République Algérienne Démocratique et Populaire
Ministère de l'Enseignement Supérieur et de la Recherche Scientifique
Université Abou Bekr Belkaïd – Tlemcen
Faculté des Sciences de l'Ingénieur
Département d'Électronique
Laboratoire du Génie Biomédical

Mémoire de Magister en Electronique

Option : Signaux et Systèmes

Thème

Analyse Spectrale Paramétrique et Non-paramétrique du Signal de Précession Libre en RMN

Présenté par :
M. BELAROUCI Salim

Soutenu en Mai 2005 devant le jury :

M. F. Bereksi-Reguig Prof. à l'Université de Tlemcen
M. B. Cherki M.C. à l'Université de Tlemcen
M. T. Mourid Prof. à l'Université de Tlemcen
M. M. Khelif M.C. à l'Université de Tlemcen

Président
Examinateur
Examinateur
Rapporteur
Dédicaces

Je dédie ce modeste travail à :

À mes parents

À mes grands-mères

À ma nièce Radjaa

À mes frères

À toute la famille BELAROUCH

À tous mes amis.
Remerciements

Je tiens à remercier très vivement Monsieur KHelif M'hamed d'avoir dirigé ma thèse. Ses intuitions et son savoir mais aussi son exigence et ses critiques m'ont permis de comprendre ce qui constitue l'essence d'une démarche scientifique. Les nombreuses discussions tout au long de la thèse ont été très riches et fructueuses. Il a su m'initier à l'esprit de recherche avec rigueur et efficacité et aussi partager son expérience et sa compétence dans ce domaine de recherche scientifique. Je lui suis très reconnaissant pour l'effort qu'il a fourni pour avoir supervisé, suivi et mené à bien la direction de ce mémoire. J'aimerai témoigner ici l'expression d'une sincère et marquante admiration.

J'adresse respectueusement mes sincères remerciements à Monsieur F. Bereksi Reguig, professeur à la faculté des sciences de l'ingénieur pour l'honneur qu'il me fait en acceptant de présider le jury chargé d'examiner le présent travail.

J'exprime toute ma reconnaissance et mes remerciements à Monsieur B. Cherki, Maître de conférences et Doyen de la faculté des sciences de l'ingénieur, qui a bien voulu me faire l'honneur d'examiner cette thèse et ce malgré ses occupations diverses.

Monsieur le professeur T. Mourid a accepté de juger cette thèse et m'a accordé son temps pour des discussions souvent très intéressantes, qu'il en soit remercié très sincèrement.

Je tiens à remercier sincèrement tous les membres du Laboratoire de Génie biomédical pour leurs encouragements, sans oublier mes collègues des autres Laboratoires de recherche.

Enfin, j'adresse mes remerciements à toutes les personnes qui de près ou de loin m'ont aidé et soutenu pendant cette période.
Sommaire

Introduction .. 6

Chapitre I

Bases physiques de la RMN .. 8
1. Introduction .. 8
2. Magnétisme microscopique et macroscopique .. 9
2.1. Champ électrique et champ magnétique ... 9
2.2. Rotation orbitale ... 9
2.3. Rotation de spin .. 10
3. Moment magnétique de spin dans un champ magnétique .. 11
3.1. Phénomène de Précession .. 11
3.2. Interprétation énergétique du phénomène de précession 14
3.2.1. Notion du dia, para et ferromagnétisme ... 14
3.2.2. Effet Zeeman .. 14
4. Principe de mesure du signal utile dans une expérience RMN 17
4.1. Effet du champ radiofréquence sur l'aimantation macroscopique de la structure .. 18
4.2. Comportement de l'aimantation nucléaire après excitation par le champ
radiofréquence (phénomène de relaxation) ... 20
5. Principaux paramètres du FID ... 24
5.1. Interactions spin – réseaux (notion du déplacement chimique) 24
5.2. Interactions spin – spin (couplage de spin) .. 26
6. La RMN pour les liquides et les solides .. 27

Chapitre II

Acquisition et analyse des paramètres spectraux du signal RMN 29
1. Instrumentation en RMN ... 29
2. L'aimant ... 30
2.1. Inhomogénéité du champ statique ... 31
2.2. Les bobines de gradient ... 31
3. Le séquenceur et la chaîne radiofréquence .. 31
4. Les antennes .. 32
5. Partie réception ... 33
5.1. Détaction simple .. 33
5.2. Détaction en phase et en quadrature ... 38
Chapitre III
Prétraitement et analyse du signal FID...40
1. Introduction...40
2. Effet de fenêtrage ..41
2.1. Dispersion spectrale ...41
2.2. Résolution spectrale ...43
3. Caractéristiques spectrales de la fonction porte45
4. Fenêtres d’apodisation ...46
5. Applications ...49
6. Bruits en RMN ..51
6.1. Bruit électronique ...52
6.2. Bruit du système et de l’environnement52
6.3. Bruits dus aux techniques numériques52
6.4. Bruit à bande large ...52
6.5. Bruit à bande limitée ...53
6.6. Bruit coloré ..54
7. Applications ...54

Chapitre IV
Analyse spectrale non paramétrique du FID.................................58
1. Introduction...58
2. Périodogramme ...59
2.1. Introduction ..59
2.2. Expression du périodogramme ..59
3. Corrélogramme ...62
4. Applications ...63
5. Propriétés du périodogramme ..64
5.1. Biais ..64
5.2. Variance ..64
5.3. Interprétation ...65
6. Effet de type de la fenêtre de troncature66
7. Effet de la largeur de la fenêtre sur le temps de calcul70
8. Etude de l’estimateur de Welch en présence du bruit72
Sommaire

Chapitre V
Analyse du FID par STFT ... 74
1. Introduction .. 74
2. Transformée de Fourier à court terme 75
3. Propriétés générales de la STFT et du spectrogramme 76
3.1. Energie totale ... 76
3.2. Marginales en temps et en fréquence 76
3.3. Conservation des supports temporel et fréquentiel 77
3.4. Inversibilité du spectrogramme 78
3.5. Invariance du spectrogramme 79
4. Pavage temps - fréquence généré par le spectrogramme 79
5. Considérations sur la discrétisation du spectrogramme 80
6. Application ... 80
6.1. Influence de la durée de la fenêtre sur le comportement spectro - temporel du FID ... 81
6.2. Influence du type de la fenêtre sur le comportement spectro - temporel du FID ... 94

Chapitre VI
Analyse spectrale du FID par les méthodes paramétriques 86
1. Introduction .. 86
2. Estimation spectrale paramétrique 86
2.1. Modèle auto régressif - modèle AR 86
2.2. Modèle à moyenne ajustée - modèle MA 93
2.3. Modèle auto régressif à moyenne ajustée - modèle ARMA 94
3. Applications .. 95
Conclusion générale .. 101
Bibliographie ... 103
Introduction

Les applications de la Résonance Magnétique Nucléaire (RMN) [1, 2] sont nombreuses et diversifiées, l’objectif étant constamment le même : soit d’identifier structurellement un échantillon de matière donné dans le cadre de la spectroscopie ; ou bien préciser une pathologie donnée dans le cadre de l’imagerie médicale. Le dénominateur commun reste la qualité d’un spectre en spectroscopie et la qualité d’une image en imagerie. Pour parfaire cette qualité et ce depuis quelques années, la tendance générale dans les spectromètres ou les scanners IRM est à la digitalisation de leurs nombreuses fonctions.

Parmi ces fonctions, nous citons à titre d’exemple la correction de l’inhomogénéité du champ polarisant [1, 2, 3]. Vers les années 80, cette correction était assurée par une panoplie de bobines gradient appelées « Shims » [3], placée judicieusement au niveau du spectromètre. Le rôle de ces Shims était d’annuler toutes les contributions magnétiques et leurs gradients à l’exception de la composante en z [4, 5]. Le but de cette opération est d’annuler tout élargissement spectral susceptible de modifier les paramètres spectraux de la RMN. Actuellement, cette correction des inhomogénéités est réalisée numériquement. Nous pouvons citer d’autres exemples : les opérations de Transformation de Fourier, la corrélation, etc. [3, 4].

S’inspirant de ces travaux et d’un commun accord avec le laboratoire "RMN et Chimie du Solide" de Strasbourg (F. Taulelle), nous avons décidé de réfléchir aux voies et moyens d’entreprendre la digitalisation de la chaîne de mesure en réception du signal de précession libre appelé également Free Induction Decay (FID) [5]. Ce signal peut être défini comme la signature de l’échantillon sous investigation. Il faut noter que la « tête » de cette chaîne est la sonde. Au sein de la sonde, nous disposons d’un résonateur chargé par l’échantillon à identifier. Le signal recueilli à ce niveau est une tension électrique radiofréquence modulée ; l’opération qui devrait suivre est incontestablement une détection pour pouvoir exploiter l’information engendrée. Précisons d’abord que contrairement à d’autres techniques radioélectriques, dans notre application la portéeuse et le signal modulant sont informatifs. Notre objectif était
Introduction

justement de digitaliser cette opération. Cela signifie l’échantillonnage et la quantification du signal radiofréquence ; la fréquence varie de 100 MHz à 1 GHz environ. L’échantillonnage de ce type de signal n’est pas une tâche aisée voire techniquement impossible en raison des temps de calcul considérablement élevés [4]. Pour contourner le problème, nous avons décidé d’agir sur les techniques de traitement du FID pour accroître le rapport signal sur bruit et minimiser le temps de calcul en prenant en compte plusieurs paramètres. Il est donc clair que nous sommes devant deux exigences paradoxales, nous serons certainement amenés à faire des compromis.

Pour réaliser ce travail, nous avons subdivisé ce mémoire en six chapitres. Le premier chapitre a pour objectif de présenter les bases fondamentales de la RMN en mettant en exergue le modèle du signal FID par le biais des équations de Bloch [1, 2]. Ce modèle conduit à un FID dans le cadre de la RMN protonique [5]. De surcroît, ce signal est censé être non altéré par la fonction d’appareillage.

