enzymes conférant la résistance aux carbapénèmes. Ces résistances sont particulièrement préoccupantes puisque depuis les années 1990, date de l'émergence des souches hyperproductrices de céphalosporinases, les carbapénèmes représentent les antibiotiques de référence utilisés dans le traitement des infections à *Acinetobacter*.

Les taux de résistance ont été très élevés pour les β -lactamines et ce au niveau des trois hôpitaux. L'espèce *Acinetobacter baumannii* possède des mécanismes de résistance naturels aux β -lactamines correspondant principalement à l'hyperproduction de la céphalosporinase chromosomique. Toutes les souches présentant une sensibilité à l'imipénème concernées par cette étude ont montré ce phénotype. Nous pourrions ainsi expliquer que la résistance aux β -lactamines est associée à une hyperproduction du gène bla_{ADC} codant pour la céphalosporinase par la séquence d'insertion ISAba1 apportant des séquences promotrices fortes en amont du gène bla_{ADC} (Héritier et al., 2006).

Les pourcentages d'isolement des souches résistantes aux carbapénèmes à l'ouest algérien durant les années 2009, 2010 et 2011 sont plus élevés (50,6%, 54% et 49,4%) comparés à ceux trouvés dans le rapport du réseau Algérien de surveillance de la résistance des bactéries aux antibiotiques (23,25%, 39,58% et 45,32%) (Rahal *et al.*, 2009, 2010, 2011). Les souches catégorisées résistantes à l'imipénème ont été importantes dans notre étude. L'un des principaux mécanismes sous-tendant cette résistance aux carbapénèmes est lié à l'acquisition et à la production d'oxacillinases à activité de carbapénèmase codées par les gènes *bla*_{OXA-23} et *bla*_{OXA-24}. De nombreuses épidémies hospitalières à *A. baumannii* multirésistants produisant cette carbapénèmase ont été décrites à travers le monde. Les structures génétiques à l'origine de l'acquisition et de la diffusion de ce gène ont récemment été identifiées (Corvec *et al.*, 2007).

L'amplification par PCR utilisant des amorces nucléotidiques spécifiques du gène OXA-23 a permis de détecter sa présence dans plusieurs souches d'A.baumannii, A. radioresistens et A.nosocomialis avec une copie de la séquence d'insertion ISAba1 en amont du gène (ISAba1- OXA-23). Il a été montré que l'acquisition et l'expression de ce gène impliquaient la séquence d'insertion ISAba1 (Corvec et al., 2007). La séquence d'insertion ISAba1, membre de la famille IS4, est la structure génétique mobile la plus fréquemment rapportée chez A. baumannii. L'implication significative de cette séquence d'insertion dans la plasticité génétique de cette espèce bactérienne semble être importante.

Des éléments expérimentaux nécessaires ont été apportés pour affirmer que l'espèce bactérienne A. radioresistens est le progéniteur du gène de résistance aux carbapénèmes bla_{OXA-23} et il a été supposé qu'au sein du génome d'A. radioresistens, une première copie de ISAba1 s'est insérée en amont du gène bla_{OXA-23} apportant ainsi des séquences promotrices puis une seconde copie se serait insérée an aval, formant ainsi le transposon composite Tn2006. Cette structure aurait transposé sur un plasmide qui aurait ensuite disséminé chez A. baumannii (Poirel et al., 2008b). bla_{OXA-24} n'a été détecté que chez A. baumannii et A. radioresistens. Nous observons ici un coportage des deux oxacillinases chez cette espèce. Nous avons donc mis en évidence la première description du gène OXA-24 au sein de l'espèce Acinetobacter radioresistens en Algérie, contrairement à bla_{OXA-23} qui a déjà été cité à Tizi-ouzou et Sétif (Bakour et al., 2013).

Une étude précédente au sein de notre laboratoire a montré que la résistance aux carbapénèmes chez des souches d'A.baumannii isolées en 2008 était liée à la production de l'oxacillinase OXA-58 (Drissi et al., 2010). Ce gène bla_{OXA-58} était flanqué à ces deux extrémités par la séquence d'insertion ISAba3 (ISAba3-bla_{OXA-58}-ISAba3) et porté par un plasmide non conjugatif. Ce gène n'a pas été détecté chez les souches de la présente étude alors qu'il est ensuite détecté à Annaba chez des souches isolées en 2011 (Touati et al., 2012). Nous constatons que l'épidémiologie des gènes de résistance ne cesse d'évoluer et qu'il y a une grande diffusion de matériels génétiques chez cette espèce responsables d'épidémies intra- et interhospitalières.

La résistance aux carbapénèmes au sein du genre Acinetobacter est principalement liée à la production d'oxacillinases à activité de carbapénèmase ou CHDL. Par ailleurs, d'autres carbapénèmases, les métallo-β-lactamases, ont plus rarement été décrites chez Acinetobacter au spectre d'hydrolyse très large incluant toutes les β-lactamines sauf l'aztréonam. Le gène NDM-1 a été détecté chez cinq patients au niveau de l'hôpital d'Oran. Ce gène NDM-1, pour New Delhi métallo-β-lactamase a été isolé pour le première fois dans une souche de Klebsiella pneumoniae lors d'une infection urinaire chez un patient en Suède, de retour d'un séjour en Inde en 2007 (Yong et al., 2009). Ce mécanisme de résistance s'est relativement vite développé au sein des autres espèces d'entérobactéries. Depuis, des infections sévères à A.baumannii productrices de NDM-1 ont été rapportées (Rolain et al., 2010; Kumarasamy et al., 2010). De plus, les CMI de l'imipénème et du méropénème chez les souches portant ce gène ont été plus élevées que celles observées avec d'autres gènes de carbapénèmase (512 µg/ml). Ce constat pourrait refléter le fait que le plasmide portant le gène de cette carbapénèmase peut porter aussi jusqu'à plus de dix autres gènes de résistance à d'autres antibiotiques et pouvant être transféré aux autres BGN (Walsh et al., 2011). L'émergence de NDM-1 a été rapportée chez des patients en France et en Belgique (Boulanger et al., 2012; Bogaerts et al., 2012), provenant de l'Algérie. Ce sont des cas importés, contrairement aux souches concernées par cette étude qui représentent la première description des cas autochtones en Algérie. Actuellement, deux réservoirs de NDM-1 existent dans le monde : le continent Indien et les pays des Balkans (Kumarasamy et al., 2010; Livermore et al., 2011). Cette endémie rapide peut être expliquée par des caractères sociaux défavorables et un usage massif des carbapénèmes. Afin de surveiller l'émergence intra- et interhospitalière de ce gène, une recherche devrait être systématique dans les investigations moléculaires réalisées devant une souche d'A.baumannii résistante aux carbapénèmes, surtout lorsque la détection des autres gènes de carbapénèmases est négative.

Depuis la découverte de ce gène, plus de 300 publications ont été rapportées dans plusieurs pays à travers le monde signalant une diffusion inquiétante et spectaculaire de ce gène. Afin de surveiller et de suivre en temps réel l'évolution et la dissémination de ce gène dans le monde mais aussi de découvrir de nouveaux foyers, un outil interactif de surveillance de la diffusion de ce gène a été développé en utilisant le logiciel Google Maps (Berrazeg *et al.*, 2013).

D'autre part, la recherche du rôle de la surexpression du gène OXA-51 par ISAba1 a été positive pour toutes les souches testées résistantes à l'imipénème et ne possédant aucune carbapénèmase. Toutefois, la contribution réelle de la structure ISAba1-bla_{OXA-51-like} dans la résistance aux carbapénèmes chez A. baumannii reste incertaine puisque cette structure a été identifiée à la fois dans des souches résistantes et des souches sensibles aux carbapénèmes (Turton et al., 2006b; Hu et al., 2007; Ruiz et al., 2007).

Comme chez les autres bacilles à Gram négatif, la résistance aux aminosides est essentiellement liée à la production d'enzymes inactivatrices. Les gènes codant pour ces enzymes sont présents sur des plasmides, des transposons ou des cassettes au sein d'intégrons, facilitant leur rapide dissémination (Decré, 2012). Les Acinetobacters produisent fréquemment plusieurs enzymes parmi les acétylases, adénylases les phosphotransférases : en effet, la résistance aux aminosides est également associée à l'expression du système d'efflux de type RND AdeABC par A. baumannii (Magnet et al., 2001). Ceci pourrait expliquer la résistance aux aminosides chez certaines souches de cette étude qui ne possèdent aucun gène de résistance. Pour les fluoroquinolones, les PCR ont été négatives pour les gènes qnrA et qnrB, le principal mécanisme de résistance serait dû à des

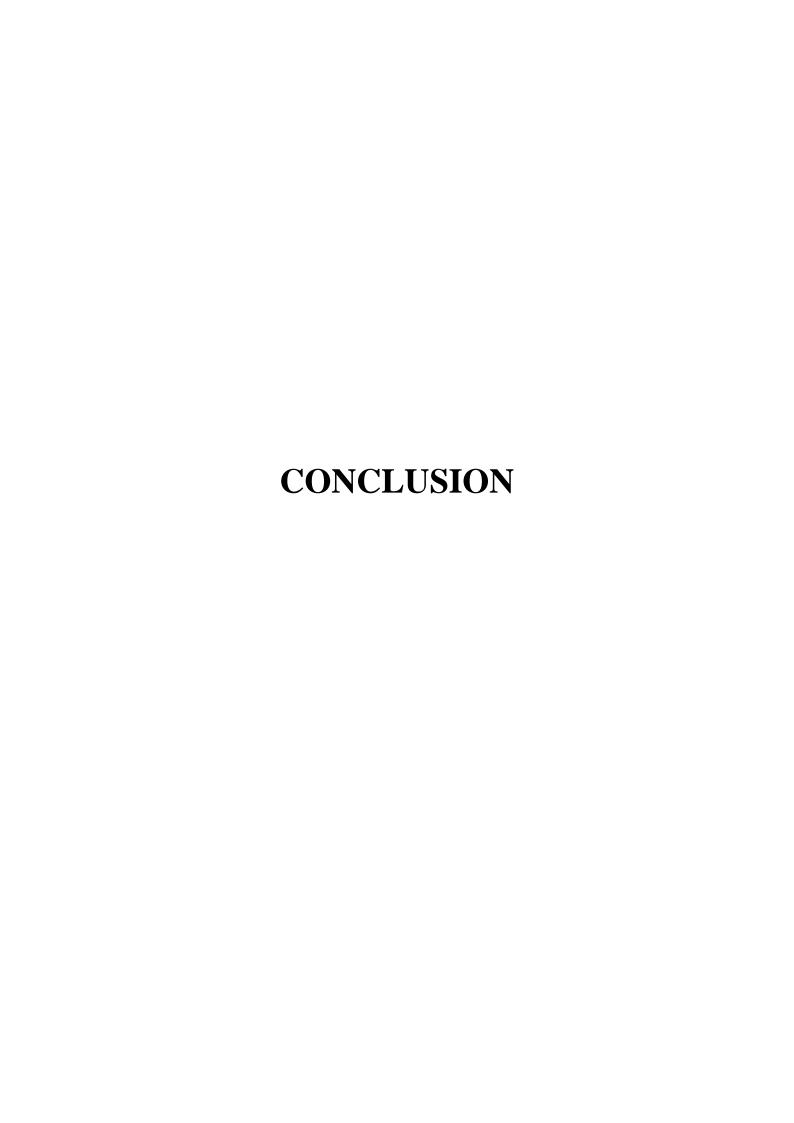
mutations au niveau des gènes *gyrA* et *parC*, gènes à l'origine de l'ADN gyrase et la topoisomérase IV respectivement (Decré, 2012). Les systèmes d'efflux de type RND AdeABC, AdeIJK et la pompe AdeM de type MATE contribuent également à la résistance aux fluoroquinolones (Damier-Piolle *et al.*, 2008 ; Su *et al.*, 2005).

La colistine, antibiotique de la famille des polymyxines, reste parfois le seul antibiotique disponible dans le cas des infections à *A. baumannii* résistant aux carbapénèmes. La résistance aux polymyxines est rare, cependant la majorité des mécanismes de résistance impliquent des modifications soit des protéines de la membrane bactérienne externe, du lipide A du LPS, ou de la stabilisation cationique de la paroi par le contenu en magnésium ou calcium (Fernandez-Reyes *et al.*, 2009).

L'analyse du contenu plasmidique par électrophorèse après conjugaison a montré l'acquisition de la résistance à l'imipénème ainsi qu'aux aminosides et à la ciprofloxacine chez les transconjugants, mettant en évidence la dissémination d'un matériel génétique de nature plasmidique portant les gènes de résistance aux carbapénèmes.

