Simulation dérive diffusion d’un transistor HBT à base de 3C-SiC/Si

Présentée par : KERAI Nabil

Soutenue en Juin 2005 devant le jury

Mr. N. E. CHABANE-SARI Professeur à l’université de Tlemcen Président
Mr. A. BENMANSOUR Maître de conférence à l’université de Tlemcen Examinateur
Mme. A. BOUAZZA Chargée de cours à l’université de Tlemcen Examinateur
Mr. K. E. GHAFFOUR Maître de conférence à l’université de Tlemcen Directeur de thèse
Mr. S. KERAI Maître assistant à l’université de Tlemcen Co-directeur de thèse
A mes chers parents
A mes frères : Salim et Mohamed
A ma grande famille
A mes amis et collègues
REMERCIEMENTS

Je tiens à exprimer ma vive et sincère gratitude à monsieur K.E. GHAFFOUR, maître de conférence à la faculté des sciences de l’ingénieur de l’université de Tlemcen, de m’avoir accueilli à l’unité de recherche matériaux et énergies renouvelables et d’avoir pris la responsabilité de m’initier et de me diriger dans ce présent travail.

Ma gratitude va aussi à monsieur S. KERAI, maître assistant à la faculté des sciences de l’ingénieur de l’université de Tlemcen, qui n’a jamais cessé de m’aider et de me guider par ses conseils éclairés pour mener à bien ce travail.

Je remercie monsieur N.E. CHABANE-SARI, professeur à l’université de Tlemcen, qui m’a fait l’honneur de bien vouloir assurer la présidence du jury.

Que monsieur A. BENMANSOUR, maître de conférence à la faculté des sciences de l’ingénieur de l’université de Tlemcen, trouve ici le témoignage de mes sincères remerciements pour avoir accepté de juger ce travail.

Que madame A. BOUAZZA, chargée de cours à la faculté des sciences de l’ingénieur de l’université de Tlemcen, soit assurée de ma profonde gratitude pour avoir consacré une partie de son temps à l’examen de ce document.
TABLE DES MATIERES

INTRODUCTION GENERALE ... 11

CHAPITRE 1 : LE TRANSISTOR BIPOLAIRE A HETEROJONCTION 15
1. 1. INTRODUCTION ... 15
1. 2. PRESENTATION DU TRANSISTOR HBT 16
1. 2. 1. Définition ... 16
1. 2. 2. Une structure particulière .. 16
1. 3. HETEROJONCTION A L’EQUILIBRE THERMODYNAMIQUE 17
1. 3. 1. Structure de bande ... 17
1. 3. 2. Hétérojonction abrupte .. 20
1. 4. PRINCIPE DE FONCTIONNEMENT DU TRANSISTOR HBT 26
1. 4. 1. Modes de fonctionnement ... 26
1. 4. 2. Effet transistor ... 26
1. 4. 3. Intérêt de l’hétérojonction ... 28
1. 4. 4. Courants de transport ... 29
1. 5. FACTEURS DE MERITE ... 31
1. 5. 1. Rendement d’émetteur .. 31
1. 5. 2. Facteur de transport de base .. 32
1. 5. 3. Gain en courant ... 32
1. 5. 4. Fréquence de coupure .. 34
1. 5. 5. Fréquence maximale d’oscillation 35
1. 6. EFFETS PARASITES LIES AU TRANSISTOR HBT 35
1. 6. 1. Effet Kirk ... 35
1. 6. 2. Auto-échauffement et effet Crunch 36
1. 6. 3. Effet de fuite ... 37
1. 6. 4. Effet Early ... 38
1. 6. 5. Phénomène d’avalanche ... 39
1. 7. LE TRANSISTOR HBT FACE A SES CONCURRENTS 40
1. 7. 1. Transistor MESFET .. 40
1. 7. 2. Transistor HEMT ... 41
1. 7. 3. Comparaison des performances du transistor HBT 43
1. 8. CONCLUSION ... 44

CHAPITRE 2 : LE CARBURE DE SILICIUM ... 47
2. 1. HISTORIQUE ... 47
2. 2. POLYTPISME DU SiC .. 48
2. 2. 1. Notions cristallographiques .. 48
2. 2. 2. Notation des polytypes .. 50
2. 3. PROPRIETES ET APPLICATIONS DU SiC 52
2. 3. 1. Propriétés électroniques ... 53
2. 3. 2. Propriétés optiques ... 56
2. 3. 3. Propriétés thermiques .. 56
2. 3. 4. Propriétés mécaniques ... 56
2. 4. TECHNIQUES DE FABRICATION DU MATERIAU 57
2. 4. 1. SiC massif monocristallin ... 57
2. 4. 2. Couches minces de 3C-SiC sur substrats Si 59
2. 4. 3. Structures SiCOI ... 64
2. 5. TECHNOLOGIE DE MISE EN OEUVRE 66
2. 5. 1. Dopage par implantation ionique 66
2. 5. 2. Gravure ... 69
2. 5. 3. Oxydation ... 70
2. 5. 4. Métallisations ... 70
2. 5. 5. Composants en SiC ... 72
<table>
<thead>
<tr>
<th>Abrévation</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD</td>
<td>Chemical Vapor Deposition</td>
</tr>
<tr>
<td>ECR</td>
<td>Electron Cyclotron Resonance</td>
</tr>
<tr>
<td>FET</td>
<td>Field Effect Transistor</td>
</tr>
<tr>
<td>GSBMGE</td>
<td>Gas Source Molecular Beam Epitaxy</td>
</tr>
<tr>
<td>HBT</td>
<td>Heterojunction Bipolar Transistor</td>
</tr>
<tr>
<td>HEMT</td>
<td>High Electron Mobility Transistor</td>
</tr>
<tr>
<td>HFET</td>
<td>Heterostructure Field Effect Transistor</td>
</tr>
<tr>
<td>JFET</td>
<td>Junction Field Effect Transistor</td>
</tr>
<tr>
<td>LPE</td>
<td>Liquid Phase Epitaxy</td>
</tr>
<tr>
<td>MBE</td>
<td>Molecular Beam Epitaxy</td>
</tr>
<tr>
<td>MESFET</td>
<td>MEtal Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>MOCVD</td>
<td>Metal Organic Chemical Vapor Deposition</td>
</tr>
<tr>
<td>MOMBE</td>
<td>Metal Organic Molecular Beam Epitaxy</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>PHEMT</td>
<td>Pseudomorphic High Electron Mobility Transistor</td>
</tr>
<tr>
<td>SiCOI</td>
<td>Silicon Carbide On Insulator</td>
</tr>
<tr>
<td>SIMOX</td>
<td>Separation by IMplanted OXygen</td>
</tr>
<tr>
<td>SIMS</td>
<td>Secondary Ions Mass Spectrometry</td>
</tr>
<tr>
<td>SOI</td>
<td>Silicon On Insulator</td>
</tr>
<tr>
<td>SRH</td>
<td>Shockley Read Hall</td>
</tr>
<tr>
<td>Symbole</td>
<td>Définition</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>χ</td>
<td>Affinité électronique</td>
</tr>
<tr>
<td>ψ</td>
<td>Potentiel électrique</td>
</tr>
<tr>
<td>α</td>
<td>Gain en courant du montage base commune</td>
</tr>
<tr>
<td>β</td>
<td>Gain en courant du montage émetteur commun</td>
</tr>
<tr>
<td>ε</td>
<td>Permittivité du matériau</td>
</tr>
<tr>
<td>ε_r</td>
<td>Permittivité relative du matériau</td>
</tr>
<tr>
<td>E_{sm}</td>
<td>Champ électrique de claquage</td>
</tr>
<tr>
<td>$\mu_{n,p}$</td>
<td>Mobilité des électrons (trous)</td>
</tr>
<tr>
<td>ΔE_C</td>
<td>Discontinuité des bandes de conduction</td>
</tr>
<tr>
<td>ΔE_G</td>
<td>Différence des gaps</td>
</tr>
<tr>
<td>ΔE_V</td>
<td>Discontinuité des bandes de valence</td>
</tr>
<tr>
<td>γ_e</td>
<td>Rendement d’émetteur</td>
</tr>
<tr>
<td>δ_b</td>
<td>Facteur de transport de base</td>
</tr>
<tr>
<td>τ_{ec}</td>
<td>Temps de transit entre l’émetteur et le collecteur</td>
</tr>
<tr>
<td>$\tau_{n,p}$</td>
<td>Durée de vie des électrons (trous)</td>
</tr>
<tr>
<td>A_e</td>
<td>Surface d’émetteur</td>
</tr>
<tr>
<td>b</td>
<td>Base</td>
</tr>
<tr>
<td>c</td>
<td>Collecteur</td>
</tr>
<tr>
<td>C</td>
<td>Capacité</td>
</tr>
<tr>
<td>$D_{n,p}$</td>
<td>Constante de diffusion des électrons (trous)</td>
</tr>
<tr>
<td>e</td>
<td>Émetteur</td>
</tr>
<tr>
<td>E_C</td>
<td>Énergie minimale de la bande de conduction</td>
</tr>
<tr>
<td>E_F</td>
<td>Niveau de Fermi</td>
</tr>
<tr>
<td>E_G</td>
<td>Gap ou largeur de la bande interdite</td>
</tr>
<tr>
<td>$E_{n,p}$</td>
<td>Champ effectif spécifique aux électrons (trous)</td>
</tr>
<tr>
<td>Symbole</td>
<td>Définition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>E_V</td>
<td>Énergie minimale de la bande de valence</td>
</tr>
<tr>
<td>f_c</td>
<td>Fréquence de coupure</td>
</tr>
<tr>
<td>f_{max}</td>
<td>Fréquence maximale d’oscillation</td>
</tr>
<tr>
<td>I</td>
<td>Courant</td>
</tr>
<tr>
<td>$I_{n(p)}$</td>
<td>Courant d’électrons (trous)</td>
</tr>
<tr>
<td>I_r</td>
<td>Courant de recombinaison</td>
</tr>
<tr>
<td>J</td>
<td>Densité de courant</td>
</tr>
<tr>
<td>$L_{n(p)}$</td>
<td>Longueur de diffusion des électrons (trous)</td>
</tr>
<tr>
<td>$m^*_{n(p)}$</td>
<td>Masse effective de l’électron (trou)</td>
</tr>
<tr>
<td>n</td>
<td>Densité des électrons</td>
</tr>
<tr>
<td>N_A</td>
<td>Concentration d’accepteurs</td>
</tr>
<tr>
<td>N_C</td>
<td>Densité d’états dans la bande de conduction</td>
</tr>
<tr>
<td>N_D</td>
<td>Concentration de donneurs</td>
</tr>
<tr>
<td>n_i</td>
<td>Concentration intrinsèque</td>
</tr>
<tr>
<td>N_V</td>
<td>Densité d’états dans la bande de valence</td>
</tr>
<tr>
<td>p</td>
<td>Densité des trous</td>
</tr>
<tr>
<td>R</td>
<td>Résistance</td>
</tr>
<tr>
<td>T</td>
<td>Température absolue</td>
</tr>
<tr>
<td>V</td>
<td>Tension de polarisation</td>
</tr>
<tr>
<td>V_d</td>
<td>Tension de diffusion</td>
</tr>
<tr>
<td>$v_{n(p)}$</td>
<td>Vitesse moyenne des électrons (trous)</td>
</tr>
<tr>
<td>v_{sat}</td>
<td>Vitesse de saturation</td>
</tr>
<tr>
<td>W</td>
<td>Épaisseur de la zone neutre</td>
</tr>
<tr>
<td>$w_{n(p)}$</td>
<td>Énergie cinétique de l’électron (trou)</td>
</tr>
<tr>
<td>X</td>
<td>Largeur de la zone de charge d’espace</td>
</tr>
</tbody>
</table>
CONSTANTES PHYSIQUES

<table>
<thead>
<tr>
<th>Physique</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge de l'électron</td>
<td>$q = 1,602 \times 10^{-19} \text{ C}$</td>
</tr>
<tr>
<td>Constante de Boltzmann</td>
<td>$k = 1,38066 \times 10^{-23} \text{ JK}^{-1}$</td>
</tr>
<tr>
<td>Constante de Planck</td>
<td>$h = 6,626 \times 10^{-34} \text{ Js}$</td>
</tr>
<tr>
<td>Constante de Planck réduite</td>
<td>$\hbar = \frac{h}{2\pi} = 1,0546 \times 10^{-34} \text{ Js}$</td>
</tr>
<tr>
<td>Électron Volt</td>
<td>$1 \text{ eV} = 1,60218 \times 10^{-19} \text{ J}$</td>
</tr>
<tr>
<td>Énergie thermique à la température ambiante ($T = 300 \text{ K}$)</td>
<td>$kT = 25,9 \text{ meV}$</td>
</tr>
<tr>
<td>Masse de l'électron libre</td>
<td>$m_0 = 0,911 \times 10^{-30} \text{ kg}$</td>
</tr>
<tr>
<td>Permittivité du vide</td>
<td>$\varepsilon_0 = 8,85418 \times 10^{-12} \text{ Fm}^{-1}$</td>
</tr>
</tbody>
</table>
INTRODUCTION GENERALE
INTRODUCTION GENERALE

A l’heure actuelle, les dispositifs à semiconducteurs comportent des hétérostructures et offrent des possibilités nouvelles et variées dans le domaine des circuits intégrés micro-ondes à hautes performances. En effet, l’avènement de nouvelles technologies de croissance de couches épitaxiées telles que le dépôt en phase vapeur à partir des sources organométalliques (MOCVD : Metal Organic Chemical Vapor Deposition), ou l’épitaxie par jets moléculaires (MBE : Molecular Beam Epitaxy) a permis d’améliorer les performances de certains circuits actifs et d’en concevoir d’autres de plus en plus complexes.

Parmi les composants semiconducteurs ayant des performances avancées, nous pouvons citer les transistors bipolaires à hétérojonction (HBT) possédant des propriétés électriques extrêmement intéressantes dans le domaine millimétrique avec notamment des fréquences maximales d’oscillation pouvant atteindre 255 GHz et des fréquences de transition allant jusqu’à 240 GHz.

Ces transistors se distinguent également comme composants de puissance par leur capacité à contrôler de forts courants sous des tensions importantes. Leur structure verticale, opposée à celle horizontale des transistors à effet de champ, permet de gérer finement l’épaisseur et le dopage des couches afin d’adapter le domaine de fonctionnement.

Le transistor HBT est actuellement l’un des composants essentiels du marché des composants micro-ondes. Il rentre dans la réalisation des amplificateurs de puissance classe A et B, les oscillateurs contrôlés en tension à faible bruit de phase, les multiplicateurs et mélangeurs de fréquence et les circuits intégrés ultrarapides.

Pour comprendre le fonctionnement électrique des transistors HBT et afin d’en optimiser les performances, il est désormais une étape incontournable dans tout processus de conception de composant : c’est l’étape de simulation. En effet, toute
réalisation technologique étant extrêmement onéreuse, il est indispensable avant la fabrication d'un composant d'en prévoir le fonctionnement de la façon la plus exacte possible.

Grâce à la disponibilité commerciale des substrats Si de grand diamètre et qui sont peu onéreux, l'utilisation de couches de 3C-SiC sur des substrats de Si est particulièrement attrayante. Cela nous a conduit à mener une recherche sur les transistors HBT basés sur les hétérostructures carbure de silicium/silicium (SiC/Si).

Le présent travail concerne la modélisation et la simulation physique d'un transistor HBT à base de 3C-SiC/Si. Notre objectif est de développer un programme permettant de faire :

- une caractérisation statique qui fournit des informations sur l'évolution des grandeurs physiques fondamentales dans la structure considérée (densité d'électrons et de trous, potentiel et champ électrique), les caractéristiques courant-tension et l'influence de certains paramètres physiques et géométriques sur le fonctionnement du transistor.

- une caractérisation dynamique afin de déterminer les valeurs des éléments du schéma électronique équivalent du transistor HBT à base de 3C-SiC/Si.

Ce mémoire est divisé en quatre chapitres. Dans le premier chapitre, nous présenterons le principe physique général de fonctionnement du transistor bipolaire à hétérojonction et nous expliquerons l'intérêt de l'hétérojonction émetteur-base. Les principaux critères d'efficacité de ce transistor seront également donnés grâce à ses facteurs de mérite et ses effets parasites.

Dans le deuxième chapitre, nous présenterons les potentialités électriques et thermiques du carbure de silicium (SiC) que l'on comparera rapidement avec d'autres matériaux alternatifs. La croissance et l'élaboration des couches de 3C-SiC sur des substrats en silicium seront également détaillées. Bien que l'hétéroépitaxie de 3C-SiC sur silicium ne soit pas à priori la plus favorable, cette voie reste cependant intéressante car elle bénéficie de toute l'infrastructure et de la haute technologie mise au point sur silicium.

Le troisième chapitre sera entièrement consacré à la modélisation physique du transistor HBT. Nous décrirons le modèle unidimensionnel de dérive diffusion
tel qu'il est implanté. Les discrétisations effectuées autour des équations de la physique retenues dans le cadre de ce modèle ainsi que la solution du problème non linéaire résultant seront explicitées dans le dernier chapitre. Pour parachever ce chapitre, nous présenterons les résultats de la simulation dérive diffusion pour une structure unidimensionnelle d'un transistor HBT à base de 3C-SiC/Si.
CHAPITRE 1 :

LE TRANSISTOR BIPOLAIRE A HETEROJONCTION
1. LE TRANSISTOR BIPOLAIRE À HÉTEROJONCTION

1.1. INTRODUCTION

Le transistor bipolaire fut inventé par J. Bardeen et W. Brattain en 1948, la théorie fut élaborée par B. Shockley en 1949 et le premier transistor à jonction fut fabriqué en 1951 [1]. C’est historiquement le premier composant actif à semiconducteur. Son influence dans l’industrie électronique a été considérable car le transistor bipolaire à homojonction sur substrat de Silicium (Si) a pris une place importante dans l’électronique, notamment en qualité de composant de puissance. Néanmoins, en raison de limitations technologiques empêchant sa montée en fréquence, le transistor bipolaire à homojonction a été supplantée par un nouveau type de transistors utilisant une hétérojonction.

Dans ce premier chapitre, nous présenterons le principe physique général de fonctionnement du transistor HBT et nous expliquerons l’intérêt de l’hétérojonction. Les principaux critères d’efficacité de ce transistor seront donnés ensuite grâce à ses facteurs de mérite et ses effets parasites. Enfin, nous présenterons une comparaison des performances entre le transistor HBT et le transistor FET, qui est son principal rival, afin de dégager les principaux atouts plaidants en sa faveur.
1.2. PRESENTATION DU TRANSISTOR HBT

1.2.1. Définition

Le transistor HBT est un dispositif semiconducteur actif constitué de deux jonctions PN tête-bêche présentant une région commune appelée base. Le collecteur et l'émetteur sont respectivement les deux régions restantes. Suivant le dopage de la base, on peut avoir soit une configuration NPN, soit une configuration PNP.

On parle de transistor bipolaire en raison de la participation de deux types de porteurs aux courants : les électrons et les trous. La mobilité des électrons étant supérieure à celle des trous, c'est donc la configuration NPN (figure 1-1), basée sur un courant majoritaire d'électrons, qui est utilisée pour des applications hyperfréquences. La configuration PNP ne nous intéresse pas car elle est basée sur un courant principal de trous la rendant quasiment inutilisable dans le domaine des hyperfréquences. Elle est donc plus lente que la configuration NPN.

![Diagramme du transistor HBT NPN](image)

Figure 1-1 : Représentations physique et électrique du transistor bipolaire NPN.

1.2.2. Une structure particulière

La structure du transistor HBT présente deux particularités. D'une part, elle est verticale, comme celle du transistor bipolaire, et non horizontale comme dans un transistor à effet de champ. D'autre part, elle comporte une hétérojonction.

La verticalité de la structure du transistor HBT fait que le transport des charges s'effectue en volume perpendiculairement aux couches epitaxiées (figure 1-2), alors que dans un transistor FET, ce transport s'effectue parallèlement aux couches. De ce fait, le transistor HBT est beaucoup moins sensible aux effets des pièges en volume que le FET.
Dans ce type de structure, les techniques modernes d’époxie que sont la MOCVD (Metal Organic Chemical Vapor Deposition) et la MBE (Molecular Beam Epitaxy), permettent de fabriquer des couches dont l’épaisseur et le dopage sont contrôlés de façon très précise. Grâce à ces techniques, on peut réaliser des distances émetteur-collecteur (bases) nettement inférieures à 100 nm. Il en résulte des performances en fréquence très élevées. Notons aussi que rien n’interdit la réalisation de surfaces d’émetteur et de collecteur relativement importantes, ce qui autorise des forts courants et par suite des puissances plus élevées que dans les transistors à effet de champ [1].

![Figure 1-2 : Vue en coupe d’un transistor HBT.](image)

L’hétérojonction est réalisée par la juxtaposition de deux semi-conducteurs différents possédant des largeurs de bande interdite (gap) différentes : un matériau à grand gap constituant l’émetteur et un matériau à gap plus faible constituant la base. Ces deux matériaux doivent posséder une constante de maille accordable. Parmi les hétérojonctions les plus connues, on peut citer 3C-SiC/Si, Si/SiGe, GaInP/GaAs, ou bien GaAlAs/GaAs.

1.3. HÉTÉROJONCTION À L’ÉQUILIBRE THERMODYNAMIQUE

1.3.1. Structure de bande

Le transistor HBT comporte une hétérointerface émetteur-base constituée d’un matériau à grand gap tel que le 3C-SiC formant l’émetteur et d’un matériau à gap plus faible tel que le Si formant la base. La structure de bande possède alors l’allure représentée ci-après.
Figure 1-3 : Diagramme d’énergie de l’hétérojonction 3C-SiC/Si [3].

Le modèle d’Anderson d’une hétérojonction permet de calculer simplement les discontinuités de bandes à l’interface des deux matériaux [4]. Dans le cas d’une interface entre un matériau dopé N et un matériau dopé P, l’alignement des niveaux de Fermi conduit à un diagramme de bande tel que celui de la figure suivante.

Figure 1-4 : Structure de bande d’une hétérojonction émetteur-base dans un transistor HBT NPN à l’équilibre thermodynamique.

D’après le modèle d’Anderson, la discontinuité des bandes de conduction s’écrit à l’hétérointerface émetteur-base (figure 1-4) :

\[\Delta E_C = E_{Ce} - E_{Cb} = \chi_b - \chi_e \] (1-1)
Chapitre 1 : Le transistor bipolaire à hétérojonction

Où χ est l'affinité électronique. C'est l'énergie qu'il faut fournir à un électron situé au bas de la bande de conduction, pour l'extraire d'un semiconducteur et l'amener dans le vide sans vitesse initiale.

La différence entre le gap dans l'émetteur et celui dans la base s'écrit :

$$\Delta E_g = E_{ge} - E_{gb} = \Delta E_c + \Delta E_v$$ \hspace{1cm} (1-2)

La discontinuité des bandes de valence est par conséquent donnée par :

$$\Delta E_v = \Delta E_g - \Delta E_c$$ \hspace{1cm} (1-3)

En fait, la règle de l'affinité électronique selon laquelle la discontinuité des bandes de conduction est directement donnée par la différence des affinités électroniques n'est pas valide. La discontinuité des bandes induit la présence d'états d'interface dans chacun des semiconducteurs. Ces états sont chargés et créent des dipôles dont le potentiel réduit la discontinuité des bandes.

Notons en outre dans une autre approche plus phénoménologique, que la relaxation importante des positions atomiques à l'interface peut entraîner l'existence de couches d'interface dont les affinités électroniques sont différentes de celles des matériaux isolés. Le calcul exact de la discontinuité des bandes peut être donc très important et devenir le facteur dominant dans l'établissement du diagramme énergétique.

Nous reportons sur le tableau ci-dessous des données publiées concernant les discontinuités des bandes dans quelques hétérojonctions connues.

<table>
<thead>
<tr>
<th></th>
<th>ΔE_g (eV)</th>
<th>ΔE_c (eV)</th>
<th>ΔE_v (eV)</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C-SiC/Si</td>
<td>1,08</td>
<td>0,54 ± 0,15</td>
<td>0,54 ± 0,15</td>
<td>[3]</td>
</tr>
<tr>
<td></td>
<td>1,08</td>
<td>0,31 ± 0,08</td>
<td>0,77 ± 0,08</td>
<td>[5]</td>
</tr>
<tr>
<td>Ga${0,7}$Al${0,3}$As/GaAs</td>
<td>0,395</td>
<td>0,263</td>
<td>0,132</td>
<td>[6]</td>
</tr>
<tr>
<td>Ga${0,51}$In${0,49}$P/GaAs</td>
<td>0,463</td>
<td>0,223</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td>Si/Si${0,8}$Ge${0,2}$</td>
<td>0,17</td>
<td>0,02</td>
<td>0,15</td>
<td>[7]</td>
</tr>
</tbody>
</table>

Tableau 1-1 : Discontinuités des bandes.
1. 3. 2. Hétérojonction abrupte

Dans le modèle de l’hétérojonction abrupte [8], la différence $N_D - N_A$ passe brutallement dans le plan $x = 0$, d’une valeur positive dans l’émetteur à une valeur négative dans la base (figure 1-5-a).

Les électrons, majoritaires dans la région de type N, diffusent vers la région de type P où ils se recombinent avec les trous. Il en est de même pour les trous. La recombinaison des porteurs libres de part et d’autre de la jonction fait apparaître une zone de charge d’espace résultant de la présence des donneurs et accepteurs ionisés. L’équilibre thermodynamique est établi lorsque la force électrique, résultant de l’apparition du champ, équilibre la force de diffusion associée aux gradients de concentration de porteurs libres.

Figure 1-5 : Hétérojonction émetteur-base dans un transistor HBT NPN à l’équilibre thermodynamique.