Le chapitre II décrit cette fonction d’appareillage que constitue le spectromètre RMN. Nous avons décrit les différentes fonctions de l’électronique intervenant pour la production, l’acquisition et le traitement du FID ; un intérêt particulier a été apporté à la partie détection en raison de son importance. Une fois recueilli, ce signal fera l’objet d’un traitement spécifique. Les moyens et les performances des traitements utilisés sont décrits au chapitre III. Le chapitre IV traite certaines méthodes non paramétriques adaptées aux processus aléatoires : le périodogramme, le corrélogramme et le périodogramme de Welch. Nous sommes intéressés à leur formalisme théorique et des applications pour un signal FID de caractéristiques définies. Quant au chapitre V, il est consacré à une méthode spectro-temporelle ; cette méthode est très adaptée à une certaine classe de FID non-stationnaires. Enfin, nous avons présenté les méthodes paramétriques dans le chapitre VI ; nous l’achevons par une étude comparative entre les différentes méthodes.
Chapitre I

Bases physiques de la RMN

1. Introduction

La Résonance Magnétique Nucléaire (RMN) est une méthode d’analyse extrêmement performante utilisée pour les investigations dans le cœur de la matière. C’est une technique utilisée pour l'analyse spectroscopique des structures de nombreuses molécules chimiques. Elle sert principalement à la détermination structurale des composés organiques. Les principaux noyaux étudiés sont le proton 1H, le carbone 13C, le phosphore 31P et l'azote 15N.

Les performances des expériences RMN dues essentiellement aux progrès de l’informatique et de l’électronique ont permis d’étendre son domaine d’application de la physique fondamentale à l’imagerie médicale en passant par la chimie et la biologie.

Le principe de base de la spectroscopie par résonance magnétique nucléaire repose sur l’exploitation des caractéristiques magnétiques de la structure moléculaire de la matière et principalement le moment magnétique du noyau, sachant que chaque type d’atome a un comportement magnétique différent.

![Diagramme de l'atome](image)

Fig. 1.a. Comportement magnétique de différents types d’atomes
2. Magnétisme microscopique et macroscopique [5, 12, 13]

2.1. Champ électrique et champ magnétique

Si nous observons une charge électrique (un électron par exemple) qui se déplace, nous pouvons mesurer expérimentalement la force \vec{F} qui agit sur cette charge. Cette force ne dépend que de la position, de la vitesse \vec{V} et de la valeur de la charge électrique (q):

$$\vec{F} = q \left(\vec{E} + \vec{V} \times \vec{B} \right) \quad (1-1)$$

Où \vec{E} est le champ électrique et \vec{B} le champ magnétique au point où se trouve la charge. En fait, les vecteurs \vec{E} et \vec{B} représentent l'ensemble des effets de toutes les autres charges en mouvement. Ces deux vecteurs sont des fonctions du temps et de l'espace. On les utilise en physique pour décrire la situation électromagnétique d'une manière simple et efficace.

2.2. Rotation orbitale [12, 13]

Nous allons tout d'abord nous intéresser au cas de l'électron. Cet intérêt est dû au fait qu'il soit plus facile de comprendre les phénomènes au niveau de l'électron et de les transposer ensuite au noyau.

Considérons donc un électron de masse m et de charge q en orbite circulaire autour, par exemple, d'un noyau et situé à la distance r de celui-ci.

Le moment angulaire associé à cet électron ou moment cinétique orbital, noté \vec{J}, vaut :

$$\vec{J} = mr \times \vec{V} = mr \vec{V} \vec{n} \quad (1-2)$$

Où \vec{V} est le vecteur vitesse de l'électron, et \vec{n} la normale au plan de l'orbite circulaire.

Fig.1.b. Moment cinétique orbital et moment magnétique orbital associés à l'électron
Chapitre 1

Bases physiques de la RMN

Le moment magnétique $\vec{\mu}$ associé à ce même électron est le produit de l'intensité du courant électrique, notée \vec{i}, par la surface. L'intensité est obtenue en divisant la charge par le temps qu'il faut à la charge pour faire un tour soit $2\pi r / V$; alors :

$$\vec{i} = \frac{qV}{2\pi r} \quad (1.3)$$

Le moment magnétique vaut donc :

$$\vec{\mu} = \frac{qrV - n}{2} \quad (1.4)$$

Il est intéressant de noter que le rapport entre le moment magnétique orbital et le moment angulaire orbital ne dépend ni de la vitesse, ni du rayon. Il vaut donc :

$$\gamma = \frac{q}{2m} \quad (1.5)$$

Ce rapport s'appelle le rapport gyromagnétique orbital de l'espèce étudié. Pour un électron, le moment angulaire et le moment magnétique sont de sens opposés (q est négatif). Le rapport gyromagnétique orbital de l'électron est donc négatif.

2.3. Rotation de spin [12, 13]

Nous venons de voir le cas d'une rotation de type orbital. Cependant, les électrons sont également animés d'un mouvement de rotation sur leurs axes, ce qu'on appelle une rotation de spin. Les électrons possèdent donc, en plus du moment angulaire orbital et du moment magnétique orbital, un moment angulaire de spin et un moment magnétique de spin. Les valeurs des moments de spins diffèrent des valeurs des moments orbitaux.

De même, dans les noyaux, il y a des protons (particules chargées) qui tournent sur eux mêmes. Ils possèdent donc également un moment angulaire de spin et un moment magnétique de spin. A noter que, comme la masse du proton est environ 2000 fois plus grande que celle de l'électron, le moment magnétique des protons est beaucoup plus petit que celui de l'électron. Enfin, les neutrons, bien que non chargés, possèdent également un moment angulaire de spin et un moment magnétique de spin.

On observe que le moment angulaire et le moment magnétique de spin ne peuvent prendre que certaines valeurs, on dit qu'ils sont quantifiés. Ainsi, au lieu
d’utiliser l’équation (1-2), le moment angulaire de spin ou "moment cinétique de spin" se note plus généralement :

$$\vec{J} = \hbar \vec{I} \quad \text{(1-6)}$$

Où le module du vecteur \(\vec{I}\) représente le "nombre de spin" appelé plus couramment le "Spin" et \(\hbar\) est la constante de Planck. Le module de \(\vec{I}\) est un entier ou un demi-entier \((1/2, 1, 3/2...).\) Ainsi, le spin du proton de l’électron et du neutron vaut \(1/2.\) Le spin du deutérium vaut \(1.\) Connaissant \(I,\) le moment magnétique de spin s’écrit :

$$\vec{\mu} = \gamma \hbar \vec{I} \quad \text{(1-7)}$$

Où \(\gamma\) est le rapport gyromagnétique de spin.

3. Moment magnétique de spin dans un champ magnétique [5, 9, 10]

3.1. Phénomène de Précussion

Soit une particule possédant un moment magnétique \(\vec{\mu}\) dans un champ magnétique \(\vec{B}_0\). La particule subit alors un couple \(\vec{\Gamma}\) conformément à la relation :

$$\vec{\Gamma} = \vec{\mu} \times \vec{B}_0 \quad \text{(1-8)}$$

Les lois fondamentales de la dynamique indiquent que le couple entre le moment magnétique et le champ magnétique doit être égal à la dérivée par rapport au temps du moment cinétique de la particule. Le mouvement du moment magnétique doit donc satisfaire l’équation :

$$\frac{d\vec{\mu}}{dt} = \gamma \vec{\mu} \times \vec{B}_0 \quad \text{(1-9)}$$

Cette équation correspond à un mouvement de précussion. Pour décrire ce mouvement, on utilise un artifice de calcul très courant en RMN. Cet artifice consiste à se placer dans un repère tournant «S» autour d’un repère fixe «S». Pour un vecteur quelconque \(\vec{A}\), le changement de repère s’écrit sous la forme suivante :

$$\left(\frac{d\vec{A}}{dt}\right)_S = \left(\frac{\partial \vec{A}}{\partial t}\right)_S + \left(\vec{\omega}\right)_S \times \left(\vec{A}\right)_S \quad \text{(1-10)}$$
Où \(\vec{\omega} \) est le vecteur représentant la vitesse angulaire de \(S' \) dans \(S \). Cette relation vectorielle s'appelle le théorème de la base tournante.

On peut appliquer cette relation à notre cas précis, celui du moment magnétique que l'on a placé dans un champ magnétique. La dérivée par rapport au temps du moment magnétique peut donc s'écrire :

\[
\frac{d \vec{\mu}}{dt} = \frac{\partial \vec{\mu}}{\partial t} + \vec{\omega} \times \vec{\mu} \tag{1-11}
\]

En combinant les équations (1-9) et (1-11), on obtient :

\[
\frac{\partial \vec{\mu}}{\partial t} + \vec{\omega} \times \vec{\mu} = \gamma \mu \times \vec{B}_0 \tag{1-12}
\]

Soit :

\[
\frac{\partial \vec{\mu}}{\partial t} = \gamma \mu \times \left(\vec{B}_0 + \frac{\vec{\omega}}{\gamma} \right) \tag{1-13}
\]

En rapprochant les équations (1-9) et (1-13) nous remarquons que le champ effectif n'est plus le champ polarisant \(\vec{B}_0 \) mais plutôt le champ \(\vec{B}_0 + \frac{\vec{\omega}}{\gamma} \). Le terme \(\frac{\vec{\omega}}{\gamma} \) est un champ fictif.