Chapitre II : Application de la spectrométrie de masse dans le typage moléculaire et dans la détection des mécanismes de résistance

La spectrométrie de masse MALDI-TOF MS permet l'identification des bactéries par analyse de leurs protéines totales (protéines ribosomales et protéines associées aux membranes). 113 souches ont été analysées par spectrométrie de masse. Toutes ces souches ont été déjà identifiées comme *Acinetobacter baumannii* par les méthodes classiques (API 20NE).


Avec l'utilisation de cet outil, nous avons pu les différentier en plusieurs espèces dont 106 sont *A.baumannii* et 7 *Acinetobacter non-baumannii* (4 *A.pittii*, 2 *A.nosocomialis* et 1 *A. radioresistans*). Il est également utile de préciser que la spectrométrie de masse a fourni une identification du genre et de l'espèce lorsque l'identification classique ne fournissait que le genre.

Après la possibilité de l'identification de nos souches par spectrométrie de masse, nous avons développé dans cette partie de notre travail l'identification intra-spécifique ou le typage des isolats (identification de souches au sein de la même espèce). Le dendrogramme obtenu à partir des spectres de l'ensemble des souches a permis de distribuer les espèces en 5 clusters, un cluster des 2 souches d'A.nosocomialis, un cluster des 4 souches d'A.pittii, un cluster d'A.radioresistens et 2 clusters des 106 souches d'A.baumannii. Ce regroupement n'est pas associée avec les données cliniques des patients ni avec les propriétés phénotypiques des isolats, ni avec les distributions épidémiologiques.

Afin de contrôler la dissémination des gènes de résistance, le MALDI-TOF MS a été utilisé pour la détection des souches porteuses de carbapénèmases. Cette technique pourrait avoir plus d'avantages sur d'autres techniques telle que la PCR, car elle permet de détecter des carbapénèmases s'exprimant à bas niveau ou inconnues, donc de découvrir de nouvelles carbapénèmases. Par contre, cette technique atteint sa limite lorsque le mécanisme de résistance n'est pas enzymatique comme la résistance par efflux ou par altération de porines (Burckhardt *et al.*, 2011).

Outre sa rapiditié et le coût faible de consommable, le MALDI-TOF MS a montré une grande capacité d'analyse, une haute reproductibilité concernant l'identification d'*Acinetobacter spp.* au sein de la même espèce.

Il est maintenant démontré qu'à l'aide de cet outil, le typage des isolats cliniques est possible. Il serait alors intéressant d'introduire cette technique et de l'appliquer en routine hospitalière.

A la lumière de ces travaux, nous constatons que la situation épidémiologique de la résistance bactérienne en Algérie est en pleine évolution. Les bactéries du genre *Acinetobacter* et surtout *Acinetobacter baumannii* posent actuellement un problème émergent de la multirésistance aux antibiotiques, comme partout ailleurs à travers le monde. Cette espèce a vu son implication renforcée par l'apparition de nouveaux mécanismes de résistance.

La compréhension de cette situation nous a induit à centrer nos recherches sur ce BGN-MR, d'isolement très fréquent au sein de nos hôpitaux. Nous avons donc mené une étude multicentrique basée sur trois hôpitaux de l'ouest Algérien. La fréquence d'isolement des souches d'*Acinetobacter spp*. était la plus élevée à Oran puis à Tlemcen, contrairement à l'hôpital de Sidi Bel Abbes où la fréquence était la moins élevée. Ces taux d'isolement sont donc proportionnels avec l'importance de l'agglomération. De plus, *Acinetobacter baumannii* est l'espèce la plus prédominante par rapport à tous les autres BGN isolés des mêmes prélèvements.

Plusieurs facteurs, liés à l'environnement (procédures invasives, surconsommation des antibiotiques) à l'espèce (résistance naturelle aux antibiotiques, capacité de persistance dans l'environnement) ou aux patients (pathologie sous-jacente, la durée du séjour...) se réunissent pour contribuer à l'émergence de souches a conséquences potentielles en termes de diffusion épidémique nosocomiale.

Il est donc primordial de conduire des études d'épidémiologie moléculaire afin de comprendre et de contrôler la diffusion et l'augmentation de la résistance aux antibiotiques. Par ailleurs, beaucoup d'études ont été rapportées, dans la littérature, sur les résistances acquises par production de nouvelles β -lactamases.

La prévalence de la résistance aux carbapénèmes croît dans le monde entier dans toutes les espèces des bacilles à Gram négatif cliniquement importantes. Chez les souches d'A. baumannii concernées par cette étude, la résistance a résulté essentiellement d'oxacillinases aux propriétés de carbapénèmases OXA-23 et OXA-24, des β-lactamases quasi-spécifiques de cette espèce. Il est à noter que dans certains cas ou les souches étaient résistantes à l'imipénème et ne produisant pas d'oxacillinases acquises, une surexpression des oxacillinases naturelles d'A.baumannii bla_{OXA-51} par ISAba1 apportant de fortes séquences promotrices a contribué à la résistance aux carbapénèmes.

NDM-1 est une métallo-β-lactamase la plus récemment découverte, elle a été décrite chez *Klebsiella pneumoniae* et *E.coli* en Suède chez des patients provenant de l'Inde, puis

rapidement, ce gène a diffusé dans différentes espèces notamment *A.baumannii*. Ceci suggère que cette espèce peut facilement acquérir des gènes étrangers tels que NDM-1.

Nous assistons dans cette étude à la première description de cette métallo- β -lactamase chez des patients hospitalisés en Algérie. L'identification de NDM-1 chez ces cas autochtones, en sachant également que ces patients n'ont eu aucun lien avec les pays des Balkans et l'Inde, ce qui nous mène à penser que ce gène a déjà disséminé dans le nord de l'Afrique.

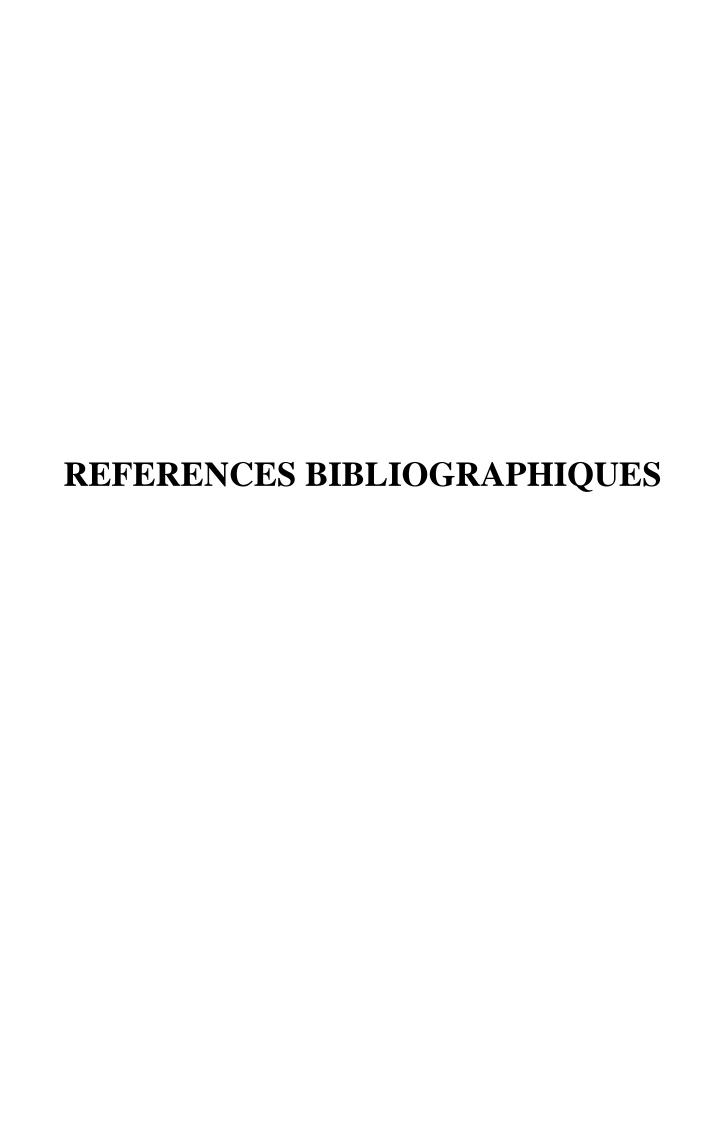
Il a été décrit que les bactéries productrices de ce gène ont été isolées à partir de différents types prélèvements et dans 55 pays entre 2006 et 2012. Il est intéressant de connaître les réservoirs des gènes de métallo-β-lactamases dont la dissémination chez *Acinetobacter* est décrite de manière croissante et qui diminue de manière drastique les possibilités thérapeutiques.

La résistance aux carbapénèmes marque une situation hyperendémique et constante au niveau des trois hôpitaux et reste très majoritaire le fait que ces souches nosocomiales sont à fort potentiel épidémique.

En effet, ces carbapénèmases confèrent une résistance à d'autres β-lactamines et leurs gènes sont habituellement associés à des gènes de résistance aux aminosides et aux fluoroquinolones. Dans cette étude, la résistance aux aminosides a été médiée par des gènes codant les enzymes modifiants les aminosides (AMEs) qui sont aac(3)-Ia, aadA, aph(3')-VI et ant(2'')-I. Par contre, aucun gène de résistance aux fluoroquinolones n'a été identifié (qnrA et qnrB), la résistance est probablement due à des mutations au niveau des gènes de la gyrase et de la topoisomérase, cibles de cette classe d'antibiotique.

L'étude du support génétique de cette résistance par analyse du contenu plasmidique des transconjugants souligne la diversité de ces gènes ainsi que leur transférabilité.

Dans tous les cas, l'introduction de souches d'A.baumannii souvent multirésistantes dans un établissement hospitalier induit un risque de diffusion épidémique. Une recherche systématique des porteurs de souches productrices de carbapénèmases devra être mise en place en dépistant tout patient transféré d'un hôpital étranger afin de limiter l'introduction, puis la diffusion de ces souches.


Nous avons entrepris une technique par spectrométrie de masse (MALDI-TOF MS) pour la détection rapide des souches productrices de carbapénèmases. Cette approche est axée sur la détection des produits de dégradation de l'antibiotique par la carbapénèmase en moins de 2 heures et demi.

Le second intérêt de cette technique est l'identification moléculaire au niveau de l'espèce. C'est une méthode plus rapide, performante et plus précise par rapport aux méthodes conventionnelles d'identification

Le MALDI-TOF MS est aussi utilisé pour étudier l'épidémiologie moléculaire des souches cliniques de différentes origines. Le dendrogramme a montré une distribution des souches en fonction des différentes espèces d'*Acinetobacter* obtenues après la réalisation des spectres d'identification.

Ces souches multirésistantes posent de véritables échecs thérapeutiques et leur dissémination relève de l'insuffisance et du dysfonctionnement de l'organisation de lutte contre ces BMR. De bonnes politiques d'utilisation des antibiotiques permettent de contrôler les épidémies causées par les bactéries multirésistantes. Il est donc impératif de maîtriser la surconsommation des antibiotiques et réduire ainsi la pression de sélection de bactéries multirésistantes et de préserver l'efficacité de certaines molécules qui restent actives.

L'information et la formation de l'ensemble des professionnels de l'établissement en matière d'hygiène hospitalière doivent être assurées par un programme de lutte contre les infections nosocomiales, et enfin optimiser la surveillance de l'évolution de la résistance aux antibiotiques dans le temps afin de mieux appréhender le problème de la multirésistance pour pouvoir arrêter son émergence.

- **1.** Aboura A. Applications de la cytogénétique moléculaire à l'étude de pathologies humaines. Thèse p26.
- 2. Adams-Haduch JM, Paterson DL, Sidjabat HE, Pasculle AW, Potoski BA, Muto CA, Harrison LH, Doi Y, 2008. Genetic basis of multidrug resistance in *Acinetobacterbaumannii* clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob Agents Chemother, 52(11):3837-3843.
- **3.** Adams, M. D., Nickel G. C., Bajaksouzian S., Lavender H., Murthy A. R., Jacobs M. R, Bonomo R. A., 2009. Resistance to colistin in *Acinetobacter baumannii* associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 53:3628-34.
- **4.** Afzal-Shah, M., Woodford N., Livermore D., 2001. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β -lactamases associated with carbapenem resistance in clinical isolates of *Acinetobacter baumannii*. Antimicrob Agents Chemother. 45: 583–588.
- **5.** Allain P., 2008. Bêta-lactamines, pénicillines et céphalosporines. Les médicaments. 3ème édition.
- **6.** Ambler, R. P.,1980. "The structure of beta-lactamases." Philos Trans R Soc Lond B Biol Sci 289(1036): 321-31.
- 7. Anandham, R., H. Y. Weon, S. J. Kim, Y. S. Kim, B. Y. Kim, and S. W. Kwon. 2010. *Acinetobacter brisouii* sp. nov., isolated from a wetland in Korea. J Microbiol 48:36-9.
- **8.** Anstey, N. M., Currie B. J., Hassell M., Palmer D., Dwyer B., Seifert H., 2002. Community-acquired bacteremic *Acinetobacter* pneumonia in tropical Australia is caused by diverse strains of *Acinetobacter baumannii*, with carriage in the throat in atrisk groups. J Clin Microbiol. 40: 685–686.
- **9.** Barbe V., Vallenet D., Fonknechten N., et al., 2004. Unique features revealed by the genome sequence of Acinetobacter sp.ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32, 5766-5779.
- **10.** Baumann, P., M. Doudoroff, R. Y. Stanier., 1968. A study of the Moraxella group. II. Oxidative-negative species (genus *Acinetobacter*). J. Bacteriol. 95:1520-1541.
- **11.** *Bagge N.*, Ciofu O., Hentzer N., Campbell J.I., Givskov M., Hoiby N., 2002. Constitutive high expression of chromosomal B-lactamase in *Pseudomonas aeruginosa* caused by a new insertion sequence (IS1669) located in ampD. Antimicrob. Agents Chemother. 46: 3406-11.