(a) Profil de dopage. (b) bandes d’énergie.
1. 3. 2. 1. Charge d’espace

En supposant tous les donneurs et accepteurs ionisés, la charge d’espace dans chacune des régions de l’hétérojonction s’écrit :

\[\rho(x) = q \cdot \left(N_{De} - N_{Ab} + p(x) - n(x) \right) \] (1-4)

Où

\(q \) : la charge électrique élémentaire,
\(n \) et \(p \) : la densité d’électrons et de trous, respectivement,
\(N_{De} \) : l’excédent de donneurs dans l’émetteur ; \(N_{De} = (N_D - N_A)_e \),
\(N_{Ab} \) : l’excédent d’accepteurs dans la base ; \(N_{Ab} = (N_A - N_D)_b \).

En raison de la présence du champ électrique, la diffusion-recombinaison des porteurs libres est limitée au voisinage de la jonction métallurgique. Loin de la jonction, les semiconducteurs sont neutres. En outre, la zone de charge d’espace est entièrement dépeuplée des porteurs libres et limitée par des frontières très abruptes d’abscisses \(x_e \) et \(x_b \). La charge d’espace s’écrit dans ces hypothèses :

\[\rho(x) = 0 \quad \text{pour} \quad x < x_e \text{ et } x > x_b \] (1-5-a)

\[\rho(x) = q \cdot N_{De} \quad \text{pour} \quad x_e < x < 0 \] (1-5-b)

\[\rho(x) = -q \cdot N_{Ab} \quad \text{pour} \quad 0 < x < x_b \] (1-5-c)

1. 3. 2. 2. Tension de diffusion

On peut calculer la tension de diffusion \(V_d \) en écrivant simplement que la structure est en équilibre thermodynamique et que le niveau de Fermi est horizontal dans toute la structure. Les densités des trous dans l’émetteur et dans la base s’expriment par :

\[p_e = \frac{n_{ie}^2}{N_{De}} = N_{ie} \cdot \exp \left(\frac{E_{Te} - E_F}{k \cdot T} \right) \] (1-6)

\[p_b = N_{Ab} = N_{vb} \cdot \exp \left(\frac{E_{Tb} - E_F}{k \cdot T} \right) \] (1-7)
ce qui permet d’écrire :

\[E_{vb} - E_{ve} = k \cdot T \cdot \ln \left(\frac{N_{De} \cdot N_{Ab} \cdot N_{Ye}}{n_{we}^2 \cdot N_{vb}} \right) \]

(1-8)

La concentration de porteurs intrinsèques dans l’émetteur est donnée par :

\[n_{ie} = \left(N_{Ce} \cdot N_{Ye} \right)^{1/2} \cdot \exp \left(\frac{-E_{Ge}}{2 \cdot k \cdot T} \right) \]

(1-9)

Où :

\(k \): la constante de Boltzmann,

\(T \): la température de l’hétérojonction,

\(N_{Ce} \): la densité d’états dans la bande de conduction dans l’émetteur,

\(N_{vb} \): la densité d’états dans la bande de valence dans la base,

\(N_{Ye} \): la densité d’états dans la bande de valence dans l’émetteur.

En explicitant \(n_{ie} \) dans l’expression (1-8), on obtient l’expression suivante :

\[E_{vb} - E_{ve} = E_{Ge} + k \cdot T \cdot \ln \left(\frac{N_{De} \cdot N_{Ab}}{N_{Ce} \cdot N_{vb}} \right) \]

(1-10)

La différence entre l’hétérojonction et l’homojonction réside dans le fait que dans une homojonction, les porteurs libres (électrons et trous) voient une barrière de potentiel, s’opposant à leur diffusion, identique. Par contre, l’hétérojonction crée une petite barrière de potentiel pour les électrons, mais une grande barrière de potentiel pour les trous (figure 1-5-b) donnée par :

\[\varphi_p = E_{vb} - E_{ve} = q \cdot V_d + \Delta E_v \]

(1-11)

Ainsi :

\[q \cdot V_d + \Delta E_v = E_{Ge} + k \cdot T \cdot \ln \left(\frac{N_{De} \cdot N_{Ab}}{N_{Ce} \cdot N_{vb}} \right) \]

(1-12)

La tension de diffusion est par conséquent donnée par l’expression suivante :

\[V_d = \frac{E_{Ge} - \Delta E_v}{q} + \frac{k \cdot T}{q} \cdot \ln \left(\frac{N_{De} \cdot N_{Ab}}{N_{Ce} \cdot N_{vb}} \right) \]

(1-13)
1.3.2.3. Potentiel et champ électrique dans la zone de charge d’espace

Il suffit pour obtenir le potentiel et le champ électrique, d’intégrer l’équation de Poisson avec la densité de charge donnée par les équations (1-5):

\[\frac{\partial^2 V}{\partial x^2} = -\frac{\rho(x)}{\varepsilon} \] \hspace{1cm} (1-14)

Le champ électrique est relié au potentiel électrostatique par la relation :

\[E = -\frac{\partial V}{\partial x} \] \hspace{1cm} (1-15)

Pour \(x_e < x < 0 \), l’équation de Poisson s’écrit :

\[\frac{\partial^2 V}{\partial x^2} = -\frac{q \cdot N_{pe}}{\varepsilon_e} \] \hspace{1cm} (1-16)

En intégrant une fois avec la condition \(E = 0 \) en \(x = x_e \), on obtient :

\[E(x) = \frac{q \cdot N_{pe}}{\varepsilon_e} \cdot (x - x_e) \] \hspace{1cm} (1-17)

En intégrant une deuxième fois avec la condition \(V = V_n \) en \(x = x_e \), on obtient :

\[V(x) = -\frac{q \cdot N_{pe}}{\varepsilon_e} \cdot (x - x_e)^2 + V_n \] \hspace{1cm} (1-18)

Pour \(0 < x < x_b \), l’équation de Poisson s’écrit :

\[\frac{\partial^2 V}{\partial x^2} = \frac{q \cdot N_{ab}}{\varepsilon_b} \] \hspace{1cm} (1-19)

En intégrant une fois avec la condition \(E = 0 \) en \(x = x_b \), on obtient :

\[E(x) = -\frac{q \cdot N_{ab}}{\varepsilon_b} \cdot (x - x_b) \] \hspace{1cm} (1-20)

En intégrant une deuxième fois avec la condition \(V = V_p \) en \(x = x_b \), on obtient :

\[V(x) = \frac{q \cdot N_{ab}}{\varepsilon_b} \cdot (x - x_b)^2 + V_p \] \hspace{1cm} (1-21)
Où
\(\varepsilon_e \): la permittivité du semiconducteur constituant l'émetteur,
\(\varepsilon_b \): la permittivité du semiconducteur constituant la base,
\(V_n \): le potentiel dans la région neutre de l'émetteur,
\(V_p \): le potentiel dans la région neutre de la base.

1. 3. 2. 4. **Largeur de la zone de charge d'espace**

La continuité à l'hétérointerface émetteur-base \((x = 0) \), de la composante normale du vecteur déplacement \(\vec{D} = \varepsilon \cdot \vec{E} \), permet d'établir une relation entre \(x_e \) et \(x_b \). Écrivons :

\[
\varepsilon_e \cdot E_0 = \varepsilon_b \cdot E_0
\]

soit :

\[
-q \cdot N_{De} \cdot x_e = q \cdot N_{Ab} \cdot x_b
\]

(1-23)

En posant \(X_e = |x_e| = -x_e \) et \(X_b = |x_b| = x_b \), la relation précédente s'écrit :

\[
N_{De} \cdot X_e = N_{Ab} \cdot X_b
\]

(1-24)

On obtient l'expression de la largeur de la zone de charge d'espace en écrivant la continuité du potentiel à l'hétérointerface émetteur-base :

\[
- \frac{q \cdot N_{De}}{2 \cdot \varepsilon_e} \cdot X_e^2 + V_n = \frac{q \cdot N_{Ab}}{2 \cdot \varepsilon_b} \cdot X_b^2 + V_p
\]

(1-25)

soit :

\[
V_n - V_p = \frac{q \cdot N_{Ab}}{2 \cdot \varepsilon_b} \cdot X_b^2 + \frac{q \cdot N_{De}}{2 \cdot \varepsilon_e} \cdot X_e^2
\]

(1-26)

La différence de potentiel \(V_n - V_p \) correspond à la tension de diffusion \(V_d \). En utilisant la relation (1-24), cette expression s'écrit sous l'une ou l'autre des formes suivantes :

\[
V_d = \frac{q \cdot N_{De}}{2 \cdot \varepsilon_e} \cdot X_e^2 \left(\frac{\varepsilon_e \cdot N_{De} + \varepsilon_b \cdot N_{Ab}}{\varepsilon_b \cdot N_{Ab}} \right) = \frac{q \cdot N_{Ab}}{2 \cdot \varepsilon_b} \cdot X_b^2 \left(\frac{\varepsilon_e \cdot N_{De} + \varepsilon_b \cdot N_{Ab}}{\varepsilon_e \cdot N_{De}} \right)
\]

(1-27)
ce qui donne pour X_e et X_b les expressions suivantes :

$$X_e = \left(\frac{2 \cdot N_{Ab} \cdot \varepsilon_e \cdot \varepsilon_b \cdot V_d}{q \cdot N_{De} \cdot (\varepsilon_e \cdot N_{De} + \varepsilon_b \cdot N_{Ab})} \right)^{1/2} \tag{1-27-a}$$

$$X_b = \left(\frac{2 \cdot N_{De} \cdot \varepsilon_e \cdot \varepsilon_b \cdot V_d}{q \cdot N_{Ab} \cdot (\varepsilon_e \cdot N_{De} + \varepsilon_b \cdot N_{Ab})} \right)^{1/2} \tag{1-27-b}$$

La largeur totale de la zone de charge d'espace est par conséquent donnée par :

$$X_{be} = X_e + X_b = \left(\frac{2 \cdot \varepsilon_e \cdot \varepsilon_b \cdot (N_{De} + N_{Ab})^2 \cdot V_d}{q \cdot N_{De} \cdot N_{Ab} \cdot (\varepsilon_e \cdot N_{De} + \varepsilon_b \cdot N_{Ab})} \right)^{1/2} \tag{1-28}$$

De l'expression (1-26), on constate que la tension de diffusion s'établit en partie dans chacune des zones de charge d'espace, dans l'émetteur et la base, proportionnellement à leur largeur, soit :

$$V_d = V_{de} + V_{db} \tag{1-29}$$

En explicitant X_e et X_b dans l'expression (1-26), on obtient pour V_{de} et V_{db} :

$$V_{de} = \left(\frac{\varepsilon_b \cdot N_{Ab}}{\varepsilon_e \cdot N_{De} + \varepsilon_b \cdot N_{Ab}} \right) \cdot V_d \tag{1-30-a}$$

$$V_{db} = \left(\frac{\varepsilon_e \cdot N_{De}}{\varepsilon_e \cdot N_{De} + \varepsilon_b \cdot N_{Ab}} \right) \cdot V_d \tag{1-30-b}$$

Le rapport des chutes de potentiel correspondantes est donc donné par :

$$\frac{V_{de}}{V_{db}} = \frac{\varepsilon_b \cdot N_{Ab}}{\varepsilon_e \cdot N_{De}} \tag{1-31}$$

Ainsi :

$$V_d = \left(1 + \frac{\varepsilon_b \cdot N_{Ab}}{\varepsilon_e \cdot N_{De}} \right) \cdot V_{db} \tag{1-32}$$

Si l'hétérojonction est très dissymétrique, par exemple $N_{Ab} >> N_{De}$, la zone de charge d'espace se développe essentiellement dans l'émetteur. Il en est de même de la tension de diffusion.
1. 4. PRINCIPE DE FONCTIONNEMENT DU TRANSISTOR HBT

1. 4. 1. Modes de fonctionnement

Le transistor HBT possède différents régimes de fonctionnement qui diffèrent suivant les polarisations appliquées aux bornes des jonctions base-émetteur et base-collecteur. On distingue alors les modes de fonctionnements suivants :

\[V_{cb} \]

- Bloqué
- Normal
- Inverse
- Saturé

\[V_{be} \]

Figure 1-6 : Modes de fonctionnement du transistor HBT NPN.

En fonctionnement dit normal, la jonction base-émetteur est polarisée en direct et la jonction base-collecteur est polarisée en inverse. Dans ce cas, le courant principal passe de l’émetteur au collecteur. Il est commandé par un courant de base beaucoup plus faible. C’est l’intérêt de ce dispositif que de commander le courant de collecteur par un courant de base beaucoup plus faible. En fonctionnement dit bloqué (courant collecteur nul, tension collecteur importante), les deux jonctions sont alors polarisées en inverse. En fonctionnement dit saturé (courant collecteur important, tension collecteur quasi nulle), les deux jonctions sont alors polarisées en direct.

1. 4. 2. Effet transistor

Pour un fonctionnement dit normal du transistor HBT, les potentiels appliqués aux bornes des jonctions base-émetteur et base-collecteur sont représentés sur la figure ci-après.
Figure 1-7 : Fonctionnement normal du transistor HBT NPN.

La tension de polarisation V_{be} s'établit en partie dans chacune des zones de charge d'espace, dans l'émetteur et la base, proportionnellement à leur résistance, c'est-à-dire proportionnellement à leur largeur. La tension V_{be} s'établit dans le même rapport que la tension de diffusion V_{db} donné par l'équation (1-31) :

$$
\frac{\varepsilon_{b} \cdot N_{ab}}{\varepsilon_{c} \cdot N_{De}}
$$

(1-33)

Dans les conditions où $V_{be}>0$ de l'ordre de la tension de diffusion V_{d} et $V_{bc}<<0$, la structure de bande est modifiée et il s'établit le processus de transport de charges représenté sur la figure suivante.

Figure 1-8 : Structure de bande d'un transistor HBT NPN sous polarisation en régime normal.
La structure étant de type NPN, les électrons sont majoritaires dans l'émetteur et le collecteur tandis que les trous sont majoritaires dans la base. Les électrons majoritaires dans l'émetteur diffusent dans la région de base suite à la polarisation directe de la jonction base-émetteur. Ces mêmes électrons minoritaires dans la base, qui réussissent à atteindre la zone désertée de la jonction base-collecteur polarisée en inverse, sont propulsés vers le collecteur suite au fort champ électrique régissant dans cette zone de transition.

Par injection d'électrons minoritaires dans la base à partir de la jonction émetteur-base, on engendre un courant, qui peut être beaucoup plus important, dans la jonction base-collecteur. Le bon fonctionnement du transistor nécessite que les électrons minoritaires ne se recombinent pas à la traversée de la base, il faut par conséquent que l'épaisseur de la base soit très inférieure à la longueur de diffusion des électrons. C'est l'effet transistor découvert par Shockley en 1958.

1.4.3. Intérêt de l'hétérojonction

Le diagramme énergétique représenté sur la figure 1-8 montre clairement que la discontinuité ΔE_V des bandes de valence, au niveau de l'hétérojonction émetteur-base, réduit fortement l'injection de trous depuis la base vers l'émetteur, sans pour que la discontinuité ΔE_C des bandes de conduction limite l'injection d'électrons depuis l'émetteur vers la base. C'est la spécificité du transistor HBT.

La discontinuité ΔE_C des bandes de conduction ne joue pas un rôle aussi important que la discontinuité ΔE_V des bandes de valence. La présence de cette dernière, en réduisant considérablement l'injection de trous vers l'émetteur, autorise un dopage de base beaucoup plus important que dans le transistor à homojonction. Le fait de pouvoir doper la base de manière importante autorise la réalisation de bases très étroites, inférieures à 100 nm.

L'intérêt de la discontinuité ΔE_V est donc multiple : le fort dopage de la base permet de minimiser la résistance série de base et la capacité due à la jonction base-collecteur ; la très faible épaisseur de base permet d'une part de réduire le temps de transit des porteurs minoritaires et d'autre part de limiter le phénomène de recombinaison des paires électron-trou dans cette région.
1.4.4. Courants de transport

Considérons le transistor HBT, dans son mode de fonctionnement normal, schématisé sur la figure suivante.

![Diagram of transistor](image)

Figure 1-9 : Courants présents dans le transistor HBT NPN. en régime de fonctionnement normal.

La jonction base-émetteur étant polarisée en direct, l’abaissement des barrières de potentiel autorise l’entrée d’électrons dans la base et de trous dans l’émetteur. Les électrons injectés depuis l’émetteur vers la base forment le courant d’électrons de l’émetteur I_{ne}, les trous injectés depuis la base vers l’émetteur constituent le courant de trous de l’émetteur I_{pe}.

La jonction base-collecteur polarisée en inverse ne constitue pas une barrière pour les porteurs minoritaires. Un courant I_{nc}, qui peut être beaucoup plus important, est donc créé par les électrons minoritaires présents dans la base et qui réussissent à atteindre la jonction base-collecteur. Le courant I_{pc} qui est proportionnel à la densité de trous présents dans le collecteur est négligeable.

Dans un transistor HBT, la base est réalisée très étroite de sorte que sa très faible épaisseur devant la longueur de diffusion des électrons rend négligeable le courant de recombinaison I_{rb}. En outre, la recombinaison des électrons est négligeable dans la zone de charge d’espace de la jonction base-collecteur compte tenu du champ électrique élevé. Dans ces conditions, les courants d’émetteur, de base et de collecteur s’écrivent :

29

\[I_e = I_{ne} + I_{pe} \]
\[I_c = I_{ne} = I_{ce} \]
\[I_b = I_e - I_c = I_{pe} \]

Dans la condition où \(W_b < L_{nb} \) et dans l’hypothèse de dopages uniformes, le courant d’électrons de l’émetteur est donné par l’expression suivante \([9]\):

\[I_{ne} = \frac{q \cdot A_e \cdot n_{ib}^2 \cdot D_{nb}}{N_{Ab} \cdot W_b} \left(\exp \left(\frac{q \cdot V_{be}}{k \cdot T} \right) - 1 \right) \]

Dans l’hypothèse d’un émetteur étroit, c’est-à-dire \(W_e < L_{pe} \), le courant de trous de l’émetteur s’exprime par :

\[I_{pe} = \frac{q \cdot A_e \cdot n_{ie}^2 \cdot D_{pe}}{N_{De} \cdot W_e} \left(\exp \left(\frac{q \cdot V_{be}}{k \cdot T} \right) - 1 \right) \]

Où

\(A_e \) : l’aire de l’émetteur,

\(W_e \) et \(W_b \) : l’épaisseur de l’émetteur neutre et de la base neutre,

\(D_{pe} \) : le coefficient de diffusion des trous dans l’émetteur,

\(D_{nb} \) : le coefficient de diffusion des électrons dans la base,

\(L_{pe} \) : la longueur de diffusion des trous dans l’émetteur,

\(L_{nb} \) : la longueur de diffusion des électrons dans la base,

\(n_{ie} \) et \(n_{ib} \) : la concentration intrinsèque dans l’émetteur et dans la base.

En explicitant \(I_{ne} \) et \(I_{pe} \) dans les expressions (1-34), on obtient les expressions des courants émetteur, base et collecteur dans le transistor HBT :

\[I_e = q \cdot A_e \cdot \left(\frac{n_{ie}^2 \cdot D_{pe}}{N_{De} \cdot W_e} + \frac{n_{ib}^2 \cdot D_{nb}}{N_{Ab} \cdot W_b} \right) \left(\exp \left(\frac{q \cdot V_{be}}{k \cdot T} \right) - 1 \right) \]

\[I_c = q \cdot A_e \cdot n_{ib}^2 \cdot D_{nb} \left(\exp \left(\frac{q \cdot V_{be}}{k \cdot T} \right) - 1 \right) \]

\[I_b = q \cdot A_e \cdot n_{ie}^2 \cdot D_{pe} \left(\exp \left(\frac{q \cdot V_{be}}{k \cdot T} \right) - 1 \right) \]
1. 5. FACTEURS DE MERITE

Pour caractériser l’efficacité d’un transistor, on a recours à divers facteurs de mérite. Dans le cas d’un transistor HBT, ces principaux facteurs sont le gain en courant, la fréquence de coupure et la fréquence maximale d’oscillation.

1. 5. 1. Rendement d’émetteur

Le courant d’émetteur résulte à la fois de l’injection d’électrons et de trous. Le rendement d’émetteur caractérise l’efficacité à favoriser le courant d’électrons. Il est défini comme le rapport entre le courant d’électrons injectés dans la base \(I_{ne} \) et le courant d’émetteur total \(I_e \), il s’écrit donc :

\[
\gamma_e = \frac{I_{ne}}{I_e} = \frac{I_{ne}}{I_{ne} + I_{pe}} = \frac{1}{1 + \frac{I_{pe}}{I_{ne}}} \quad (1-37)
\]

Si nous cherchons à exprimer le rendement d’émetteur en fonction des paramètres physiques et géométriques du transistor HBT, on obtient :

\[
\gamma_e = \frac{1}{1 + \frac{n_{ie}^2 \cdot D_{pe} \cdot N_{Ab} \cdot W_b}{n_{ib}^2 \cdot D_{nb} \cdot N_{De} \cdot W_e}} \quad (1-38)
\]

Les concentrations de porteurs intrinsèques dans l’émetteur et la base sont données respectivement par :

\[
n_{ie} = (N_{Ce} \cdot N_{Ve})^{1/2} \cdot \exp\left(-\frac{E_{Ge}}{2 \cdot k \cdot T}\right) \quad (1-39-a)
\]

\[
n_{ib} = (N_{Cb} \cdot N_{Vb})^{1/2} \cdot \exp\left(-\frac{E_{Gb}}{2 \cdot k \cdot T}\right) \quad (1-39-b)
\]

En explicitant \(n_{ie} \) et \(n_{ib} \) dans l’expression (1-38), on obtient la nouvelle forme de l’expression du rendement d’émetteur :

\[
\gamma_e = \frac{1}{1 + \frac{N_{Ce} \cdot N_{Ve} \cdot D_{pe} \cdot N_{Ab} \cdot W_b}{N_{Cb} \cdot N_{Vb} \cdot D_{nb} \cdot N_{De} \cdot W_e} \cdot \exp\left(-\frac{\Delta E_G}{k \cdot T}\right)} \quad (1-40)
\]
Dans le transistor à homojonction, pour se rapprocher du cas idéal où $\gamma_e = 1$, il faut que l'émetteur soit beaucoup plus dopé que la base et que l'épaisseur de base W_b soit très petite par rapport à celle de l'émetteur W_e. Dans le transistor HBT, l'efficacité d'injection des électrons depuis l'émetteur est renforcée par la présence d'une augmentation de ΔE_Y de la barrière de potentiel vis-à-vis des trous de la base. La présence de cette augmentation réduit fortement le courant de trous I_{pe} et par conséquent, il n'est plus nécessaire de sous-doper la base par rapport à l'émetteur.

1.5.2. Facteur de transport de base

En fait, le courant des électrons collectés I_{nc} n'est pas identique au celui des électrons émis I_{ne}, une très faible proportion des électrons se recombinent avec les trous dans la base. Le facteur de transport de base caractérise donc le phénomène de recombinaison des paires électron-trou dans la base. Il est défini comme le rapport entre le courant des électrons collectés I_{nc} et le courant des électrons émis I_{ne}, il s'évalue donc de la manière suivante :

$$\delta_b = \frac{I_{nc}}{I_{ne}} \quad (1-41)$$

Tout comme γ_e, il est fonction des paramètres physiques et géométriques du transistor HBT et s'exprime par [10] :

$$\delta_b = 1 - \frac{W_b^2}{2 \cdot L_{nb}^2} \quad (1-42)$$

On retrouve le fait que pour limiter les recombinaisons dans la base, c'est-à-dire avoir une valeur idéale $\delta_b = 1$, il faut que la base soit nettement plus fine que la longueur de diffusion des électrons L_{nb}.

1.5.3. Gain en courant

On distingue le gain en courant du montage émetteur commun, noté β, et le gain en courant du montage base commune, noté α. Le gain en courant β caractérise un des effets fondamentaux du transistor : l'amplification en courant, il est donc
évident que c’est une caractéristique essentielle pour évaluer les performances d’un transistor HBT. Le gain β est défini comme le rapport entre le courant de collecteur et le courant de base, il s’écrit donc :

$$\beta = \frac{I_c}{I_b}$$ \hspace{1cm} (1-43)

Dans le cas où l’épaisseur de base est très petite devant la longueur de diffusion des électrons ($W_b << L_{nb}$), c’est-à-dire qu’on néglige les recombinations dans la base, le gain en courant β peut s’exprimer en fonction des considérations géométriques et physiques du transistor HBT par la relation suivante :

$$\beta \leq \frac{N_{cb} \cdot N_{vb} \cdot D_{nb} \cdot N_{de} \cdot W_e \cdot \exp \left(\frac{\Delta E_G}{k \cdot T} \right)}{N_{ce} \cdot N_{ve} \cdot D_{pe} \cdot N_{ab} \cdot W_b}$$ \hspace{1cm} (1-44)

L’amélioration du gain β du transistor HBT par rapport au BJT est liée à la présence de l’hétérojonction émetteur-base (la différence des gaps ΔE_G), ceci est clairement visible dans l’expression précédente. La présence de cette hétérojonction engendre un courant de base I_b beaucoup plus faible que dans le transistor à homojonction et par conséquent, renforce l’efficacité d’injection de l’émetteur et l’amplification en courant.

Dans le cas par exemple de l’hétérojonction 3C-SiC/Si où $\Delta E_G = 1,08$ eV, et pour une température ambiante ($T = 300$ K), le gain en courant β est proportionnel à un facteur de $1,3 \times 10^{18}$.