On retrouve une équation de la forme de (1-9) mais cette fois-ci, le champ efficace n'est plus \(\vec{B}_0 \) mais \(\vec{B}_0 + \frac{\vec{\omega}}{\gamma} \). Supposons que l'on choisisse un repère tournant caractérisé par :

\[
\omega_0 = -\gamma \vec{B}_0 \tag{1-14}
\]

L'équation (1-13) se simplifie à :

\[
\frac{\partial \vec{\mu}}{\partial t} = 0 \tag{1-15}
\]

Ceci signifie que, dans le repère tournant, le moment magnétique est immobile. En d'autres termes, le moment magnétique précessé à la vitesse angulaire \(\omega_0 \). Cette vitesse correspond à une fréquence \((\omega_0 = 2\pi v_0) \) qui s'appelle la fréquence de **Larmor** [1, 2] (tableau 1.1).
Chapitre 1
Bases physiques de la RMN

Le mouvement de précession est illustré sur la figure suivante :

![Diagram of precession](image)

Fig. 1.1. Précession de l’aimantation autour du champ statique

Le tableau suivant montre les fréquences de Larmor pour différents isotopes utilisés en RMN.

<table>
<thead>
<tr>
<th>Noyau</th>
<th>I</th>
<th>v (MHz à 2.35 T)</th>
<th>Abondance naturelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>1/2</td>
<td>100</td>
<td>99.98</td>
</tr>
<tr>
<td>2H</td>
<td>1</td>
<td>13.351</td>
<td>1.56.10^-2</td>
</tr>
<tr>
<td>13C</td>
<td>1/2</td>
<td>25.144</td>
<td>1.108</td>
</tr>
<tr>
<td>17O</td>
<td>5/2</td>
<td>13.557</td>
<td>3.7.10^-2</td>
</tr>
<tr>
<td>14N</td>
<td>1</td>
<td>7.224</td>
<td>99.63</td>
</tr>
<tr>
<td>15N</td>
<td>1/2</td>
<td>10.133</td>
<td>0.37</td>
</tr>
<tr>
<td>31P</td>
<td>1/2</td>
<td>40.481</td>
<td>100</td>
</tr>
<tr>
<td>19F</td>
<td>1/2</td>
<td>94.077</td>
<td>100</td>
</tr>
<tr>
<td>29Si</td>
<td>1/2</td>
<td>19.865</td>
<td>4.7</td>
</tr>
<tr>
<td>27Al</td>
<td>5/2</td>
<td>26.057</td>
<td>100</td>
</tr>
<tr>
<td>23Na</td>
<td>3/2</td>
<td>26.451</td>
<td>100</td>
</tr>
<tr>
<td>35Cl</td>
<td>3/2</td>
<td>9.8</td>
<td>75.4</td>
</tr>
<tr>
<td>39K</td>
<td>3/2</td>
<td>4.7</td>
<td>93.1</td>
</tr>
<tr>
<td>23Na</td>
<td>3/2</td>
<td>26.451</td>
<td>100</td>
</tr>
</tbody>
</table>

Tableau 1.1. Différents isotopes utilisés en RMN.
3.2. Interprétation énergétique du phénomène de précession [12, 13]

3.2.1. Notion du dia, para et ferromagnétisme

Considérons la façon dont un élément de matière se comporte dans un champ magnétique. Deux possibilités surgissent : soit celui-ci est attiré, soit il est repoussé. Les matériaux attirés sont dits paramagnétiques (faible attirance) ou ferromagnétiques (forte attirance) et les matériaux repoussés sont dits diamagnétiques. Autrement dit, cela signifie que la somme des forces qui s’exercent sur les atomes de l’élément de matière placé dans le champ magnétique est, dans certains cas, dans le même sens que le champ magnétique (paramagnétisme) et dans d’autres cas dans le sens opposé (diamagnétisme).

Dans la plupart des cas, les atomes ne possèdent pas de moment magnétique propre, c’est à dire que tous les " micro-aimants " à l’intérieur d’un atome s’équilibrent. Dans ce cas, quand on établit le champ magnétique, de faibles forces apparaissent s’opposant à ce champ (Loi de Lenz). Un tel matériau est diamagnétique.

Si au contraire, chaque atome possède un moment magnétique propre, alors la présence du champ magnétique force tous ces moments à s’aligner (en s’opposant à l’agitation thermique qui, au contraire, favorise le désordre). L’aimantation résultante qui apparaît est dans le sens du champ magnétique et elle se superpose à l’effet diamagnétique toujours présent. Et généralement l’effet paramagnétique est dominant. Il est intéressant de noter que plus la température diminue, plus l’effet paramagnétique est important.

En plus de l’effet paramagnétique, il existe entre les atomes de fer une interaction qui ne s’explique qu’en mécanique quantique. Cette interaction particulière est à l’origine d’une aimantation beaucoup plus grande que la force paramagnétique. Les matériaux possédant cette propriété sont dits ferromagnétiques.

3.2.2. Comportement d’une population de spins (effet Zeeman) : cas de l’hydrogène

En absence d’un champ magnétique extérieur, la somme vectorielle des moments magnétiques d’un échantillon d’hydrogène est nulle. Lorsque cet échantillon est soumis sous l’action d’une source magnétique extérieure homogène, ces moments magnétiques élémentaires commencent à précesser, ce qui induit une organisation de leurs directions. Ainsi, d’après la mécanique quantique, l’hydrogène possède un spin de $\frac{1}{2}$ correspondant à deux directions de spin possibles : $+\frac{1}{2}$ et $-\frac{1}{2}$.
Chapitre I
Bases physiques de la RMN

Fig. 1.2a. Phénomène d'organisation des directions des moments magnétiques

On peut calculer l'énergie que le noyau acquiert à chacun de ces deux états. Celle-ci est donnée par:

\[E = -\mu B_0 \] \hspace{1cm} (1.16)

Les deux niveaux d'énergie possible pour le spin du noyau d'hydrogène sont donc:

\[E_+ = \frac{\gamma}{2} h B_0 \] \hspace{1cm} (1.17a)

\[E_- = -\frac{\gamma}{2} h B_0 \] \hspace{1cm} (1.17b)

Fig. 1.2b. Effet Zeeman

Dans le cas d'un système à deux niveaux d'énergie, la physique statistique nous permet de calculer les populations relatives de ces deux niveaux d'énergie. Soit \(P_- \) et \(P_+ \) les populations de ces deux niveaux d'énergie, la loi de Boltzmann indique alors que:

\[\frac{P_-}{P_+} = e^{-\frac{\Delta E}{kT}} = e^{\frac{\gamma B_0}{kT}} \] \hspace{1cm} (1.18)

Où \(k \) est la constante de Boltzmann \((k = 1.3806 \times 10^{-23} \text{ J.K}^{-1})\); \(T \) est la température absolue du système, en degré Kelvin. La différence de population entre \(P_+ \) et \(P_- \)
Chapitre I
Bases physiques de la RMN

(Equ.1-18) engendre une aimantation proportionnelle à la somme des moments magnétiques qui devient non-nulle. Afin d'évaluer cette aimantation résultante en température ambiante (environ 300°K), le rapport de population (Equ.1-18) peut être approximé comme suit:

\[e^{\frac{\gamma h B_0}{kT}} \approx 1 + \frac{\gamma h B_0}{kT} \]

(1-19)

Ceci nous permet alors d'écrire que la différence entre les deux niveaux de population vaut :

\[P_+ - P_- = \frac{\gamma h B_0}{2 kT} \]

(1-20)

Ainsi, le niveau d'énergie le plus bas P. est plus peuplé que le niveau d'énergie le plus haut P+. Pour un nombre de spin N donné, et sachant que chaque moment magnétique vaut γh/2, l'aimantation résultante, notée \(M \) vaut [5, 11] :

\[M = N \frac{\gamma^2 h^2 B_0}{4 kT} \]

(1-21)

Cette expression (loi de Curie) montre clairement que l'aimantation résultante est proportionnelle au champ statique \(B_0 \) et inversement proportionnelle à la température.

Le terme \(N \frac{\gamma^2 h^2}{4 kT} \) (noté \(\chi \)) est dit susceptibilité magnétique de l'échantillon. Ainsi, l'équation (1-21) s'écrit alors comme suit :

\[M = \chi B_0 \]

(1-22)

Fig.1.3. Comportement d'une population de spins de l'hydrogène en présence du champ statique

16
Chapitre I
Bases physiques de la RMN

4. Principe de mesure du signal utile dans une expérience RMN [11, 12]

Après avoir étudié la dynamique possible du vecteur d’aimantation macroscopique de la matière, passons maintenant à la façon d’exploiter cette dynamique pour extraire l’information utile dans le cadre de la spectroscopie RMN.

Le problème de mesure est de distinguer l’aimantation résultante qui est très petite devant l’intensité du champ magnétique principal. L’idée consiste à modifier la distribution des populations de spins.

Si on met tous les spins en phase, alors il apparaît une composante transversale de l’aimantation résultante.

![Diagram](image)

Fig. 1.4. Modification de la distribution des spins de l’hydrogène

Si on équilibre les populations de spins entre les deux niveaux, cette aimantation devient complètement transversale (la composante longitudinale s’annule).

Pour comprendre l’intérêt de ces modifications, nous considérons la situation suivante :

On a un fort champ magnétique statique \vec{B}_0 ; on génère un autre champ magnétique radiofréquence \vec{B}_1 de plus faible valeur perpendiculaire à \vec{B}_0. L’action conjointe des deux champs permet d’induire, dans une bobine de cuivre correctement positionnée, un courant électrique. C’est ce courant électrique qui constitue le signal RMN.
4.1. Effet du champ radiofréquence sur l’aimantation macroscopique de la structure [2, 3, 5, 12].

Après perturbation du système de spins par le champ magnétique radiofréquence $\vec{B}_1 = b_1 \cos(\omega_c t)\hat{i}$ qui est perpendiculaire au champ statique polarisant \vec{B}_0, l’aimantation \vec{M} est soumise à un champ magnétique qui est la somme vectorielle des champs \vec{B}_0 et \vec{B}_1.