- **12.** Bakour, S., M. Kempf, A. Touati, A. A. Ait, D. Haouchine, F. Sahli, and J. M. Rolain. 2012. Carbapenemase-producing Acinetobacter baumannii in two University Hospitals in Algeria. J.Med.Microbiol.
- **13.** Bakour S., Abdelaziz Touati B., Sahli F., Abdennour Ait Ameur C., Haouchine D., Rolain J.M., 2013. Antibiotic resistance determinants of multidrug-resistant *Acinetobacter baumannii* clinical isolates in Algeria. Diagnostic Microbiology and Infectious Disease. 76: 529–531.
- **14.** Beceiro A, Perez-Llarena FJ, Perez A, Tomas Mdel M, Fernandez A, Mallo S, Villanueva R, Bou G., 2007. Molecular characterization of the gene encoding a new *AmpC* β-lactamase in *Acinetobacter baylyi*. J Antimicrob Chemother, 59(5):996-1000.
- **15.** Beijerinck (1911). Über Pigmentbildung bei Essigbakterien. *Centr Bakteriol Parasitenk Abt II* 29, 169-176.
- **16.** Benz R., 2004. Bacterial and Eukaryotic Porins- Structure, Function, Mechanism.s.l. Wiley-VCH.
- **17.** Bergogne-Berezin E, Towner KJ., 1996. *Acinetobacter spp.* as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev, 9(2):148-165.
- **18.** Bergone-Bérézin, E., H. Friedman, and M. Bendinelli, 2008. *Acinetobacter:* Biology and Pathogenesis. Springer science, NewYork, Chap 7, pp. 129-143.
- **19.** Berlau, J., H. Aucken, H. Malnick, and T. Pitt. 1999a. Distribution of *Acinetobacter* species on skin of healthy humans. Eur J Clin Microbiol Infect Dis 18:179-83.
- **20.** Berlau, J., H. M. Aucken, E. Houang, and T. L. Pitt. 1999b. Isolation of *Acinetobacter spp*. including *A. baumannii* from vegetables: implications for hospital-acquired infections. J Hosp Infect 42:201-4.
- **21.** Bernaud G., Benzerara Y., Gravisse J., Raskine L., Sanson-Le pors M.J., Labia R., Arlet G., 2004. Selection during cefepime treatment of a new cephalosporinase variant with extended-spectrum resistance to cefepime In an *Enterobacter aerogenes* clinical isolate. Antimicrob. Agents Chemother. 48: 1040-2.
- **22.** Berrazeg M., S. Diene, L. Medjahed, P. Parola, M. Drissi, D. Raoult, J.M. Rolain, 2013. New Delhi metallo beta-lactamase around the world: an e-review using Google Maps.
- **23.** Bismuth, 2006. In Antibiogramme. 2ème édition. ESKA. Chapitre 18. Aminosides et bactéries à Gram positif.205-225.

- **24.** Bogaerts, P., T. Naas, I. Wybo, C. Bauraing, O. Soetens, D. Piérard, P. Nordmann, and Y. Glupczynski. 2006. Outbreak of infection by carbapenem-resistant *Acinetobacter baumannii* producing the carbapenemase OXA-58 in Belgium. J Clin Microbiol. 44: 4189-4192.
- **25.** Bogaerts P., Rezende de Castro R., Roisin S., Deplano A., Te-Din Huang, Hallin M., Denis O., Glupczynski Y., 2012. Emergence of NDM-1-producing *Acinetobacter baumannii* in Belgium. Journal of AntimicrobialChemotherapyVolume 67,Issue 6 Pp. 1552-1553.
- **26.** Bonnet, R., H. Marchandin, C. Chanal, D. Sirot, R. Labia, C. De Champs, E. Jumas Bilak, J. Sirot., 2002. Chromosome-encoded class D beta-lactamase OXA-23 in *Proteus mirabilis*. Antimicrob Agents Chemother. 46: 2004-2006.
- **27.** Bonnin, R. A., P. Nordmann, A. Potron, H. Lecuyer, J. R. Zahar, L. Poirel., 2011. Carbapenem-hydrolyzing GES-type extended-spectrum beta-lactamase in *Acinetobacter baumannii*. Antimicrob Agents Chemother 55:349-54.
- **28.** Bou G, Martinez-Beltran J, 2000a. Cloning, nucleotide sequencing, and analysis of the gene encoding an *AmpC* B-lactamase in *Acinetobacter baumannii*. Antimicrob Agents Chemother ;44:428-32.
- **29.** Bou, G., A. Oliver, J. Martínez-Beltrán., 2000b. OXA-24, a novel class D betalactamase with carbapenemase activity in an *Acinetobacter baumannii* clinical strain. Antimicrob Agents Chemother. 44: 1556-1561.
- **30.** Boo, T. W., F. Walsh, B. Crowley., 2009. Molecular characterization of carbapenem-resistant *Acinetobacter* species in an Irish university hospital: predominance of *Acinetobacter* genomic species 3. J Med Microbiol. 58: 209-216.
- **31.** Boulanger A., Naas T., Fortineau N., Figueiredo S., Nordmann P.,2012. NDM-1-Producing *Acinetobacter baumannii* from Algeria. Antimicrob Agents Chemother. April; 56(4): 2214–2215.
- **32.** Bouvet, P. J., Grimon P. A., 1987. Taxonomy of the genus *Acinetobacter* with the recognition of *Acinetobacter baumannii sp. nov.*, *Acinetobacter haemolyticus sp. nov.*, *Acinetobacter johnsonii sp. nov.*, and *Acinetobacter junii sp. nov.*, and emended description of *Acinetobacter calcoaceticus* and *Acinetobacter lwoffii. Int. J. Syst. Bacteriol.* 36:228-240.
- **33.** Bouvet, P. J., Jeanjean S., 1989. Delineation of new proteolytic genomic species in the genus *Acinetobacter. Res. Microbiol.* 140:291-299.

- **34.** Bouvet, P. J., and M. L. Joly-Guillou. 2000. *Acinetobacter*, p. 1239-1256. In ESKA (ed.), Précis de bactériologie clinique.
- **35.** Boyer A., 2012. Maîtrise de la résistance bactérienne : réflexions sur la phase empirique de l'antibiothérapie en réanimation. Thèse, P30.
- **36.** Bradford P.A., Urban C., Mariano N., Projan S.J., Rahal J.J., Bush K., 1997.Imipenem resistance in *Klebsiella pneumonia* is associated with the combination of ACT-1. A plasmid-mediated *AmpC* B-lactamase, and the loss of an outer membrane protein. Antimicrobiol. Agents Chemother. 1997, 41:563-9.
- **37.** Brisou, J., Prevot A. R., 1954. Studies on bacterial taxonomy. X. The revision of species under Achromobacter group. Ann. Inst. Pasteur (Paris) 86:722-728.
- **38.** Brown, S., H. K. Young, S. G. B Amyes., 2005. Characterisation of OXA-51 a novel class D carbapenemase found in genetically unrelated clinical strains of *Acinetobacter baumannii* from Argentina. Clin Microbiol Infect. 11: 15-23.
- 39. Bryskier A, 1999. Antibiotiques agents antibactériens et antifongiques. Ed Ellipses.
- **40.** Burckhardt I., Zimmermann S., 2011. Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry To Detect Carbapenem Resistance within 1 to 2.5 Hours. J Clin Microbiol 49: 3321–3324. doi: 10.1128/JCM.00287-11
- **41.** Bush, K., G. A. Jacoby, A. A. Medeiros. 1995. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211-33.
- **42.** Bush, K., and G. A. Jacoby. 2010. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969-76.
- **43.** Carr, E. L., P. Kampfer, B. K. Patel, V. Gurtler, and R. J. Seviour., 2003. Seven novel species of *Acinetobacter* isolated from activated sludge. Int J Syst Evol Microbiol 53:953-63.
- **44.** Cavallo J.D., Fabre R., Jehl F., Rapp C., Garrabé E., 2004. Bétalactamines. EMCMaladies Infectieuses. 1 : 129-202.
- **45.** Celenza G, Pellegrini C, Caccamo M, Segatore B, Amicosante G, Perilli M., 2006. Spread of blaCTX-M-type and blaPER-2 β-lactamase genes in clinical isolates from Bolivian hospitals. J Antimicrob Chemother, 57(5):975-978.
- **46.** Changeur N., Cherruault M., 2009. Pharmacologie des aminosides (aminoglycosides). P: 3.

- **47.** Charrel R.N., Pagès J.M., P De Micco, Mallea M., 1996. Prevalence of outer membrane porin alteration in B-lactam-antibiotic resistant *Enterobacter aerogenes*. Antimicrobiol. Agents Chemother., 40(12):2854-2858.
- **48.** Chang, H. C., Y. F. Wei, L. Dijkshoorn, M. Vaneechoutte, C. T. Tang, T. C. Chang., 2005. Species-level identification of isolates of the *Acinetobacter calcoaceticus-Acinetobacter baumannii* complex by sequence analysis of the 16S-23S rRNA gene spacer region. J Clin Microbiol 43:1632-9.
- **49.** Chen, T. L., Y. T. Lee, S. C. Kuo, P. R. Hsueh, F. Y. Chang, L. K. Siu, W. C. Ko, C. P. Fung., 2010. Emergence and distribution of plasmids bearing the *bla*_{OXA-51-like} gene with an upstream ISAba1 in carbapenem-resistant *Acinetobacter baumannii* isolates in Taiwan. Antimicrob Agents Chemother. 54: 4575-4581.
- **50.** Chen Z, Qlu S, Wang Y, Liu S, Wang Z, Du X, Wang L, Guo J, Liu N, Yuan J., 2011. Coexistence of blaNDM-1 with the prevalent blaOXA23 and blaIMP in pan-drug resistant *Acinetobacter baumannii* isolates in China. Clin Infect Dis, 52(5):692-693.
- **51.** Choi, S. H., E. J. Choo, Y. G. Kwak, M. Y. Kim, J. B. Jun, M. N. Kim, N. J. Kim, J. Y. Jeong, Y. S. Kim, J. H. Woo., 2006. Clinical characteristics and outcomes of bacteremia caused by *Acinetobacter* species other than *A. baumannii*: comparison with *A. baumannii* bacteremia. J Infect Chemother. 12: 380-386.
- **52.** Corrigan, K. M., N. Y. Harmis, and M. D. Willcox., 2001. Association of *Acinetobacter* species with contact lens-induced adverse responses. Cornea 20:463-6.
- **53.** Corvec S, Poirel L, Naas T, Drugeon H, Nordmann P., 2007. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-23 in *Acinetobacter baumannii*. Antimicrob Agents Chemother, 51(4):1530-1533.
- **54.** Coyne, S., P. Courvalin, B. Perichon. 2011. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 55:947-53.
- **55.** D'Agata EM, Thayer V, Schaffner W., 2000. An outbreak of *Acinetobacter baumannii:* the importance of cross-transmission. Infect Control Hosp Epidemiol;21:588–91.
- **56.** Damier-Piolle L, Magnet S, Brémont S, 2008. AdeIJK, a resistance-nodulation-cell division pump exffluxing multiple antibiotics in *Acinetobacter baumannii*. Antimicrob Agents Chemother; 52:557-62.
- **57.** Da Silva, G. J., S. Quinteira, E. Bértolo, J. C. Sousa, L. Gallego, A. Duarte, L. Peixe, and Portugese Resistance Study Group., 2004. Long-term dissemination of an OXA40