Le gain en courant du montage base commune est défini comme le rapport entre le courant de collecteur et le courant d’émetteur, il s’écrit donc :

$$\alpha = \frac{I_c}{I_e} = \frac{I_{nc}}{I_e} = \frac{I_{nc}}{I_{ne}} = \delta_b \cdot \gamma_e$$ \hspace{1cm} (1-45)

En explicitant δ_b et γ_e dans cette expression, on obtient :

$$\alpha = \frac{1 - \frac{W_b^2}{2 \cdot L_{nb}^2}}{1 + \frac{N_{ce} \cdot N_{ve} \cdot D_{pe} \cdot N_{ab} \cdot W_b}{N_{cb} \cdot N_{vb} \cdot D_{nb} \cdot N_{de} \cdot W_e} \cdot \exp \left(-\frac{\Delta E_G}{k \cdot T} \right)}$$ \hspace{1cm} (1-46)
1.5.4. Fréquence de coupure

La fréquence de coupure du transistor HBT est définie comme la fréquence pour laquelle le gain β est réduit à 1, c’est-à-dire le gain α est réduit à 0,5. C’est le paramètre qui caractérise les performances du transistor en hyperfréquences. Cette fréquence de coupure est reliée à la constante de temps τ_{ee} du dispositif par la relation suivante :

$$ f_c = \frac{1}{2 \cdot \pi \cdot \tau_{ee}} \quad (1-47) $$

La constante de temps τ_{ee} est la résultante des effets de deux types de phénomènes qui sont d’une part le stockage des charges dans les jonctions et d’autre part le transit des porteurs minoritaires à travers le dispositif. Elle peut aussi s’exprimer en fonction des considérations géométriques et physiques du transistor HBT par [11] :

$$ \tau_{ee} = R_e \cdot C_{be} + R_c \cdot C_{be} + \frac{W_b^2}{2 \cdot D_{nb}} + \frac{W_b}{v_{sat}} + \frac{X_{bc}}{2 \cdot v_{sat}} \quad (1-48) $$

Où

C_{be} et C_{bc} : les capacités des jonctions base-émetteur et base-collecteur,
R_e et R_c : les résistances d’émetteur et de collecteur, compte tenu des résistances de contacts,
X_{bc} : l’épaisseur de la zone de charge d’espace de la jonction base-collecteur,
v_{sat} : la vitesse de saturation des électrons.

Les capacités C_{be} et C_{bc} sont souvent de l’ordre de 10^{-15} F [1]. Ainsi, le temps de stockage des charges est relativement très faible et c’est généralement le temps de transit des porteurs qui limite la fréquence de coupure du transistor HBT.

De l’expression (1-47), nous pouvons conclure que pour maximiser f_C il faut minimiser τ_{ee}. Cela est obtenu par la réalisation de bases très étroites ainsi que par l’utilisation de matériaux à forte mobilité d’électrons qui présentent un phénomène de survitesse pour des champs avoisinant 4.10^5 Vcm$^{-1}$, c’est-à-dire compatibles avec ceux mis en jeu au voisinage de la jonction base-collecteur polarisée en inverse.
1.5.5. Fréquence maximale d’oscillation

La fréquence maximale d’oscillation est définie comme la fréquence pour laquelle le gain unilatéral est égal à 1, elle s’exprime approximativement par :

\[f_{\text{max}} = \frac{f_c}{\sqrt{8 \cdot \pi \cdot R_b \cdot C_{bc}}} \] \hspace{1cm} (1-49)

Où \(R_b \) est la résistance de base.

À l’examen de cette expression, on se rend compte que la fréquence de fonctionnement peut être rendue maximale à la fois par une fréquence de coupure \(f_c \) maximale mais également par une minimisation de la résistance de base \(R_b \) et de la capacité \(C_{bc} \) due à la jonction base-collecteur. En ce qui concerne la résistance de base, celle-ci est inversement proportionnelle à la conductivité du matériau, qui elle-même est proportionnelle au dopage de la base. La réduction de la résistance de base passe donc par l’augmentation du dopage de cette dernière.

1.6. EFFETS PARASITES LIÉS AU TRANSISTOR HBT

L’effet fondamental du transistor est malheureusement altéré par plusieurs effets parasites tels que l’effet Kirk, l’effet Crunch, l’effet de fuite, l’effet Early et le phénomène d’avalanche que nous allons décrire dans ce paragraphe.

1.6.1. Effet Kirk

Les électrons transitant à la vitesse de saturation dans la zone désertée du collecteur induisent une densité de charge négative donnée par :

\[n = \frac{J_c}{q \cdot v_{sat}} \] \hspace{1cm} (1-50)

Où

\(J_c \): la densité de courant collecteur,
\(v_{sat} \): la vitesse de saturation des électrons.

L’effet Kirk s’explique par le fait que lorsque cette densité d’électrons devient supérieure à la densité d’impuretés \(N_c \) présentes dans le collecteur, on
observe une inversion de pente du champ électrique dans la zone désertée de la jonction base-collecteur et par conséquent une extension de la zone neutre de la base. Cette extension de la zone neutre produit une augmentation de l'épaisseur de base et par suite une augmentation significative du temps de transit τ_{ec}. L'effet Kirk produit alors une chute significative de la fréquence de coupure f_c, limitant fortement la plage d'utilisation du transistor HBT. On peut noter que la densité de courant collecteur pour laquelle apparaît l'effet Kirk est donnée par [12]:

$$J_c = q \cdot v_{sat} \cdot \left(\frac{2 \cdot e \cdot (V_{cb} + V_d)}{q \cdot W_c^2} + N_c \right)$$ \hspace{1cm} (1-51)

Où

V_d : la tension de diffusion de la jonction base-collecteur,

N_c : le niveau de dopage dans le collecteur.

On peut remarquer que les effets de survivette ainsi qu'un dopage élargi du collecteur tendent à limiter l'apparition de l'effet Kirk. Cependant, nous devons noter que l'augmentation de dopage du collecteur a des effets néfastes sur la tension d'avalanche et la capacité due à la jonction base-collecteur. Un compromis devra alors être trouvé pour l'optimisation de la structure du transistor HBT.

1.6.2. Auto-échauffement et effet Crunch

Le transistor HBT se distingue par sa capacité à supporter de fortes densités de courant. Cependant, du fait de la faible conductivité thermique des matériaux employés, la puissance continue est dégagée sous forme de chaleur, ce qui augmente la température de jonction du transistor. Or, les lois de la physique du composant nous montrent que les différents paramètres d'un semi-conducteur dépendent de sa température de jonction. La conséquence en est une forte dépendance des performances à la température de jonction. Cet effet peut être observé sur le réseau de sortie $I_c(V_{ce})$ d'un transistor HBT, où il prend la forme d'une décroissance de I_c, pour une valeur de I_b fixée, lorsque V_{ce} augmente.

L'effet d'emballement thermique également dénommé effet Crunch est causé par une grande dépendance et une non-uniformité spatiale de la température à
l'intérieur du transistor [13]. Concrètement, ce phénomène se produit lorsqu'un doigt en particulier conduit la majorité du courant de collecteur, laissant les autres doigts électriquement inactifs (figure 1-10). La conséquence est une chute du gain en courant β et des problèmes d'instabilité thermique.

\[I_c (A) \]
\[10^{-1} \]
\[10^{-2} \]
\[10^{-3} \]
\[V_{ce} (V) \]

Zone d'embrasement thermique

Figure 1-10 : Mise en évidence de l'effet Crunch.

Plusieurs solutions sont envisageables pour repousser cet effet. D'un point de vue technologique, l'ajout d'une résistance ballast sur l'émetteur et l'implantation d'un drain thermique évacuant la chaleur provoquée par l'élévation de température permettent de repousser l'apparition de ce phénomène vers des tensions V_{ce} plus importantes.

1. 6. 3. **Effet de fuite**

En principe, les lignes de courant dans un transistor HBT sont verticales et situées sous l'émetteur. Il existe cependant des phénomènes de recombinaison qui induisent des courants qui ne participent pas à l'effet fondamental du transistor. Ce sont donc des courants parasites que l'on appelle courants de fuite. Comme illustré ci-après, ces recombinations interviennent essentiellement dans la zone neutre de la base et en surface, mais aussi dans la zone de charge d'espace [14].
1.6.4. Effet Early

Découvert en 1952 par J. M. Early [13], c’est l’effet de modulation du courant collecteur I_c par la tension collecteur-base V_{cb}. Cet effet est provoqué par la variation de l’épaisseur effective de base en fonction de la tension appliquée aux bornes de la jonction collecteur-base. Si la tension inverse V_{cb} varie, l’épaisseur de la zone de charge d’espace varie aussi. La variation de l’épaisseur de la base neutre va entraîner une variation de la pente du profil de la densité des porteurs minoritaires injectés et donc une variation du courant de collecteur I_c.

Comme l’illustre la figure 1-12, cela entraîne une augmentation du courant I_c en fonction de la tension V_{ce}. Les pentes des courbes à courant I_b constant vont se rejoindre en un point qui désignera la tension de Early V_{A}.

Figure 1-11 : Lignes de courant parasites dans un transistor HBT.

Figure 1-12 : Mise en évidence de l’effet Early.
Quand l’effet Early est poussé à l’extrême, l’épaisseur de la base neutre peut devenir nulle et le transistor n’est plus contrôlé par le courant de base I_b, c’est le percement (punch-through). Ce phénomène est souvent modélisé par un facteur multiplicateur F_{VA} appliqué sur le courant intrinsèque de la jonction collecteur-émetteur et il est donné par l’équation suivante :

$$F_{VA} = \frac{1}{\frac{V_{bc}}{V_A} + 1}$$ \hspace{1cm} (1-52)

Il faut signaler que cet effet, qui pénaliserait les transistors à homojonction, est quasiment absent dans les transistors HBT. En effet, le fort dopage de la base associé au faible dopage du collecteur fait que l’extension de la zone désertée de la jonction base-collecteur s’effectue principalement dans le collecteur.

1.6.5. Phénomène d’avalanche

Le phénomène d’avalanche vient de la multiplication des électrons traversant la zone de charge de l’espace de la jonction base-collecteur polarisée en inverse où règne un fort champ électrique. En effet, pour un niveau critique de champ électrique, il se produit un processus d’ionisation des électrons par impact qui entraîne une augmentation brutale du courant de collecteur I_c qui peut conduire à la destruction du composant. Le facteur de multiplication M est défini comme le rapport entre le courant total de collecteur et le courant arrivant à la jonction base-collecteur [15], il s’exprime donc par la relation suivante :

$$M = \frac{I_c}{I_{nc}} = 1 \left(1 - \left(\frac{V_{bc}}{V_{bc0}} \right)^\alpha \right)$$ \hspace{1cm} (1-53)

Où

V_{bc0} : la tension d’avalanche ou de claquage inverse de la jonction base-collecteur,

α : un facteur compris entre 2 et 6 selon le type du semi-conducteur utilisé.

La référence [16] montre que plus le dopage du collecteur est faible, plus V_{bc0} est élevé, mais plus f_C et f_{max} sont faibles. Il faut donc encore faire des compromis.
1. 7. LE TRANSISTOR HBT FACE À SES CONCURRENTS

Dans ce paragraphe nous rappelons succintement les transistors MESFET et HEMT, qui sont les principaux rivaux du transistor HBT. Nous établissons ensuite un parallèle entre ces trois transistors.

1. 7. 1. Transistor MESFET

Le MESFET (MEtal Semiconductor Field Effect Transistor) fut le premier composant à être fabriqué à partir d’un matériau composé III-V. Mead [4] proposa en premier de remplacer le silicium (Si) des premiers FET par un semi-conducteur III-V tel que l’Arséniure de Gallium (GaAs). Cette évolution au niveau du matériau a permis l’utilisation des MESFET pour applications micro-ondes.

Dans l’état de l’art aujourd’hui, la couche active est directement implantée dans le substrat semi-isolant. Ensuite, la grille en métal réfractaire est déposée. Puis les zones N⁺ sont implantées en se servant du métal comme un masque pour obtenir deux zones d’accès auto-alignées sur la grille. Il est à noter que tous les MESFET ne sont pas toujours auto-alignés [14]. La figure ci-dessous représente une coupe schématique d’un MESFET dans sa version la plus élaborée (implantée, auto-alignée). La structure présentée met en évidence les différentes couches utilisées pour sa réalisation. La couche active est généralement une couche du type N qui repose sur un substrat semi-isolant. Les contacts de source et de drain sont des contacts ohmiques contrairement au contact Schottky de grille.

Figure 1-13 : Vue en coupe du MESFET en GaAs implanté auto-aligné.
Chapitre 1 : Le transistor bipolaire à hétérojonction

Le principe de base du MESFET repose sur les caractéristiques d’une jonction Schottky. Lorsqu’un métal (grille) est mis en contact avec un semi-conducteur de type N, les électrons du semi-conducteur au voisinage du métal diffusent dans ce dernier laissant ainsi une zone dépueplée sous la grille sur une profondeur. Perdant des électrons, le semi-conducteur devient de plus en plus positif par rapport au métal, ce qui donne naissance à un champ électrique.

En effet, dans les transistors MESFET, les électrons assurant la conduction dans le canal voient leur mobilité limitée par des interactions avec les atomes donneurs. Afin de dépasser ce problème de limitation de la mobilité, il fut créé des transistors dénommés HEMT qui font référence à des transistors à hétérojonction à mailles cristallines accordées ou quasi accordées.

1.7.2. Transistor HEMT

Le transistor HEMT (High Electron Mobility Transistor) a été conçu et réalisé par Fujitsu au Japon et Thomson-CSF en France [17]. À partir de la structure conventionnelle du HEMT, plusieurs types de transistors à effet de champ à hétérojonction ont été imaginés. À titre d’exemple, nous pouvons citer le HFET (Heterostructure FET), le MODFET (MOdulation Doped FET), le PHEMT (Pseudomorphic HEMT) et le PMHFET (PseudoMorphic Heterostructure FET).

La structure des couches épitaxiées des transistors HEMT est réalisée de façon à séparer physiquement les électrons libres dans le canal des donneurs ionisés, ceci afin d’augmenter la mobilité des électrons par la réduction de la répartition des impuretés ionisées. Ainsi, la différence essentielle entre les MESFET et les HEMT se situe au niveau du principe même du contrôle du courant dans le canal. Alors que dans le cas du MESFET, l’électrode de grille contrôle la section de canal disponible pour la conduction. Dans le cas du HEMT, elle contrôle la densité d’un gaz d’électrons libres dans une zone non dopée située sous l’hétéro-interface qui constitue le canal du transistor.

La figure ci-après représente la structure de couches dans un HEMT classique utilisant le GaAs et le GaAlAs comme couches actives.
La couche de surface utilise l’GaAlAs fortement dopé N⁺ avec un grand gap se comportant ainsi comme un isolant. En revanche, le canal, non dopé, est composé d’un matériau à faible gap GaAs. De ce fait, des électrons libres diffusent de l’GaAlAs vers la couche GaAs laissant la zone N⁺ de grand gap dépeuplée et donc chargée positivement. Ces électrons s’accumulent à l’hétérointerface formant ainsi un gaz d’électrons à deux dimensions plus ou moins profond suivant la polarisation de la tension de grille.

Les propriétés de transport de ce gaz d’électrons sont considérablement supérieures à celles des électrons libres dans un MESFET classique puisque le canal se situe dans une zone non dopée à très forte mobilité. De plus, les collisions entre électrons n’ont que rarement lieu en raison de défauts peu nombreux. Pour ces différentes raisons, le HEMT est un dispositif à très fort gain et à très faible bruit aux hautes fréquences.

Si le HEMT a permis des utilisations en fréquence bien plus hautes que celles du MESFET, sa limite fréquentielle est de l’ordre de 60-70 GHz [14]. Cette limite est principalement due aux propriétés de transport du matériau intrinsèque. De plus le HEMT génère un bruit basse fréquence élevé du aux pièges appelés centres DX.
1. 7. 3. Comparaison des performances du transistor HBT

Le transistor HBT, pour une surface d’émetteur équivalente à la surface de grille d’un transistor à effet de champ, offre une densité de puissance 3 à 6 fois supérieure, ceci grâce à sa structure verticale et son transport des charges qui est perpendiculaire aux couches épitaxiées.

De plus, le transistor HBT ne nécessite pas l’emploi d’une tension négative pour le polariser, ce qui simplifie considérablement la réalisation de circuits. Sa faible épaisseur de base permet d’obtenir des performances hyperfréquences équivalentes à celles d’un transistor à effet de champ ayant une bien plus faible longueur de grille.

Récemment, des recherches sur les structures HBT à base de GaAs ont permis d’atteindre des tensions de claquéur collecteur-émetteur de 106 V [10], laissant présager pour le futur de fortes densités de puissance. Ces tensions de claquéur élevées vont permettre de concurrencer les FET à grand gap tel que les MESFET sur carbure de silicium (SiC) ou sur nitrure de gallium (GaN) qui dépassent des tensions de claquéur drain-source de 150 V mais avec des densités de courant bien inférieures.

Le transistor HBT montre aussi des performances, en terme de bruit basse fréquence, très attractives par rapport au FET. Ceci s’explique par le nombre moins élevé de pièces présents en surface et dans le matériau pour le transistor HBT. En effet, il est démontré que l’origine physique des sources de bruit aux basses fréquences est en grande partie attribuée aux phénomènes de piégage et de génération-recombinaison dans la base neutre.

Enfin, la très bonne linéarité du gain en courant des transistors HBT permet de concevoir d’excellents amplificateurs linéaires. La caractéristique exponentielle courant-tension des transistors HBT est un grand avantage pour réaliser de fonctions non-linéaires telles que : multiplicateurs, mélangeurs de fréquence ou amplificateurs. Leur transconductance est très élevée du fait de la loi exponentielle, ce qui permet de faibles excursions de tensions d’entrée pour commander le collecteur dans tout son domaine.
Le tableau ci-dessous donne un résumé des comparaisons entre les transistors MESFET, HEMT et HBT.

<table>
<thead>
<tr>
<th></th>
<th>MESFET</th>
<th>HEMT</th>
<th>HBT (GaAs)</th>
<th>HBT (SiGe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_C</td>
<td>moyen</td>
<td>bon</td>
<td>très bon</td>
<td>bon</td>
</tr>
<tr>
<td>f_{max}</td>
<td>moyen</td>
<td>très bon</td>
<td>très bon</td>
<td>bon</td>
</tr>
<tr>
<td>Gain en courant</td>
<td>moyen</td>
<td>bon</td>
<td>Bon</td>
<td>très bon</td>
</tr>
<tr>
<td>Bruit BF</td>
<td>moyen</td>
<td>moyen</td>
<td>Bon</td>
<td>très bon</td>
</tr>
<tr>
<td>Bruit de phase</td>
<td>moyen</td>
<td>moyen</td>
<td>Bon</td>
<td>très bon</td>
</tr>
<tr>
<td>Facteur de bruit</td>
<td>bon</td>
<td>très bon</td>
<td>Moyen</td>
<td>bon</td>
</tr>
<tr>
<td>Densité de puissance</td>
<td>moyen</td>
<td>moyen</td>
<td>très bon</td>
<td>très bon</td>
</tr>
<tr>
<td>Puissance de sortie < 1 W</td>
<td>bon</td>
<td>très bon</td>
<td>très bon</td>
<td>bon</td>
</tr>
<tr>
<td>Puissance de sortie > 40 W</td>
<td>très bon</td>
<td>bon</td>
<td>Bon</td>
<td>moyen</td>
</tr>
<tr>
<td>Application GSM</td>
<td>moyen</td>
<td>très bon</td>
<td>Bon</td>
<td>très bon</td>
</tr>
<tr>
<td>Niveau d’intégration</td>
<td>moyen</td>
<td>moyen</td>
<td>Moyen</td>
<td>très bon</td>
</tr>
</tbody>
</table>

Tableau 1-2 : Comparaison entre les transistors MESFET, HEMT et HBT.

1.8. CONCLUSION

Dans ce premier chapitre, nous avons développé le principe physique général de fonctionnement du transistor HBT en mettant en évidence l’intérêt d’utiliser un matériau à large bande interdite pour l’émetteur et un matériau à faible bande interdite pour la base. Dans un transistor NPN, cette structure permet d’accroître l’efficacité d’injection des électrons de l’émetteur vers la base et de bloquer les trous dans la base. Elle permet ainsi de renforcer le gain en courant. Cette propriété reste valable pour des dopages élevés de la base et des dopages peu élevés de
l'émetteur. On dispose de ce fait de la possibilité de réduire les valeurs des résistances et capacités parasites du composant.

De plus, la réalisation de bases très étroites ainsi que l'utilisation de matériaux à forte mobilité, qui présentent un phénomène de survitesse, contribuent à réduire les temps de transit des électrons dans la structure et par conséquent à renforcer les potentialités de fonctionnement des transistors HBT dans le domaine des hyperfréquences.

Un parallèle entre les transistors HBT, MESFET et HEMT a été également établi. Le transistor HBT possède des caractéristiques très prometteuses en terme de rapidité, de niveau de bruit et surtout de puissance grâce à sa structure verticale, mais la présence de phénomènes parasites doit être prise en considération afin de parfaitement comprendre et reproduire son fonctionnement.
CHAPITRE 2 :

LE CARBURE DE SILICIUM
2. LE CARBURE DE SILICIUM

2.1. HISTORIQUE

Le carbure de silicium (SiC), plus communément appelé Carborundum, n'est pas un nouveau venu sur la scène des semiconducteurs. En effet, le premier compte rendu sur ce matériau date de 1824 [18]. Les propriétés de ce matériau étaient alors inconnues. En 1891, Acheson déposa le premier brevet de fabrication industrielle du SiC, il sert à la fabrication d'abrasifs. En 1907, Round remarqua les propriétés électroluminescentes de ce matériau [19]. Cinq ans plus tard, Baumhauer découvrit le polytypisme dans le cristal SiC. Son essor dans le monde de l'électronique fut longtemps ralenti par la difficulté d'obtenir des cristaux de grande qualité jusqu'à ce que Lely découvre une nouvelle méthode de croissance en 1955. Ce n'est qu'à partir de cette date, sous l'impulsion des groupes militaires et spatiaux, que les recherches qui visaient à la mise au point d'une future filière électronique SiC se sont fortement accentuées. La recherche scientifique commença alors aux USA pour se propager en Europe, en URSS et au Japon. Celle-ci se confronta à un obstacle majeur et s'arrêter presque partout dans ces pays à l'exception de l'URSS ; en effet il était impossible à l'époque d'augmenter la taille des cristaux et d'améliorer leur pureté. L'essor du SiC se poursuivit en 1978 avec la mise au point de la méthode de Lely modifiée qui permet l'obtention de cristaux de taille plus importante. Un procédé d'épitaxie en phase vapeur est également développé afin d'obtenir des films de SiC sur des substrats Si de grandes dimensions. En 1987, la firme américaine Cree Research fut fondée, elle est devenue récemment le leader mondial dans la
fabrication de substrats commerciaux SiC. La recherche reprit également au Japon, en Russie, en Allemagne, en France et en Suède.

À l’heure actuelle, le développement d’une filière électronique SiC est en bonne voie. Un premier niveau de commercialisation a été atteint et on peut trouver des substrats, des couches épitaxiées et quelques composants élémentaires.

2. 2. POLYTypisme DU SiC

2. 2. 1. Notions cristallographiques

Le carburé de silicium est un semiconducteur composé IV-IV. C’est un terme générique qui recouvre toutes les formes binaires de carbone et de silicium existant en phase solide. Celles-ci appartiennent à la famille des matériaux à structure cristalline compacte et présentent un polymorphisme accentué selon une direction cristalline privilégiée, correspondant à la direction <111> de la structure cubique du diamant. Ce type de polymorphisme est appelé, de façon standard, polytypisme.

Les différents polytypes de SiC ne diffèrent que par le détail de la séquence d’empilements de bicouches élémentaires Si-C, à période élevée. Celles-ci sont identiques quelle que soit la structure considérée. Chaque bicouche élémentaire contient un plan compact de silicium superposé à un plan compact de carbone. La maille élémentaire du SiC est constituée d’un tétraèdre de carbone au centre duquel est situé un atome de silicium (figure 2-1). La liaison Si-C est partiellement ionique et sa longueur est déterminée par la somme des rayons tétraédriques du silicium et du carbone, elle égale approximativement à 1,89 Å.

![Cellule tétraédrique du SiC.](image)
Il existe trois arrangements possibles entre les bicouches notés A, B et C. Selon la séquence d’empilement, on retrouve alors plus d’une centaine de structures cristallographiques différentes, réparties en deux grandes familles :
- **famille β** : structure cubique (3C).
- **famille α** : structures hexagonales (4H, 6H, etc.) et rhomboédriques (15R, etc.).

Dans la structure cubique, il existe un centre d’inversion entre deux bicouches successives ; les liaisons des deuxième voisins tournent de 60° autour de l’axe Si-C qui leur est commun. Dans le cas de la structure hexagonale, ces liaisons sont images l’une de l’autre dans un plan miroir (figure 2-2).

Figure 2-2 : Structures cubique (zinc-blende) et hexagonale (wurtzite) du SiC [20].

Le nombre d’atomes par maille élémentaire varie pour chaque polytype, ce qui naturellement, influe sur la largeur du gap, et par conséquent sur les propriétés optiques et électriques de chacun d’eux [21]. Mais la structure de maille n’est pas la seule cause de disparité des paramètres physiques. En effet, certains polytypes possèdent des sites non équivalents. Par exemple, le polytype 6H possède 3 sites non équivalents. Ces effets sont importants par exemple dans le cas des impuretés substitutionnelles.
Le polytype 3C est de couleur jaune. Sa plus haute symétrie réduit d’autant la diffusion par les phonons. Les polytypes de la famille α sont transparents, leur couleur peut être modifiée par l’introduction de dopants.

2. 2. 2. Notation des polytypes

Les polytypes sont notés de plusieurs façons, la notation de Ramsdell est la plus connue. C’est celle que nous utiliserons dans tout ce mémoire.

2. 2. 2. 1. Notation de Ramsdell

Chaque polytype est désigné par la forme NX-SiC où N désigne le nombre de bicouches formant la maille élémentaire ou la période et X indique la structure cristalette ; C ou β pour une structure cubique, H ou α pour une structure hexagonale et R ou α pour une structure rhomboédrique.