Dans ces conditions l’équation (1-9) s’écrit :

$$\frac{d \vec{M}}{dt} = \gamma \vec{M} \times \left(\vec{B}_0 + \vec{B}_1 \right) \quad (1.23)$$

Dans un repère tournant caractérisé par une vitesse $\vec{w} = -\omega_c \hat{k}$, où \vec{B}_1 est immobile et suivant l’équation (1-13), on obtient :

$$\frac{\partial \vec{M}}{\partial t} = \gamma \vec{M} \times \left(\vec{B}_0 + \frac{\omega_c}{\gamma} + \vec{B}_1 \right) \quad (1.24)$$

Si on choisit $\omega_c = \omega_0$, l’équation (1.24) se simplifie et on obtient :

$$\frac{\partial \vec{M}}{\partial t} = \gamma \vec{M} \times \vec{B}_1 \quad (1.25)$$
Chapitre I
Bases physiques de la RMN

En prenant comme condition initiale \(\vec{M} = M_0 \vec{k} \), la solution de l'équation (1-23) est :

\[
\begin{align*}
\vec{M}_x &= M_0 \sin(\omega_c t) \sin(\omega_0 t) \hat{i} \\
\vec{M}_y &= M_0 \sin(\omega_c t) \cos(\omega_0 t) \hat{j} \\
\vec{M}_z &= M_0 \cos(\omega_0 t) \hat{k}
\end{align*}
\]

(1-26)

Où \(\omega_c = \gamma B_1 \) est la fréquence à laquelle les spins soumis à ce champ vont précéser ; \(\omega_0 \) la fréquence à laquelle \(\vec{B}_1 \) oscille (la fréquence de l'onde électromagnétique proprement dite).

Pour \(\omega_c = \omega_0 \), on atteint la résonance magnétique nucléaire où l'effet du champ \(\vec{B}_0 \) est annulé.

Dans ces conditions, l'aimantation \(\vec{M} \) précèse autour du champ \(\vec{B}_1 \) qui reste le seul champ efficace. Notons que la vitesse angulaire avec laquelle \(\vec{M} \) précèse autour de \(\vec{B}_1 \) vaut \(\gamma \vec{B}_1 \). Nous pouvons alors calculer l'angle \(\theta \) que fait l'aimantation \(\vec{M} \) avec sa position initiale, au bout d'un temps \(t \). Cet angle \(\theta \) est donné par :

\[
\theta = \gamma B_1 t
\]

(1-27)

Sur cette base, on parlera d'impulsion \(\pi/2 \) ou \(\pi \). On voit ici que l'angle obtenu dépend de la durée de l'impulsion et de l'amplitude du champ radiofréquence. Une courte et puissante impulsion radiofréquence aura le même effet qu'une longue et faible impulsion.

Dans le cas où les deux pulsations sont différentes (\(\omega_c \neq \omega_0 \)), l'équation (1-23) ne se simplifie plus. On obtient alors la construction vectorielle décrite sur la figure suivante.

![Fig. 1.6. Schéma vectoriel de l'organisation des champs magnétiques et de l'aimantation lorsque \(\omega_c \neq \omega_0 \)](image)
4.2. Comportement de l’aimantation nucléaire après excitation par le champ radiofréquence (phénomène de relaxation) [5, 12, 13]

C’est le phénomène porteur d’information d’une expérience RMN, il présente l’évolution de l’aimantation en absence du champ radiofréquence ; n’oublions pas que l’aimantation résultante vient du fait qu’il existe une différence de populations entre les deux niveaux d’énergie possibles pour les spins de l’hydrogène.

A la résonance, le champ magnétique \(\vec{B}_1 \) apporte exactement l’énergie nécessaire à un spin pour passer du niveau énergétique bas (spins parallèles au champ statique) au niveau énergétique haut (spins anti-parallèles au champ statique) figure (1.7a).

![Diagram](image)

Fig. 1.7. Effet du champ radiofréquence sur la population des spins

Une fois que le champ \(\vec{B}_1 \) est coupé, le système va revenir à son état d’équilibre. Ce phénomène est appelé *relaxation* (Figure 1.7b). Sa description a été faite par F. Bloch dès le début de la RMN [1, 2]. Il a ainsi observé que l’aimantation transversale décroît exponentiellement de sa valeur initiale à zéro suivant une constante de temps \(T_2 \) appelée constante de relaxation *spin–spin*, et l’aimantation longitudinale croît exponentiellement suivant une constante de temps \(T_1 \) dite constante de relaxation *spin–réseau*.
Le processus de relaxation décrit par F. Bloch est illustré par la figure suivante :

![Diagram](image)

Fig. 1.8. Simulation du retour à l'équilibre de l'aimantation après une impulsion π/2

Le phénomène physique que Bloch a observé est régis par les équations suivantes :

\[
\frac{d M_x}{dt} = -\frac{M_x}{T_2} \\
\frac{d M_y}{dt} = -\frac{M_y}{T_2} \\
\frac{d M_z}{dt} = -\frac{M_z - M_0}{T_1}
\] (1-28)

La résolution de ces équations conduit à la solution suivante :

\[
\vec{M}_x = M_x(0)e^{\frac{-ct}{T_2}} i \\
\vec{M}_y = M_y(0)e^{\frac{-ct}{T_2}} j \\
\vec{M}_z = \left(M_z(0)e^{\frac{-ct}{T_1}} + M_0 \left(1 - e^{\frac{-ct}{T_1}} \right) \right) k
\] (1-29)
L’objectif principal d’une expérience RMN est de mesurer la dynamique de retour à l’équilibre. Cette mesure est effectuée par l’intermédiaire d’une antenne (sonde) qui permet de convertir la variation de l’induction magnétique en un signal électrique appelé FID (Free Induction Decay) ou signal de précession libre ou encore décroissance libre de l’induction.

Ainsi, le signal FID peut être décrit par le modèle suivant :

\[
\vec{M}(t) = M_0 \left[\cos(\omega_0 t + \varphi) \hat{i} + \sin(\omega_0 t + \varphi) \hat{j} \right] e^{-\gamma \mu B_0 t} \quad (1.30)
\]

Où \(\varphi \) représente la phase du signal. Ce déphasage vient de la position relative de \(\vec{M} \) par rapport à l’antenne de réception, comme illustrée sur la figure suivante :

Fig. 1.10. Réception du FID
D’après l’expression (1.30) l’une des composantes (x ou y) du signal FID a les allures temporelle et fréquentielle suivantes :

Fig. 1.11. Représentation temporelle (a) et spectrale (b) d’un signal FID
Pour le cas d’un atome isolé

Le spectre illustré ci-dessus montre l’existence d’une seule fréquence de résonance qui correspond à un seul type d’atome. Dans le cas général où l’échantillon contient plusieurs types d’atomes, le spectre correspondant se compose de plusieurs pics figure (1.12).

Fig. 1.12. Représentation temporelle et spectrale d’un signal FID d’une molécule
5. Principaux paramètres du FID [5]

Cette partie consiste à déterminer la structure moléculaire de l’échantillon à partir d’un ensemble de paramètres fournis par le signal FID et de son spectre. Ces paramètres sont à l’origine des interactions spin-réseaux et spin-spin de la structure.

5.1. Interactions spin-réseaux (notion du déplacement chimique)

Le déplacement chimique (Chemical Shift) est le premier phénomène permettant d’obtenir des renseignements sur la structure d’une molécule. En effet, si l’on considère deux protons occupant dans une molécule des positions différentes, leurs noyaux sont non seulement soumis au champ \(\vec{B}_0 \), mais également à une réaction de leur environnement moléculaire (nuage électronique) respectif qui provoque un champ magnétique supplémentaire et on dit que l’environnement électronique blinde le noyau.

![Diagramme d'interaction spin-réseaux](image)

Fig.1.13. Interaction spin-réseaux

Il y a donc génération d’un champ magnétique local \(\vec{B}' \) qui s’oppose à celui de l’atome. Par conséquent, le noyau considéré est soumis à l’action d’un champ \(\vec{B}'_\sigma \) résultant de la différence entre le champ statique \(\vec{B}_0 \) et le champ de blindage \(\vec{B}' \). Son expression est donnée par :

\[
B_{\text{eff}} = (1-\sigma) \cdot B_0 \quad (1-31)
\]

Où \(\sigma \) est le paramètre d’écran chimique (constante de blindage) qui décrit la densité électronique autour du noyau.

\[
\nu_{\text{eff}} = (1 - \sigma) \frac{\gamma}{2\pi} B_0 = \frac{\gamma}{2\pi} B_{\text{eff}} \quad (1-32)
\]
Chapitre I
Bases physiques de la RMN

On peut noter que la fréquence de résonance augmente quand σ diminue et inversement. Cependant l’intervalle des fréquences de résonance usuelles reste faible devant la valeur de la fréquence de Larmor ν_0 (5000 Hz pour $\nu_0= 500 MHz$).

![Diagramme de spectrométrie de RMN](image)

Fig.1.14. Spectre de l’éthanol : CH_2OHCH_3

Pour l’exemple de l’éthanol, l’environnement chimique vu par les deux types d’atomes de carbone est différent puisque l’un porte la fonction alcool tandis que l’autre carbone porte une autre fonction. La fréquence de résonance de chaque carbone est donc différente.

Pour les différentes fréquences de résonances on peut exprimer le déplacement chimique en Hz mais dans le domaine de la spectroscopie RMN, ce déplacement est exprimé en partie par million (ppm).