- carbapenemase-producing *Acinetobacter baumannii* clone in the Iberian Peninsula. J Antimicrob Chemother. 54: 255-258.
- **58.** Decré D., 2012. *Acinetobacter baumannii* et résistance aux antibiotiques. Un modèle d'adaptation. Revue Francophone des Laboratoires 441, 43-52.
- **59.** Delbos V., 2012. Manifestations cliniques et traitement des infections à *Acinetobacter baumannii*. Revue francophone des laboratoires Vol 42, N° 441, pp. 59-65.
- **60.** Del Mar Tomas M, Cartelle M, Pertega S, Beceiro A, Llinares P, Canle D, et al., 2005. Hospital outbreak caused by a carbapenem-resistant strain of *Acinetobacter baumannii*: patient prognosis and risk-factors for colonisation and infection. Clin Microbiol Infect; 11:540–6.
- **61.** Devaud, M., F. H. Kayser, and B. Bachi., 1982. Transposon-mediated multiple antibiotic resistance in Acinetobacter strains. Antimicrob Agents Chemother 22:323-9.
- **62.** Diene, S. M., N. Bruder, D. Raoult, and J. M. Rolain. 2011. Real-time PCR assay allows detection of the New Delhi metallo-beta-lactamase (NDM-1)-encoding gene in France. Int.J.Antimicrob.Agents 37:544-546.
- **63.** Dijkshoorn L, Van Harsselaar B, Tjernberg I, Bouvet PJ, Vaneechoutte M., 1998. Evaluation of amplified ribosomal DNA restriction analysis for identification of *Acinetobacter* genomic species. Syst Appl Microbiol., 21(1):33-9.
- **64.** Dijkshoorn, L., E. van Aken, L. Shunburne, T. J. van der Reijden, A. T. Bernards, A. Nemec, and K. J. Towner., 2005.Prevalence of *Acinetobacter baumannii* and other *Acinetobacter spp*. in faecal samples from non-hospitalised individuals. Clin Microbiol Infect 11:329-32.
- **65.** Dijkshoorn, L., Nemec, A., and Seifert, H., 2007. An increasing threat in hospitals: multidrug-resistant *Acinetobacter baumannii*. Nat. Rev. Microbiol. 5, 939–951.
- **66.** Di Popolo A, Giannouli M, Triassi M, Brisse S, Zarrilli R., 2011. Molecular epidemiological investigation of multidrug-resistant *Acinetobacter baumannii* strains in four Mediterranean countries with a multilocus sequence typing scheme. Clin Microbiol Infect, 17(2):197-201.
- **67.** Dolzani, L., E. Tonin, C. Lagatolla, L. Prandin, and C. Monti-Bragadin. 1995. Identification of *Acinetobacter* isolates in the *A. calcoaceticus-A. baumannii* complex by restriction analysis of the 16S-23S rRNA intergenic-spacer sequences. J Clin Microbiol 33:1108-13.

- **68.** Donald, H. M., W. Scaife, S. G. Amyes, and H. K. Young., 2000. Sequence analysis of ARI1, a novel OXA beta-lactamase, responsible for imipenem resistance in *Acinetobacter baumannii* 6B92. Antimicrob Agents Chemother 44:196-9.
- **69.** Drissi M., Poirel L., Mugnier P.D., Baba Ahmed Z., Nordmann P., 2010. Carbapenemase-producing *Acinetobacter baumannii*, Algeria. European Journal of Clinical Microbiology & Infectious Diseases November 2010, Volume 29, Issue 11, pp 1457-1458.
- **70.** Edelstein, M., M. Pimkin, I. Palagin, I. Edelstein, and L. Stratchounski. 2003. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob.Agents Chemother. 47:3724-3732.
- **71.** Ehrenstein, B., A. T. Bernards, L. Dijkshoorn, P. Gerner-Smidt, K. J. Towner, P. J. Bouvet, F. D. Daschner, H. Grundmann., 1996. *Acinetobacter* species identification by using tRNA spacer fingerprinting. J Clin Microbiol 34:2414-20.
- **72.** Endimiani, A., F. Luzzaro, R. Migliavacca, E. Mantengoli, A. M. Hujer, K. M. Hujer, L. Pagani, R. A. Bonomo, G. M. Rossolini, A. Toniolo., 2007. Spread in an Italian hospital of a clonal *Acinetobacter baumannii* strain producing the TEM-92 extended-spectrum betalactamase. Antimicrob Agents Chemother 51:2211-4.
- **73.** Espinal, P., I. Roca, J. Vila., 2011. Clinical impact and molecular basis of antimicrobial resistance in non-*baumannii Acinetobacter*. Future Microbiol 6:495-511.
- **74.** Espinal P, Seifert H, Dijkshoorn L, Vila J, Roca I., 2011. Rapid and accurate identification of genomic species from the *Acinetobacter baumannii* (Ab) group by MALDI-TOF MS. Clin Microbiol Infect. 2012 Nov;18(11):1097-103.
- **75.** Ezaitouni F., Rhou H., Benamar L., Ouzeddoun N., Bayahya R., Balafrej L., 1999. Rein et aminosides. Médecine du Maghreb.77:1.
- **76.** Falagas, M. E., I. A. Bliziotis, I. I. Siempos., 2006. Attributable mortality of *Acinetobacter baumannii* infections in critically ill patients: a systematic review of matched cohort and case-control studies. Crit Care. 10: R48.
- 77. Fernandez-Cuenca, F., L. Martinez-Martinez, M. C. Conejo, J. A. Ayala, E. J. Perea, and A. Pascual., 2003. Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of *Acinetobacter baumannii*. J Antimicrob Chemother 51:565-74.

- **78.** Fernandez-Reyes M, Rodriguez-Falcon M, Chiva C, Pachon J, Andreu D, Rivas L., 2009. The cost of resistance to colistin in Acinetobacter baumannii: a proteomic perspective. Proteomics ;9:1632—45.
- **79.** Figueiredo, S., L. Poirel, H. Seifert., 2010. OXA-134, a naturally-occurring carbapenem-hydrolyzing class D β-lactamase from *Acinetobacter lwoffii*. Antimicrob Agents Chemother 54: 5372-5375.
- **80.** Fournier, P.E., D. Vallenet, V. Barbe, S. Audic, H. Ogata, L. Poirel, H. Richet, C. Robert, S. Mangenot, C. Abergel, P. Nordmann, J. Weissenbach, D. Raoult, J.M. Claverie., 2006. Comparative genomics of multidrug resistance in *Acinetobacter baumannii*. PLoS Genet. 2 E7.
- **81.** Francey, T., F. Gaschen, J. Nicolet, A. P. Burnens., 2000. The role of *Acinetobacter baumannii* as a nosocomial pathogen for dogs and cats in an intensive care unit. J Vet Intern Med 14:177-83.
- **82.** Frasca D., C. Dahyot-Fizelier, O. Mimoz, 2008. La colistine en réanimation. Colistin in the intensive care unit. Réanimation 17 ; 251-258.
- **83.** Gaddy JA, Actis L.A., 2009. Regulation of *Acinetobacter baumannii* biofilm formation. Future Microbiol.;4:273–8. doi: 10.2217/fmb.09.5.
- **84.** Ganapathy H, Pal SK, Teare L, Dziewulski P., 2010. Use of colistin in treating multiresistant Gram-negative organisms in a specialised burns unit. Burns. 2010 Jun;36(4):522-7.
- **85.** Gaynes, R., et Edwards J. R., 2005. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis. 41: 848-854.
- **86.** Gerner-Smidt, P., 1992. Ribotyping of the *Acinetobacter calcoaceticus-Acinetobacter baumannii* complex. J Clin Microbiol 30:2680-5.
- **87.** Goldstein, F. W., A. Labigne-Roussel, G. Gerbaud, C. Carlier, E. Collatz, and P. Courvalin., 1983. Transferable plasmid-mediated antibiotic resistance in *Acinetobacter*. Plasmid 10:138-47.
- **88.** Gordon NC, Wareham DW, 2010. Multidrug-resistant *Acinetobacter baumannii*: mechanisms of virulence and resistance. Int J Antimicrob Agents, 35(3):219-226.
- **89.** Gribun, A., Y. Nitzan, I. Pechatnikov, G. Hershkovits, and D. J. Katcoff. 2003., Molecular and structural characterization of the HMP-AB gene encoding a poreforming protein from a clinical isolate of *Acinetobacter baumannii*. Curr Microbiol. 47: 434-443.

- **90.** Hancock, REW., 1987. Role of porins in outer membrane permeability. J. Bacteriol 1987, 169(3):929-933.
- **91.** Héritier, C., L. Poirel, D. Aubert, and P. Nordmann. 2003. Genetic and functional analysis of the chromosome-encoded carbapenem-hydrolyzing oxacillinase OXA-40 of *Acinetobacter baumannii*. Antimicrob Agents Chemother. 47: 268-273.
- **92.** Héritier, C., L. Poirel, T. Lambert, and P. Nordmann. 2005. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in *Acinetobacter baumannii*. Antimicrob Agents Chemother 49:3198-202.
- **93.** Heritier C, Poirel L, Nordmann P., 2006. Cephalosporinase over-expression resulting from insertion of ISAba1 in *Acinetobacter baumannii*. Clin Microbiol Infect, 12(2):123-130.
- **94.** Hedge, P. J., B. G. Spratt., 1985. Resistance to beta-lactam antibiotics by re-modelling the active site of an E. coli penicillin-binding protein. Nature 318:478-80.
- **95.** Higgins, P. G., H. Wisplinghoff, O. Krut, H. Seifert., 2007. A PCR-based method to differentiate between *Acinetobacter baumannii* and *Acinetobacter* genomic species 13TU.Clin Microbiol Infect 13:1199-201.
- **96.** Higgins, P. G., L. Poirel, M. Lehmann, P. Nordmann, H. Seifert., 2009. OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in *Acinetobacter baumannii*. Antimicrob Agents Chemother. 53: 5035-5038.
- **97.** Higgins, P. G., Lehmann, M., Wisplinghoff, H., Seifert, H., 2010. gyrB multiplex PCR to differentiate between *Acinetobacter calcoaceticus* and *Acinetobacter genomic species 3*. J. Clin. Microbiol. 48, 4592–4594.
- **98.** Hincky-Vitrat Virginie., 2008. Les céphalosporines de 3ième et 4ième générations. Service de Maladies infectieuses et Tropicales., CHU Grenoble. P. 14.
- **99.** Hooper, D. C. 2005. Efflux pumps and nosocomial antibiotic resistance: a primer for hospital epidemiologists. Clin Infect Dis. 40: 1811–1817.
- **100.**Hu, W. S., S. M. Yao, C. P. Fung, Y. P. Hsieh, C. P. Liu, and J. F. Lin., 2007. An OXA66/OXA-51-like carbapenemase and possibly an efflux pump are associated with resistance to imipenem in *Acinetobacter baumannii*. Antimicrob Agents Chemother 51:3844-52
- **101.** Huang, Z. M., P. H. Mao, Y. Chen, L. Wu, and J. Wu. 2004. [Study on the molecular epidemiology of SHV type beta-lactamase-encoding genes of multiple-drug-resistant Acinetobacter baumannii]. Zhonghua Liu Xing Bing Xue Za Zhi 25:425-7.