2. 2. 2. 2. Notation ABC

Cette notation permet de connaître de façon exacte la séquence d’empilement de couches atomiques. Les lettres A, B et C se suivent pour désigner le nombre de bicouches dans une période ou séquence élémentaire d’un polytype. Cependant cette notation devient lourde quand le nombre de couches est grand. Les quatre polytypes les plus courant sont évoqués dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th>Notation de Ramsdell</th>
<th>Notation ABC</th>
<th>Période</th>
<th>Structure cristalline</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C-SiC (β-SiC)</td>
<td>ABC</td>
<td>3</td>
<td>Cubique (zinc-blende)</td>
</tr>
<tr>
<td>2H-SiC (α-SiC)</td>
<td>AB</td>
<td>2</td>
<td>Hexagonale (wurtzite)</td>
</tr>
<tr>
<td>4H-SiC (α-SiC)</td>
<td>ABAC</td>
<td>4</td>
<td>50% cubique et 50% hexagonale</td>
</tr>
<tr>
<td>6H-SiC (α-SiC)</td>
<td>ABCACB</td>
<td>6</td>
<td>66% cubique et 33% hexagonale</td>
</tr>
</tbody>
</table>

Tableau 2-1 : Notation de Ramsdell et notation ABC
pour les principaux polytypes du SiC.

50
2. 2. 2. 3. Notation zigzag

La séquence zigzag représente graphiquement la succession des plans compacts le long de l’axe orthogonal à ces plans (figure 2-2). Cet axe est [0001] pour le 6H-SiC et [111] pour le 3C-SiC. La succession des atomes forme alors des lignes brisées ou segments. Le nombre de segments est toujours pair.

2. 2. 2. 4. Notation de Jagadzinski

Appelée aussi notation hk, elle permet de connaître la nature du site cristallographique, en précisant son environnement, hexagonal (wurtzite) ou cubique (zinc-blende). Le site hexagonal (h) est entouré par deux plans identiques, alors que le site cubique (k) est entouré de deux plans différents. Le 3C-SiC est le seul polytype à structure cubique (zinc-blende), il ne possède que des sites cubiques tous équivalents (figure 2-3-a). Dans le 4H-SiC, il existe un site h et un site k (figure 2-3-b). Le 6H-SiC possède un site h pour deux sites k₁ et k₂ (figure 2-3-c). On utilise un indice qui permet d’indiquer le nombre de fois où une séquence est répétée sans interruption. Par exemple, kkk pour le 3C-SiC, (hk)₂ pour le 4H-SiC et (hkk)₃ pour le 6H-SiC.

Figure 2-3 : Polytypes cubique et hexagonaux du SiC [22].
2.3. PROPRIÉTÉS ET APPLICATIONS DU SiC

Parmi les polytypes de SiC, trois seulement présentent un intérêt pour les applications microélectroniques : le 3C-SiC, le 4H-SiC et le 6H-SiC. Afin de mieux nous rendre compte de leurs potentialités électriques et thermiques, nous dressons sur le tableau 2-2 leurs principaux paramètres physiques. Nous citons également le silicium, le GaN et le diamant comme références.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>3C-SiC</th>
<th>6H-SiC</th>
<th>4H-SiC</th>
<th>GaN</th>
<th>Diamant</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_G (eV)</td>
<td>1,12 (i)</td>
<td>2,2 (i)</td>
<td>2,9 (i)</td>
<td>3,26 (i)</td>
<td>3,39 (d)</td>
<td>5,5 (i)</td>
</tr>
<tr>
<td>n_i (cm3)</td>
<td>1,45 10^{10}</td>
<td>6</td>
<td>3 10^{-6}</td>
<td>8,2 10^{-9}</td>
<td>-</td>
<td>1020</td>
</tr>
<tr>
<td>μ_e (cm2V$^{-1}$s$^{-1}$)</td>
<td>1400</td>
<td>1000</td>
<td>370</td>
<td>800</td>
<td>900</td>
<td>2200</td>
</tr>
<tr>
<td>μ_p (cm2V$^{-1}$s$^{-1}$)</td>
<td>600</td>
<td>50</td>
<td>90</td>
<td>115</td>
<td>-</td>
<td>1600</td>
</tr>
<tr>
<td>v_{sat} (cm s$^{-1}$)</td>
<td>107</td>
<td>2,5 10^7</td>
<td>2 10^7</td>
<td>2 10^7</td>
<td>2,7 10^7</td>
<td>2,7 10^7</td>
</tr>
<tr>
<td>ξ_m (Vcm$^{-1}$)</td>
<td>3 10^5</td>
<td>2,12 10^6</td>
<td>2,5 10^6</td>
<td>2,2 10^6</td>
<td>3,3 10^6</td>
<td>107</td>
</tr>
<tr>
<td>ε_r</td>
<td>11,8</td>
<td>9,7</td>
<td>9,7</td>
<td>10</td>
<td>9</td>
<td>5,5</td>
</tr>
<tr>
<td>λ (Wcm$^{-1}$K$^{-1}$)</td>
<td>1,5</td>
<td>5</td>
<td>4,9</td>
<td>4,9</td>
<td>1,3</td>
<td>20</td>
</tr>
<tr>
<td>Dureté (kg mm$^{-2}$)</td>
<td>1150</td>
<td>3300</td>
<td>2930</td>
<td>2930</td>
<td>-</td>
<td>7000</td>
</tr>
<tr>
<td>Stabilité physique</td>
<td>bonne</td>
<td>excellente</td>
<td>bonne</td>
<td>très bonne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coeff de dilatation thermique (K$^{-1}$)</td>
<td>2,56 10^{-6}</td>
<td>3,3 10^{-6}</td>
<td>2,78 10^{-6}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paramètre de maille (Å)</td>
<td>5,43</td>
<td>4,35</td>
<td>a : 3,1</td>
<td>c : 15,1</td>
<td>c : 10,5</td>
<td>4,51</td>
</tr>
<tr>
<td>Point de fusion (°C)</td>
<td>1410</td>
<td>Sublimation > 2100</td>
<td>1800</td>
<td>> 3300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp max d'opération (°C)</td>
<td>350</td>
<td>930</td>
<td>1310</td>
<td>1450</td>
<td>1660</td>
<td>2500</td>
</tr>
</tbody>
</table>

Tableau 2-2 : Principaux paramètres physiques du SiC, du Si, du GaN et du diamant à température ambiante ~ 300 K [23] [24].
E_g: le gap (*d*: transition directe, *i*: transition indirecte),

n_i: la concentration intrinsèque,

μ_n(p): la mobilité des électrons (trous),

ν_s: la vitesse de saturation des électrons,

ξ_m: le champ électrique de claquage,

ε_r: la permittivité relative,

λ: la conductivité thermique.

Le diamant possède des potentialités électriques et thermiques nettement avantageuses par rapport à tous les semiconducteurs. Or à l’heure actuelle, c’est un matériau qui n’est encore qu’à son premier stade de développement, sa synthèse est très délicate et son dopage représente un problème irrésolu.

Le GaN, matériau à grand gap direct, possède des potentialités parfois supérieures à celles du SiC. Cependant, l’absence de substrat permettant de faire croître des couches homoépitaxiées de GaN, constitue un des inconvénients majeurs nuisants au développement de ce matériau.

Le SiC est chimiquement inerte, seules quelques bases concentrées, portées à haute température (KOH en fusion, etc.), peuvent l’attaquer. De plus, il s’oxyde bien moins facilement que le silicium et est insensible aux radiations, d’où sa grande utilité pour les applications en environnement sévère.

2.3.1. Propriétés électroniques

La principale grandeur qui caractérise le SiC parmi celles citées est la large bande interdite (grand gap) qui est comprise entre 2,2 eV pour le 3C-SiC et 3,3 eV pour le 2H-SiC à température ambiante. Il faut signaler que plus la structure cristalline est « hexagonalement » pure (wurtzite), plus le gap est grand. C’est la large bande interdite qui permet ainsi au SiC d’être moins sensible à la température.

Dans ce cas, la concentration de porteurs intrinsèques n’excède pas 10^{14} cm^{-3} [25] à 1300 K dans le 6H-SiC, et à 1100 K dans le 3C-SiC alors que, dans le silicium, elle s’élève à plus de 10^{10} cm^{-3} à 300 K. Des jonctions PN en SiC peuvent donc exister avec des caractéristiques satisfaisantes autour de 700 °C, ceci est
d’autant plus intéressant que les matériaux semiconducteurs classiques (Si et GaAs) deviennent inopérants en raison de la génération incontrôlée de porteurs intrinsèques.

Ce résultat est parfaitement clair sur la figure ci-dessous. En définissant la température maximale de fonctionnement du composant comme la température pour laquelle la concentration de porteurs intrinsèques est égale à $5 \cdot 10^{15} \text{cm}^{-3}$, on voit immédiatement que le 3C-SiC permet de travailler au-dessus de 600 °C. Dans ce domaine, le silicium se comporte comme un conducteur et la stabilité du GaN n’est pas satisfaisante.

Figure 2-4 : Évolution de la concentration des porteurs intrinsèques (calculée) avec la température pour le 3C-SiC et le silicium.

Les mobilités sont en général déterminées par des mesures Hall [26] qui montrent que μ_n et μ_p sont proportionnelles à T^{-2} entre 77 et 580 K. La mobilité relativement restreinte des électrons présente un inconvénient évident pour les applications micro-électroniques. Elle est anisotrope dans le 4H-SiC et le 6H-SiC alors que, dans le 3C-SiC, elle est isotrope. La mobilité des trous est mal connue, elle est beaucoup plus faible que celle des électrons.
Comparé au silicium, le SiC possède un champ de claquage environ dix fois plus élevé. Il désigne un seuil à partir duquel le champ électrique entraîne la multiplication de porteurs par phénomène d'avalanche et donc le claquage du dispositif. Pour une même épaisseur de couche active, le SiC est en mesure de bloquer une tension nettement plus élevée que le silicium. Outre la faible mobilité du SiC, l'immense rapport entre les champs électriques critiques avec son homologue en silicium fait qu'il bénéfie malgré tout d'une résistance spécifique à l'état passant beaucoup moins élevée que le silicium. Cet avantage significatif hisse le carbure de silicium parmi les meilleurs candidats pour les hautes tensions dans les dispositifs de l'électronique de puissance (MOSFET, Schottky, etc.).

La vitesse de saturation des électrons dans le SiC est deux fois plus élevée que celle dans le silicium. Sur la figure 2-5, sont reportées les vitesses de saturation en fonction du champ électrique appliqué [27]. On note que, dans le GaN, la vitesse sature aux environ de 120 kVcm$^{-1}$ alors que, dans le SiC, elle continue à croître. Cette différence de comportement est liée à l'énergie particulièrement élevée des phonons optiques de SiC par rapport aux matériaux III-V. C'est un élément important pour réaliser des composants hautes fréquences utilisables, en particulier, dans les télécommunications.

Figure 2-5 : Évolution de la vitesse de saturation des électrons avec le champ électrique appliqué pour le SiC, le silicium, le GaAs et le GaN.
Pour le 3C-SiC, les valeurs des masses effectives des électrons et des trous, à température ambiante, sont respectivement $0,355m_o$ et $0,8m_o$ [28] (m_o est la masse de l’électron). En ce qui concerne la durée de vie des minoritaires, elle est de 10^{-9} s dans ce matériau.

2.3.2. Propriétés optiques

Les différents polytypes du SiC étant tous à gap indirect, ce matériau n’est donc pas indiqué pour les applications optoélectroniques. Il trouve un terrain plus favorable dans le domaine des capteurs (environnement sévère) et de l’électronique de puissance. On note cependant que le carbure de silicium est birefringent, c’est-à-dire qu’il décompose un rayon lumineux incident en deux rayons réfractés distincts correspondant à deux indices différents très proches.

2.3.3. Propriétés thermiques

La conductivité thermique du carbure de silicium est importante avec une valeur comparable à celle du cuivre. Les composants à base de SiC auront ainsi une bonne évacuation de la chaleur produite au sein de du composant. Cela peut permettre d’avoir une densité d’intégration plus forte et de réduire, voire supprimer, le refroidissement de ces composants.

Rappelons également que la température de fusion du SiC est nettement plus grande que celle du silicium. Elle se place juste après celle du diamant.

2.3.4. Propriétés mécaniques

Le SiC est un matériau bien connu pour ses qualités mécaniques, sa dureté exceptionnelle (près de trois fois celle du Si) et son excellente stabilité physique. Il est employé depuis très longtemps dans le domaine des abrasifs et de la découpe des matériaux.

En plus de ces qualités, le carbure de silicium possède un facteur de jauge tout à fait correct, bien que plus faible que celui du silicium, et un module d’Young élevé. Il conserve ses propriétés élastiques jusqu’à 850 °C [29].
2. 4. TECHNIQUES DE FABRICATION DU MATERIAU

Dans ce paragraphe, nous présentons les différentes techniques de fabrication du matériau massif et des couches épitaxiées. Notons que d’énormes difficultés se posent dans la croissance du carbure de silicium.

2. 4. 1. SiC massif monocristallin

2. 4. 1. 1. Méthode de Lely (croissance par sublimation)

En 1955, Lely développa une méthode de production de SiC monocristallin par sublimation de SiC polycristallin [30]. La figure 2-6 montre le réacteur constitué d’un tube en graphite poreux entouré de la charge de SiC polycristallin. Cette dernière est chauffée à 2500 °C et se retrouve en phase vapeur sursaturée. Les vapeurs de SiC diffusent alors vers la zone froide et se condensent sur les parois de graphite poreux. Les germes de SiC ainsi formés croissent en divers endroits de la surface.

![Diagram](image)

Figure 2-6 : Chambre de croissance du matériau SiC dans la méthode de Lely.

L’inconvénient principal de cette méthode est la taille extrêmement faible des cristaux obtenus. Ajoutons à cela l’apparition de plusieurs variétés allotropiques (4H, 6H, etc.) et les limites de la croissance par sublimation apparaissent évidentes.
2.4.1.2. Méthode de Lely modifiée

En 1978, Tairov et Tsvetkov ont mis au point la méthode de Lely modifiée ou la méthode du germe [24]. Celle-ci est actuellement la méthode de croissance la plus adaptée pour obtenir des substrats de SiC de bonne qualité et de taille plus importante. Le procédé consiste à placer un germe monocristallin du polytype désiré et de la poudre de SiC, qui sert de source, aux deux extrémités d’une enceinte le long de laquelle est créé un gradient de température (figure 2-7).

Sous faible pression d’argon et à une température d’environ 2200 °C, la poudre de SiC se sublime en produisant des vapeurs composées de molécules de silicium et de carbone telles que Si2C, SiC2, Si2 et Si. Les espèces dégagées se condensent et s’épitaxient sur le germe refroidi. C’est le gradient de température entre la poudre et le germe qui est à l’origine du transport des espèces.

![Diagram](image)

Figure 2-7 : Chambre de croissance du matériau SiC dans la méthode de Lely modifiée.

Cette technique a permis de contrôler le polytype, d’augmenter l’épaisseur des lingots et d’accroître le diamètre des cristaux. Actuellement, la société CREE, leader mondial dans le domaine de l’élaboration du SiC massif, commercialise des substrats 4H-SiC et 6H-SiC jusqu’à 75 mm de diamètre. De plus, cette société a démontré son avance technologique en sortant les premiers substrats de 100 mm de diamètre. La France est aussi présente dans ce domaine grâce au travail de l’INPG.
et du LETI. Pour l’instant, on ne peut pas disposer de substrats de 3C-SiC de bonne qualité et de taille suffisante [31].

La qualité du cristal dépend de la qualité de la surface du germe. Par ailleurs, le choix du germe permet le contrôle du polytype du cristal, alors que les conditions de croissance (température et pression) permettent d’obtenir un cristal formé d’un seul polytype. Enfin, la qualité du cristal dépend aussi de la pureté de la poudre source ; des analyses SIMS ont montré la présence de nombreuses impuretés dans les poudres de SiC (Al, B, N, Ti, Fe, etc.).

Les cristaux contiennent aussi des défauts de structure : outre une densité de dislocations assez élevée (10^3-10^5 cm^-2), il existe dans tous les lingots des défauts appelés micropipes. Il s’agit de tubes creux, de section hexagonale, se propageant le long de l’axe de croissance du cristal. Le diamètre de ces micropipes est compris entre 0,1 et 30 μm pour une densité allant de moins de 10, pour les meilleurs substrats, à quelques centaines par cm^-2. Les micropipes peuvent engendrer des zones de claquage si des tensions trop élevées sont appliquées. Par contre, les défauts de type dislocations ne sont pas tellement nocifs pour les composants. L’effort porte maintenant sur la diminution de la quantité de ces défauts. À l’heure actuelle, les meilleurs résultats connus sont ceux annoncés par la société CREE Research qui a produit des substrats 4H-SiC de 50 mm de diamètre [31], avec une densité de micropipes n’excédant pas 5 cm^-2. Des résultats, meilleurs encore, ont été démontrés en développement par CREE sur des substrats de 75 mm de diamètre.

2.4.2. Couches minces de 3C-SiC sur substrats Si

Le coût extrêmement élevé des substrats SiC obtenus par sublimation, ainsi que leur relative fragilité, font que l’on préfère élaborer des couches minces surtout dans le cas du 3C-SiC, pour lequel l’obtention de substrats monocrystallins reste très difficile. La meilleure alternative proposée actuellement pour obtenir du 3C-SiC est l’intégration sur substrat de Si. Mais elle rencontre un bon nombre d’inconvénients, dus aux paramètres physiques des deux matériaux :
- Différence de paramètres de maille,
- différence des coefficients de dilatation thermique.
Pour se faire, l’épitaxie semble la méthode la plus adaptée. Il s’agit de l’élaboration d’un dépôt monocristallin sur un substrat lui-même monocristallin possédant l’orientation désirée. Divers procédés existent, les plus usuels sont :
- l’épitaxie en phase vapeur (CVD : Chemical Vapor Deposition),
- l’épitaxie en phase liquide (LPE : Liquid Phase Epitaxy),
- l’épitaxie par jets moléculaires (MBE : Molecular Beam Epitaxy).

2. 4. 2. 1. Épitaxie en phase vapeur (CVD)

Les méthodes les plus fréquemment utilisées pour l’élaboration des couches actives sont celles de l’épitaxie en phase vapeur (CVD).

La croissance épitaxiale obtenue par dépôt chimique en phase vapeur, utilise la pyrolyse, à haute température, des précurseurs gazeux sur le substrat chauffé. Pour déposer du SiC, du silane (SiH₄) et du propane (C₃H₈) sont dilués dans un flux porteur d’hydrogène. Le silane et le propane sont des gaz réactifs qui contribuent, respectivement, à l’apport de silicium et de carbone.

En fonction du but recherché, les températures de dépôt peuvent varier de 1300 à 1800 °C [23]. En principe, à 1350 °C, on réalise surtout des dépôts de 3C-SiC sur silicium (hétéroépitaxie). À plus haute température (à partir de 1500 °C), on réalise des dépôts de SiC sur SiC. Les vitesses de croissance et la qualité cristalline des couches épitaxiées dépendent de la dilution des gaz dans H₂ et de la pression partielle des espèces réactives SiH₄ et C₃H₈.

Le dépôt par CVD permet de mieux contrôler le dopage de type N et P dans une gamme très large. En effet, un dopage in-situ peut être obtenu par introduction de dopants pendant la croissance de la couche épitaxiée ; N₂ ou PH₃ pour le type N et AlCl₃ ou B₂H₆ pour le type P.

2. 4. 2. 1. 1. Désaccord de maille entre le substrat et la couche

C’est le problème majeur rencontré au cours de l’hétéroépitaxie. Dans le cas du silicium et du 3C-SiC, les paramètres de maille valent respectivement 5,43 Å et 4,35 Å, ce qui conduit à un désaccord de l’ordre de 20 %. Comme l’illustre la figure ci-après, cela induit des contraintes intrinsèques lors de la croissance.
Figure 2-8 : Contraintes intrinsèques dues au désaccord de maille.

La couche de 3C-SiC serait donc en tension à cause de son paramètre de maille inférieur à celui du silicium. En effet, c’est le matériau massif qui impose ses dimensions à l’interface. Cependant, ceci n’est vrai que jusqu’à une certaine épaisseur appelée épaisseur critique, à laquelle les couches sont dites pseudo-morphiques. Passé cette limite, la couche relaxe une partie ou la totalité de ses contraintes en formant des dislocations au niveau de l’interface.

Dans le cas d’une croissance de SiC sur silicium, en utilisant le modèle développé par Matthews et Blakeslee [30], le calcul donne une épaisseur critique inférieure à 1 Å. À la vue d’un tel résultat, il semble donc impossible d’épitaxier un tel matériau sur du silicium, les dislocations apparaissent dès le début de la croissance.

Nishino et al [25] ont été les premiers à résoudre ce problème en utilisant un processus, appelé carburation, basé sur la formation d’une couche tampon à l’interface Si/3C-SiC. Dans ce cas, l’hétéroépitaxie en phase vapeur du 3C-SiC sur Si passe par trois étapes (figure 2-9). Dans un premier temps, le substrat Si est chauffé jusqu’à 1180 °C sous flux d’hydrogène et de chlorure d’hydrogène, afin de nettoyer la surface, puis il est refroidi jusqu’à la température ambiante. Un mélange hydrogène-carbone est ensuite introduit dans le réacteur et la température est
augmentée jusqu’à 1360 °C pendant un court instant (2 min), afin de carburer la surface du substrat de silicium. Finalement, du SiH₄ est ajouté à la phase gazeuse H₂-C₃H₈ et la température est abaissée jusqu’à la température d’épitaxie (1350 °C). De cette façon, des couches 3C-SiC monocristallines ont pu être obtenues. Les épaisseurs des couches sont limitées à 6 µm sur des substrats de 10 cm de diamètre, les vitesses de croissance sont de l’ordre de 1 à 2 µm/h⁻¹.

![Diagram](image)

Figure 2-9 : Croissance épitaxiale du 3C-SiC sur Si utilisant le processus de carburation.

La caractérisationstructurale est indispensable pour procéder à l’optimisation de la qualité des couches épitaxiées. Par exemple, l’observation en microscopie électronique par transmission (TEM) [25] révèle la présence de nombreux défauts structuraux, tels que dislocations liées au désaccord de maille, fautes d’empilement et domaines d’antiphase. Certains chercheurs ont montré que l’utilisation de substrats de silicium (100) désorientés de 1° à 4° dans la direction [011] évitait la formation de domaines d’antiphase dans la couche de 3C-SiC et réduisait la rugosité de surface de la couche épitaxiée. Les fautes d’empilement sont en effet situées dans les plans {111} et leur densité décroît exponentiellement plus on s’éloigne de l’interface Si/3C-SiC.
2. 4. 2. 1. 2. Différence des coefficients de dilatation thermique

Le désaccord de maille entre le Si et le SiC n’est pas le seul inconvénient qui apparaît au cours de l’hétéroépitaxie. En effet, la différence des coefficients de dilatation thermique des deux matériaux (8 % dans la gamme 25-1350 °C) est à l’origine d’autres contraintes dites thermoélastiques (figure 2-10). En effet, au cours du refroidissement, le 3C-SiC qui possède le coefficient le plus élevé, se rétracte davantage que le silicium, créant ainsi une déformation de la structure, pouvant aller jusqu’à l’apparition de dislocations ou décollement de la couche épitaxiée.

![Diagram](image)

Figure 2-10 : Origine des contraintes thermoélastiques.

2. 4. 2. 2. Epitaxie en phase liquide (LPE)

La LPE peut être réalisée malgré que le carbure de silicium ne possède pas de phase liquide à pression atmosphérique. En fait, on peut obtenir des solutions saturées grâce à des solvants comme le silicium ou certains métaux. Le contact du substrat de silicium, accompagné d’une chute de température, entraîne la formation d’un dépôt de SiC à la surface du silicium. Le dopage s’obtient en introduisant le dopant soit directement dans le bain d’épitaxie, soit dilué dans un gaz dans la chambre de réaction.

Cette technique permet d’atteindre des vitesses de croissance relativement élevées (plusieurs dizaines de µm/h), à basse température (1500-1700 °C). En revanche, elle introduit une forte inhomogénéité aussi bien en volume qu’en surface et l’élimination des solvants n’est pas chose aisée.
2. 4. 2. 3. Epitaxie par jets moléculaires (MBE)

Cette réaction à lieu sous ultravide. Les précurseurs solides sont placés dans des creusets eux même placés dans des réceptacles munis d’une faible ouverture. Aussi, lorsque l’on chauffe les différents creusets, il en émane des vapeurs sous forme de jets moléculaires dirigés vers le substrat de silicium.

Certains éléments comme le carbone et le phosphore, difficile à sublimer, font l’objet d’installations particulières comme la GSMBE (Gas Source MBE), ou la MOMBE (Metal Organic MBE).

La MBE présente l’avantage de pouvoir modifier facilement et précisément les débits gazeux. Aussi, on peut constater les modifications apportées grâce à l’ultravide, aussi bien au niveau de la composition des couches, que sur les vitesses de croissance. Ces derniers, particulièrement basses (quelques centaines de nmh⁻¹), permettent de contrôler la croissance quasiment à l’échelle de la couche atomique. De plus, les températures de dépôt sont extrêmement basses entre 500 et 1000 °C, comparées aux autres techniques.

2. 4. 3. Structures SiCOI

Les technologies SiCOI (Silicon Carbide On Insulator) découlent directement des technologies SOI (Silicon On Insulator), désormais parfaitement maîtrisées. En effet, les structures issues de ces technologies permettent une meilleure répartition des contraintes entre la couche épitaxiée et le substrat. Ceci contribue à l’amélioration de la qualité cristalline de la couche, en réduisant la densité de dislocations à l’interface. Elles permettent également de limiter la formation de courants de fuite par le substrat (à 350 °C pour le silicium). Il existe deux procédés principaux, le SIMOX et le Smart Cut, permettant d’obtenir des monocristaux de SiC sur SiO₂.