On préfère caractériser la résonance de façon relative en prenant pour référence un composé particulier. Le plus souvent, il s’agit du TétraMéthylSilane (TMS) (CH_3)$_4$, qui présente la particularité d’avoir des protons particulièrement blindés. Notons qu’il n’existe que très peu d’hydrogène H résonnant à fréquence inférieure. Si ν_{ref} est la fréquence de résonance du TMS, on définit le déplacement chimique δ d’un proton résonnant à la fréquence ν par :

$$\delta_i = (\nu_i - \nu_{ref}) / \nu_{ref}$$

(1-33)
Fig. 1.15. Spectre de \((CH_3)_3CH_2OH\)

Le spectre de \((CH_3)_3CH_2OH\) présente trois pics relatives 1, 2, 3. Le premier pic est celui du groupe \((CH_3)_3\) \((\delta = 1.4)\), intégrant 9 protons ; il est relativement au groupe tertiébutyle. Les 9 protons chimiquement équivalents donnent un même signal en RMN. Le pic suivant est celui des deux protons du groupe \(CH_2\) \((\delta = 3.9)\). Le dernier pic est celui du proton de l’alcool. Il est plus difficile à interpréter car la résonance du proton de \(OH\) est très affectée par les liaisons hydrogène et les phénomènes d’échange.

5.2. Interactions spin–spin (couplage de spin)

Un autre facteur vient compliquer la situation : il s’agit de la présence éventuelle d’autres noyaux environnants. Ces noyaux possèdent un moment magnétique et modifient donc le champ local. On a donc :

\[
\vec{B} = B_0 (1 - \sigma) + \vec{B}'' \tag{1-34}
\]

\(\vec{B}''\) : étant la contribution des noyaux voisins.

La contribution \(\vec{B}''\) des différents noyaux est quantifiée puisqu’elle correspond aux diverses orientations possibles du spin des noyaux voisins. Cette interaction entre noyaux est caractérisée par une constante de couplage \(J\).
Le couplage de spin (Spin Coupling) est différent du déplacement chimique; il est indépendant du champ B_0 appliqué alors que le déplacement chimique est directement proportionnel à celui-ci.

6. La RMN pour les liquides et les solides

Nous avons montré que le but d'une expérience RMN est d'abord l'identification de l'échantillon sous investigation. Or l'échantillon peut être soit solide soit liquide.

Il existe une différence profonde entre les deux types d'échantillon. En effet, pour un échantillon solide, nous avons deux genres d'interaction :

- Interaction entre les moments nucléaires et le champ de polarisation \vec{B}_0.
- Interaction directe des dipôles magnétiques entre eux à travers l'espace.

Cette dernière interaction a pour effet de modifier la valeur du champ \vec{B}_0 d'une quantité :

$$\Delta B = \pm \frac{3}{2} \left(\frac{\mu_0}{4\pi} \right) \mu \left(3\cos^2\theta - 1 \right) \frac{1}{r^3}$$ \hspace{1cm} (1-35)

Où μ est le moment magnétique individuel et r est la distance entre deux protons.
La conséquence directe de cette variation spatiale du champ \(B_0 \) est l’élargissement des raies, d’où une difficulté d’interprétation des spectres.

En phase liquide, le facteur \((3\cos^2 \theta - 1) \) devient nul à cause de l’agitation thermique des molécules. La conséquence directe de cette situation est l’annulation de l’interaction entre les dipôles.

En revanche pour les solides, cette agitation n’existe pas alors la solution est de faire tourner l’échantillon autour d’un axe qui forme avec la direction du champ \(B_0 \) l’angle magique de 54.7°.

Après avoir les bases physiques de la RMN ainsi que les caractéristiques temporelles et spectrales du signal FID qui décrit l’évolution de l’aimantation nucléaire après excitation radiofréquence, il faut noté que ce signal est toujours altéré par la fonction d’appareillage, qui est l’objet du chapitre suivant.
Chapitre II

Acquisition et analyse des paramètres spectraux du signal RMN

1. Instrumentation en RMN

Les premiers spectromètres en onde continue étaient basés sur le principe de l'analyse harmonique qui consiste à mesurer la réponse forcée d'un système à une excitation sinusoïdale. La fréquence de cette excitation est modifiée sur une échelle de temps plus longue que tous les temps caractéristiques du système étudié. Ce principe reste très utilisé pour les mesures de résonance paramagnétique électronique. Les spectromètres RMN actuels qui fonctionnent en mode pulsé sont basés sur le principe de l'analyse impulsionnelle [3, 4, 5]. Dans le cas des systèmes linéaires, ces deux principes d'étude sont équivalents mais le système de spins décrit par les équations de Bloch n'est pas linéaire. Pour la RMN, la méthode impulsionnelle peut être illustrée par la description, à l'aide d'un modèle vectoriel, de l'expérience de base qui est l'émission d'une impulsion radiofréquence dite de π/2 suivie de la réception d'un signal de précession libre FID. L'instrumentation utile pour la spectroscopie RMN en mode pulsé peut être schématisé comme suit:
Cette structure nous permet de distinguer trois blocs :

- Un émetteur dont le rôle est principalement de créer les conditions de génération du champ radiofréquence.
- Une sonde où est localisé l'échantillon à analyser.
- Un récepteur permettant l'acquisition et le traitement du signal RMN.

2. L'aimant

Parmi les contraintes en spectroscopie est de disposer d'un champ magnétique \(B_0 \) très élevé (de 1.5 à 4 Tesla) de façon à augmenter le signal RMN, et par conséquent améliorer le rapport signal sur bruit. En spectrométrie, l'idéal est d'avoir un champ statique très homogène. Cependant très récemment, l'utilisation de champs magnétiques inférieurs à 1.5 \(T \) a permis de réaliser une spectrométrie de qualité acceptable [3]. Du fait de l'utilisation de champs élevés, l'aimant est de type cryogénique supraconducteur.
Chapitre II
Acquisition et analyse des paramètres spectraux du signal RMN

les autres types (résistifs ou permanents) sont limités à 0.3 T. Le cryoaimant est constitué de plusieurs bobines supraconductrices en alliage Niobium Titane permettant de générer un champ magnétique interne (jusqu’à 4.3 T) (4 à 6 bobines cryogéniques offrent une homogénéité maximale à 1.5 T), ainsi que d’un système de refroidissement à hélium liquide pour maintenir une température proche du zéro absolu (4.4 °K), essentielle pour assurer la supraconductivité. Contrairement aux premières cryoaimants qui nécessitaient un ravitailement régulier en azote ou en hélium (dont les coûts sont élevés), les systèmes actuels n’ont pratiquement plus ou peu de pertes en fluides de refroidissement.

2.1 Inhomogénéité du champ statique B₀

Au chapitre précédent, nous avons supposé des conditions idéales pour le déroulement d’une expérience RMN. Mais à présent nous devons introduire le fait que les champs magnétiques ne sont jamais parfaitement homogènes. Dans ce cas les fréquences de précession des spins seront différentes selon la position des spins, car les noyaux ciblés (hydrogène par exemple) se déplacent dans différentes zones de différentes valeurs du champ statique. Dans ces conditions, le processus de relaxation caractérisé par la constante de temps T₂ sera caractérisé par une autre constante T₂* qui présente la relaxation relative d’un noyau dans une position à l’intérieur du champ statique non homogène.

2.2 Les bobines de gradient

Elles créent un gradient linéaire utilisé pour modifier le champ statique afin de le rendre le plus homogène possible : c’est l’opération de « Shimming ». Ce gradient est compris entre 10 mT/m et 30 mT/m à l’intérieur d’une sphère de 50 cm de diamètre. Le changement d’état du gradient n’est pas instantané : les temps de montée du gradient varient de 1 ms à 0.25 ms pour les machines les plus rapides et ces fortes variations de courant correspondant aux bruits sourds que l’on entend pendant un examen RMN.

3. Le séquenceur et la chaîne radiofréquence

Le séquenceur, organe central, gère l’ensemble de la séquence d’acquisition programmée, il commande soit l’émission des impulsions radiofréquences, soit la réception du signal RMN, et de manière synchronisée le déclenchement et la forme des gradients associés. La chaîne radiofréquence est composée d’un synthétiseur de signal
radiofréquence dont la valeur dépend du champ \(B_0 \). Le signal RF est modulé par le séquenceur pour générer les gradients et est amplifié avant d'être envoyé sur l'antenne choisie. A la réception du signal RMN, celui-ci est d'abord préamplifié puis démodulé, ensuite digitalisé par un convertisseur analogique–numérique et enfin mémorisé par l'ordinateur. En spectrométrie, plusieurs noyaux (\(^1\text{H}, \text{\(^{31}\text{P}, ^{19}\text{F}, ^{13}\text{C}, \text{etc.}\)}) peuvent être étudiés. Il faut donc disposer d'une chaîne radiofréquence et d'un amplificateur réglables afin de générer les fréquences de Larmor correspondantes.

4. Les antennes

Une fois l'impulsion RF produite par le synthétiseur de fréquence, puis modulée et synchronisée par le séquenceur, elle est émise dans l'échantillon par l'antenne. Cette antenne est une bobine qui permet dans un premier temps lors du passage d'un courant de créer un champ électromagnétique \(B_1 \) et dans un deuxième temps lors de la réception, de détecter un courant sous l'influence de l'aimantation tournante. La mesure du signal RMN nécessite des conditions d'expérimentation très rigoureuses :

- l'axe de l'antenne, doit être perpendiculaire à \(B_0 \);
- l'antenne doit être accordée à la fréquence de résonance du noyau étudié et adaptée en impédance aux circuits électroniques de détection.

Il est bien connu qu'il existe plusieurs types d'expériences en RMN faisant intervenir plusieurs paramètres : la température, la pression, etc. Selon ce type d'expérience, il est nécessaire de choisir la configuration du résonateur et le mode d'excitation. A titre d'exemple, pour l'imagerie médicale nous devons choisir un compromis entre une variété de caractéristiques :

- Un champ statique relativement bas par rapport à celui utilisé en spectroscopie.
- Une homogénéité et une sensibilité plus accrues.