- **102.** Huang LY, Lu PL, Chen TL, Chang FY, Fung CP, Siu LK., 2010. Molecular characterization of β-lactamase genes and their genetic structures in Acinetobacter genospecies 3 isolates in Taiwan. Antimicrob Agents Chemother, 54(6):2699-2703.
- 103. Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, Ecker DJ, Massire C, Eshoo MW, Sampath R., 2006. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother, 50 (12):4114-4123.
- **104.**Jacoby GA., 2009. AmpC β-lactamases. Clin Microbiol Rev, 22(1):161-182, Table of Contents.
- **105.**Jans, B., Y. Glupezynski, C Suetens et Van Cleemput Els., 2004. Enquête épidémiologique relative à *Acinetobacter baumannii* producteur de BLSE (type VEB-1 en Belgique.
- **106.**Janssen, P., K. Maquelin, R. Coopman, I. Tjernberg, P. Bouvet, K. Kersters, L. Dijkshoorn., 1997. Discrimination of *Acinetobacter genomic species* by AFLP fingerprinting. Int J Syst Bacteriol 47:1179-87.
- **107.** Johnson, E. N., T. C. Burns, R. A. Hayda, D. R. Hospenthal, C. K. Murray., 2007. Infectious complications of open type III tibial fractures among combat casualties. Clin Infect Dis 45:409-15.
- **108.** Joly-Guillou, M. L., 2005. Clinical impact and pathogenicity of *Acinetobacter*. Clin Microbiol Infect 11:868-73.
- **109.**Kaase M, Nordmann P, Wichelhaus TA, Gatermann SG, Bonnin RA, Poirel L., 2011. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J Antimicrob Chemother, 66(6):1260-1262.
- **110.**Kado C.I., Liu S.T., 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriology. 145 (3): 1365-1373.
- **111.**Kang, Y. S., J. Jung, C. O. Jeon, and W. Park., 2011. *Acinetobacter oleivorans sp.* nov. is capable of adhering to and growing on diesel-oil. J Microbiol 49:29-34.
- **112.**Karthikeyan K, Thirunarayan MA, Krishnan P., 2010. Coexistence of blaOXA-23 with blaNDM-1 and armA in clinical isolates of *Acinetobacter baumannii* from India. J Antimicrob Chemother, 65(10):2253-2254.
- **113.**Kilic, A., H. Li, A. Mellmann, A. C. Basustaoglu, M. Kul, Z. Senses, H. Aydogan, C. W. Stratton, D. Harmsen, and Y. W. Tang., 2008. *Acinetobacter septicussp.*

- *nov*. association with a nosocomial outbreak of bacteremia in a neonatal intensive care unit. J Clin Microbiol 46:902-8.
- **114.**Kim, D., K. S. Baik, M. S. Kim, S. C. Park, S. S. Kim, M. S. Rhee, Y. S. Kwak, C. N. Seong., 2008. *Acinetobacter soli sp. nov.*, isolated from forest soil. J Microbiol 46:396-401.
- **115.**Kim, C. K., Y. Lee, H. Lee, G. J. Woo, W. Song, M. N. Kim, W. G. Lee, S.H. Jeong, K. Lee, and Y. Chong., 2010. Prevalence and diversity of carbapenemases among imipenem-nonsusceptible *Acinetobacter* isolates in Korea: emergence of a novel OXA-182. Diagn Microbiol Infect Dis. 68: 432-438. Antibiotiques 01/2010; 12(4):205-227
- 116. Kipnis E., Guery B.-P., 2010. Réévaluation de la colistine
- **117.**Kruger, T., D. Szabo, K. H. Keddy, K. Deeley, J. W. Marsh, A. M. Hujer, R. A. Bonomo, and D. L. Paterson. 2004. Infections with nontyphoidal Salmonella species producing TEM-63 or a novel TEM enzyme, TEM-131, in South Africa. Antimicrob.Agents Chemother. 48:4263-4270.
- **118.**Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J., Butt F., Balakrishnan R. et al., 2010. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis; 10: 597–602.
- **119.**Kusradze, I., S. M. Diene, M. Goderdzishvili, and J. M. Rolain. 2011. Molecular detection of OXA carbapenemase genes in multidrug-resistant Acinetobacter baumannii isolates from Iraq and Georgia. Int.J.Antimicrob.Agents 38:164-168.
- **120.**Lafaurie M., 2008. Aminosides et Fluoraquinolones. DU antibiotiques et antibiothérapie. Hôpital de Saint Louis.
- **121.**Lambert, T., G. Gerbaud, M. Galimand, P. Courvalin, 1993. Characterization of Acinetobacter haemolyticus aac(6')-Ig gene encoding an aminoglycoside 6'-N-acetyltransferase which modifies amikacin. Antimicrob. Agents Chemother. 37:2093–2100.
- **122.**Larouche G., 2001. Les quinolones : des années soixante à aujourd'hui. Pharmacothérapie théorique. Pharmacothérapie théorique. Pharmactuel.34(2) :40.
- **123.**La Scola, B., and D. Raoult., 2004. *Acinetobacter baumannii* in human body louse. Emerg Infect Dis 10:1671-3.
- **124.**La Scola B, Gundi VA, Khamis A, Raoult D., 2006. Sequencing of the *rpoB* gene and flanking spacers for molecular identification of *Acinetobacter* species.J Clin Microbiol. Mar;44(3):827-32.

- **125.**Lee. K, Y. S. Lim, D. Yong, J. H. Yum, Y. Chong, 2003. Evaluation of the Hodge Test and the Imipenem-EDTA Double-Disk Synergy Test for differenciating MetalloB-lactamase-Producing Isolates of *Pseudomonas spp.* And *Acinetobacter spp*.
- **126.**Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, Rossolini GM, Chong Y., 2005. Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother, 49(11):4485-4491.
- **127.**Lee, J. S., K. C. Lee, K. K. Kim, I. C. Hwang, C. Jang, N. G. Kim, W. H. Yeo, B. S. Kim, Y. M. Yu, J. S. Ahn. 2009a. *Acinetobacter antiviralis sp. nov.*, from Tobacco plant roots. J Microbiol Biotechnol 19:250-6.
- **128.**Lee, K., M. N. Kim, T. Y. Choi, S. E. Cho, S. Lee, D. H. Whang, D. Yong, Y. Chong, N. Woodford, D. M. Livermore, the KONSAR Group., 2009b. Wide dissemination of OXA-type carbapenemases in clinical *Acinetobacter spp*. Isolates from South Korea. Int J Antimicrob Agents. 33: 520–524.
- **129.**Lee, Y. T., J. F. Turton, T. L. Chen, R. C. Wu, W. C. Chang, C. P. Fung, C. P. Chen, W. L. Cho, L. Y. Huang, and L. K. Siu., 2009c. First identification of blaOXA-51-like in non-*baumannii Acinetobacter* spp. J Chemother. 21: 514-520.
- **130.**Lee, H. J., and S. S. Lee., 2010. *Acinetobacter kyonggiensis sp. nov.*, a beta-glucosidase-producing bacterium, isolated from sewage treatment plant. J Microbiol 48:754-9.
- **131.**Lim YM, Shin KS, Kim J., 2007. Distinct antimicrobial resistance patterns and antimicrobial resistance-harboring genes according to genomic species of *Acinetobacter* isolates. J Clin Microbiol, 45(3):902-905.
- **132.**Lin, Y. C., W. H. Sheng, Y. C. Chen, S. C. Chang, K. C. Hsia, and S. Y. Li., 2010. Differences in carbapenem resistance genes among *Acinetobacter baumannii*, *Acinetobacter genospecies 3 and Acinetobacter genospecies* 13TU in Taiwan. Int J Antimicrob Agents 35:439-43.
- **133.**Livermore DM., 1995. Beta-lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews;8(4):557-584.
- **134.**LivermoreDM., Walsh T.R., Toleman M., Woodford N., 2011. Balkan NDM-1: escape or transplant? The Lancet Infectious Diseases, Volume 11, Issue 3, Page 164.
- **135.**Magnet, S., P. Courvalin, and T. Lambert., 2001. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in *Acinetobacter baumannii* strain BM4454. Antimicrob Agents Chemother 45:3375-80.

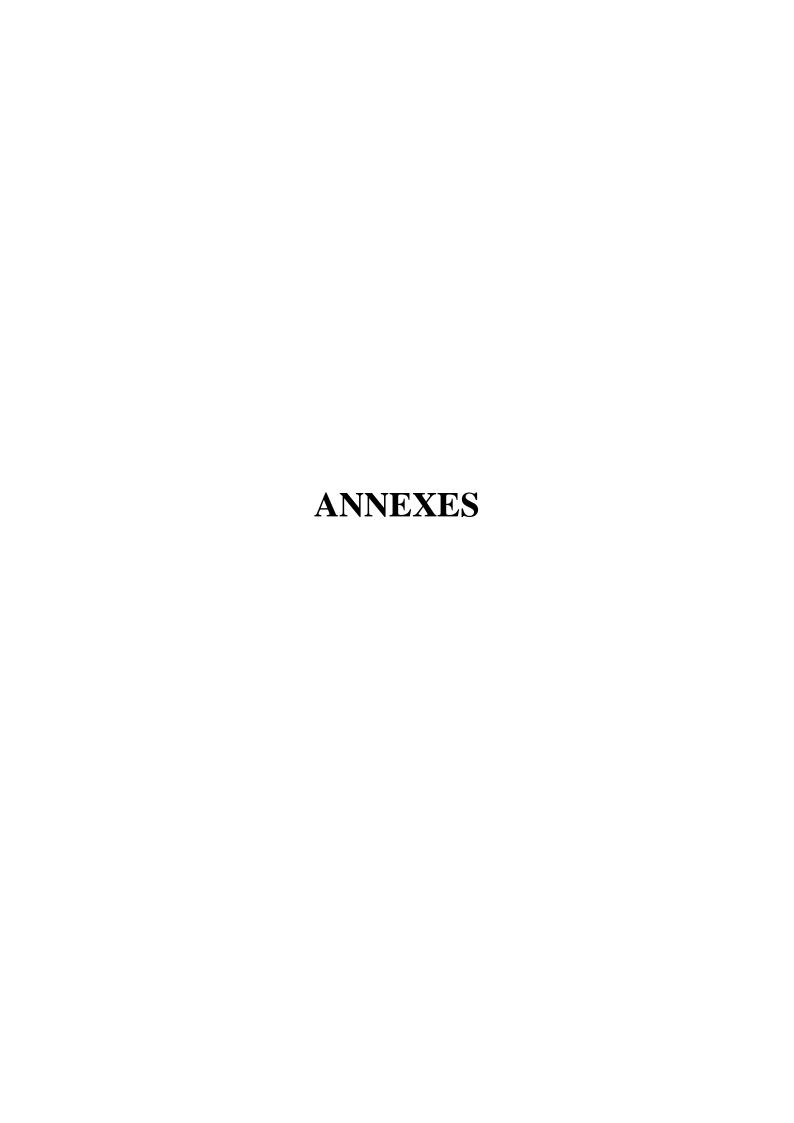
- **136.**Mammeri, H., M. Van De Loo, L. Poirel, L. Martinez-Martinez, and P. Nordmann. 2005. Emergence of plasmid-mediated quinolone resistance in *Escherichia coli* in Europe. Antimicrob. Agents Chemother. 49:71-76.
- **137.**Melano, R., A. Corso, A. Petroni, D. Centron, B. Orman, A. Pereyra, N. Moreno, and M. Galas. 2003. Multiple antibiotic-resistance mechanisms including a novel combination of extended-spectrum beta-lactamases in a *Klebsiella pneumoniae* clinical strain isolated in Argentina. J.Antimicrob.Chemother. 52:36-42.
- **138.**Mendes RE, Kiyota KA, Monteiro J, Castanheira M, Andrade SS, Gales AC, Pignatari AC, Tufik S., 2007. Rapid detection and identification of metallo-beta-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. 45(2):544-7
- **139.**Mendes, R. E., J. M. Bell, J. D. Turnidge, M. Castanheira, and R. N. Jones., 2009a. Emergence and widespread dissemination of OXA-23, -24/40 and -58 carbapenemases among *Acinetobacter spp*. in Asia-Pacific nations: report from the SENTRY Surveillance Program. J Antimicrob Chemother 63:55-9.
- **140.**Mendes, R. E., J. M. Bell, J. D. Turnidge, M. Castanheira, L. M. Deshpande, R. N. Jones., 2009b. Codetection of blaOXA-23-like gene blaOXA-133 and blaOXA-58 in *Acinetobacter radioresistens*: report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 53: 843-844.
- **141.**Menon, T., S. Shanmugasundaram, B. Nandhakumar, K. Nalina, Balasubramaniam., 2006. Infective endocarditis due to *Acinetobacter baumannii* complex--a case report. Indian J Pathol Microbiol 49:576-8.
- **142.**Metan, G., E. Alp, B. Aygen, and B. Sumerkan., 2007. *Acinetobacter baumannii* meningitis in post-neurosurgical patients: clinical outcome and impact of carbapenem resistance. J Antimicrob Chemother 60:197-9.
- **143.**McDonald, L. C., S. N. Banerjee, W. R. Jarvis., 1999. Seasonal variation of *Acinetobacter* infections: 1987–1996. Nosocomial Infections Surveillance System. Clin. Infect. Dis. 29:1133–1137.
- **144.**Mugnier PD, Poirel L, Nordmann P., 2009. Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of *Acinetobacter baumannii*. J Bacteriol, 191(7):2414-2418.
- **145.**Murray, P. R., M.A. Pfaller, and K.S. Rosenthal., 2005. Médical microbiology, 5th ed, St-Louis, Missouri
- **146.**Mussi MA, Limansky AS, Viale AM., 2005. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional

- inactivation of a gene encoding a member of a novel family of ßbarrel outer membrane proteins. Antimicrob Agents Chemother, 49(4):1432-1440.
- **147.**Naas, T., F. Namdari, H. Reglier-Poupet, C. Poyart, and P. Nordmann., 2007. Panresistant extended-spectrum beta-lactamase SHV-5-producing *Acinetobacter baumannii* from New York City. J Antimicrob Chemother 60:1174-6.
- 148. Nauciel, 2001. Bactériologie médicale. Ed Masson.
- **149.**Nemec, A., T. De Baere, I. Tjernberg, M. Vaneechoutte, T. J. van der Reijden, L. Dijkshoorn., 2001. *Acinetobacter ursingii sp. nov.* and *Acinetobacter schindleri sp. nov.*, isolated from human clinical specimens. Int J Syst Evol Microbiol 51:1891-9.
- **150.**Nemec, A., L. Dijkshoorn, I. Cleenwerck, T. De Baere, D. Janssens, T. J. Van Der Reijden, P. Jezek, and M. Vaneechoutte., 2003. *Acinetobacter parvus sp. nov.*, a smallcolony-forming species isolated from human clinical specimens. Int J Syst Evol Microbiol 53:1563-7.
- **151.**Nemec A, Dolzani L, Brisse S, van den Broek P, Dijkshoorn L., 2004. Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European *Acinetobacter baumannii* clones. J Med Microbiol, 53(Pt 12):1233-1240.
- **152.**Nemec, A., M. Musilek, M. Maixnerova, T. De Baere, T. J. van der Reijden, M. Vaneechoutte, L. Dijkshoorn., 2009. *Acinetobacter beijerinckii sp. nov.* and *Acinetobacter gyllenbergii sp. nov.*, haemolytic organisms isolated from humans. Int J Syst Evol Microbiol 59:118-24.
- **153.**Nemec, A., M. Musílek, O. Sedo, T. De Baere, M. Maixnerová, T. J. van der Reijden, Z. Zdráhal, M. Vaneechoutte, L. Dijkshoorn., 2010. Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate *Acinetobacter genomic species 10 and 11*, respectively. Int J Syst Evol Microbiol. 60: 896-903.
- **154.**Nemec, A., L. Krizova, M. Maixnerova, T. J. van der Reijden, P. Deschaght, V. Passet, M. Vaneechoutte, S. Brisse, L. Dijkshoorn., 2011. Genotypic and phenotypic characterization of the *Acinetobacter calcoaceticus-Acinetobacter baumannii* complex with the proposal of *Acinetobacter pittii sp. nov.* (formerly *Acinetobacter genomic species 3*) and *Acinetobacter nosocomialis sp. nov.* (formerly *Acinetobacter genomic species 13TU*). Res Microbiol 162:393-404.
- **155.**Nikaido, H., 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994, 264:382-388.