2. 4. 3. 1. Le procédé SIMOX (Separation by IMplanted OXygen)

C’est le plus ancien des procédés de fabrication de silicium sur SiO₂. Il consiste à implanter de très fortes doses d’oxygène dans un substrat de silicium, suivi d’un recuit de six heures à très haute température (1350 °C), sous atmosphère
d’argon et d’oxygène. Un tel procédé permet d’obtenir une couche de silicium sans précipités d’oxyde ainsi que des interfaces abruptes entre l’oxyde et le silicium [32].

Concernant l’épitaxie du SiC par CVD, il suffit d’appliquer le procédé en trois étapes sur substrat SIMOX. Après un nettoyage de la couche superficielle de Si, cette dernière subit la carburation, puis finalement la croissance de SiC.

Il est à noter que, bien qu’il soit le plus répandu, ce procédé est loin d’être idéale. En effet, il ne permet pas d’obtenir une très grande flexibilité en ce qui concerne l’épaisseur des couches superficielles de silicium et d’oxyde enterrées (environ 400 nm pour l’oxyde et 200 nm pour le silicium). De plus, l’implantation relativement violente pour la surface du substrat, induit un nombre de dislocations relativement important (5×10^5 cm$^{-2}$).

2. 4. 3. 2. Le procédé Smart Cut

L’alternative proposée ci-dessus permet une nette amélioration au niveau des propriétés électriques de la couche déposée, mais la structure Si/SiO$_2$/Si reste inutilisable pour les applications hautes températures. En effet, à partir de 500 °C, le substrat de silicium connaît de sérieuses défaillances mécaniques, il devient par exemple plastique.

C’est pour contourner cet inconvénient, que le procédé Smart Cut a été mis au point par Soitec, une entreprise grenobloise issue du LETI. Il permet en outre d’obtenir une structure SiC/SiO$_2$/Si, mais aussi SiC(mono)/SiO$_2$/SiC(poly). Dans ce cas, le substrat ne limite pas la température d’utilisation. Le procédé d’élaboration se déroule en cinq étapes [30] :

1- Oxidation : un oxyde est déposé par CVD sur le substrat SiC ou Si ainsi que sur le SiC monocristallin.

2- Implantation de H : une forte dose d’ion hydrogène ($>10^{19}$ cm$^{-2}$) est implantée dans le SiC à travers l’oxyde afin de créer une zone de faible résistance mécanique.

3- Collage : après un polissage mécanique et chimique des deux oxydes, les deux plaques sont assemblées par « wafer bonding » (adhérence moléculaire obtenue au niveau de l’oxyde en pressant à chaud les deux plaques).
Chapitre 2 : Le carburé de silicium

4. Traitement thermique : il permet leclavage de la plaquette de SiC au niveau de la zone d’implantation.

5. Polissage : un nouveau polissage mécanique et chimique, de la couche de SiC cette fois, permet d’obtenir un état de surface compatible avec les applications microélectroniques et microsystèmes.

Cette technique offre de nombreux avantages. Tout d’abord, le coût de fabrication de ces couches est faible, si on le compare à celui du SiC massif. De plus, la densité des dislocations est bien plus faible (10^{14} cm$^{-2}$) que celle obtenue par la technologie SIMOX. Enfin, l’éventail de choix pour les épaisseurs d’oxyde et de SiC est nettement plus large que celui évoqué au paragraphe précédent.

2. 5. TECHNOLOGIE DE MISE EN ŒUVRE

Dans ce paragraphe, nous présentons les principales étapes technologiques, nécessaires à l’élaboration des dispositifs à base de carburé de silicium. Certaines d’entre elles sont difficiles à mettre en œuvre du fait des liaisons interatomiques, de la dureté mécanique et de l’inertie chimique.

2. 5.1. Dopage par implantation ionique

L’implantation ionique est un procédé qui consiste à modifier la composition superficielle des matériaux en faisant pénétrer des ions possédant une énergie suffisante. Cette énergie est fournie par accélération dans un champ électrique. Elle utilise des faisceaux d’ions d’énergie comprise entre 10 et 400 keV pour introduire pratiquement n’importe quel élément dans n’importe quel solide. L’équipement de base d’un système d’implantation ionique comprend une source d’ions, un système d’accélération et de purification, et un système de balayage pour réflexion du faisceau d’ions.

Le dopage localisé et sélectif du carburé de silicium ne peut être réalisé que par implantation ionique à cause de la faible valeur des coefficients de diffusion des impuretés. La réalisation technologique des masques SiO$_2$ thermiquement stables pour un dopage par diffusion est difficilement envisageable dans le cas du carburé de silicium [33].
Son rôle est extrêmement important dans la réalisation des jonctions et couches actives des dispositifs en SiC. L’émetteur des diodes bipolaires, le drain et la source des transistors MOSFET, les couches enterrées dans les composants de puissance spécifiques (JFET) ainsi que l’isolation planaire, sont quelques exemples d’applications utilisées dans le carbure de silicium. L’implantation ionique est également utilisée dans le SiC pour la réalisation de contacts ohmiques à faible résistance.

Suite à l’implantation ionique, le SiC monocristallin présente un nombre considérable de défauts de structure en fonction de la dose d’ions implantés. Les ions implantés, pour jouer leur rôle de dopants électriquement actifs, doivent se placer dans des sites substitutionnels. Or, il est bien plus probable qu’à la suite de l’implantation ionique, les ions implantés soient placés dans des sites quelconques. Ainsi un recuit post-implantation à très haute température est nécessaire pour guérir les défauts structuraux créés par l’implantation et entraîner la diffusion des dopants implantés vers des sites substitutionnels où ils seront électriquement actifs.

2.5.1.1. Dopage de type N

Le dopant de type N le plus étudié et le plus utilisé est l’azote grâce à sa faible énergie d’ionisation ainsi qu’à sa faible taille atomique susceptible de créer une faible densité de défauts. Le recuit post-implantation se situe en général entre 1300 et 1500 °C, avec des bonnes activations électriques obtenues dès 1300 °C. La température d’implantation semble ne pas avoir une influence notable dans le cas des faibles doses. Par contre, on évite l’amorphisation des couches SiC en réalisant des implantations à haute température (200-1000 °C).

D’autres dopants de type N sont étudiés pour réaliser des meilleures couches actives électriquement. Malgré sa masse atomique plus grande et des énergies d’ionisation très proches de celles de l’azote, des couches SiC avec des résistances plus faibles ont été obtenues pour des implantations de phosphore réalisées dans des conditions semblables à l’implantation d’azote.

L’azote et le phosphore se placent dans des sites substitutionnels différents, carbone et silicium respectivement. Ils se répartiront uniformément sur chaque site
inéquivalent de la structure, ce qui donne naissance à plusieurs niveaux d’énergie dans le gap, pour la même impureté (tableau 2-3). Le 3C-SiC ne possède que des sites tous équivalents, on obtient donc qu’un seul niveau pour la même impureté.

L’arsenic a été également utilisé pour réaliser des couches SiC de type N, mais leurs caractéristiques sont inférieures à celles réalisées par azote ou phosphore.

2.5.1.2. Dopage de type P

Si pour la réalisation des couches SiC de type N de faibles résistivités, le problème semble résolu. En revanche, dans le cas du type P, d’importants progrès sont à faire. La difficulté résulte des énergies d’ionisation élevées des dopants accepteurs (tableau 2-3). Ceci implique des dopages à très forte dose (>10²⁰ cm⁻³), ce qui endommage le réseau cristallin du SiC, surtout si ces implantations sont réalisées à température ambiante. Les températures de recuit, dans ce cas, se situent dans une gamme supérieure à celle des implantations d’azote et de phosphore, typiquement entre 1600 et 1800 °C. Il est à noter que l’emplacement des dopants accepteurs (site h ou k) n’a guère d’influence sur leurs énergies d’ionisation.

L’aluminium et l’impureté dopante la mieux placée pour réaliser des couches de type P, grâce à son énergie d’ionisation la plus faible mais aussi parce que sa masse atomique est très proche de celle du silicium, l’atome auquel l’aluminium se substitue lors de son activation électrique. Des bonnes activations électriques ont été obtenues pour des concentrations allant de 10²⁰ à 10²¹ cm⁻³, en vue de réaliser des faibles résistances de contacts ohmiques.

Le bore est également utilisé en tant que accepteur. Il peut se substituer aussi bien au silicium qu’au carbone. Dans le premier cas, on obtient des énergies déjà relativement importantes, de l’ordre de 0,3 eV. Dans le second, il crée un niveau profond dans la bande interdite (tableau 2-3). L’intérêt de l’utilisation du bore par rapport à l’aluminium provient de sa faible masse atomique. Grâce à cette dernière, on peut réaliser des jonctions plus profondes, pour le même intervalle d’énergie d’implantation, ce qui peut être bénéfique pour les composants de puissance en SiC.

En ce qui concerne le gallium, sa masse atomique élevée et sa haute énergie d’ionisation ont fait qu’il est moins étudié par rapport à l’aluminium et au bore.
L’endommagement créé par collisions nucléaires doit être plus important. La dose d’amorphisation du matériau SiC pour une implantation à l’ambiance a été estimée à $2 \cdot 10^{14}$ cm$^{-3}$ et une température d’implantation de 300 °C est nécessaire pour éviter la formation de la phase amorphe. L’étude de l’activation électrique du gallium implanté à 700 °C montre une augmentation avec la température de recuit et une valeur maximale est obtenue pour un recuit à 1800 °C pendant 30 minutes.

<table>
<thead>
<tr>
<th>Impureté</th>
<th>Énergie d’ionisation (meV)</th>
<th>Site de substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3C-SiC</td>
<td>4H-SiC</td>
</tr>
<tr>
<td>Azote</td>
<td>54</td>
<td>42 : (h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84 : (k)</td>
</tr>
<tr>
<td>Phosphore</td>
<td>95</td>
<td>53 : (h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93 : (k)</td>
</tr>
<tr>
<td>Aluminium</td>
<td>240</td>
<td>191-230</td>
</tr>
<tr>
<td>Bore</td>
<td>-</td>
<td>285-390</td>
</tr>
<tr>
<td></td>
<td>730</td>
<td>540</td>
</tr>
</tbody>
</table>

Tableau 2-3 : Énergies d’ionisation des dopants usuels du SiC.

2.5.2. Gravure

La maîtrise de la gravure est importante puisque cette étape doit permettre d’assurer la terminaison de la jonction en minimisant l’écart entre la tension de claquage en périphérie et celle en volume.

La gravure humide sur le carburure de silicium est incompatible avec les autres procédés technologiques de fabrication des dispositifs ; les sels fondus tels que NaOH et KOH doivent être utilisés à très haute température. Ceci étant dû au fait que l’énergie de liaison interatomique dans le SiC est très forte [19].

On fait donc appel à la gravure sèche ou plasma. Cette technique consiste à utiliser un gaz réactif partiellement ionisé par une décharge électrique. Les espèces réactives vont induire à la fois les effets de bombardement par des ions (gravure physique) et la réaction chimique sur la surface du matériau à graver. Tout
récemment [34], on a utilisé la gravure réactive ionique (RIE : Reactive Ion Etching). Les gaz qui étaient utilisés sont le SF$_6$, qui est un gaz fluoré, et l’oxygène O$_2$. Les résultats obtenus étaient satisfaits car la gravure n’a pas trop dégradé l’état de surface du SiC. La vitesse moyenne de gravure est égale à 5 nms$^{-1}$.

D’autres essais ont été effectués sur le SiC en utilisant deux gaz fluorés SF$_6$ ou CF$_4$. La rugosité de la surface gravée était inacceptable avec le CF$_4$ alors, qu’avec le SF$_6$, les mesures AFM (Atomic Force Microscopy) ont abouti à une rugosité de 5 nm pour une profondeur de 4 μm. Le SF$_6$ apparaît donc un gaz satisfaisant pour la gravure.

Auparavant, on a effectué la gravure sèche par la technique ECR (Electron Cyclotron Resonance). Elle a donné une bonne qualité de surface. La vitesse de gravure est de l’ordre de 3 nms$^{-1}$. Cette méthode est très employée pour réaliser des structures MESA.

2.5.3. Oxydation

Le SiO$_2$ est un oxyde naturel pour le SiC pouvant servir de passivant, d’isolant, de masque d’implantation ou d’oxyde de grille.

Les couches d’oxyde SiO$_2$ obtenues thermiquement sur le Si sont utilisées comme masques pour la passivation des jonctions PN, et l’élaboration des structures MOS (Métal Oxyde Semi-conducteur). Cette technique est bien maîtrisée dans le cas du silicium, elle ne l’est pas encore dans le cas du SiC du fait de la mauvaise qualité de l’interface SiC/SiO$_2$. Ceci est lié d’une part à l’état de surface du SiC et d’autre part à la difficulté de créer un oxyde sur un matériau composé de couches de carbone. Les charges fixées présentes à l’interface SiC/SiO$_2$ affectent la tension de seuil dans le cas des structures MOS ou bien dans le cas d’une passivation, elles peuvent, suivants leurs signes, dégrader ou améliorer la tenu en tension [35].

2.5.4. Métallisations

Il s’agit d’un problème à résoudre pour obtenir des contacts ohmiques d’une résistivité la plus faible possible et stable thermiquement à haute température. Récemment, des essais de métallisation ont été effectués sur le SiC de type N
et P. De nombreux métaux et alliages ont été déposés. Ces essais ont montré que la résistance spécifique de contact ohmique R_C varie selon le dopage de la couche, la nature du métal utilisé et les conditions de recuit post-déposition. Les tableaux 2-4 et 2-5 donnent les principaux résultats obtenus [36] [37].

<table>
<thead>
<tr>
<th>Métal</th>
<th>Recuit (°C)</th>
<th>N_D (cm$^{-3}$)</th>
<th>R_C (Ωcm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>-</td>
<td>$4,2 \cdot 10^{18}$</td>
<td>$1,610^{-4}$</td>
</tr>
<tr>
<td>Ni</td>
<td>1050 / 5 mn</td>
<td>$9,8 \cdot 10^{17}$</td>
<td>10^{-4}</td>
</tr>
<tr>
<td></td>
<td>950 / 2 mn</td>
<td>$7,9 \cdot 10^{18}$</td>
<td>$< 5 \cdot 10^{-6}$</td>
</tr>
<tr>
<td></td>
<td>1000 / 5 mn</td>
<td>$4,5 \cdot 10^{20}$</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>Ti</td>
<td>-</td>
<td>$4,2 \cdot 10^{18}$</td>
<td>$4,5 \cdot 10^{5}$</td>
</tr>
<tr>
<td>WSi$_2$</td>
<td>1000 / 20 mn</td>
<td>$>10^{19}$</td>
<td>$2,1 \cdot 10^{5}$</td>
</tr>
<tr>
<td>TiC</td>
<td>-</td>
<td>$1,3 \cdot 10^{19}$</td>
<td>$7,4 \cdot 10^{-7}$</td>
</tr>
</tbody>
</table>

Tableau 2-4 : Contacts ohmiques réalisés sur le SiC de type N.

<table>
<thead>
<tr>
<th>Métal / Alliage</th>
<th>Recuit (°C)</th>
<th>N_A (cm$^{-3}$)</th>
<th>R_C (Ωcm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al/Ti</td>
<td>1000 / 3 mn</td>
<td>10^{19}</td>
<td>$1,8 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>W</td>
<td>-</td>
<td>10^{19}</td>
<td>$2,5 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>Al-Ti</td>
<td>1000 / 5 mn</td>
<td>$2 \cdot 10^{19}$</td>
<td>$1,5 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>C-Al</td>
<td>1500 / 30 mn</td>
<td>$6 \cdot 10^{20}$</td>
<td>$2 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Ti/Al</td>
<td>1000 en vide</td>
<td>$4 \cdot 10^{19}$</td>
<td>$< 10^{-6}$</td>
</tr>
<tr>
<td></td>
<td>1000 / 2 mn</td>
<td>$1,2 \cdot 10^{19}$</td>
<td>$9,5 \cdot 10^{-7}$</td>
</tr>
</tbody>
</table>

Tableau 2-5 : Contacts ohmiques réalisés sur le SiC de type P.
2.5.5. Composants en SiC

Le tableau 2-6 donne les caractéristiques à 300 K de quelques composants de puissance en SiC, répertoriés dans la littérature [18] [33].

Diodes Schottky

<table>
<thead>
<tr>
<th>Polytype</th>
<th>Couche active épaisseur (µm)</th>
<th>Protection</th>
<th>(J_r (Acm^{-2}))</th>
<th>(V_r (V))</th>
<th>(V_t (V))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6H-SiC</td>
<td>6 / 2 (10^{16})</td>
<td>JTE</td>
<td>3 / 600</td>
<td></td>
<td>200 / 1,3</td>
</tr>
<tr>
<td>4H-SiC</td>
<td>12 / 8 (10^{15})</td>
<td>JTE</td>
<td>(<10^{-2}) / 1200</td>
<td></td>
<td>100 / 1</td>
</tr>
</tbody>
</table>

Diodes bipolaires de puissance

<table>
<thead>
<tr>
<th>Polytype</th>
<th>Couche active épaisseur (µm)</th>
<th>Protection</th>
<th>(J_r (Acm^{-2}))</th>
<th>(V_r (V))</th>
<th>Tenu en Tension (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6H-SiC</td>
<td>45 / 2 (10^{15})</td>
<td>MESA</td>
<td>500 / 8</td>
<td></td>
<td>4500</td>
</tr>
<tr>
<td>4H-SiC</td>
<td>50 / (10^{15})</td>
<td>MESA</td>
<td>100 / 4,7</td>
<td></td>
<td>6200</td>
</tr>
</tbody>
</table>

Thyristors

<table>
<thead>
<tr>
<th>Polytype</th>
<th>Couche active épaisseur (µm)</th>
<th>(R_{on}) (mΩcm²)</th>
<th>(J_r (Acm^{-2}))</th>
<th>(V_r (V))</th>
<th>Tenu en Tension (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4H-SiC</td>
<td>14 / 5 (10^{14})</td>
<td>13</td>
<td>1600 / 11,5</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>4H-SiC</td>
<td>50 / 7-9 (10^{14})</td>
<td>3,3</td>
<td>700 / 6,5</td>
<td></td>
<td>2600</td>
</tr>
</tbody>
</table>

Tableau 2-6 : Exemples de composants de puissance réalisés en SiC avec leurs caractéristiques à 300 K.
Des transistors MOSFET ont été réalisés sur des films 3C-SiC épitaxiés sur des substrats en silicium. Malgré la présence de défauts causés par la croissance du SiC sur Si, les caractéristiques en température de ces transistors sont meilleurs que celles des transistors Si : à 700 K, les courants de fuite sont de l’ordre de 230 pA, la transconductance est de 1,65 mS/mm² pour une longueur de grille de 3,5 µm [38]. D’autres transistors MOSFET de très bonne performance ont été réalisés à partir de couches 3C-SiC épitaxiées sur des substrats 6H-SiC.

Des transistors HBT 3C-SiC/Si ont été également fabriqués. Ces transistors ont bien fonctionné mais les défauts d'interface entre le 3C-SiC et le Si ont provoqué l’augmentation du courant de base, ce qui a réduit beaucoup le gain en courant β [39].

2.6. CONCLUSION

Dans ce chapitre, nous avons présenté les principales propriétés du carbure de silicium ainsi que les avantages évidents qu’il présente par rapport à d’autres semi-conducteurs pour les applications hautes températures, fortes puissances ou hautes fréquences.

Cependant, le coût élevé de ce matériau massif est le principal obstacle à son développement. Afin de le contourner, le dépôt de couches minces de SiC sur substrat Si ou SOI semble être un bon compromis, surtout dans le cas du 3C-SiC, pour lequel l’obtention de substrats monocristallins reste très difficile. Parmi les diverses techniques disponibles pour obtenir des couches minces de SiC, la CVD semble être la plus intéressante aussi bien sur le plan de la cinétique de croissance que sur celui de la qualité cristalline ou de la reproductibilité des dépôts.

Nous avons aussi présenté les diverses origines intrinsèques et thermiques des contraintes induites au cours de la croissance pouvant être néfastes au bon déroulement de l’épitaxie. Il est donc intéressant de les étudier afin de pouvoir les contrôler. En effet, le désaccord de maille important entre le 3C-SiC et le Si, à lui seul, conduit rapidement à des dislocations dans la couche épitaxiée. Pour parer cet inconvénient, la solution la plus employée est la carburation par CVD de la surface de silicium avant de commencer la croissance.
La technologie du SiC reste encore insuffisamment maîtrisée comparée à celle du Si exploité industriellement. Beaucoup d’efforts restent à faire, notamment pour améliorer la qualité des substrats et des couches épitaxiées, l’implantation ionique de type P, la qualité de l’interface SiC/oxyde et la fiabilité des contacts hautes températures, néanmoins l’état d’avancement technologique a permis de fabriquer des composants SiC réellement fonctionnels avec des performances intéressantes.
CHAPITRE 3 :

MODELISATION PHYSIQUE DU TRANSISTOR HBT
3. MODÉLISATION PHYSIQUE DU TRANSISTOR HBT

3.1. INTRODUCTION

La simulation du fonctionnement électrique dans les semiconducteurs est assez ancienne. En effet, c’est Gummel en 1964 [40] qui fut le premier à unifier les travaux réalisés avant lui par Van Roosbroeck concernant les équations différentielles décrivant chacune des régions d’un composant à semiconducteurs. C’était la naissance du premier modèle physique numérique de transistor bipolaire à une dimension. Il n’était alors pas question d’hétérostructures et les dispositifs étudiés comportaient des effets moins spécifiques que ceux intervenant dans un transistor bipolaire à hétérojonction.

La simulation physique des composants à semiconducteurs utilise des approximations variées selon le type de dispositifs à étudier et d’effets attendus. De plus, les systèmes obtenus sont rarement simples à résoudre. Numériquement, les problèmes de transport sont les plus délicats à discrétiser. Il faut signaler également que le problème à résoudre est fortement non linéaire, couplant des quantités très hétérogènes et qui ne sont pas du tout du même ordre de grandeur. Il est à noter de plus que l’exploitation des modèles physiques ne peut se concevoir que si les temps de calcul restent raisonnables, ceci dans le but de prévoir une structure optimale du composant, sans pour cela nécessiter de multiples réalisations technologiques très onéreuses.

Le modèle physique le plus simple mis en œuvre pour les transistors HBT est le modèle de dérive diffusion. Ce modèle a été développé avec des hypothèses
physiques les plus générales possibles, mais également sans perdre de vue l’objectif
d’une exploitation systématique limitée à la direction principale des structures à
transport vertical.

Dans ce chapitre, nous développerons l’approche suivie pour la mise en
œuvre du modèle de dérive diffusion en vue d’une résolution numérique. Nous
allons pour fixer les idées décrire le système d’équations pour le transport
d’électrons étant entendu que la modélisation pour les trous est tout à fait similaire.

3. 2. EQUATION DE TRANSPORT DE BOLTZMANN (BTE)

Dans ce paragraphe, nous montrons comment les équations de transport des
semiconducteurs sont obtenues à partir des moments d’ordre 0, 1 et 2 de l’équation
de transport de Boltzmann.

3. 2. 1. Equation de transport

La dynamique électronique à l’intérieur d’un composant semiconducteur
peut être décrite par la solution de l’équation de transport de Boltzmann.

Nous considérons chaque type de charges, électron et trou, comme un gaz de
particules chargées en mouvement dans un champ électrique (les effets éventuels
d’un champ magnétique seront négligés). Les interactions des particules avec le
réseau sont données par la masse effective et le terme de collision [41].

La théorie cinétique conduit à l’équation de transport de Boltzmann vérifiée
par la fonction de distribution $f_n(\vec{r},\vec{k},t)$ représentant la densité de probabilité pour
un électron dans l’espace des phases étendu $R^3 \times R^3 \times R^+_t$.

Où

\vec{r} : le vecteur position,

\vec{k} : le vecteur d’ondes.

L’équation de transport de Boltzmann (BTE) s’exprime sous la forme :

$$\frac{\partial f_n}{\partial t} + \frac{\hbar \cdot \vec{k}}{m_n} \cdot \nabla_r f_n + \frac{\vec{F}}{m_n} \cdot \nabla_k f_n = C(f_n)$$

(3-1)
Chapitre 3 : Modélisation physique du transistor HBT

Où

\(h : \text{la constante de Planck réduite,} \)

\(m_* : \text{la masse effective de l'électron.} \)

On définit la vitesse de groupe des électrons par :

\[
\tilde{u} = \frac{\hbar \cdot \tilde{k}}{m_*} \tag{3-2}
\]

Nous pouvons réécrire l'équation (3-1) sous la forme habituelle :

\[
\frac{\partial f_n}{\partial t} + \tilde{u} \cdot \nabla_r f_n + \frac{\tilde{F}}{m_n} \cdot \nabla_u f_n = C(f_n) \tag{3-3}
\]

Où

\(\nabla_r f_n \) représente le gradient vis-à-vis des coordonnées du vecteur position dans la base \((\tilde{r}_1, \tilde{r}_2, \tilde{r}_3)\),

\[
\nabla_r = \left(\frac{\partial}{\partial \tilde{r}_1}, \frac{\partial}{\partial \tilde{r}_2}, \frac{\partial}{\partial \tilde{r}_3} \right)
\]

\(\nabla_u f_n \) représente le gradient vis-à-vis des coordonnées du vecteur vitesse dans la base \((\tilde{u}_1, \tilde{u}_2, \tilde{u}_3)\),

\[
\nabla_u = \left(\frac{\partial}{\partial \tilde{u}_1}, \frac{\partial}{\partial \tilde{u}_2}, \frac{\partial}{\partial \tilde{u}_3} \right)
\]

3. 2. 2. Influence des hétérostructures

Il est à noter que si la masse \(m_* \) n'est pas constante comme sera le cas dans les hétérostructures, alors :

\[
\partial_j \tilde{u}_i = \frac{\partial \tilde{u}_i}{\partial \tilde{r}_j} = -\tilde{u}_i \frac{\partial \log (m_*)}{\partial \tilde{r}_j} \tag{3-4}
\]

En effet, nous avons :

\[
-\partial_j \left(\log (m_n^*) \right) = \partial_j \left(\log \left(\frac{1}{m_n^*} \right) \right) = m_* \cdot \partial_j \left(\frac{1}{m_n^*} \right)
\]

ainsi en multipliant haut et bas par la quantité \(\hbar \cdot \tilde{k}_i \) :

\[
\frac{m_n^*}{\hbar \cdot \tilde{k}_i} \cdot \partial_j \left(\frac{\hbar \cdot \tilde{k}_i}{m_n^*} \right) = \frac{1}{\tilde{u}_i} \cdot \partial_j \tilde{u}_i
\]
On en déduit alors l'expression (3-4) aisément ainsi que :
\[\nabla_r \cdot \vec{u} = -\vec{u} \cdot \nabla_r \log (m_n^*) \] (3-5)
et
\[\nabla_r \cdot u^2 = -2 \cdot u^2 \cdot \nabla_r \log (m_n^*) \] (3-6)

L'énergie totale d'un électron d'impulsion \(\hbar \cdot \vec{k} \) dans un milieu vide où règne un champ de potentiel électrostatique \(\psi \) est donné par :
\[H = \left(\frac{\hbar \cdot \vec{k}}{2 \cdot m_n^*} \right)^2 - q \cdot \psi \] (3-7)
Où \(q \) est la charge électronique élémentaire,

Cette équation reste vraie pour un électron en mouvement dans un cristal parfait dans l'approximation de la masse effective (bandes paraboliques). Dans ce cas, il faut tenir compte du fait que le bas de la bande de conduction peut varier avec la composition du matériau et donc avec \(\vec{F} \).

\[H = \frac{(\hbar \cdot \vec{k})^2}{2 \cdot m_n^*} - q \cdot \psi - \chi \] (3-8)
Où \(\chi \) représente l'affinité électronique du matériau composant le cristal.