Pour répondre à ces exigences, il est préconisé l'emploi d'un résonateur en cage d'oiseau (Birdcage). Dans d'autres types d'expériences l'emploi d'autres configurations de résonateur est possible. En RMN du solide, l'utilisation du solénoïde donne de très bons résultats en terme de qualité spectrale.
5. Partie réception

Le signal RMN, induit au niveau de l’antenne après excitation du système, est transmis au préamplificateur. La fréquence de ce signal est de l’ordre de quelques centaines de MHz et de quelques nV à µV d’amplitude. Comme il est difficile de travailler avec des signaux RF dont la bande passante est extrêmement large, ceux-ci sont convertis à une fréquence plus faible. Le principe général de détection est de soustraire la fréquence porteuse pour ne garder que le signal modulé.

5.1. Détection simple

Cette détection consiste à convertir l’une des composantes transversales (M_x ou M_y) du signal radiofréquence $M(t)$ caractérisé par sa fréquence de Larmor $f_L = \frac{\hbar}{2\pi}$ (MHz), en un signal audiofréquence de quelques kHZ.

\[
M(t) = M_0 e^{-t/T_2} \cos(\omega_c t + \phi)
\]
\[\text{(2-1)}\]

Pour cela on utilise un détecteur synchrone composé d’un multiplieur analogique suivi d’un filtre passe bas :

\[\begin{align*}
M_x(t) & \quad \text{X} \quad F(t) \quad \text{Filtre} \\
\text{Référence} & \quad R(t) \quad \text{passe bas}
\end{align*}\]

\[\text{Fig.2.2. Détection simple}\]

$R(t)$ est un signal de référence caractérisé par sa pulsation ω_{ext}. Elle est égale à la pulsation du champ d’excitation B_l.

\[
R(t) = \cos(\omega_{ext} t + \phi_{ext}).
\]
\[\text{(2-2)}\]

Par multiplication analogique en obtient à la sortie :

\[
F(t) = M_0 e^{-t/T_2} \cos(\omega_c t + \phi) \cdot \cos(\omega_{ext} t + \phi_{ext})
\]
\[\text{(2-3)}\]

Pour des raisons simplificatrices on pose $M_0 = 1$, $\phi_c = \phi_{ext} = 0$.

Alors $F(t)$ s’écrit :

\[
F(t) = e^{-t/T_2} \cos(\omega_c t) \cos(\omega_{ext} t)
\]
\[\text{(2-4)}\]

\[
= \frac{1}{2} e^{-t/T_2} \left[\cos(\omega_c + \omega_{ext}) t + \cos(\omega_c - \omega_{ext}) t \right]
\]
\[\text{(2-5)}\]
La composante $(\omega_L + \omega_{\text{ext}})$ est éliminée par filtrage passe bas, alors il reste :

$$f(t) = \frac{1}{2} e^{-i\omega_L t} \cos(\omega_L - \omega_{\text{ext}}) t$$

(2-6)

$f(t)$ montre clairement que le signal résultant est défini non plus par sa fréquence absolue mais par son offset, c’est-à-dire la différence entre sa fréquence absolue f_L et la fréquence porteuse $f_{\text{ext}} = \omega_{\text{ext}}/2\pi$; cette différence présente la fréquence de spin considéré dans le trièdre tournant.

On note $(\omega_L - \omega_{\text{ext}}) = \omega_0$, $f_0 = \omega_0/2\pi$: fréquence d’offset.

Déterminons à présent le contenu spectral du signal $f(t)$ considéré :

$$f(t) = \frac{1}{2} e^{-i\omega_L t} \cos \omega_0 t$$

(2-7)

$f(t)$ a pour transformée de Fourier :

$$F(\omega) = \int_{\mathbb{R}} f(t) e^{-i\omega t} dt$$

(2-8)

On peut également utiliser la définition en fréquence :

$$F(f) = \int_{\mathbb{R}} f(t) e^{-i2\pi f t} dt$$

(2-9)

En introduisant la notion de transformée de Fourier réelle : $F(\omega)$ s’écrit :

$$F(\omega) = \int_{-\infty}^{\infty} f(t)(\cos\omega t - i \sin\omega t) dt = \int_{-\infty}^{\infty} f(t)\cos(\omega t)dt - i \int_{-\infty}^{\infty} f(t)\sin(\omega t)dt$$

$$= c(\omega) - i s(\omega)$$

(2-10)

avec :

$$c(\omega) = \int_{-\infty}^{\infty} f(t)\cos(\omega t)dt$$

$$s(\omega) = \int_{-\infty}^{\infty} f(t)\sin(\omega t)dt$$

Dans notre cas nous aurons

$$F(\omega) = \frac{1}{2} \left\{ \int_{-\infty}^{\infty} \cos(\omega_0 t)\cos(\omega t) e^{-i\omega_L t} dt - i \int_{-\infty}^{\infty} \cos(\omega_0 t)\sin(\omega t) e^{-i\omega_L t} dt \right\}$$

(2-11)

$$F(\omega) = \frac{1}{4} \left\{ \int_{-\infty}^{\infty} (\cos(\omega_0 + \omega) t + \cos(\omega_0 - \omega) t) e^{-i\omega_L t} dt - i \int_{-\infty}^{\infty} (\sin(\omega_0 + \omega) t + \sin(\omega_0 - \omega) t) e^{-i\omega_L t} dt \right\}$$

(2-12)
Chapitre II
Acquisition et analyse des paramètres spectraux du signal RMN

En raison de la causalité du signal RMN, et sachant que :

\[\int_0^{+\infty} \cos ax \ e^{-bx} \, dx = \frac{b}{a^2 + b^2} \quad \int_0^{+\infty} \sin ax \ e^{-bx} \, dx = \frac{a}{a^2 + b^2} \]

L’expression (1-12) peut s’écrire :

\[F(\omega) = \frac{1}{4} \left\{ \frac{1}{T_2} + 1 \right\} \left[\frac{(\omega + \omega_0)^2 + (\omega - \omega_0)^2}{(\omega + \omega_0)^2 + (\omega - \omega_0)^2 + 1} \right] \]

\[F(\omega) = \frac{1}{4} \left\{ \frac{T_2}{T_2^2 (\omega_0 + \omega)^2 + 1} + \frac{T_2}{T_2^2 (\omega_0 - \omega)^2 + 1} \right\} \left[\frac{(\omega + \omega_0)^2 T_2^2}{(\omega + \omega_0)^2 T_2^2 + 1} + \frac{(\omega - \omega_0)^2 T_2^2}{(\omega - \omega_0)^2 T_2^2 + 1} \right] \]

Ce modèle montre clairement que le spectre du signal FID obtenu après détection simple est composé d’une partie réelle qui comporte deux raies en absorption \(A(\omega) \) centrées sur les fréquences \(\pm \omega_0 \), et d’une partie imaginaire qui comporte deux raies en dispersion \(D(\omega) \), centrées sur les mêmes fréquences.

![Fig.2.3. Spectre d’absorption \(A(\omega) \) et de dispersion \(D(\omega) \) du FID après détection simple](image)

L’un des objectifs principaux en spectroscopie RMN est de mesurer les constantes de relaxations spin–spin \(T_2 \), cette constante sera déterminée à partir de la largeur à mi–hauteur \(\Delta \omega \) du spectre d’absorption. Dans la pratique nous pouvons représenter le spectre sous différents modes :

- **Spectre d’absorption**

 Il est caractérisé par l’expression suivante :

 \[A_{\omega_0}(\omega) = \frac{T_2}{T_2^2 (\omega_0 - \omega)^2 + 1} \]

 \[(2-15) \]
La largeur à mi-hauteur $\Delta \omega$ de ce spectre nous permet de déterminer la constante de relaxation T_2 à partir de l'expression suivante :

$$\Delta \omega = \frac{2}{T_2} \quad (2-16)$$

Fig. 2.4. Spectre d'absorption

- **Spectre de dispersion**

Il est caractérisé par l'expression suivante :

$$D\omega_0(\omega) = \frac{(\omega - \omega_0)^2}{\left((\omega - \omega_0)^2 T_2^2 + 1\right)} \quad (2-17)$$

$$\Delta \omega = \frac{1}{T_2} \quad (2-18)$$

Fig. 2.5. Spectre de dispersion
- **Spectre en mode normé**

Pour ce mode on tient compte de l’absorption et de la dispersion.

\[
M(\omega) = \sqrt{A_{m_\omega}(\omega)^2 + D_{m_\omega}(\omega)^2}
\]

\[
= \frac{T_2}{\sqrt{T_2^2(\omega_0 - \omega)^2 + 1}} \quad (2-19)
\]

\[
\Delta\omega = 2\sqrt{3} \frac{T_2}{T_2} \quad (2-20)
\]

- **Spectre de puissance**

Ce spectre représente la valeur quadratique du spectre normé

\[
P(\omega) = A_{m_\omega}^2 + B_{m_\omega}^2
\]

\[
= \frac{T_2^2}{T_2^2(\omega_0 - \omega)^2 + 1} \quad (2-21)
\]

\[
\Delta\omega = \frac{2}{T_2} \quad (2-22)
\]
L’inconvénient majeur de ce type de détection est tout simplement l’existence de deux raies de résonance. Cette situation risque de fausser la lecture de la fréquence de résonance et par voie de conséquence fausser l’interprétation des spectres. En effet, nous ne pouvons pas savoir si $\omega_L > \omega_{ext}$ ou $\omega_L < \omega_{ext}$. Pour lever l’ambiguïté, il faut déplacer la fréquence de la porteuse de telle sorte qu’elle soit à une extrémité du spectre. Pour satisfaire cette exigence, nous utiliserons la méthode de détection en phase et en quadrature (DPQ).

Fig. 2.8. Détection simple

Dans la figure (2-8) qui montre le spectre en détection simple. Nous constatons une redondance, seuls les pics surmontés d’un point correspondent aux raies réelles.