- **156.**Nikaido, H., 2003.Molecular basis of bacterial outer membrane permeability revisited. Microbiol.Mol.Biol.Rev, 67:593-656.
- **157.**Nagano, N., Y. Nagano, C. Cordevant, N. Shibata, and Y. Arakawa., 2004. Nosocomial transmission of CTX-M-2 beta-lactamase-producing *Acinetobacter baumannii* in a neurosurgery ward. J Clin Microbiol 42:3978-84.
- **158.**Nishimura, Y., T. Ino, and H. Iizuka., 1988. *Acinetobacter radioresistens sp. nov.* isolated from cotton and soil. Int. J. Syst. Bacteriol. 38:209-211.
- **159.**Nishino K., Yamaguchi A., 2001. Analysis of a complete libraryof putative drug transporter genes in *Escherichia coli*. J. Bacteriol.2001, 183(20):5803-5812.
- **160.**Noppe-Leclercq, I., F. Wallet, S. Haentjens, R. Courcol, and M. Simonet. 1999. PCR detection of aminoglycoside resistance genes: a rapid molecular typing method for *Acinetobacter baumannii*. Res.Microbiol. 150:317-322.
- **161.**Nordmann P., 2010.Résistance aux carbapénèmes *chez les* bacilles à Gram négatif [Bulletin]. Médecine et sciences. 2010/11; 26 : 950-959.
- **162.**Park YK, Choi JY, Jung SI, Park KH, Lee H, Jung DS, Heo ST, Kim SW, Chang HH, Cheong HS et al., 2009. Two distinct clones of carbapenem-resistant *Acinetobacter baumannii* isolates from Korean hospitals. Diagn Microbiol Infect Dis, 64(4):389-395.
- **163.**Pasteran, F., D. Faccone, A. Petroni, M. Rapoport, M. Galas, M. Vazquez, and A. Procopio. 2005. Novel variant (bla(VIM-11)) of the metallo-{beta}-lactamase bla(VIM) family in a GES-1 extended-spectrum-{beta}-lactamase-producing *Pseudomonas aeruginosa* clinical isolate in Argentina. Antimicrob. Agents Chemother. 49:474-475.
- **164.**Paton, R., R. S. Miles, J. Hood, and S. G. B. Amyes., 1993. ARI-1: β-lactamase mediated imipenem resistance in *Acinetobacter baumannii*. Int J Antimicrob Agents. 2: 81–88.
- **165.**Peleg, A. Y., C. Franklin, J. M. Bell, and D.W. Spelman., 2006. Emergence of carbapenem resistance in *Acinetobacter baumannii* recovered from blood cultures in Australia. Infect Control Hosp Epidemiol. 27: 759-761.
- **166.**Peleg, A. Y., H. Seifert, and D. L. Paterson., 2008. *Acinetobacter baumannii:* emergence of a successful pathogen. Clin Microbiol Rev 21:538-82.
- **167.**Perez, F., A. M. Hujer, K. M. Hujer, B. K. Decker, P. N. Rather, and R. A. Bonomo. 2007. Global challenge of multidrug-resistant *Acinetobacter baumannii*. Antimicrob. Agents Chemother. 51:3471–3484.
- **168.**Pfeifer Y, Zander E, Göttig S, Hunfeld KP, Seifert H, Higgins PG., 2011. Complete DNA sequence of blaNDM-1 gene cassette integrated into the chromosome of

- Acinetobacter baumannii. 21st European Congress of Clinical Microbiology and Infectious Diseases/27th International Congress of Chemotherapy, Abstract O 215.
- **169.**Philippon A., Arlet G., Jacoby G.A., 2002. Plasmid-determined *AmpC*-type B-lactamases. Antimicrob. Agents Chemother. 46:1-11.
- **170.**Philippon A., Arlet G., 2006. β-Lactamases de bacilles à Gram négatif : le mouvement perpétuel. Annales de biologie clinique. 64 (1): 37-51.
- **171.**Piddock L.J.V., 2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin.Microbiol.Rev., 19(2):382-402.
- **172.**Poirel, L., O. Menuteau, N. Agoli, C. Cattoen, and P. Nordmann., 2003. Outbreak of extended-spectrum beta-lactamase VEB-1-producing isolates of *Acinetobacter baumannii* in a French hospital. J Clin Microbiol 41:3542-7.
- **173.**Poirel, L., S. Marqué, C. Héritier, C. Segonds, G. Chabanon, and P. Nordmann. 2005. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in *Acinetobacter baumannii*. Antimicrob Agents Chemother. 49: 202-208.
- **174.**Poirel, Nordmann, 2006a. Résistance aux β-lactamines chez *Acinetobacter baumannii* : évolution et émergence de nouveaux mécanismes. Antibiotiques, 8 : 1-9.
- **175.**Poirel L, Nordmann P., 2006b. Carbapenem resistance in *Acinetobacter baumannii*: mechanisms and epidemiology. Clin Microbiol Infect, 12(9):826-836.
- **176.**Poirel, L., S. Corvec, M. Rapoport, P. Mugnier, A. Petroni, F. Pasteran, D. Faccone, M. Galas, H. Drugeon, V. Cattoir, and P. Nordmann. 2007. Identification of the novel narrowspectrum beta-lactamase SCO-1 in *Acinetobacter spp.* from Argentina. Antimicrob Agents Chemother 51:2179-84.
- **177.**Poirel, L., and P. Nordmann., 2008a. *Acinetobacter baumannii*: Mechanisms of resistance, multiple β-Lactamases. Infectious agents and pathogenesis pp 129-143.
- **178.** Poirel, L., S. Figueiredo, V. Cattoir, A. Carattoli, and P. Nordmann., 2008b. *Acinetobacter radioresistens* as a silent source of carbapenem resistance for *Acinetobacter spp.* Antimicrob Agents Chemother. 52: 1252-1256.
- **179.**Poirel L, Naas T, Nordmann P, 2010. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother, 54(1):24-38.
- **180.**Poirel, L., A. Potron, S. Munoz-Price, T. Cleary, P. Nordmann., 2011. Genetics of Acquisition of the CTX-M-15 Encoding Gene in *Acinetobacter baumannii* Isolates. In s. ICAAC (ed.), Chicago.
- **181.**Quale J.M., the task force, 2002. The cost of antibiotic resistance : effect of resistance among *Staphyloccocus aureus*, *Klebsiella pneumonia*, *Acinetobacter baumannii*

- and Pseudomonas aeruginosa on length of hospital stay. Infect. Control. Hosp. Epidemiol. 23:106-8.
- **182.**Quale J., Bratu S., Landman D., 2003. Molecular epidemiology and mechanisms of carbapenem resistance in *Acinetobacter baumannii* endemic in New York City. Clin Infect Dis 37: 214–20.Eska; p. 1239–58.
- **183.**Quinteira, S., F. Grosso, H. Ramos, and L. Peixe.? 2007. Molecular epidemiology of imipenem-resistant *Acinetobacter haemolyticus* and *Acinetobacter baumannii* isolates carrying plasmid-mediated OXA-40 from a Portuguese hospital. Antimicrob Agents Chemother. 51: 3465-3466.
- **184.**Rahal K., Belouni R., Tali-Maamar H., Boudouane M., Missoum M.F.K., Benslimani A., Aboun A., 2009. Rapport d'évaluation : Surveillance de la résistance des bactéries aux antibiotiques.
- **185.**Rahal K., Belouni R., Tali-Maamar H., Boudouane M., Missoum M.F.K., Benslimani A., Aboun A., 2010. Rapport d'évaluation : Surveillance de la résistance des bactéries aux antibiotiques
- **186.**Rahal K., Belouni R., Tali-Maamar H., Boudouane M., Missoum M.F.K., Benslimani A., Aboun A., 2011. Rapport d'évaluation : Surveillance de la résistance des bactéries aux antibiotiques.
- **187.**Ravasi P, Limansky AS, Rodriguez RE, Viale AM, Mussi MA., 2011. ISAba825, a functional insertion sequence modulating genomic plasticity and blaOXA-58 expression in *Acinetobacter baumannii*. Antimicrob Agents Chemother, 55(2):917-920.
- **188.**Recchia, G. D., and R. M. Hall., 1997. Origins of the mobile gène cassettes found in intégrons. Trends Microbiol 5:389-94.
- **189.**Ribera, A., J. Ruiz, and J. Vila., 2003. Presence of the Tet M determinant in a clinical isolate of *Acinetobacter baumannii*. Antimicrob Agents Chemother 47:2310-2.
- **190.**Ribera A, Fernandez-Cuenca F, Beceiro A, Bou G, Martinez-Martinez L, Pascual A, Cisneros JM, Rodriguez-Bano J, Pachon J, Vila J., 2004. Antimicrobial susceptibility and mechanisms of resistance to quinolones and β-lactams in *Acinetobacter genospecies 3*. Antimicrob Agents Chemother, 48(4):1430-1432.
- **191.**Robledo, I. E., E. E. Aquino, M. I. Sante, J. L. Santana, D. M. Otero, C. F. Leon, and G. J. Vazquez., 2010. Detection of KPC in *Acinetobacter spp*. in Puerto Rico. Antimicrob Agents Chemother 54:1354-7.
- **192.**Rolain JM, Parola P, Cornaglia G., 2010. New Delhi metallo-b-lactamase (NDM-1): towards a new pandemia? Clin Microbiol Infect; 16: 1699–701


- **193.**Ruppé, 2010. Épidémiologie des bêta-lactamases à spectre élargi : l'avènement des CTX-M. Antibiotiques. 12 : 3-16.
- **194.**Rossau, R., A. van Landschoot., M. Gillis, and J. de Ley., 1991. Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accommodate the genera *Moraxella*, *Acinetobacter*, and *Psychrobacter* and related organisms. Int. J. Syst. Bacteriol. 41:310-319.
- **195.**Ruiz, M., S. Marti, F. Fernandez-Cuenca, A. Pascual, J. Vila., 2007. High prevalence of carbapenem-hydrolysing oxacillinases in epidemiologically related and unrelated *Acinetobacter baumannii* clinical isolates in Spain. Clin Microbiol Infect 13:1192-8.
- **196.**Sanger F., Nicklen S, Coulson AR.DNA sequencing with chain-terminating inhibitors. 1977.
- **197.**Sato K, Nakae T., 1991. Outer membrane permeability of Acinetobacter calcoaceticus and its implication in antibiotic résistance. J Antimicrob Chemother ;28:35-45.
- **198.**Sauvage, E., F. Kerff, M. Terrak, J. A. Ayala, and P. Charlier., 2008. The penicillin binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234-58.
- **199.**Schaub, I. G. & Hauber, F. D., 1948. A Biochemical and Serological Study of a Group of Identical Unidentifiable Gram-negative Bacilli from Human Sources. *J Bacteriol* 56, 379-385.
- **200.**Segal H, Garny S, Elisha BG., 2005. Is ISABA-1 customized for *Acinetobacter*? FEMS Microbiol Lett 2005, 243(2):425-429.
- **201.**Seifert, H., R. Baginski, A. Schulze, and G. Pulverer., 1993. Antimicrobial susceptibility of Acinetobacter species. Antimicrob Agents Chemother 37:750-3.
- **202.**Seifert, H., A. Strate, A. Schulze, and G. Pulverer., 1994. Bacteremia due to *Acinetobacter* species other than *Acinetobacter baumannii*. Infection. 22: 379-385.
- **203.**Seifert, H., L. Dijkshoorn, P. Gerner-Smidt, N. Pelzer, I. Tjernberg, and M. Vaneechoutte., 1997. Distribution of *Acinetobacter s*pecies on human skin: comparison of phenotypic and genotypic identification methods. J Clin Microbiol 35:2819-25.
- **204.**Sevillano, E., L. Gallego, and J. M. García-Lobo., 2009. First detection of the OXA-40 carbapenemase in *P. aeruginosa* isolates, located on a plasmid also found in *A. baumannii*. Pathol Biol (Paris). 57: 493-495.
- **205.**Shakil, S., and A. U. Khan., 2010. Detection of CTX-M-15-producing and carbapenemresistant *Acinetobacter baumannii* strains from urine from an Indian hospital. J Chemother 22:324-7.