Pour alléger la suite des calculs, nous noterons : \(\phi = q \cdot \psi + \chi \). Ainsi :
\[H = \frac{1}{2} \cdot m_n^* \cdot u^2 - \phi \] (3-9)

Dans le cas d'un transport semi-classique, la force agissant sur l'électron dérive d'un potentiel et s'écrit :
\[\vec{F} = -\nabla_r H \] (3-10)
soit :
\[\vec{F} = -\frac{u^2}{2} \cdot \nabla_r m_n^* + m_n^* \cdot u^2 \cdot \nabla_r \log (m_n^*) + \nabla_r \phi \]
\[= \frac{u^2}{2} \cdot \nabla_r m_n^* + \nabla_r \phi \] (3-11)
L’électron dans le semiconducteur est donc soumis à une force qui tend à le déplacer vers les plus grandes masses effectives, les plus grandes affinités électroniques et les plus grands potentiels électrostatiques.

3. 2. 3. Équation de continuité

L’équation de continuité des électrons (porteurs n) est obtenue en intégrant directement l’équation de Boltzmann par rapport à \(\tilde{u} \).

Nous devons donc calculer :

\[
\int \frac{\partial f_n}{\partial t} \, d\tilde{u} + \int (\tilde{u} \cdot \nabla_r f_n) \, d\tilde{u} + \int \frac{1}{m_n^*} \cdot (\tilde{F} \cdot \nabla_v f_n) \, d\tilde{u} = \int C(f_n) \, d\tilde{u}
\]
(3-12)

On définit la densité de charge \(n \) par :

\[
n = \int f_n \, d\tilde{u}
\]
(3-13)

La vitesse moyenne des électrons est donnée par :

\[
\tilde{v} = \frac{\int \tilde{u} \cdot f_n \, d\tilde{u}}{\int f_n \, d\tilde{u}} = \frac{1}{n} \cdot \int \tilde{u} \cdot f_n \, d\tilde{u}
\]
(3-14)

Si l’on intègre terme à terme l’équation de Boltzmann, on obtient tour à tour les termes (3-15), (3-16) et (3-17).

\[
\int \frac{\partial f_n}{\partial t} \, d\tilde{u} = \frac{\partial}{\partial t} \cdot \int f_n \, d\tilde{u} = \frac{\partial n}{\partial t}
\]
(3-15)

Par soucis de clarté des expressions et compte tenu de la lourdeur des calculs, nous omettons volontairement l’élément différentiel \(d\tilde{u} \) dans l’écriture des équations.

\[
\int \tilde{u} \cdot \nabla_r f_n = \text{div}_r \left(\int \tilde{u} \cdot f_n \right) - \int f_n \cdot \nabla_r \tilde{u} = \text{div}_r (n \cdot \tilde{v}) + \int f_n \cdot \tilde{u} \cdot \nabla_r \log(m^*_n)
\]

\[
= \text{div}_r (n \cdot \tilde{v}) + n \cdot \tilde{v} \cdot \nabla_r \log(m^*_n)
\]
(3-16)
\[
\frac{\bar{F}}{m_n} \cdot \nabla f_n = \frac{V_r}{m_n} \cdot \frac{\partial}{\partial t} \int m_n^* \cdot \nabla f_n + \frac{V_r}{m_n} \cdot \int \nabla f_n = -n \cdot \bar{v} \cdot \nabla \log (m_n^*)
\]

(3-17)

où nous avons utilisé l’hypothèse que \(f_n\) ainsi que ses moments s’annulent lorsque \(\bar{u}\) devient infini :

\[
\lim_{u \to +\infty} \bar{u} \cdot f_n(\bar{r}, \bar{u}, t) = 0
\]

(3-18)

avec en particulier :

\[
\int u^2 \cdot \nabla f_n = -2 \cdot n \cdot \bar{v}
\]

On retrouve ainsi l’équation de continuité des électrons donnée par Maxwell et qui exprime la conservation de la charge.

\[
\frac{\partial n}{\partial t} + \nabla \cdot (n \cdot \bar{v}) = \int C(f_n) = 0
\]

(3-19)

Si on considère deux types de charges (électrons et trous), le second membre de l’équation précédente n’est pas nul et il faut prendre en compte les phénomènes de génération-recombinaison de paires électron-trou.

3.2.4. Transport de la quantité de mouvement

L’équation de conservation de la quantité de mouvement \(P\) est obtenue en calculant le moment d’ordre 1 de l’équation de Boltzmann. On multiplie l’équation de Boltzmann par \(\bar{u}\) et on intègre par rapport à cette même variable.

Nous devons donc calculer :

\[
\int \bar{u} \cdot \frac{\partial f_n}{\partial t} + \int (\bar{u} \cdot \nabla f_n) \cdot \bar{u} + \int \frac{1}{m_n^*} (\bar{F} \cdot \nabla f_n) \cdot \bar{u} = \int \bar{u} \cdot C(f_n)
\]

(3-20)

Les termes successifs sont exprimés en (3-21), (3-24), (3-25), (3-27) et (3-29).

\[
\int \bar{u} \cdot \frac{\partial f_n}{\partial t} = \frac{\partial}{\partial t} \int \bar{u} \cdot f_n = \frac{\partial}{\partial t} (n \cdot \bar{v})
\]

(3-21)

En ce qui concerne le second terme :
\[\left(\frac{\partial_i (\ddot{u} \cdot \ddot{u})}{\partial_i f_n} \right) = \left(\frac{\partial_i (\ddot{u} \cdot \ddot{u} \cdot f_n)}{\partial_i (\ddot{u} \cdot \ddot{u})} \right) \]

On définit alors \(\ddot{b} \) comme étant la fluctuation de vitesse, de telle sorte que :

\[\ddot{u} \cdot \ddot{u} \cdot f_n = \ddot{v} \cdot \ddot{v} + \ddot{b} \cdot \ddot{b} \cdot f_n = \ddot{v} \cdot (\ddot{v} \cdot n) + \ddot{b} \cdot \ddot{b} \cdot f_n, \]

Le tenseur de température est défini par :

\[T_y = \frac{m_n^*}{k} \ddot{b} \cdot \ddot{b} \cdot f_n, \]

Où \(k \) est la constante de Boltzmann.

Une hypothèse consiste maintenant à supposer que le moment centré d’ordre 2 est à symétrie sphérique. Ainsi :

\[n \cdot k \cdot T_y = m_n^* \cdot \ddot{b} \cdot \ddot{b} \cdot f_n = m_n^* \cdot \delta^y \cdot \ddot{b}^2 \cdot f_n = n \cdot k \cdot \frac{\delta^y}{d} \cdot \text{Trace}(T_y), \]

Où \(d \) est la dimension de l’espace.

On définit la température électronique par :

\[T = \frac{1}{d} \cdot \text{Trace}(T_y), \]

Cette hypothèse remplace un tenseur de neuf termes (en dimension 3) par une seule inconnue scalaire.

\[\left(\frac{\partial_i (\ddot{u} \cdot \ddot{u} \cdot f_n)}{\partial_i (\ddot{u} \cdot \ddot{u} \cdot n)} \right) = \frac{\partial_i (\ddot{v} \cdot \ddot{v} \cdot n)}{m_n^* \cdot k \cdot T}, \]

\[= \nabla_r (n \cdot \ddot{v}) \cdot \ddot{v} + (n \cdot \ddot{v} \cdot \nabla_r) \cdot \ddot{v} + \nabla_r \left(\frac{n}{m_n^*} \cdot k \cdot T \right) \]

La seconde partie de l’équation (3-22) se calcule ensuite selon :

\[-\left(\frac{\partial_i (\ddot{u} \cdot \ddot{u})}{\partial_i \log(m_n^*)} \right) = \left(2 \cdot \left(\ddot{u} \cdot \ddot{u} \cdot f_n \right) \cdot \partial_i \log(m_n^*) \right) \]

\[= \left(2 \cdot \ddot{v} \cdot \ddot{v} \cdot n \cdot \partial_i \log(m_n^*) \right) + 2 \cdot \delta^{ij} \frac{n \cdot k \cdot T}{m_n^*} \cdot \partial_i \log(m_n^*) \]
\[= 2 \cdot \left(n \cdot \mathbf{v} \cdot \nabla_r \log (m^*_n) \right) \cdot \mathbf{v} + \frac{2 \cdot n \cdot k \cdot T}{m^*_n} \cdot \nabla_r \log (m^*_n) \] \hspace{1cm} (3-25)

Le troisième terme de l’équation de Boltzmann est le suivant :

\[\int \frac{1}{m_n^*} \cdot \mathbf{F} \cdot \nabla_u (f_n \cdot \mathbf{u}) = \int \frac{1}{m_n^*} \cdot \left(\frac{1}{2} \cdot u^2 \cdot \nabla_r \cdot m^*_n + \nabla_r \phi \right) \cdot \nabla_u (f_n \cdot \mathbf{u}) \]

\[= \left(\partial_i \log (m^*_n) \cdot \int \frac{u^2}{2} \cdot \frac{\partial f_n}{\partial \mathbf{u}_i} \cdot \mathbf{u}_j \right) + \frac{1}{m_n^*} \cdot \partial_i \left(\phi \cdot \int \frac{\partial f_n}{\partial \mathbf{u}_i} \cdot \mathbf{u}_j \right) \]

ou

\[\int \frac{\partial f_n}{\partial \mathbf{u}_i} \cdot \mathbf{u}_j = -n \cdot \delta_{ij} \]

et

\[\int \frac{u^2}{2} \cdot \frac{\partial f_n}{\partial \mathbf{u}_i} \cdot \mathbf{u}_j = -\int f_n \cdot \mathbf{u}_i \cdot \mathbf{u}_j - \delta_{ij} \cdot \int \frac{u^2}{2} \cdot f_n \]

\[= -\left(n \cdot \mathbf{v}_i \cdot \mathbf{v}_j + \frac{n \cdot k \cdot T}{m_n^*} \cdot \delta_{ij} \right) - \frac{\delta_{ij}}{2} \left(n \cdot \mathbf{v}^2 + \frac{3 \cdot n \cdot k \cdot T}{m_n^*} \right) \]

Si l’on définit l’énergie cinétique de l’électron par :

\[w_n = \frac{1}{2} \cdot m_n^* \cdot \mathbf{v}^2 + \frac{3}{2} \cdot k \cdot T \] \hspace{1cm} (3-26)

le terme de l’équation (3-20) s’écrit :

\[\int \frac{1}{m_n^*} \cdot (\mathbf{F} \cdot \nabla_u f_n) \cdot \mathbf{u} = -\left(n \cdot \mathbf{v} \cdot \nabla_r \log (m^*_n) \right) \cdot \mathbf{v} - \frac{n}{m_n^*} \cdot (k \cdot T + w_n) \cdot \nabla_r \log (m^*_n) - \frac{n}{m_n^*} \cdot \nabla_r \phi \] \hspace{1cm} (3-27)

Dans le cadre de l’hypothèse qui consiste à utiliser une approximation des temps de relaxation pour la fonction de distribution, excluant certains types de collision, le terme de collision s’écrit :

\[C (f_n) = -\frac{f_n - f_{n0}}{\tau_r} \] \hspace{1cm} (3-28)
Où \(f_{n0} \) est une maxwellienne centrée en vitesse.

La relaxation vers l’équilibre n’est pas linéaire, ainsi \(\tau_r \) n’est pas constant. Il est par contre très difficile de donner une forme analytique de \(\tau_r \) en fonction des variables. On préfère généralement ajuster cette dépendance pour chaque moment et donc donner des constantes de relaxation variables pour chaque équation.

\[
\int \dot{\vec{u}} \cdot C(f_n) = -\int \frac{\dot{f}_n - f_{n0}}{\tau_r} = -\frac{n \cdot \dot{v}}{\tau_n}
\]

(3-29)

Nous pouvons établir un premier bilan concernant le moment d’ordre 1 de l’équation de Boltzmann. En rassemblant les résultats obtenus en (3-21), (3-24), (3-25), (3-27) et (3-29), on obtient:

\[
\frac{\partial (n \cdot \dot{v})}{\partial t} + \text{div}_r (n \cdot \dot{v}) \cdot \dot{v} + (n \cdot \dot{v} \cdot \nabla_r) \cdot \dot{v} + \nabla_r \left(\frac{n}{m_n^*} \cdot k \cdot T \right) + \\
(n \cdot \dot{v} \cdot \nabla_r \log (m_n^*)) \cdot \dot{v} + \frac{n}{m_n^*} \cdot (k \cdot T - w_n) \cdot \nabla_r \log (m_n^*) - \\
\frac{n}{m_n^*} \cdot \nabla_r \phi + \frac{n \cdot \dot{v}}{\tau_n} = 0
\]

(3-30)

Grâce à l’équation de continuité des électrons précédemment établie, nous remarquons d’une part que:

\[
\frac{\partial (n \cdot \dot{v})}{\partial t} + \text{div}_r (n \cdot \dot{v}) \cdot \dot{v} = n \cdot \frac{\partial \dot{v}}{\partial t}
\]

et que d’autre part:

\[
\nabla_r \left(\frac{n}{m_n^*} \cdot k \cdot T \right) + \frac{n}{m_n^*} \cdot k \cdot T \cdot \nabla_r \log (m_n^*) = \frac{1}{m_n^*} \cdot \nabla_r (n \cdot k \cdot T)
\]

d’où:

\[
n \cdot \frac{\partial \dot{v}}{\partial t} + (n \cdot \dot{v} \cdot \nabla_r) \cdot \dot{v} + (n \cdot \dot{v} \cdot \nabla_r \log (m_n^*)) \cdot \dot{v} + \frac{1}{m_n^*} \cdot \nabla_r (n \cdot k \cdot T) - \\
\frac{n}{\dot{v}} \cdot \left(\nabla_r \phi + w_n \cdot \nabla_r \log (m_n^*) \right) + \frac{n \cdot \dot{v}}{\tau_n} = 0
\]

(3-31)
Afin de donner une autre formulation de cette équation, on définit la quantité de mouvement des électrons P_n par :

$$P_n = m_n^* \cdot v$$ \hspace{1cm} (3-32)

En multipliant l'équation (3-31) par $\frac{m_n^*}{n}$ et en remarquant que :

$$m_n^* \cdot v_i \cdot \partial_i v_j + v_i \cdot \partial_i m_n^* v_j = v_i \cdot \partial_i (m_n^* \cdot v_j)$$

on obtient :

$$\frac{\partial P_n}{\partial t} + (v \cdot \nabla_e) \cdot P_n + \frac{1}{m_n^*} \cdot \nabla_e (n \cdot k \cdot T) - \nabla_e \phi - w_n \cdot \nabla_e \log (m_n^*) + \frac{P_n}{\tau_n} = 0$$ \hspace{1cm} (3-33)

Cette dernière équation constitue l'équation de continuité de la quantité de mouvement des électrons.

3.3. EQUATIONS DE MAXWELL

J. C. Maxwell mit au point ses équations il y a environ 130 ans [9] ; elles décrivent les phénomènes de l'électromagnétisme et elles sont universelles, en tous cas, jusqu'à présent.

Au début, rares étaient les cas où l'on savait leur donner une solution ; seuls quelques systèmes simples permettaient d'aboutir à une solution analytique. Avec l'avènement des techniques numériques et le premier des ordinateurs puissants, on a pu efficacement appliquer celles-ci à de nombreux systèmes.

Les équations de Maxwell sont regroupées ci-dessous :

$$\text{rot } \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$ \hspace{1cm} (3-34)

$$\text{rot } \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$ \hspace{1cm} (3-35)

$$\text{div } \vec{D} = \rho$$ \hspace{1cm} (3-36)

$$\text{div } \vec{B} = 0$$ \hspace{1cm} (3-37)
Où

\(E : \text{le champ électrique}, \)
\(D : \text{le déplacement électrique}, \)
\(H : \text{le champ magnétique}, \)
\(B : \text{l'induction magnétique}, \)
\(J : \text{la densité de courant}, \)
\(\rho : \text{la densité de charges électriques}. \)

Ces équations sont applicables en toute généralité à tous les matériaux et en particulier aux semiconducteurs.

3.3.1. Équation de Poisson

L’équation de Poisson dérive essentiellement de la troisième équation de Maxwell (3-36). Cependant, pour rendre cette équation directement applicable aux problèmes des semiconducteurs, quelques manipulations doivent être prises.

Le déplacement électrique \(D \) est relié au champ électrique \(E \) par :

\[
\vec{D} = \varepsilon \cdot \vec{E}
\]

(3-38)

Où \(\varepsilon \) est la permittivité du semiconducteur.

Nous relions maintenant le champ électrique au potentiel électrostatique \(\psi \).

Dans ce but, nous résolvons l’équation (3-37) en introduisant un vecteur potentiel \(\vec{A} \) et en se rappelant que :

\[
\text{div}(\text{rot} \, \vec{A}) = 0
\]

Le vecteur potentiel \(\vec{A} \) est donc défini par la relation :

\[
\vec{B} = \text{rot} \, \vec{A}, \quad \text{div} \, \vec{A} = 0
\]

(3-39)

En explicitant \(\vec{B} \) dans l’expression (3-35), nous obtenons :

\[
\text{rot} \left(\vec{E} + \frac{\partial \vec{A}}{\partial t} \right) = 0
\]

(3-40)
Dans l'expression précédente, l'argument de l'opérateur «rot» peut être remplacé par le gradient du potentiel scalaire ψ puisque :

$$\text{rot} (\text{grad} \psi) = 0$$

Le champ électrique s'écrit ainsi :

$$\vec{E} = - \left(\frac{\partial \vec{A}}{\partial t} + \text{grad} \psi \right)$$

(3-41)

Le signe négatif dans cette précédente est introduit par la convention basée sur des raisons historiques.

Dans le cas stationnaire, le champ électrique s'écrit :

$$\vec{E} = - \text{grad} \psi$$

(3-42)

En explicitant \vec{E} dans l'expression (3-38) et puis \vec{D} dans l'expression (3-36), on obtient l'équation de Poisson :

$$\text{div} (\text{grad} \psi) = - \frac{\rho}{\varepsilon}$$

(3-43)

3.4. LE MODELE DE DERIVE DIFFUSION (DDM)

Le modèle numérique le plus simple mis en oeuvre pour les transistors bipolaires à hétérojonction est le modèle de dérive diffusion. La mise en place d'un tel modèle nécessite deux hypothèses permettant de simplifier les équations générales établies en (3-19) et (3-33). La première de ces hypothèses concerne la température électronique T des porteurs. Cette dernière est prise constante et égale à la température T_0 du réseau. La seconde hypothèse consiste à négliger les effets thermoélectroniques ainsi que les effets tunnels.

3.4.1. Description du modèle

Nous allons partir des équations générales (3-19) et (3-33) et les simplifier suivant les hypothèses retenues.
Au déplacement des charges correspond un courant dont la densité est définie comme la quantité de charge qui traverse l’unité de surface pendant l’unité de temps, soit pour chaque type de porteurs :

\[\vec{J}_n = -q \cdot n \cdot \vec{v}_n \] \hspace{1cm} (3-44-a)

\[\vec{J}_p = q \cdot p \cdot \vec{v}_p \] \hspace{1cm} (3-44-b)

Lorsque l’on traite un problème comportant deux types de charges comme celui du transistor HBT, il est nécessaire de prendre en considération les phénomènes de génération-recombinaison de paires électron-trou. Les équations de continuité des électrons et des trous s’écrivent ainsi :

\[\frac{\partial n}{\partial t} = \frac{1}{q} \cdot \nabla \cdot \vec{J}_n - GR \] \hspace{1cm} (3-45-a)

\[\frac{\partial p}{\partial t} = -\frac{1}{q} \cdot \nabla \cdot \vec{J}_p - GR \] \hspace{1cm} (3-45-b)

Maintenant, nous simplifions l’équation de la quantité de mouvement des électrons :

\[n \cdot \frac{\partial \vec{v}_n}{\partial t} + n \cdot (\vec{v}_n \cdot \nabla) \cdot \vec{v}_n + n \cdot \vec{v}_n \cdot \nabla \log(m_n^*) \vec{v}_n + \frac{1}{m_n^*} \cdot \nabla_r (n \cdot k \cdot T) - \]

\[-\frac{n}{m_n^*} \cdot (q \cdot \nabla_r (\psi + \chi) + w_n \cdot \nabla \log(m_n^*)) + \frac{n}{\tau} \frac{\partial \vec{v}_n}{\partial t} = 0 \]

Si l’on suppose que la vitesse moyenne des électrons \(v_n \) varie lentement dans le temps, la quantité \(n \cdot \frac{\partial v_n}{\partial t} \) peut être négligée. L’équation précédente s’écrit alors :

\[n \cdot (\vec{v}_n + \tau_n \cdot (\vec{v}_n \cdot \nabla) \cdot \vec{v}_n + \vec{v}_n \cdot \nabla \log(m_n^*) \vec{v}_n) + \]

\[+ \frac{q \cdot \tau_n}{m_n^*} \cdot \left(\nabla_r \left(\frac{n \cdot k \cdot T}{q} \right) - n \cdot \nabla_r (\psi + \chi) \right) + \]

\[+ \frac{w_n}{q} \cdot n \cdot \nabla \log(m_n^*) = 0 \]

88
On remarque sur l’équation précédente que dans le premier terme une grande partie est multipliée par \(\tau_n \). Or la valeur de \(\tau_n \) est très faible, on néglige ainsi ces termes devant \(v_n \). Ceci permet d’aboutir à :

\[
q \cdot \frac{\tau_n}{m_n^*} \left(\nabla_r \left(\frac{n \cdot k \cdot T}{q} \right) - n \cdot \nabla_r (\psi + \chi) + \frac{w_n}{q} \cdot n \cdot \nabla_r \log (m_n^*) \right) = 0
\]

La mobilité des porteurs est donnée par :

\[
\mu_{n,p} = \frac{q \cdot \tau_{n,p}}{m_{n,p}^*}
\] (3-46)

En utilisant les expressions (3-44-a) et (3-46), l’équation précédente s’écrit sous la nouvelle forme :

\[
\tilde{J}_n = \mu_n \left(\nabla_r (n \cdot k \cdot T) - n \cdot q \cdot \nabla_r (\psi + \chi) + w_n \cdot n \cdot \nabla_r \log (m_n^*) \right)
\] (3-47)

On utilise ensuite le fait que \(T = T_0 \) et on suppose que l’énergie thermique du réseau est très supérieure à l’énergie apportée par le champ électrique. L’énergie cinétique de l’électron s’écrit ainsi :

\[
w_n = \frac{3}{2} k \cdot T_0
\] (3-48)

En remplaçant \(w_n \) dans l’expression (3-47) et en considérant une seule dimension spatiale \(x \), on obtient :

\[
\tilde{J}_n = q \cdot \mu_n \left(V_r \cdot \nabla_x n - n \cdot \nabla_x (\psi + \chi) + V_r \cdot \frac{3}{2} n \cdot \nabla_x \log (m_n^*) \right)
\] (3-49)

Cette écriture peut être ramenée à :

\[
\tilde{J}_n = q \cdot \mu_n \cdot V_r \cdot \nabla_x n + q \cdot n \cdot \mu_n \cdot \tilde{E}_n
\] (3-50)

en posant :

\[
\tilde{E}_n = \tilde{E} - \frac{\partial \chi}{\partial x} \frac{k \cdot T_0}{q \cdot N_c} \cdot \frac{\partial N_c}{\partial x}
\] (3-51)

et

\[
V_r = \frac{k \cdot T_0}{q}
\] (3-52)
E_n est appelé champ effectif spécifique aux électrons. Il est différent du champ électrique dû au potentiel électrostatique à cause de la dépendance spatiale de l'affinité électronique χ, de la largeur de bande interdite E_G et de la densité d'état effective N_C et N_V.

Le terme $\frac{V_f}{N_C} \cdot \frac{\partial N_C}{\partial x}$ est équivalent au terme $\frac{3}{2} V_f \cdot \frac{\partial \log(m^*_n)}{\partial x}$.