Fig. 2.9. Détection en phase et en quadrature

Pour la détection en phase et en quadrature la porteuse est située à une extrémité du spectre, les raies réelles sont regroupées d’un même côté de la porteuse.

1.5.2. Détection en phase et en quadrature

Son principe de fonctionnement est basé sur l’emploi de deux détecteurs placés à 90° l’un par rapport à l’autre (Fig.2.10).
Référence

\[R(t) = \cos(\omega_{\text{ext}} t + \varphi_{\text{ext}}) \]

Filtre passe bas

\[f(t) = \frac{1}{2} e^{-iT_2} \cos(\omega_L - \omega_{\text{ext}}) t \]

\[R(t) = -\sin(\omega_{\text{ext}} t + \varphi_{\text{ext}}) \]

\[f_L(t) = \frac{1}{2} e^{-iT_2} \sin(\omega_L - \omega_{\text{ext}}) t \]

Fig. 2.10. Principe de détection en phase et en quadrature

Le signal exploité maintenant ne serait plus \(f(t) \) mais :

\[f'(t) = f(t) + i f_L(t) \]

(2-23)

\[f'(t) = \frac{1}{2} e^{-iT_2} (\cos(\omega_L - \omega_{\text{ext}}) t + i \sin(\omega_L - \omega_{\text{ext}}) t) = \frac{1}{2} e^{-iT_2} (\cos \omega_{\text{ph}} + i \sin \omega_{\text{ph}}) \]

(2-24)

\[f'(-t) = \frac{1}{2} e^{-iT_2} e^{i\omega_{\text{ph}}} \]

(2-25)

Dans ce cas, la transformée de Fourier de \(f'(t) \) s'écrit :

\[F'(\omega) = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-\frac{T_2}{2} e^{i(\omega_L - \omega) t}} dt \]

(2-26)

\[F'(\omega) = \frac{1}{2} \left[\frac{T_2}{T_2^2 (\omega_L - \omega)^2 + 1} \right] - i \left[\frac{\omega - \omega_0 T_2^2}{(\omega_L - \omega_0)^2 T_2^2 + 1} \right] \]

(2-27)

Cette expression nous montre clairement que l'avantage majeur de la DPQ est d'identifier clairement les signaux d'offset positif et négatif par rapport à la fréquence porteuse.

Une fois l'acquisition du signal FID est achevée, une analyse spectrale est nécessaire afin d'extraire les caractéristiques physiques de l'échantillon, les paramètres de base nécessaire pour la description de la qualité de cette analyse fait l'objet du chapitre suivant.
Chapitre III

Prétraitement et analyse du signal FID

1. Introduction

Dans le but de faire un traitement numérique du signal FID avec un temps de calcul acceptable, nous sommes contraints de tronquer l'enregistrement du FID originel. Cette troncature se traduit formellement par la multiplication du signal FID par une fenêtre naturelle finie. Or le théorème de Plancherel nous montre qu’une multiplication dans l’espace des temps-implique une convolution dans l’espace des fréquences, cette convolution provoque une distorsion du spectre utile.

La solution préconisée est tout simplement d’observer le signal sur un support infini. Dans ce cas, le spectre utile sera convolé par une distribution de Dirac, alors l’information n’est pas dénaturée. Mais cette solution est utopique ; car elle n’est pas physiquement réalisable.

Si nous considérons \(x(n) \) le signal de durée infinie, et \(x_\lambda(n) \) une partie du signal \(x(n) \) de durée finie \(T=(N-1)T_e \) où \(T_e \) est la période d’échantillonnage, et \(N \) le nombre d’échantillons. Alors l’expression du signal tronqué peut s’écrire sous la forme suivante :

\[
x_\lambda(n) = x(n)\omega_\lambda(n) = \begin{cases} x(n) & \text{pour} \quad 0 \leq n \leq N - 1 \\ 0 & \text{ailleurs} \end{cases}
\]

(3-1)

Où \(\omega_\lambda(n) \) est la fenêtre rectangulaire donnée par :

\[
\omega_\lambda(n) = \begin{cases} 1 & \text{pour} \quad 0 \leq n \leq N - 1 \\ 0 & \text{ailleurs} \end{cases}
\]

(3-2)
Chapitre III
Prétraitement et analyse du signal FID

Sa transformée de Fourier discrète est donnée par :

\[
W(f) = \sum_{n=0}^{N-1} \omega(nT_e) e^{-j2\pi f nT_e} = \frac{\sin(\pi f T_e)}{\sin(\pi f) e^{-j\pi f(N-1)T_e}}
\]

(3-2)

Fig.3.1. Fenêtre rectangulaire de 64 points (de durée 63 s pour $T_e=1s$) et son spectre calculé par FFT sur 4096 points

2. Effet de fenêtrage

2.1. Dispersion spectrale

la figure (3-1) montre clairement que le spectre de la fenêtre de troncature comporte des oscillations sur l’étendue fréquentiel, et par l’effet de convolution le spectre utile $X(f)$ du signal FID sera dénaturé par celui de la fenêtre $W_N(f)$.

\[
X_N(f) = X(f) \otimes W_N(f)
\]

(3-3)

Ces oscillations sont à l’origine des discontinuités aux bords de la fenêtre naturelle. cet effet est appelé phénomène de Gibbs. Pour illustrer ce phénomène, nous avons considéré un signal FID $x_i(t)$ représentant le cas d’un seul type d’atome, et qui possède les caractéristiques suivants :

- Fréquence d’offset (déplacement chimique) de 100Hz.
- constante de relaxation transversale $T_2 = 0.2$ s.
- durée d’acquisition de 0.9975s.
- nombre de points N est de 400, fréquence d’échantillonnage $f_c = 4$kHz

41
Fig. 3.2. Représentation temporelle et spectrale du FID $x_1(t)$

La figure (3-2) nous montre que l'évolution temporelle est une sinusoïde amortie, tandis que l'évolution fréquentielle est sous forme d'une lorentzienne caractérisée par sa largeur à mi-hauteur $\Delta \nu$ donnée par l'équation suivante :

$$\Delta \nu = \frac{\sqrt{3}}{\pi T_2} \quad (3-4)$$

Dans une seconde étape de la simulation, nous réduisons le nombre d'échantillons. Nous prenons à présent une tranche $x_2(t)$ de 100 points du FID $x_2(t)$.

Fig. 3.3. Représentation temporelle et spectrale du FID $x_2(t)$
Les figures (3-2) et (3-3), montrent clairement que le FID non tronqué tend asymptotiquement vers 0 ; tandis que le FID tronqué tend brutalement vers 0, le front est par conséquent raide. Quant à l'aspect spectral, chacune des figures nous montrent un spectre très lissé avec une ligne de base correcte ; et un spectre présentant des discontinuités avec une ligne de base légèrement modifiée. Il est clair que ces discontinuités peuvent fausser l'interprétation des spectres. En d'autres termes, le spectre correspondant au signal tronqué n'est pas confiné sur une seule raie mais il est réparti sur tout le domaine fréquentiel, nous avons donc une dispersion spectrale.

2.2. Résolution spectrale

Considérant un FID $x_3(t)$ caractérisé par deux fréquences de résonances respectives de 100 Hz et 104 Hz.

![Diagramme temporel et spectral du FID $x_3(t)$]

Fig. 3.4. Représentation temporelle et spectrale du FID $x_3(t)$

Pour définir et illustrer le phénomène de la résolution spectrale. Notons que la résolution spectrale est la faculté de séparer de deux résonances voisines: ce paramètre permet donc de quantifier le plus petit écart entre deux fréquences discernables. Nous procédons au fenêtrage du FID précédent en ne retenant que 80 échantillons Figure(3-5).
Le spectre obtenu montre une déformation de la ligne de base et une confusion des deux pics. De plus une panoplie de discontinuités sur le contour spectral.

Pour expliquer formellement ce phénomène. Il faut noter que la fonction porte est caractérisée par un lobe principal de largeur [14, 16, 17]:

\[L = \frac{2}{NT_v} \] \hspace{1cm} (3-5)

Une condition impérative pour distinguer deux fréquences \(f_1 \) et \(f_2 \) est que leur écart soit supérieur à la largeur L du lobe principal :

\[|f_1 - f_2| > \frac{2}{NT_v} \] \hspace{1cm} (3-6)

Il est clair que cette condition n’est pas respectée pour \(f_1=100 \) Hz et \(f_2=104 \) Hz avec \(N=400 \) et \(T_v=2.5 \) ms. Par voie de conséquence, les deux raies ne sont pas réellement discernables pour pouvoir estimer la constante \(T_v \).

Nous pouvons extraire d’autres informations de la morphologie globale de la fenêtre naturelle ; ces informations concernent notamment le lobe principal et les lobes secondaires. La présence du lobe principal permet une bonne résolution spectrale mais les lobes secondaires provoquent des oscillations sur toute l’étendue spectrale. Ainsi, nous devons mettre au point une fenêtre d’apodisation ayant les qualités requises à savoir :
Chapitre III
Prétraitement et analyse du signal FID

- Très bonne sélectivité du lobe principal.
- Réduction du nombre de lobes secondaires et atténuation de leur amplitude.

Notons que ces deux exigences sont paradoxales, il est donc nécessaire de fixer un compromis entre la résolution spectrale et l'effet Gibbs. L'objet du prochain paragraphe est l'étude de ces fenêtres d'apodisation.

3. Caractéristiques spectrales de la fonction porte

Reprenons l'expression du spectre de la fenêtre naturelle :

\[W(f) = \frac{\sin(\pi N f T_c)}{\sin(\pi f T_c)} e^{-\pi f (N-1) W_c} \] \hspace{1cm} (3-7)

Son module est donné par la relation suivante :

\[|W(f)| = \left| \frac{\sin(\pi N f T_c)}{\sin(\pi f T_c)} \right| \] \hspace{1cm} (3-8)

Présentons ce spectre en amplitude pour différentes valeurs de \(N \) (Fig. 3.6).