- **206.** Soussy, 2006. In Antibiogramme. 2ème édition. ESKA. Chapitre 4. Bases de la catégorisation clinique.35-41.
- **207.**Su, X. Z., J. Chen, T. Mizushima, T. Kuroda, and T. Tsuchiya., 2005. AbeM, an H+coupled *Acinetobacter baumannii* multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother 49:4362-4.
- **208.**Thiolas A., Bollet C., La Scola B., Raoult D., Pagès J.M., 2005. Successive emergence of *Enterobacter aerogenes* strains resistant to imipenem and colistin in a patient. Antimicrobiol. Agents Chemother. 2005, 49:1354-8.
- **209.**Tian, G. B., J. M. Adams-Haduch, T. Bogdanovich, A. W. Pasculle, J. P. Quinn, H. N. Wang, and Y. Doi., 2011. Identification of diverse OXA-40 group carbapenemases, including a novel variant, OXA-160, from *Acinetobacter baumannii* in Pennsylvania. Antimicrob Agents Chemother. 55: 429-432.
- **210.**Timsit, J. F., S. Chevret, J. Valcke, B. Misset, B. Renaud, F.W. Goldstein, P. Vaury, and J. Carlet., 1996. Mortality of nosocomial pneumonia in ventilated patients: influence of diagnostic tools. Am J Res and Cri Care Med. 154: 116-123.
- **211.**Tjernberg, I., and J. Ursing., 1989. Clinical strains of *Acinetobacter* classified by DNA-DNA hybridization. APMIS 97:595-605.
- **212.**Touati, A., L. Brasme, S. Benallaoua, A. Gharout, J. Madoux, and C. C. De. 2008. First report of qnrB-producing Enterobacter cloacae and qnrA-producing Acinetobacter baumannii recovered from Algerian hospitals. Diagn.Microbiol.Infect.Dis. 60:287-290.
- **213.**Touati M, Diene SM, Racherache A, Dekhil M, Djahoudi A, Rolain JM., 2012. Emergence of blaOXA-23 and blaOXA-58 carbapenemase-encoding genes in multidrugresistant Acinetobacter baumannii isolates from University Hospital of Annaba, Algeria. Int J Antimicrob Agents. 2012 Jul;40(1):89-91.
- **214.**Toure F., 2004. Résistance aux béta-lactamines de souches bactérienne isolées d'hémoculture au CHU A.LE DANTEC. Thèse pour obtenir le grade de docteur en pharmacie. P: 29-40.
- **215.**Toussaint A., Merlin C., 2002. Mobile elements as a combination of functional modules. Plasmid 47-26-35.
- **216.**Trottier, V., P. G. Segura, N. Namias, D. King, L. R. Pizano, and C. I. Schulman., 2007. Outcomes of *Acinetobacter baumannii* infection in critically ill burned patients. J Burn Care Res 28:248-54.

- **217.**Turkoglu M, Dizbay M, Ciftçi A, Aksakal FN, Aygencel G., 2012. Colistin therapy in critically ill patients with chronic renal failure and its effect on development of renal dysfunction. Int J Antimicrob Agents. ;39 (2):142-5.
- **218.**Turton, J. F., N. Woodford, J. Glover, S. Yarde, M. E. Kaufmann, and T. L. Pitt., 2006a. Identification of *Acinetobacter baumannii* by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol. 44: 2974-2976.
- 219.Turton, J. F., M. E. Ward, N. Woodford, M. E. Kaufmann, R. Pike, D. M. Livermore, T. L. Pitt., 2006b. The role of ISAba1 in expression of OXA carbapenemase genes in *Acinetobacter baumannii*. FEMS Microbiol Lett 258:72-7.
- **220.**Vahaboglu, H., R. Ozturk, G. Aygun, F. Coskunkan, A. Yaman, A. Kaygusuz, H. Leblebicioglu, I. Balik, K. Aydin, and M. Otkun., 1997. Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial *Acinetobacter* and *Pseudomonas aeruginosa* isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother 41:2265-9.
- **221.** Vallenet, D., P. Nordmann, V. Barbe, L. Poirel, S. Mangenot, E. Bataille, C. Dossat, S. Gas, A. Kreimeyer, P. Lenoble, S. Oztas, J. Poulain, B. Segurens, C. Robert, C. Abergel, J. M. Claverie, D. Raoult, C. Medigue, J. Weissenbach, and S. Cruveiller. 2008. Comparative analysis of *Acinetobacters*: three genomes for three lifestyles. PLoS ONE 3:e1805.
- **222.** Vaneechoutte, M., L. Dijkshoorn, I. Tjernberg, A. Elaichouni, P. de Vos, G. Claeys, and G. Verschraegen., 1995. Identification of *Acinetobacter genomic species* by amplified ribosomal DNA restriction analysis. J Clin Microbiol 33:11-5.
- **223.** Vaneechoutte, M., L. A. Devriese, L. Dijkshoorn, B. Lamote, P. Deprez, G. Verschraegen, and F. Haesebrouck., 2000. *Acinetobacter baumannii*-infected vascular catheters collected from horses in an equine clinic. J Clin Microbiol 38:4280-1.
- **224.**Vaneechoutte, M., Young, D. M., Ornston, L. N., De Baere, T., Nemec, A., Van DerReijden, T., Carr, E., Tjernberg, I. & Dijkshoorn, L., 2006. Naturally transformable *Acinetobacter sp.* strain ADP1 belongs to the newly described species *Acinetobacter baylyi.Appl Environ Microbiol* 72, 932-936.
- **225.** Vaneechoutte, M., A. Nemec, M. Musilek, T. J. van der Reijden, M. van den Barselaar, I. Tjernberg, W. Calame, R. Fani, T. De Baere, and L. Dijkshoorn., 2009. Description of *Acinetobacter venetianus* ex Di Cello et al. 1997 sp. nov. Int J Syst Evol Microbiol 59:1376-81.

- **226.** Vaz-Moreira, I., A. Novo, E. Hantsis-Zacharov, A. R. Lopes, M. Gomila, O. C. Nunes, C. M. Manaia, and M. Halpern., 2011. *Acinetobacter rudis sp. nov.* isolated from raw milk and raw wastewater. Int J Syst Evol Microbiol.
- **227.**Vila, J., J. Ruiz, P. Goni, A. Marcos, and T. Jimenez de Anta., 1995. Mutation in the gyrA gene of quinolone-resistant clinical isolates of *Acinetobacter baumannii*. Antimicrob Agents Chemother 39:1201-3.
- **228.** Vila, J., S. Marti, and J. Sanchez-Cespedes., 2007. Porins, efflux pumps and multidrug resistance in *Acinetobacter baumannii*. J Antimicrob Chemother 59: 1210–1215.
- **229.** Villecourt, P. & Jacobelli, G., 1954. [Pathogenic or saprophytic bacteria transforming glucose to gluconic acid, Bacterium anitratum, B5W, *Moraxella lwoffi var.* glucidolytica, Neisseria winogradskyi. *Ann Inst Pasteur (Paris)* 86, 493-502.
- **230.** Visca P, Seifert H, Towner KJ., 2011. *Acinetobacter* infection--an emerging threat to human health.Dec;63(12):1048-54.
- **231.**Walsh TR, Toleman MA, Poirel L, Nordmann P., 2005. Metallo-B-lactamases: the quiet before the storm? Clin Microbiol Rev; 18: 306-25.
- **232.**Walzer, G., E. Rosenberg, and E. Z. Ron., 2006. The *Acinetobacter* outer membrane protein A (OmpA) is a secreted emulsifier. Environ Microbiol. 8: 1026-1032.
- **233.**Wang, H., P. Guo, H. Sun, H. Wang, Q. Yang, M. Chen, Y. Xu, and Y. Zhu., 2007. Molecular epidemiology of clinical isolates of carbapenem-resistant *Acinetobacter* spp. from Chinese hospitals. Antimicrob Agents Chemother 51: 4022–4028.
- **234.**Wisplinghoff, H., Bischoff, T., Tallent, S. M., Seifert, H., Wenzel, R.P., et al., 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39, 309–317.
- **235.**Woodford, N., M. J. Ellington, J. M. Coelho, J. F. Turton, M. E. Ward, S. Brown, S. G. Amyes, and D. M. Livermore. 2006. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int.J.Antimicrob.Agents 27:351-353.
- **236.**Yagi, T., H. Kurokawa, N. Shibata, K. Shibayama, and Y. Arakawa. 2000. A preliminary survey of extended-spectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol.Lett. 184:53-56.
- **237.**Yong D, Toleman MA, Giske CG et al., 2009. Characterization of a new metallo-b-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in *Klebsiella pneumonia* sequence type 14 from India. Antimicrob Agents Chemother; 53: 5046–54.

- **238.**Yoon, J. H., I. G. Kim, and T. K. Oh., 2007. *Acinetobacter marinus sp. nov.* and *Acinetobacter seohaensis sp. nov.*, isolated from sea water of the Yellow Sea in Korea. J Microbiol Biotechnol 17:1743-50.
- **239.**Zahar J.R., Grall I., Kouatchet A.T., 2010. Carbapénèmes: nouvelles molécules, différentes indications? La lettre de l'infectiologue. 25 (4): 142-146.
- **240.**Zhanel George G., Johanson Christel., Embil John M., Noreddin Ayman., Daryl J., 2005. Ertapenem: review of a new carbapenem. Expert Review of AntiInfective Therapy. 3(1): 23-39.
- **241.**Zarrilli, R., D. Vitale, A. Di Popolo, M. Bagattini, Z. Daoud, A. U. Khan, C. Afif, and M. Triassi., 2008. A plasmid-borne blaOXA-58 gene confers imipenem resistance to *Acinetobacter baumannii* isolates from a Lebanese hospital. Antimicrob Agents Chemother. 52: 4115-4120.