En effet, N_C est proportionnelle à $m_n^{3/2}$ d'où :

$$\log(N_C) = \frac{3}{2} \log(m_n^*)$$

et ainsi :

$$\frac{\partial}{\partial x} \log(N_C) = \frac{3}{2} \frac{\partial}{\partial x} \log(m_n^*)$$

soit

$$\frac{1}{N_C} \cdot \frac{\partial N_C}{\partial x} = \frac{3}{2} \frac{\partial}{\partial x} \log(m_n^*)$$

Un travail identique peut être mené pour les trous. Le champ effectif E_p spécifique aux trous s'exprime quant à lui selon l'équation :

$$\tilde{E}_p = \tilde{E} - \frac{\partial \chi}{\partial x} \frac{\partial E_G}{\partial x} + \frac{k \cdot T_0}{q \cdot N_V} \frac{\partial N_V}{\partial x}$$ (3-53)

La relation d'Einstein qui lie les termes de mobilité et de diffusion est donnée par :

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{k \cdot T_0}{q}$$ (3-54)

Compte tenu de cette relation, les courants d'électrons et de trous s'écrivent :

$$\tilde{J}_n = q \cdot n \cdot \mu_n \cdot \tilde{E}_n + q \cdot D_n \cdot \nabla_x n$$ (3-55-a)

$$\tilde{J}_p = q \cdot p \cdot \mu_p \cdot \tilde{E}_p - q \cdot D_p \cdot \nabla_x p$$ (3-55-b)

3.4.2. Bilan des équations à résoudre

Les équations que nous devons résoudre dans le cadre de la formulation dérive diffusion sont les équations de continuité des porteurs n et p ainsi que les équations des courants J_n et J_p. Il convient d'ajouter à ces équations, l'équation de
Poisson qui permet de calculer le potentiel électrostatique dans un semiconducteur à partir de la charge d’espace. À une dimension, ces équations s’expriment par :

$$
- \frac{\partial}{\partial x} \left(\varepsilon \cdot \frac{\partial \psi}{\partial x} \right) = \rho
$$

(3-56)

$$
\frac{\partial n}{\partial t} = \frac{1}{q} \cdot \frac{\partial J_n}{\partial x} - GR
$$

(3-57-a)

$$
\frac{\partial p}{\partial t} = -\frac{1}{q} \cdot \frac{\partial J_p}{\partial x} - GR
$$

(3-57-b)

$$
J_n = q \cdot n \cdot \mu_n \cdot E_n + q \cdot D_n \cdot \frac{\partial n}{\partial x}
$$

(3-58-a)

$$
J_p = q \cdot p \cdot \mu_p \cdot E_p - q \cdot D_p \cdot \frac{\partial p}{\partial x}
$$

(3-58-b)

3.4.3. Modèles physiques considérés

Dans le système d’équations que nous venons de décrire, la physique du transistor HBT intervient dans trois paramètres : la charge d’espace, la mobilité des porteurs et la génération-recombinaison de paires électron-trou.

3.4.3.1. Charge d’espace

La charge d’espace ρ est calculée en tenant compte de toutes les charges qui existent en un point du semiconducteur, c’est-à-dire d’une part des charges mobiles que sont les électrons et les trous, et d’autre part des charges fixes qui peuvent être localisées sur des donneurs ou accepteurs ionisés ou sur des centres profonds. En l’absence de centres profonds ionisés, cette charge d’espace s’écrit :

$$
\rho = q \cdot (p - n + N_D^+ - N_A^-)
$$

(3-59)

En supposant tous les donneurs et accepteurs ionisés, la charge d’espace s’écrit simplement :

$$
\rho = q \cdot (p - n + N_D - N_A)
$$

(3-60)
3.4.3.2. Mobilité des porteurs

La mobilité des porteurs dépend d’un certain nombre de paramètres tels que le dopage, le champ électrique et la température. Nous nous intéressons surtout à sa dépendance avec le dopage (cas de faible champ électrique). Nous supposons pour simplifier, que toutes les impuretés sont ionisées à 300 K (justifié pour le silicium). Un modèle, tiré de l’expérience, de cette mobilité a été proposé par Caughey et Thomas en 1967 [42] :

\[
\mu_{n,p}^L = \mu_{n,p}^{\text{min}} + \frac{\mu_{n,p}^L - \mu_{n,p}^{\text{min}}}{1 + \left(\frac{N_D + N_A^e}{N_n^e} \right)^{\gamma_{e,p}}}
\]

Cette forme de mobilité intègre à la fois la mobilité liée au réseau \(\mu^L \) et celle due aux impuretés ionisées.

Le problème qui se pose est le choix des diverses constantes de cette loi, les résultats publiés sont relativement inhomogènes, bien que correspondant tous à des mesures expérimentales.

Les figures 3-1 et 3-2 représentent l’évolution des mobilités, dans le silicium et le 3C-SiC, avec la concentration d’impuretés pour les valeurs des constantes évoquées dans le tableau suivant.

<table>
<thead>
<tr>
<th>Type de porteurs</th>
<th>Matériau</th>
<th>(\mu_{n,p}^{\text{min}}) (cm(^2)V(^{-1})s(^{-1}))</th>
<th>(\mu_{n,p}^L) (cm(^2)V(^{-1})s(^{-1}))</th>
<th>(N_n^e) (cm(^{-3}))</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrons</td>
<td>3C-SiC</td>
<td>50</td>
<td>750</td>
<td>(2 \times 10^{17})</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>Si</td>
<td>68,5</td>
<td>1414</td>
<td>(9,2 \times 10^{16})</td>
<td>0,71</td>
</tr>
<tr>
<td>Trouss</td>
<td>3C-SiC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Si</td>
<td>44,9</td>
<td>470,5</td>
<td>(2,2 \times 10^{17})</td>
<td>0,72</td>
</tr>
</tbody>
</table>

Tableau 3-1 : Valeurs des constantes pour le 3C-SiC et le Si à 300 K (modèle de Caughey et Thomas).
Figure 3-1 : Mobilités des électrons et des trous dans le silicium en fonction de la concentration d’impuretés à 300 K (modèle de Caughey et Thomas).

Figure 3-2 : Mobilité des électrons dans le 3C-SiC en fonction de la concentration d’impuretés à 300 K (modèle de Caughey et Thomas).
3. 4. 3. Génération-recombinaison

Nous avons vu au paragraphe 3.4.1 que l'écriture des équations de continuité introduit le terme GR qui représente les divers mécanismes physiques qui vont perturber les densités des porteurs. Ces mécanismes sont la génération des porteurs par ionisation par choc et leurs recombinaisons de type Schokley-Read-Hall (SRH), Auger et radiative [43].

En effet, les phénomènes de recombinaison jouent un rôle prédominant dans la détermination des performances d'un transistor bipolaire, notamment en ce qui concerne le calcul du gain en courant. De plus, cet effet de recombinaison est beaucoup plus sensible dans le cadre des transistors HBT que dans le cadre des transistors bipolaires classiques, que ce soit au niveau des zones quasi-neutres et de charge d'espace (recombinaison de type SRH) ou au niveaux des zones exposées en surface (recombinaisons de type Auger et radiative).

Dans notre cas, nous nous intéressons surtout à la génération-recombinaison de type SRH, elle est régie par la loi suivante :

$$GR^{SRH} = R_n^{SRH} - G_n^{SRH} = R_p^{SRH} - G_p^{SRH} = \frac{n \cdot p - n_i^2}{\tau_n \cdot (p + n_i + \tau_p \cdot (n + n_i)}$$ (3-62)

Où $\tau_n (p)$ est la durée de vie des électrons (trous).

3. 5. CONCLUSION

Dans ce chapitre, nous nous sommes penchés sur la modélisation physique du transistor bipolaire à hétérojonction. Nous avons exposé dans un cadre général comment était bâti le modèle de dérive diffusion. La discrétisation des équations de la physique ainsi que la solution du problème non linéaire couplé seront explicitées dans le dernier chapitre.
CHAPITRE 4 :

SIMULATION DERIVE DIFFUSION
4. SIMULATION DERIVE DIFFUSION

4.1. INTRODUCTION

Le choix du modèle physique utilisé dans notre travail est guidé par deux contraintes qui sont la précision et la rapidité de calcul. Celles-ci ont amenés à retenir le modèle dérive d'diffusion unidimensionnel. En effet, comme l'a souligné certains auteurs [44] le transport dans les transistors HBT s'effectue principalement (90%) suivant l'axe émetteur-collecteur.

Nous abordons au niveau de ce chapitre les schémas de discrétisation (normalisation des grandeurs et discrétisation des équations considérées) et le traitement des conditions frontières. La solution du problème non linéaire couplé sera ensuite décrite. Enfin, nous étudierons le transistor HBT à base de 3C-SiC/Si par simulation dérive diffusion.

4.2. DISCRETISATION DES EQUATIONS DES SEMICONDUCTEURS

4.2.1. Normalisation des grandeurs

Nous sommes désormais placés devant le problème suivant : nous allons devoir résoudre un système d'équations non linéaires aux dérivées partielles temporelle et spatiale. Ce problème sera d'autant plus compliqué que les grandeurs auxquelles nous avons affaire sont d'échelles très différentes. En effet, nous rencontrons dans les semiconducteurs des densités de porteurs de 10^{23} m$^{-3}$ mais également des potentiels de quelques volts ainsi que des densités de courants de

96
quelques 10^4 Acm^{-2}. Nous serons donc amenés dans une première étape à travailler avec des grandeurs normalisées afin de régulariser au maximum les équations différentielles à résoudre. Les facteurs d’échelle des principales grandeurs sont rassemblés dans le tableau 4-1. On trouvera dans la référence [41] une étude sur les facteurs d’échelle ainsi que les références nécessaires pour une étude mathématique plus poussée.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbole</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x_0</td>
<td>$\sqrt{\varepsilon \cdot k_b \cdot T_0 / (q^2 \cdot n_i)}$</td>
</tr>
<tr>
<td>ψ</td>
<td>ψ_0</td>
<td>$k_b \cdot T_0 / q$</td>
</tr>
<tr>
<td>n, p</td>
<td>C_0</td>
<td>n_i</td>
</tr>
<tr>
<td>D_n, D_p</td>
<td>D_0</td>
<td>1</td>
</tr>
<tr>
<td>μ_n, μ_p</td>
<td>D_0 / ψ_0</td>
<td></td>
</tr>
<tr>
<td>GR</td>
<td></td>
<td>$D_0 \cdot C_0 / x_0^2$</td>
</tr>
<tr>
<td>J_n, J_p</td>
<td>J_0</td>
<td>$q \cdot C_0 / x_0$</td>
</tr>
<tr>
<td>ε</td>
<td>λ^2</td>
<td>$\psi_0 / q \cdot C_0 \cdot x_0^2$</td>
</tr>
<tr>
<td>Temps</td>
<td></td>
<td>x_0^2 / D_0</td>
</tr>
</tbody>
</table>

Tableau 4-1 : Facteurs de normalisation.

De là nous pouvons en déduire les équations normalisées qui seront résolues. Nous omettons volontairement l’indice N indiquant que les grandeurs sont normalisées afin d’alléger l’écriture.

Équation de Poisson :

$$- \frac{\partial}{\partial x} \left(\varepsilon \cdot \frac{\partial \psi}{\partial x} \right) = p - n + N_D - N_A \quad (4-1)$$

Équations de continuité :

$$\frac{\partial n}{\partial t} = \frac{\partial J_n}{\partial x} - GR \quad (4-2-a)$$
Équations des densités de courant :

\[J_n = \mu_n \cdot (n \cdot E_n + \frac{\partial n}{\partial x}) \] (4-3-a)

\[J_p = \mu_p \cdot (p \cdot E_p - \frac{\partial p}{\partial x}) \] (4-3-b)

4.2.2. Discrétisation spatio-temporelle implicite

Dans le processus de recherche d'une solution aux équations des semiconducteurs, il est nécessaire d'effectuer une discrétisation spatio-temporelle des grandeurs intervenant dans nos équations. Celle-ci permet de transformer un système d'équations différentielles en un système d'équations algébriques pouvant être résolu par des méthodes numériques.

La discrétisation spatiale choisie est représentée sur la figure 4-1. Nous nous sommes volontairement placés dans un schéma de discrétisation à une dimension compte tenu de l'objectif que nous nous sommes fixés.

Les variables scalaires telles que les concentrations de porteurs \(n \) et \(p \), et le potentiel \(\psi \) sont disponibles aux points marqués d'un \(\downarrow \). Les variables vectorielles comme le champ électrique \(E \) et les densités de courant \(J_n \) et \(J_p \) sont disponibles aux points marqués d'un \(\downarrow \).

La discrétisation temporelle quant à elle est réalisée en subdivisant l'intervalle de temps à étudier régulièrement comme cela peut être vu sur la figure 4-2.

\[\frac{1}{2} (h(l) + h(l-1)) \]

\[\text{Figure 4-1 : Schéma de discrétisation spatiale.} \]
Remarque : sur la figure 4-1 les mailles ont été régulièrement espacées, mais rien n’empêche de réaliser un maillage non uniforme.

![Figure 4-2 : Schéma de discrétisation temporelle.](image)

Le choix de la méthode de discrétisation des équations a résolument été tourné vers une méthode implicite. En effet, cette méthode possède l’énorme avantage d’être tout le temps stable et de permettre l’utilisation de pas temporels quelconques. Elle consiste à résoudre toutes les équations simultanément.

Lorsque l’on effectue une discrétisation spatio-temporelle implicite des équations de la physique, il apparaît le formalisme suivant. Nous noterons :

- l’indice spatial représentant la grandeur au point de maillage \(I \),
- l’indice temporel représentant la grandeur prise à l’instant \(t_k \).

Remarque : Les grandeurs présentes dans les équations sont normalisées.

4.2.2.1. Équation de Poisson

Sa discrétisation au point de maillage \(I \) à l’instant \(k \) fournit :

\[
- \varepsilon_{(l+1/2)} \frac{\varphi_{l+1}^k - \varphi_l^k}{h(l)} + \varepsilon_{(l-1/2)} \frac{\varphi_l^k - \varphi_{l-1}^k}{h(l-1)} \]

\[
= \left(p^k(l) - n^k(l) + N_D(l) - N_A(l) \right) \frac{1}{2} (h(l-1) + h(l)) \quad (4-4)
\]

Nous remarquons que cette équation dépend uniquement des grandeurs à l’instant \(t_k \) aux points de maillage \(I-1, I \) et \(I+1 \). Nous avons donc pour la maille \(I \) à l’instant \(t_k \) une forme du type :

\[
F_{t_k}^k(\varphi_{l-1}^k, \varphi_l^k, \varphi_{l+1}^k, n_l^k, p_l^k) = 0 \quad (4-5)
\]
4. 2. 2. 2. Équations de continuité

La discrétisation de l’équation de continuité des électrons au point de maillage \(l \) à l’instant \(k \) fournit après passage aux différences finies :

\[
\frac{n^k_l - n_{l-1}^k}{\Delta t} = \frac{1}{2} \cdot \frac{J_{n,l}^k - J_{n,l-1}^k}{(h(l) + h(l-1))} - GR^k(n^k_l, p^k_l)
\]

(4-6)

Cette équation dépend des grandeurs à l’instant \(t_k \) aux points de maillage \(l, l-1 \) et des grandeurs à l’instant \(t_{k-1} \) au point de maillage \(l \). Nous pouvons donc écrire pour la maille \(l \) à l’instant \(t_k \) une forme du type :

\[
F_2^k(J_{n,l}^k, J_{n,l-1}^k, n^k_l, p^k_l, n_{l-1}^k) = 0
\]

(4-7)

La discrétisation de l’équation de continuité des trous au point de maillage \(l \) à l’instant \(k \) fournit :

\[
\frac{p^k_l - p_{l-1}^k}{\Delta t} = \frac{1}{2} \cdot \frac{J_{p,l}^k - J_{p,l-1}^k}{(h(l) + h(l-1))} - GR^k(p^k_l, n^k_l)
\]

(4-8)

Cette équation dépend des grandeurs à l’instant \(t_k \) aux points de maillage \(l, l-1 \) et des grandeurs à l’instant \(t_{k-1} \) au point de maillage \(l \).

Soit, dans le formalisme choisi en repérant l’équation avec l’indice 3 :

\[
F_3^k(J_{p,l}^k, J_{p,l-1}^k, n^k_l, p^k_l, p_{l-1}^k) = 0
\]

(4-9)

4. 2. 2. 3. Équations des densités de courant

Afin d’accroître la stabilité dans le processus de recherche numérique de solution, les densités de courant \(J_n \) et \(J_p \) sont différenciées suivant l’approche de Scharfetter et Gummel [45].

Pour la densité de courant \(J_n \), nous pouvons écrire au point de maillage \(l \) à l’instant \(k \) :

\[
J_{n,l}^k = \mu_n(l) \cdot E_{n,l}^k \cdot \left(\frac{n_{l+1}^k}{1 - \exp(-E_{n,l}^k \cdot h(l))} + \frac{n_l^k}{1 - \exp(E_{n,l}^k \cdot h(l))} \right)
\]

(4-10)
Où $E_{n,i}^k = -\frac{\phi_{i+1}^k - \phi_i^k}{h(n)} + A_i^k$

Avec A_i^k un terme incluant tous les décalages (l'affinité électronique χ, etc.) permettant traduire le champ effectivement vu par les électrons (voir chapitre 3).

D'où, compte du formalisme adopté :

$$F4_i^k(\phi_{i+1}^k, \phi_i^k, n_{i+1}^k, n_i^k, J_{n,i}^k) = 0$$

Pour la densité de courant J_p, on obtient comme précédemment au point de maillage l à l'instant t_k :

$$J_{p,l}^k = \mu_p(l) \cdot E_{p,l}^k \cdot \left(\frac{P_{l+1}^k}{1 - \exp(-E_{p,l}^k \cdot h(l))} + \frac{p_{l+1}^k}{1 - \exp(E_{p,l}^k \cdot h(l))} \right)$$

Où $E_{p,l}^k = -\frac{\phi_{l+1}^k - \phi_l^k}{h(n)} + B_l^k$

Avec B_l^k un terme incluant tous les décalages (l'affinité électronique, etc.) permettant de traduire le champ effectivement vu par les trous (voir chapitre 3).

D'où, compte du formalisme adopté :

$$F5_i^k(\phi_{i+1}^k, \phi_i^k, P_{l+1}^k, p_i^k, J_{p,1}^k) = 0$$

Nous devons maintenant résoudre le système d'équations décrit précédemment par les équations (4-5) (4-7) (4-9) (4-11) (4-13) et rappelé en (4-14) pour la maille l à l'instant t_k.

$$F1_i^k(\phi_{i-1}^k, \phi_i^k, \phi_{i+1}^k, n_i^k, P_i^k) = 0$$

$$F2_i^k(J_{n,l}^k, J_{n,l-1}^k, n_i^k, p_i^k, n_{i-1}^k) = 0$$

$$F3_i^k(J_{p,l}^k, J_{p,l-1}^k, n_i^k, p_i^k, p_{i-1}^k) = 0$$

$$F4_i^k(\phi_{i+1}^k, \phi_i^k, n_{i+1}^k, n_i^k, J_{n,i}^k) = 0$$

$$F5_i^k(\phi_i^k, \phi_{i+1}^k, p_i^k, p_{i+1}^k, J_{p,i}^k) = 0$$
Chapitre 4 : Simulation dérive diffusion

Soit de façon plus condensée pour la maille i à l'instant t_k :

$$F_i^k = 0$$ \hspace{1cm} (4-15)

avec $F_i^k = \begin{bmatrix} F_{1i}^k \\ F_{2i}^k \\ F_{3i}^k \\ F_{4i}^k \\ F_{5i}^k \end{bmatrix}$

Nous écrirons ce système globalement pour tous les instants et pour toutes les mailles sous la forme :

$$F(X) = 0$$ \hspace{1cm} (4-16)

4. 2. 3. Conditions aux limites

Les conditions aux limites sont celles de Dirichlet. Le composant simulé comporte trois électrodes qui sont l'électrode d'émetteur, de base et de collecteur. Nous nous sommes placés dans un schéma de commandes en tension où les tensions émetteur-base V_{eb} et collecteur-base V_{cb} sont imposées, la base étant choisie comme électrode de référence.

Ainsi dans notre problème, des conditions aux limites en tension sont appliquées. On impose la neutralité et l'équilibre thermodynamique sur les contacts métalliques, ce qui donne les densités de charge. Le potentiel φ est fixé à l'équilibre (lorsque aucune tension n'est appliquée) en annulant le quasi niveau de Fermi, et en rajoutant les tensions appliquées hors équilibre. Enfin, la température est supposée fixée à la température du substrat. La condition aux limites rentrante normalement imposée est implicitement fixée par la condition sur le potentiel.

Pour certaines structures particulières comme le transistor HBT, il faut aussi définir des conditions aux limites sur la base. Si l'on définit des conditions sur toutes les variables, on coupe en fait la structure en deux parties, et on résout alors deux problèmes indépendants. La solution retenue est de fixer la densité de charge des porteurs majoritaires, par exemple les trous, en la prenant égale au dopage, alors
que la densité des porteurs minoritaires dans la base est laissée flottante. Nous n'avons donc pas équilibre thermodynamique sur la base. Le potentiel de la base est fixé, c'est en fait le potentiel de référence, et la température est aussi fixée à la température du substrat.

\[V(l) = V_e \]
\[V(mb) = V_b = 0 \]
\[V(ml) = V_c \]

Où \(l, mb \) et \(ml \) représentent respectivement les indices des mailles d'émetteur, de base et de collecteur.

En ce qui concerne les densités :

\[p(l) = N_A(l) \quad p(mb) = N_A(mb) \quad p(ml) = N_A(ml) \]
\[n(l) = N_D(l) \quad n(ml) = N_D(ml) \]

4.3. **RÉSOLUTION DES ÉQUATIONS DES SEMICONDUCTEURS**

Le système (4-14) est résolu par une méthode itérative de type Newton-Raphson dont le principe est rappelé brièvement ci-dessous.

4.3.1. **Méthode de Newton-Raphson**

La résolution par la méthode de Newton-Raphson consiste à calculer une suite \(X^n \) à partir d'un vecteur initial \(X^0 \) qui doit converger vers la solution exacte \(X^* \).

Si \(F(X) = 0 \) est le système non linéaire à résoudre, nous avons :

\[X^{n+1} = X^n - J_H^{-1} \cdot F(X^n) \quad (4-17) \]

Où \(J_H \) est la matrice jacobienne du système non linéaire.

Ainsi si l'on pose :

\[\Delta X^n = X^{n+1} - X^n \quad (4-18) \]

Nous aurons donc à résoudre à chaque itération, un système linéaire jusqu'à ce qu'un point fixe soit trouvé par un critère du type :

\[
\max \left(\left\| X_{k}^{n+1} - X_{k}^{n} \right\| \right) \leq \varepsilon
\]

\[0 \leq k \leq N, \ N \text{ est la dimension de } X.\]

4.3.2. Application à notre problème

Les inconnues de notre système sont constituées de \(\varphi_{k}^{i}, n_{k}^{i}, p_{k}^{i}, J_{n_{k}, l_{k}}, J_{p_{k}, l_{k}} \) pour \(k \in \{0, \ldots, N-1\} \) et pour \(l \in \{1, \ldots, ml\} \), avec \(N \) le nombre d’échantillons temporels de discrétisation, et \(ml \) le nombre de mailles de la structure étudiée.

Chacune des équations peut donc d’être linéarisée suivant le vecteur \(X_{l}^{k} \) constitué par :

\[
X_{l}^{k} = \left[\varphi_{l}^{k}, n_{l}^{k}, p_{l}^{k}, J_{n_{l}, l_{k}}, J_{p_{l}, l_{k}} \right]^{T}
\]

Les équations linéarisées s’écrivent :

En ce qui concerne (4-5) :

\[
I_{l_{-1}, l}^{k} \Delta X_{l_{-1}}^{k} + D_{l_{-1}, l}^{k} \Delta X_{l}^{k} + S_{l_{-1}, l}^{k} \Delta X_{l_{-1}}^{k} = -B_{l_{-1}, l}^{k} \quad (4-19)
\]

Où \(I_{l_{-1}, l}^{k}, D_{l_{-1}, l}^{k}, S_{l_{-1}, l}^{k} \) sont des matrices lignes indépendantes de \(t \) et \(B_{l_{-1}, l}^{k} \) est un terme constant.

En ce qui concerne (4-7) :

\[
I_{2_{-1}, l}^{k} \Delta X_{2_{-1}, l}^{k} + D_{2_{-1}, l}^{k} \Delta X_{2_{-1}, l}^{k} + S_{2_{-1}, l}^{k} \Delta X_{2_{-1}, l}^{k} + M_{2_{-1}, l}^{k} \Delta X_{2_{-1}, l}^{k-1} = -B_{2_{-1}, l}^{k} \quad (4-20)
\]

Dans cette équation \(S_{2_{-1}, l}^{k} = 0 \) mais nous conserverons ce terme pour le formalisme général.

Le terme \(M_{2_{-1}, l}^{k} \Delta X_{2_{-1}, l}^{k-1} \) est un terme fondamental dans le calcul des termes du jacobien du système.

En ce qui concerne (4-9) :

\[
I_{3_{-1}, l}^{k} \Delta X_{3_{-1}, l}^{k} + D_{3_{-1}, l}^{k} \Delta X_{3_{-1}, l}^{k} + S_{3_{-1}, l}^{k} \Delta X_{3_{-1}, l}^{k} + M_{3_{-1}, l}^{k} \Delta X_{3_{-1}, l}^{k-1} = -B_{3_{-1}, l}^{k} \quad (4-21)
\]

Dans cette équation \(S_{3_{-1}, l}^{k} = 0 \), comme précédemment le terme \(M_{3_{-1}, l}^{k} \Delta X_{3_{-1}, l}^{k-1} \) intervient pour le calcul du jacobien du système.
En ce qui concerne (4-11) :

\[I4^k_{i-1} \Delta X^k_{i-1} + D4^k_i \Delta X^k_i + S4^k_{i+1} \Delta X^k_{i+1} = -B4^k_i \] \hspace{1cm} (4-22)

Dans cette équation \(I4^k_{i-1} = 0 \).

En ce qui concerne (4-13) :

\[I5^k_{i-1} \Delta X^k_{i-1} + D5^k_i \Delta X^k_i + S5^k_{i+1} \Delta X^k_{i+1} = -B5^k_i \] \hspace{1cm} (4-23)

Nous pouvons regrouper les matrices lignes \(I1^k_i, I2^k_i, I3^k_i, I4^k_i, I5^k_i \) sous la forme d’une seule matrice notée :

\[
I^k_i = \begin{bmatrix}
I1^k_i \\
I2^k_i \\
I3^k_i \\
I4^k_i \\
I5^k_i
\end{bmatrix}
\]

Il en est de même pour les matrices \(D^k_i, S^k_i, M^k_i, B^k_i \) :

\[
D^k_i = \begin{bmatrix}
D1^k_i \\
D2^k_i \\
D3^k_i \\
D4^k_i \\
D5^k_i
\end{bmatrix}, \quad S^k_i = \begin{bmatrix}
S1^k_i \\
S2^k_i \\
S3^k_i \\
S4^k_i \\
S5^k_i
\end{bmatrix}, \quad M^k_i = \begin{bmatrix}
M1^k_i \\
M2^k_i \\
M3^k_i \\
M4^k_i \\
M5^k_i
\end{bmatrix}, \quad B^k_i = \begin{bmatrix}
B1^k_i \\
B2^k_i \\
B3^k_i \\
B4^k_i \\
B5^k_i
\end{bmatrix}
\]

Ainsi, nous pouvons écrire tout d’abord le système linéarisé à la date \(t_k \) pour toutes les mailles de la structure sous la forme :

\[
\begin{bmatrix}
D1^k_1 & S^k_1 & 0 \\
I^k_2 & D^k_2 & S^k_2 & 0 \\
0 & I^k_3 & D^k_3 & . & 0 \\
0 & . & . & . & S^k_{ml-1} \\
0 & 0 & I^k_{ml} & D^k_{ml}
\end{bmatrix}
\begin{bmatrix}
\Delta X^k_1 \\
\Delta X^k_2 \\
\Delta X^k_{ml}
\end{bmatrix}
= \begin{bmatrix}
B^k_1 \\
B^k_2 \\
B^k_{ml}
\end{bmatrix}
- \begin{bmatrix}
X^k_{1-1} \\
X^k_{2-1} \\
X^k_{ml-1}
\end{bmatrix} \hspace{1cm} (4-24)
\]
On pose :

\[B^k = [B_1^k \ldots B_{ml}^k]^T \]
\[X^k = [X_1^k \ldots X_{ml}^k]^T \]

\[A^k = \begin{bmatrix}
D_{11}^k & S_1^k & 0 & & & \\
I_2^k & D_{22}^k & S_2^k & 0 & & \\
0 & I_3^k & D_3^k & . & . & 0 \\
0 & . & . & S_{ml-1}^k & & \\
0 & I_{ml}^k & D_{ml}^k & & & \\
\end{bmatrix} \]

\[M^k = \begin{bmatrix}
M_1^k & 0 & & & & \\
0 & M_2^k & 0 & & & \\
0 & M_3^k & & & & 0 \\
. & . & . & & & \\
0 & . & . & . & . & 0 \\
0 & M_{ml}^k & & & & \\
\end{bmatrix} \]

Ainsi, nous pouvons écrire le système global linéarisé pour toutes les dates et pour toutes les mailles de la structure sous la forme :

\[
\begin{bmatrix}
A^0 & 0 & 0 & 0 & M^0 \\
M^1 & A^1 & 0 & 0 & 0 \\
0 & . & . & . & 0 \\
0 & 0 & . & . & 0 \\
0 & 0 & 0 & M_{N-1}^N & A_{N-1}^N \\
\end{bmatrix}
\begin{bmatrix}
\Delta X^0 \\
\Delta X^1 \\
\Delta X^{N-1} \\
\end{bmatrix} =
\begin{bmatrix}
B^0 \\
B^1 \\
B^{N-1} \\
\end{bmatrix}
\]

(4-25)

Résolution spatiale à la date \(t_k \) :

Pour une résolution spatiale, nous devons résoudre :

\[A^k X^k + M^k X^{k-1} = B^k \]

(4-26)

A l’instant \(t_k \), le vecteur \(X^{k-1} \) calculé à l’itération temporelle précédente est connu ainsi que la matrice \(M^k \).
Nous devons donc résoudre :

\[A^kX^k = B^k - M^kX^{k-1} \]

(4-27)

Ce système linéaire est tridiagonal par blocs. Il est résolu à l’aide d’une méthode du pivot de Gauss pour une forme tridiagonale par blocs.

4.4. RESULTATS ET INTERPRETATIONS

La théorie précédente nous a permis d’établir un programme de simulation écrit sous l’environnement Matlab. Ce programme, valable pour les transistors bipolaires à homojonction et hétérojonction, permet de faire une caractérisation statique qui fournit des informations sur la répartition des grandeurs physiques macroscopiques (densité d’électrons et de trous, potentiel et champ électrique), le diagramme de bandes d’énergie, les caractéristiques courant-tension et l’influence de certains paramètres sur le fonctionnement du transistor.

4.4.1. Structure HBT étudiée et paramètres physiques

Le programme de simulation développé, a été testé sur différentes structures du transistor HBT à base de 3C-SiC/Si. La structure à une dimension utilisée pour la présentation des résultats est représentée sur la figure 4-3. La longueur de cette structure est de 1,5 μm. Les valeurs des principaux paramètres physiques utilisés pour la simulation sont regroupées dans le tableau 4-2. Elles sont issues des références [4] [46].

<table>
<thead>
<tr>
<th>3C-SiC (N)</th>
<th>Si (P)</th>
<th>Si (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 \times 10^{24} m^{-3}</td>
<td>2 \times 10^{24} m^{-3}</td>
<td>10^{25} m^{-3}</td>
</tr>
<tr>
<td>0</td>
<td>0,2</td>
<td>0,45</td>
</tr>
</tbody>
</table>

Figure 4-3 : Structure unidimensionnelle du transistor HBT étudié.
Tableau 4-2 : Paramètres physiques du 3C-SiC et du Si à 300 K.

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Unité</th>
<th>3C-SiC</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_r</td>
<td>-</td>
<td>9,7</td>
<td>11,8</td>
</tr>
<tr>
<td>E_G</td>
<td>eV</td>
<td>2,2</td>
<td>1,12</td>
</tr>
<tr>
<td>X</td>
<td>eV</td>
<td>3,66</td>
<td>4,05</td>
</tr>
<tr>
<td>N_C</td>
<td>m^{-3}</td>
<td>$1,5 \times 10^{25}$</td>
<td>$2,8 \times 10^{25}$</td>
</tr>
<tr>
<td>N_V</td>
<td>m^{-3}</td>
<td>$1,2 \times 10^{25}$</td>
<td>$1,04 \times 10^{25}$</td>
</tr>
<tr>
<td>n_i</td>
<td>m^{-3}</td>
<td>6×10^6</td>
<td>$1,45 \times 10^{16}$</td>
</tr>
<tr>
<td>τ_{SRH}</td>
<td>s</td>
<td>10^{-7}</td>
<td>10^{-6}</td>
</tr>
</tbody>
</table>

En ce qui concerne les mobilités des porteurs (μ_n et μ_p), celles-ci sont calculées suivant le modèle de Caughey et Thomas (voir chapitre 3).

4.4.2. Grandeurs physiques macroscopiques fondamentales

Nous présentons ici quelques évolutions typiques de ces principales grandeurs macroscopiques intervenant dans le fonctionnement du transistor HBT. Nous examinons pour certaines d’entre elles leur évolution en fonction des commandes appliquées.

4.4.2.1. Comparaison entre HBT et BJT

Les figures représentées dans ce paragraphe illustrent une comparaison entre le transistor HBT à base de 3C-SiC/Si et le transistor à homojonction au silicium ayant la même structure de base (figure 4-3).

La figure 4-4 représente l’évolution de la densité des électrons dans la structure en partant de l’émetteur vers le collecteur. Pour avoir la même densité d’électrons, l’hétérojonction 3C-SiC/Si nécessite une polarisation supplémentaire de 0,15 V. La réduction du Turn-ON est induite par la décroissance de la hauteur de barrière vue par les électrons (figure 4-8).

108
Chapitre 4 : Simulation dérive diffusion

La figure 4-5 représente l’évolution de la densité de trous dans la structure. Nous pouvons constater que, dans le transistor HBT à base de 3C-SiC/Si, la densité de trous dans l’émetteur est nettement plus faible que celle des électrons dans la base, même si la densité de trous dans la base est beaucoup plus importante que celle de l’émetteur. Ceci est dû à la plus forte barrière de potentiel vue par les trous à l’hétérojonction base-émetteur (figure 4-8). Par contre, dans le transistor à homojonction, les porteurs libres (électrons et trous) voient une barrière de potentiel identique. La densité de trous dans l’émetteur est proche de celle des électrons dans la base.

La figure 4-6 représente le champ électrique le long de la structure. On observe que, compte tenu du fort dopage de la base, le potentiel (figure 4-7) est quasiment uniforme en tout point de cette zone et par conséquent le champ y est quasi-nul, il s’étend du côté émetteur moins dopé.

Compte tenu du rapport de dopage entre base et collecteur, la zone désertée de la jonction s’étend essentiellement dans le collecteur.
Figure 4-4 : Densité d'électrons le long de la structure pour $V_{be} = 0,9 \ V$ et $V_{cb} = 3 \ V$
cas du transistor HBT à base de 3C-SiC/Si et du transistor BJT au Si.

Figure 4-5 : Densité de trous le long de la structure pour $V_{be} = 0,9 \ V$ et $V_{cb} = 3 \ V$
cas du transistor HBT à base de 3C-SiC/Si et du transistor BJT au Si.
Figure 4-6 : Champ électrique le long de la structure pour $V_{be} = 0.9 \, V$ et $V_{cb} = 3 \, V$
cas du transistor HBT à base de 3C-SiC/Si et du transistor BJT au Si.

Figure 4-7 : Potentiel le long de la structure pour $V_{be} = 0.9 \, V$ et $V_{cb} = 3 \, V$
cas du transistor HBT à base de 3C-SiC/Si et du transistor BJT au Si.
Figure 4-8 : Diagramme d'énergie le long de la structure pour $V_{be} = 0.9 \, V$ et $V_{cb} = 3 \, V$

cas du transistor HBT à base de 3C-SiC/Si et du transistor BJT au Si.

4.4.2.2. Influence de la tension base-émetteur

Afin d'examiner l'influence du niveau d'injection sur les grandeurs physiques macroscopiques que nous venons d'étudier pour le fonctionnement du transistor HBT, nous avons fixé la tension collecteur-base à 3 V et nous avons fait varier la tension base-émetteur entre 1,15 V et 1,3 V par pas de 0,05 V. Ceci correspond à un fonctionnement allant des faibles injections jusqu'au début des fortes injections. Les densités de courant correspondant aux courbes sont respectivement :

$J_{c} = 3962,9 \, Acm^{-2}$, $J_{c} = 12836 \, Acm^{-2}$, $J_{c} = 32881 \, Acm^{-2}$ et $J_{c} = 66174 \, Acm^{-2}$.

Pour ces diverses polarisations, nous avons représenté sur une même figure respectivement :

- la densité d'électrons : figure 4-9
- la densité de trous : figure 4-10
- le champ électrique : figure 4-11
- le potentiel : figure 4-12
- le diagramme d’énergie : figure 4-13

En ce qui concerne la figure 4-9, nous pouvons observer que les densités d’électrons augmentent exponentiellement dans la base avec le niveau d’injection ainsi que dans la zone désertée de collecteur.

Pour des tensions de l’ordre de 1,3 V, la densité d’électrons devient égale à celle des atomes donneurs N_D.

Pour des tensions V_{be} supérieures, cette densité devient même supérieure à celle des impuretés ionisées du collecteur. Il en résulte une inversion de champ dans le collecteur (voir équation de Poisson). Cet effet est appelé effet Kirk. Nous le décrirons plus loin.

La figure 4-10 représentant la densité de trous montre également que le nombre de trous augmente exponentiellement dans l’émetteur malgré la forte discontinuité de la bande de valence mais qu’il reste tout de même à des niveaux faibles.

La diffusion des trous de la base dans le collecteur varie très peu avec le niveau d’injection pour des tensions inférieures à 1,3 V.

Le champ électrique (figure 4-11) est pour sa part également fortement influencé par le niveau d’injection. Comme nous l’avons vu précédemment, l’augmentation de la tension base-émetteur entraîne une croissance du nombre de porteurs libres dans la zone désertée du collecteur. Or, la pente du champ électrique est proportionnelle à $(N_D - n)$, il en résulte donc une inversion possible de cette pente si l’injection est trop forte.

La figure 4-13 montre que la courbure de bande a tendance à s’inverser lorsque l’on arrive aux fortes injections. Par soucis de clarté, les résultats n’ont été donnés que pour les deux niveaux extrêmes d’injection 1,15 V et 1,3 V.
Figure 4-9 : Évolution de la densité d’électrons en fonction du niveau d’injection pour des densités de courant J_c croissantes à $V_{ch} = 3 \, V$.

Figure 4-10 : Évolution de la densité de trous en fonction du niveau d’injection pour des densités de courant J_c croissantes à $V_{ch} = 3 \, V$.
Figure 4-11 : Évolution du champ électrique en fonction du niveau d'injection pour des densités de courant J_c croissantes à $V_{cb}=3\ \text{V}$.

Figure 4-12 : Évolution du potentiel en fonction du niveau d'injection pour des densités de courant J_c croissantes à $V_{cb}=3\ \text{V}$.
Figure 4-13 : Évolution du diagramme d'énergie en fonction du niveau d'injection pour des densités de courant J_c croissantes à $V_{cb} = 3\, V$.

4.4.2.3. Influence de la tension collecteur-base

Nous nous sommes placés pour cette étude dans un contexte de moyenne injection. La tension base émetteur a été fixée à $V_{be} = 1,25\, V$.

Nous allons faire varier la tension collecteur-base afin d'en analyser les effets. Nous avons tracé les figures 4-14, 4-15, 4-16, 4-17 et 4-18 respectivement la densité d'électrons, la densité de trous, le champ électrique, le potentiel et le diagramme d'énergie. V_{cb} prend tour à tour les valeurs 1, 5, 10 et 15 Volts.

Les densités de courant respectives sont :

$J_c = 32871\, Acm^{-2}$, $J_c = 32888\, Acm^{-2}$, $J_c = 32902\, Acm^{-2}$ et $J_c = 32914\, Acm^{-2}$.

Nous pouvons observer que pour de faibles valeurs de V_{cb}, la zone désertée ne s'étend pas sur la totalité du collecteur. Ceci, compte tenu du faible niveau de dopage du collecteur, conduit à l'existence d'une zone ohmique pouvant présenter une résistivité élevée.

Dans le cas de tensions V_{cb} plus importantes, il apparaît une limite de tension au-delà de laquelle le collecteur se trouve entièrement déserté.
On remarquera également que la pente du champ électrique dans le collecteur est constante. Ce n’est pas surprenant. En effet, cette dernière dépend de \((N_D - n)\) et \(n\) est principalement fixé par le niveau d’injection.

Figure 4-14 : Évolution de la densité d’électrons en fonction de \(V_{cb}\) pour \(V_{be} = 1,25\ V\).
Figure 4-15 : Évolution de la densité de trous en fonction de V_{cb} pour $V_{be} = 1,25 \, V$.

Figure 4-16 : Évolution du champ électrique en fonction de V_{cb} pour $V_{be} = 1,25 \, V$.
Figure 4-17 : Évolution du potentiel en fonction de V_{cb} pour $V_{be} = 1.25 \text{ V}$.

Figure 4-18 : Évolution du diagramme d’énergie en fonction de V_{cb} pour $V_{be} = 1.25 \text{ V}$.
4. 4. 2. 4. *Effet de forte injection dans la structure : effet Kirk*

L'effet Kirk constitue un des principaux effets limitatifs des transistors bipolaires pour le fonctionnement à fortes densités de courant.

Cet effet apparaît lorsque l'injection des électrons devient massive dans le collecteur. Il y a alors compensation des densités de charges fixes ionisées N^+_D par les porteurs de charge mobiles n comme ceci peut être vu sur la figure 4-19.

L'intégration de l'équation de Poisson fournit alors un champ électrique dont la pente s'inverse puisque cette dernière est proportionnelle à $(N^+_D - n)$. La figure 4-21 montre clairement cette inversion de pente. Ceci conduit (figure 4-20) à une diffusion importante de trous de la base vers le collecteur, ce qui manifeste par une augmentation de la largeur de base.

Figure 4-19 : Évolution de la densité d'électrons à fort niveau d'injection pour $V_{cb} = 3V$ et pour des densités de courant J_c croissantes.

120
Figure 4-20 : Évolution de la densité de trous à fort niveau d'injection pour $V_{cb} = 3V$ et pour des densités de courant J_e croissantes.

Figure 4-21 : Évolution du champ électrique à fort niveau d'injection pour $V_{cb} = 3V$ et pour des densités de courant J_e croissantes.
Figure 4-22 : Évolution du potentiel à fort niveau d'injection pour $V_{cb} = 3V$ et pour des densités de courant J_c croissantes.

Figure 4-23 : Évolution du diagramme d'énergies à fort niveau d'injection pour $V_{cb} = 3V$ et pour des densités de courant J_c croissantes.
4.4.3. Gain en courant

La figure 4-24 représente l’évolution des courbes de Gummel. Nous pouvons constater que le niveau du courant J_c est nettement supérieur à celui du courant J_b. Ceci est dû à la plus forte barrière de potentiel vue par les trous à l’hétérojonction base-émetteur. Nous remarquons aussi que la caractéristique $J_c (V_{be})$ se courbe sous l’effet de la dégradation du taux d’injection, alors que la caractéristique $J_b (V_{be})$ conserve presque la même allure.

Le gain en courant β s’exprime généralement en fonction du courant collecteur J_c. La courbe 4-25 présente une croissance au départ traduisant le phénomène de recombinaison. La décroissance avec le niveau d’injection exprime quand à elle l’augmentation de la largeur de base qui induit une dégradation du taux d’injection.

Afin d’examiner l’influence des paramètres de la base sur le gain en courant, nous avons tracé les courbes 4-26 et 4-27. La figure 4-26 représente l’influence de l’épaisseur de la base sur le gain. Sur la même figure, nous avons représenté le cas du transistor HBT à base de 3C-SiC/Si et du transistor à homojonction au silicium. Nous pouvons constater, dans les deux cas, une grande sensibilité du gain à l’épaisseur de la base. La diminution du gain est due à l’augmentation de la recombinaison des électrons minoritaires dans la base. Quand cette dernière est très étroite, la recombinaison, dans cette zone de transition, est minime et la majorité des électrons émis sont récupérés dans le collecteur, le gain en courant est donc important. La figure 4-27 montre l’influence du dopage de la base sur le gain du transistor HBT. Nous remarquons que l’augmentation du dopage de la base fait diminuer le gain en courant.

Pour une épaisseur de base de 0,1 μm et un dopage de 5×10^{17} cm$^{-3}$, le gain du transistor HBT égale à 310 alors que celui du transistor à homojonction égale à 68. Pour la même épaisseur et un dopage de base de 10^{19} cm$^{-3}$, le gain du transistor HBT égale à 57. En vérité, grâce à la présence d’une grande barrière de potentiel vue par les trous, il est souvent choisi d’augmenter le dopage dans la base, ce qui permet de minimiser la résistance intrinsèque de base R_b et la capacité C_{bc}.

123
Figure 4-24 : Courbes de Gummel $J_c, J_b (V_{be})$.

Figure 4-25 : Évolution du gain avec la densité de courant J_c.
Figure 4-26 : Influence de l’épaisseur de la base sur le gain β
cas du transistor HBT à base de 3C-SiC/Si et du transistor BJT au Si.

Figure 4-27 : Influence du dopage de la base sur le gain β ($W_b = 0,1 \mu m$).
4.4.4. Résultats grand signal

Nous avons représenté sur la figure 4-28, les évolutions du courant collecteur en fonction de la tension V_{ce}, pour différents courant de base. La figure 4-29 concerne le réseau d’entrée et fournit le comportement de la tension V_{be} en fonction de la tension V_{ce}. Les courbes sont paramétrées en J_b.

Figure 4-28 : Réseau de sortie $J_c (V_{ce})$.
Figure 4.29 : Réseau d’entrée \(V_{be} (V_{ce}) \).

4.5. CONCLUSION

Dans ce chapitre, nous avons présenté les discrétisations effectuées autour des équations de la physique retenues dans le cadre du modèle de dérive diffusion ainsi que la solution du problème non linéaire couplé.

CONCLUSION GENERALE
CONCLUSION GENERALE

L’industrie des micro-ondes fait actuellement usage de deux types de transistors bipolaires : soit de très gros composants sur silicium pour des fréquences jusqu’à 3 ou 4 GHz dans des applications radar par exemple, soit des transistors HBT dont les potentialités sont prometteuses en termes de rendement, de bruit et de performances aux hautes fréquences. Il est à noter également la montée en fréquence de filières silicium telles que par exemple le QuBic4 de Philips pour des applications UMTS (Universal Mobile Telecommunication System).

Le principe de fonctionnement du transistor HBT est proche de celui du transistor à homojonction. La présence de l’hétérojonction entraîne l’augmentation de la barrière de potentiel entre émetteur et base vue par les trous ; ce qui favorise le coefficient d’émission. L’étude phénoménologiques d’un transistor HBT est donc équivalente à celle d’un transistor bipolaire à homojonction ; la différence se traduit essentiellement par le décalage de la caractéristique $I_b(V_{be})$.

Pour le moment, le marché des transistor HBT est dominé par les structures AlGaAs/GaAs. Ces composants présentent cependant quelques inconvénients dus notamment à la présence de l’aluminium qui, en introduisant des densités de défauts importantes à la surface du composant et à son hétérointerface, diminue sa fiabilité.

Grâce à la disponibilité commerciale des substrats Si de grand diamètre et qui sont peu onéreux, l’utilisation de couches de 3C-SiC sur des substrats de Si est particulièrement attrayante. Cela nous a conduit à mener une recherche sur les transistors HBT basés sur les hétérostructures carbure de silicium/silicium (SiC/Si).

Pour comprendre le fonctionnement du transistor HBT, nous avons passé par deux étapes : définir le modèle physique du transistor HBT et puis faire la simulation selon le modèle défini. Le modèle utilisé est celui de dérive diffusion (DDM). Il est obtenu à partir des moments d’ordre 0, 1 et 2 de l’équation BTE.
Dans la deuxième étape, nous avons développé l’approche numérique complète pour la résolution de l’équation de Poisson et les équations de continuité pour les densités d’électrons et de trous.

Le problème à résoudre est fortement non linéaire, couplant des quantités très hétérogènes et qui ne sont pas du tout du même ordre de grandeur. Dans le processus de recherche de la solution des équations des semiconducteurs, nous avons effectué une discrétisation spatiale des variables intervenant dans nos équations ; les variables scalaires telles que les concentrations de porteurs n et p et le potentiel φ et les variables vectorielles comme les densités de courant J_n et J_p et le champ électrique.

Dans un PC et sous l’environnement Matlab, nous avons implanté la méthode des différences finies pour la résolution des équations obtenues. Il s’agit de $3N$ équations dont chacune est une fonction de n_b, p_b, et φ. N étant le nombre de nœuds choisis dans la structure et qui dépend de la vitesse de calcul du PC. Comme exemple d’application, nous avons pu simulé une diode de silicium à jonction PN. Ce qui nous a permis par la suite d’examiner le cas du transistor HBT (NPN) à base de 3C-SiC/Si.

L’intérêt des transistors HBT est double :
- la présence de la discontinuité des bandes de valence diminue considérablement le courant de base en limitant fortement l’injection de trous de la base vers l’émetteur, ce qui permet d’obtenir ainsi des gains plus importants. Cela rend ces composants très attractifs pour le marché porteurs des téléphones cellulaires où ils sont déjà présents.
- la présence de cette même barrière permet aussi de doper plus fortement la base sans trop augmenter l’injection base-émetteur. En effet, le fait de doper davantage la base par rapport à un transistor classique à homojonction permet de réduire l’étendue de la zone de charge d’espace et donc de pouvoir réaliser un composant avec une largeur de base plus étroite. Ceci permet de diminuer le temps de transit dans la base et par conséquent d’augmenter la fréquence de coupure du composant.
REFERENCES BIBLIOGRAPHIQUES

133

Résumé

Pour comprendre le fonctionnement électrique des transistors HBT et afin d’en optimiser les performances, il est désormais une étape incontournable dans tout processus de conception de composant : c’est l’étape de simulation.

Grâce à la disponibilité commerciale des substrats Si de grand diamètre et qui sont peu onéreux, l’utilisation de couches de 3C-SiC sur des substrats de Si est particulièrement attrayante. Cela nous a conduit à mener une recherche sur les transistors HBT basés sur les hétérostructures carbure de silicium/silicium (SiC/Si).

Le présent travail concerne la modélisation et la simulation physique d’un transistor HBT à base de 3C-SiC/Si.

Nous avons développé un programme écrit sous Matlab permettant de faire une caractérisation statique qui fournit des informations sur l’évolution des grandeurs physiques fondamentales dans le transistor HBT à base de 3C-SiC/Si (densité d’électrons et de trous, potentiel et champ électrique), les caractéristiques courant-tension et l’influence de certains paramètres physiques et géométriques sur le fonctionnement du transistor.

Mots Clés : Transistor HBT, 3C-SiC/Si, Modélisation, Simulation, Différences finies.