Annexe 1. Concentration, diamètres critiques et règles de lecture interprétative pour Acinetobacter spp., Stenotrophomonas maltophilia et Burkholderia cepacia (CASFM, 2008)

Antibiotique	Charge du	Conception	ns critiques	Diametres	critiques
	disque	(mg	g/L)	(mi	m)
		S	R	S	R
Sulbactam		≤ 8	-		
Ticarcilline	75 µg	≤ 16	> 64	≥ 22	< 18
Ticarcilline/ac.clavulanique	75/10 μg	$\leq 16/2$	> 64/2	≥ 22	< 18
Pipéracilline	75 µg	≤ 16	> 64	≥ 18	< 12
Pipéracilline/tazobactam	75/10 µg	≤ 16/4	> 64/4	≥ 19	< 14
Impénème	10 µg	≤ 2	> 8	≥ 24	< 17
Méropéneme	10 µg	≤ 2	> 8	≥ 22	< 15
Ceftazidime	30 µg	Section 4 4 4 4 4 4 4 4 4 4	> 8	≥ 21	< 19
Céfépime	30 µg	≤ 4	> 8	≥ 21	< 19
Céfpirome	30 µg	Section 4 4 4 4 4 4 4 4 4 4	> 8	≥ 21	< 19
Tobramycine	10 µg	SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION	> 4	≥ 16	< 16
Amikacine	30 µg	≤ 8	> 16	≥ 17	< 15
Isépamicine	30 µg	≤ 8	> 16	≥ 17	< 15
Gentamicine	15 μg (10	≤ 4	> 4	≥ 16	< 16
Nétilmicine	UI)	≤ 4	> 4	≥ 19	< 19
	30 µg				
Chloramphénicol	30 µg	≤ 8	> 16	\geq 23	< 19
Tétracycline	30 UI	≤ 4	> 8	≥ 19	< 17
Colistine	50 µg	≤ 2	> 2	≥ 15	< 15
Péfloxacine	5 μg	≤ 1	> 4	≥ 22	< 16
Ofloxacine	5 μg	≤ 1	> 4	≥ 22	< 16
Ciprofloxacine	5 μg	≤ 1	> 2	≥ 22	< 19
Lévofloxacine	5 μg	≤ 1	> 2	\geq 20	< 17
Moxifloxacine	5 μg	≤ 1	> 2	≥ 21	< 18
Rifampicine	30 µg	≤ 4	> 16	≥ 19	< 14
Triméthoprime/sulfaméthoxa	1,25/23,75	$\leq 2/38$	> 8/152	≥ 16	< 10
zole	μg				

Annexe 2. Préparation des solutions d'antibiotiques (Courvalin, 2006)

Solution initiale (µg/ml)	Solution mère (ml)	Eau distillée (ml)	Concentrations obtenue (µg/ml)	Concentration finale dans le milieu (µg/ml)
5120	2	2	2560	256
5120	1	3	1280	128
5120	0,5	3,5	640	64
5120	0,5	7,5	320	32
320	2	2	160	16
320	1	3	80	8
320	0,5	3,5	40	4
320	0,5	7,5	20	2
20	2	2	10	1
20	1	3	5	0,5
20	0,5	3,5	2,5	0,25

Annexe 3. Amorces et sondes utilisées en PCR

Cible	Amorces	Séquence des amorces	Taille de l'amplicon (bp)	Référence/source	
	OXA51-F1	GCTCGTGCTTCGACCGAGTA			
	OXA51-R1	TTTTTGCCCGTCCCACTTAAA	117	Cotto átudo	
$bla_{ m OXA-51}$	OV 451	FAM- TCGGCCTTGAGCACCATAAGGCA -	117	Cette étude	
	OXA51-probe	TAMRA			
bla _{OXA-23}	OXA23-F1	TGCTCTAAGCCGCGCAAATA			
	OXA23-R1	TGACCTTTCTCGCCCTTCC	120	Cette étude	
	OXA23-probe	FAM- GCCCTGATCGGATTGGAGAACCA-	130		
		TAMRA			
1.1	OXA23-F	GATCGGATTGGAGAACCAGA	501	(110)	
bla _{OXA-23}	OXA23-R	ATTTCTGACCGCATTTCCAT	301	(119)	
	OXA24-F	CAAATGAGATTTTCAAATGGGATGG			
$bla_{ m OXA-24}$	OXA24-R	TCCGTCTTGCAAGCTCTTGAT	123	Cette étude	
	OXA24-probe	FAM- GGTGAGGCAATGGCATTGTCAGCA-			

TAMRA

$bla_{ m OXA-24}$	OXA24-F	ATGAAAAATTTATACTTCCTATATTCAGC	825	(119)
OM 24	OXA24-R	TTAAATGATTCCAAGATTTTCTAGC	0-0	()
	OXA58-F	CGCAGAGGGAGAATCGTCT		
$bla_{ m OXA-58}$	OXA58-R	TTGCCCATCTGCCTTTTCAA	102	Cette étude
0140XA-58	OXA58-probe	FAM-GGGGAATGGCTGTAGACCCGC-		Cette etude
	OAA36-probe	TAMRA		
	NDM1-F	GCGCAACACAGCCTGACTTT		
bla _{NDM-1}	NDM1-R	CAGCCACCAAAAGCGATGTC	155	(62)
	NDM1-probe	FAM-CAACCGCGCCCAACTTTGGC-TAMRA	133	
	NDM-1-F	3'-GCGAACACACAGCCTGACTTT-5'		
$bla_{ m NDM ext{-}1 ext{-}like}$	NDM-1-R	5'-CAGCCACCAAAAGCGATGTC-3'	813	(62)
bla_{TEM}	TEM-F	ATGAGTATTCAACATTTCCGTG	840	(117)
$\mathcal{O}\mathcal{U}_{ ext{TEM}}$	TEM-R	TTACCAATGCTTAATCAGTGAG	010	(117)

ANNEXES	
---------	--

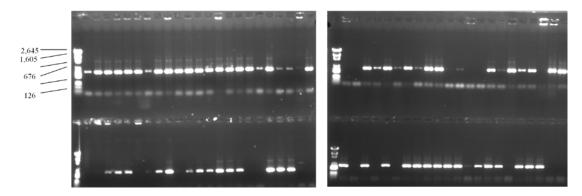
bla_{CTX}	CTX-F	TTTGCGATGTGCAGTACCAGTAA	544	(70)
	CTX-R	CGATATCGTTGGTGGTGCCATA		
$bla_{ m SHV}$	SHV-F	TTTATGGCGTTACCTTTGACC	1051	(236)
$\partial t u_{ m SHV}$	SHV-R	ATTTGTCGCTTCTTTACTCGC	1031	(230)
$bla_{ ext{PER}}$	PER-F	GTAGTATCAGCCCAATCCCC	738	(137)
ou	PER-R	CCAATAAAGGCCGTCCATCA	736	(137)
	VEB-F	GGAACAACTTTGACGATTGA	374	(137)
$bla_{ m VEB}$	VEB-R	CCCTGTTTTATGAGCAACAA	374	(137)
bla_{GES}	GES-F	GAAAAAGCAGCTCAGATCG	579	(163)
oluges	GES-R	CAACAACCCAATCTTTAGGA	317	(103)
bla _{OXA-51}	OXA-51-likeF	TAATGCTTTGATCGGCCTTG		
	OXA-51-likeR	TGGATTGCACTTCATCTTGG	353	(235)
aac(3)-Ia	aac(3)-Ia-F	GACATAAGCCTGTTCGGTT	372	(160)
	aac(3)-Ia-R	CTCCGAACTCACGACCGA		

aac(6')-Ib	aac(6')-Ib-F	TATGAGTGGCTAAATCGAT	395	(160)	
uuc(0) 10	aac(6')-Ib-R	CCCGCTTTCTCGTAGCA	373		
aadA	aadA-F	CCCAATTTGTGTAGGGCTTA	812	(13)	
шил	aadA-R	TTGTACGGCTCCGCAGTG	012	(13)	
ant(2'')-I	ant(2'')-I –F	GACACAACGCAGGTCACATT	524	(115)	
uni(2)-1	ant(2'')-I -R	CGCATATCGCGACCTGAAAGC	J2 4	(113)	
aph(3')-VI	aph(3')-VI -F	CGGAAACAGCGTTTTAGA	716	(160)	
	aph(3')-VI -R	TTCCTTTTGTCAGGTC	/10	(100)	
armA	armA-F	AGGTTGTTTCCATTTCTGAG	590	(115)	
	armA-R	TCTCTTCCATTCCCTTCTCC	370	(113)	
rmtA	rmtA-F	CTAGCGTCCATCCTTTCCTC	634	(115)	
	rmtA-R	TTTGCTTCCATGCCCTTGCC	034	(113)	
gyrA	gyrA-F	AAATCTGCCCGTGTCGTTGGT	344		
			JTT		
	gyrA-R	GCCATACCTACGGCGATACC			
qnrA	gyrA-R qnrA-F	GCCATACCTACGGCGATACC GATAAAGTTTTCAGCAAGAGG	543	(212)	

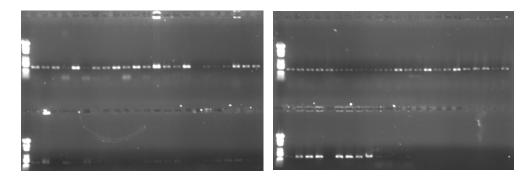
qnrB	qnrB-F	GACAGAAACAGGTTCACCGGT	469	(212)
	qnrB-R	CAAGACGTTCCAGGAGCAACG		(212)
arr-2	arr-2-F	AATTACAAGCAGGTGCAAGGA	414	(136)
	arr-2-R	TTCAATGACGTGTAAACCACG	, ,	(100)
parC	parC-F	ATGAGCGAGCTAGGCTTAAA	300	
	parC-R	TTAAGTTGTCCTTGCCATTCA		
	IS <i>Aba1</i> -F	CATTGGCATTAAACTGAGGAGAAA	451	(119)
ISAba1	IS <i>Aba1</i> -R	TTGGAAATGGGGAAAACGAA		(11)
	IMP-U	CATGGTTTGGTGGTTCTTGT	448	(138)
bla_{IMP}	IMP-L	ATAATTTGGCGGACTTTGGC		(130)
	VIM-U	ATTGGTCTATTTGACCGCGTC	780	(138)
$bla_{ m VIM}$	VIM-L	TGCTACTCAACGACTGCGCG	700	(130)
	SIM-F1	GTACAAGGGATTCGGCATCG	569	(138)
$bla_{\rm SIM}$	SIM-R1	TGGCCTGTTCCATGTGAG	307	(130)
	GIM-F1	TCAATTAGCTCTTGGGCTGAC	72	(138)
$bla_{ m GIM}$	GIM-R1	CGGAACGACCATTTGAATGG	14	(130)

Annexe 4. Solutions et tampons pour l'extraction de l'ADN plasmidique (Kado et Liu, 1981)

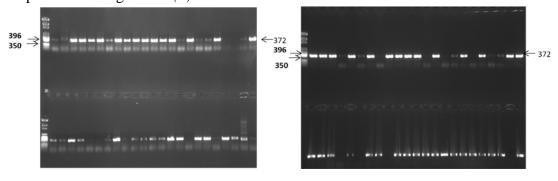
Solutions et tampons	Composition
Solution de lyse	Tris pH 12,6 50mM
	SDS 3%
Tampon TE	Tris 50mM
	EDTA 10mM
	pH 8
Solution d'acétate de sodium	Acétate de sodium 3M
	pH4,8

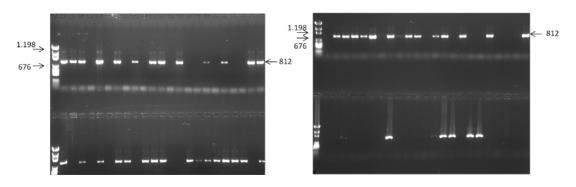

Annexe 5. Solutions et tampons pour l'électrophorèse de l'ADN plasmidique (Sambrook et Russel, 2001)

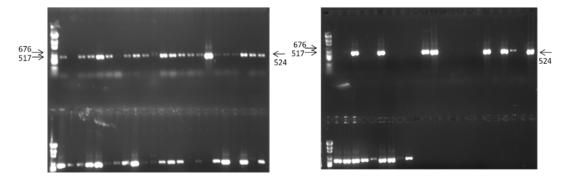
Solutions et tampons	Composition	
Tampon TBE 5X (pH8,3)	Tris base	54g
	Acide borique	27,5g
	EDTA 0,5M	2ml
	Eau distillée	qsp 1L
Tampon de charge	Glycérol	3ml
	Bleu de bromophénol	75mg
	Eau distillée	7ml

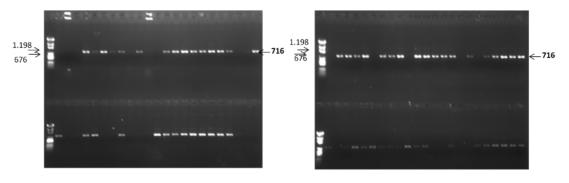

Annexe 6. Données cliniques des patients porteurs de souches NDM-1

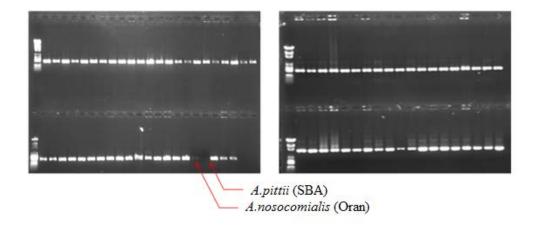
code	service	âge/sexe	Typo do prálôvoment	Data da prálàvament	CMI	(µg/ml)	$bla_{ ext{NDM-1}}$
code	service	age/sexe	Type de prélèvement	Date de prélèvement	IPM	MEM	$bia_{\mathrm{NDM-1}}$
OA95	Réanimation Urgence	48 H	Urine	02/12/2011	256	256	+
OA96	Neurochirurgie	79 H	Urine	12/01/2012	512	256	+
OA100	Hémato	38 H	Hémoculture	25/05/2011	512	256	+
OA106	Réanimation Urgence	46 H	Aspiration trachéale	26/09/2011	256	128	+
OA123	Réanimation Urgence	38 H	Aspiration trachéale	13/08/2011	512	256	+


Annexe 7. Amplification des gènes de résistance aux carbapénèmes et aux aminosides Amplification du gène OXA-23


Amplification du gène OXA-24


Amplification du gène aac(3)-Ia


Amplification du gène aadA


Amplification du gène ant(2")-I

Amplification du gène aph(3')

Amplification du gène OXA-51