![Figure 3.6](image)

Fig. 3.6. Spectre sur échelle logarithmique de la fenêtre rectangulaire pour deux largeurs différentes de 64 et 128 points

Cette figure montre clairement que l'augmentation du nombre d'échantillons temporels permet d'améliorer la résolution fréquentielle mais au prix de l'augmentation du nombre des lobes secondaires.
Chapitre III
Prétraitement et analyse du signal FID

Un autre facteur important susceptible de caractériser cette fenêtre est le rapport
\(r_N \) entre l'amplitude du lobe principal et le premier lobe secondaire.

La position du premier zéro se situe à \(f_1 = 1/NT_x \), tandis que le deuxième est à
\(f_2 = 2/NT_x \), ce qui permet de calculer la position du premier lobe secondaire \(f_3 \) comme suit:

\[
f_3 = \frac{f_1 + f_2}{2} = \frac{1.5}{NT_x}
\]

Le rapport \(r_N \) est donc [15]:

\[
r_N = \frac{W(0)}{W\left(\frac{1.5}{NT_x}\right)} \approx \frac{3\pi}{2} \left(1 - \frac{3\pi^2}{8(NT_x)^2}\right)
\]

D’après ce rapport nous pouvons déterminer deux valeurs limites :

- \(r_{min} = 0.35 \) ou \(r_{min(db)} = -9.11 \) dB pour \(N = 2 \).
- \(r_\infty = 4.71 \) ou \(r_\infty = 13.4 \) dB pour \(N \) infini.

Il est intéressant alors prendre une fonction porte très large pour rendre prépondérant
l'influence du lobe principal au détriment des lobes secondaires.

4. Fenêtres D’apodisation

Pour améliorer les propriétés de la fenêtre naturelle, les données temporelles
sont parfois multipliées par des fonctions de pondération qui peuvent :

- atténuer les effets de troncature en adoucissant les fronts raides de la
fenêtre utilisée.
- améliorer le rapport signal sur bruit.
- Conserver l'enveloppe spectrale du FID.

A ces fenêtres temporelles correspondent des fenêtres fréquentielles qui, pour respecter
l'intégrité des données, doivent présenter :

- Un pic central le plus étroit possible.
- Peu de lobes de très faibles amplitudes.
- Et, si possible, pas de lobes négatifs.

Il existe plusieurs types de fenêtres d'apodisation utilisés pour le traitement du
FID en RMN, les fenêtres les plus utiles sont : Rectangulaire, Bartlett, Hamming,
Hanning, Blackman, Chebyshev et Kaiser. Nous représentons ces différentes fenêtres et
leurs spectres sur des échelles linéaire et logarithmique. Nous considérons 64 échantillons temporels pour chaque fenêtre. Les spectres sont obtenus à partir d’une FFT à 4096 points. La période d’échantillonnage est de $T_e=1s$.

(a)

(b)

(c)

(d)
Fig 3.7. Représentations temporels et spectrales des fenêtres d’apodisation utilisées Rectangulaire (a), Bartlett (b), Hamming (c), Hanning (d), Blackman (e), Chebyshev (f) et Kaiser (g)

L’examen attentif de la forme temporelle et la forme spectrale de toutes ces fenêtres d’apodisation nous montre que chaque fenêtre a ses spécificités. À titre d’exemple, le lobe principal du spectre de la fenêtre de Blackman est aussi large que celui de la fenêtre rectangulaire, ce qui est un inconvénient majeur. D’un autre côté, l’avantage de la fenêtre de Blackman réside dans le fait qu’elle est pratiquement dépourvue de lobes secondaires. Un autre paramètre important pour le choix d’une fenêtre consiste à déterminer le rapport des amplitudes entre le lobe principal et le premier lobe secondaire.
En considérant les fenêtres rectangulaire, triangulaire et Hanning, nous pouvons dire que celle de Hanning présente le meilleur compromis en terme de résolution fréquentielle, et nombre de lobes secondaires ainsi que leurs amplitudes dans le spectre.

Les expressions mathématiques des différentes fenêtres sont données par le tableau suivant [15, 16, 17] :

<table>
<thead>
<tr>
<th>Fenêtres d'apodisation</th>
<th>Expressions de récurrences (ω(k) : les coefficients de la fenêtre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rectangulaire</td>
<td>ω[k] = 1 si 0 ≤ k ≤ n - 1 ou n : la largeur de la fenêtre</td>
</tr>
<tr>
<td></td>
<td>ω[k] = 0 ailleurs</td>
</tr>
<tr>
<td>Bartlett</td>
<td>ω(k + 1) = \begin{cases} \frac{2k}{n-1} & 0 ≤ k ≤ \frac{n-1}{2} \ \frac{2k}{n-1} & \frac{n-1}{2} ≤ k ≤ n-1 \end{cases}</td>
</tr>
<tr>
<td></td>
<td>ω(k + 1) = \begin{cases} \frac{2k}{n-1} & 0 ≤ k ≤ \frac{n-1}{2} \ \frac{2(n-k-1)}{n-1} & \frac{n}{2} ≤ k ≤ n-1 \end{cases}</td>
</tr>
<tr>
<td></td>
<td>Pour n impair</td>
</tr>
<tr>
<td></td>
<td>pour n pair</td>
</tr>
<tr>
<td>Hamming</td>
<td>ω(k + 1) = 0.54 - 0.46cos(2π \frac{k}{n-1}) k=0...n-1</td>
</tr>
<tr>
<td>Hanning</td>
<td>ω(k + 1) = 0.5(1 - cos(2π \frac{k}{n-1})) k=0...n-1</td>
</tr>
<tr>
<td>Blackman</td>
<td>ω(k + 1) = 0.42 - 0.5cos(2π \frac{k}{n-1}) + 0.08cos(4π \frac{k}{n-1}) k=0...n-1</td>
</tr>
<tr>
<td>Chebyshev</td>
<td>ω[k] = FFT⁻¹[Cos(n Cos⁻¹[B Cos(πk / n)]) / Cosh(n Cosh⁻¹(β))]. β (constante d'ondulation de la bande d'arrêt). k=0...n-1</td>
</tr>
</tbody>
</table>

Tableau 3.1. Expressions mathématiques des différentes fenêtres

5. Applications

Afin de mettre en exergue l'intérêt de l'apodisation par rapport à l'analyse du signal FID, nous considérerons un signal FID ayant les caractéristiques suivantes :

- fréquence d'offset (déplacement chimique) de 100 Hz.
- constante de relaxation transversale $T_2 = 0.2$ s.
- durée d'acquisition de 0.9975 s.
- nombre de points N est de 400
Nous avons volontairement restreint ces simulations pour deux types de fenêtres : les fenêtres rectangulaire et de Hanning. La figure (3-8) présente l’allure temporelle du FID tronqué par ces deux fenêtres et leur spectre correspondant ; nous prenons 80 échantillons temporels.

Fig. 3.8. Représentation temporelle et spectrale d’un FID tronqué par deux types de fenêtres

Cette simulation montre clairement que :

- Les oscillations hautes fréquences sont adoucies par la fenêtre Hanning, c’est à dire que le spectre obtenu par cette fenêtre est plus lisse que celui obtenu par la fenêtre rectangulaire.
Chapitre III
Prétraitement et analyse du signal FID

- Le spectre ayant été adouci par la fenêtre de Hanning nous donne une ligne de base correcte.

6. Bruits en RMN

Dans la pratique, le signal exploité est toujours noyé dans un bruit de différentes sources : de la chaîne d’acquisition et de l’échantillon lui même. Autrement dit, dans une expérience RMN réelle, le FID est constamment perturbé par des bruits de différentes origines. Nous pouvons distinguer trois grandes classes de bruit :

- Les bruits dus à l’appareillage constitué notamment par des circuits de production, d’acquisition et de traitement du FID : bruit électronique au niveau des composants y compris l’échantillon sous investigation.

- Les bruits dus aux différentes techniques de traitement numérique du signal FID : bruit de quantification et FFT.

Nous allons passer en revue certains de ces bruits [4, 7, 16,17]. Notons d’abord que la plupart des bruits de mesure associés à la RMN sont additifs ; ils peuvent être corréls ou non–corrélés avec le signal FID. Ils peuvent également être stationnaires ou non stationnaires.

6.1. Bruit électronique

Il est caractérisé par sa variance qui a la forme suivante :

$$\sigma^2 = 4k_BRT$$ \((3-9) \)

k_B - constante de Boltzmann

T - température absolue

R - résistance équivalente

Ce bruit peut être décomposé en un bruit intrinsèque du résonateur : bruit de Johnson. et le bruit induit par l’échantillon.
6.2. Bruit du système et de l'environnement

C’est un bruit dû au changement d'état de l'échantillon (mouvements, température, dégradation, etc.) ou de la stabilité du système (variabilité, etc.). Ses paramètres statistiques sont difficiles à évaluer.

6.3. Bruits dus aux techniques numériques

Il est connu que l'amélioration des techniques de transmission de l'information implique nécessairement la numérique du signal correspondant ; concrètement, il est impératif de prévoir une conversion analogique-numérique. Cette conversion s'accompagne indubitablement par l'introduction d'erreurs. De plus l'opération de transformée de Fourier se fait également dans les mêmes conditions [4, 17].

Du point de vue modélisation, un bruit est considéré comme un processus aléatoire pouvant être décrit par ses propriétés statistiques, notamment sa moyenne, sa variance, sa fonction de corrélation et sa Densité Spectrale de Puissance (DSP). Dans peu de cas, nous avons accès à la loi de probabilité [14, 15, 16].

Il est d'usage de classer les bruits selon trois catégories :

- les bruits à bande large.
- les bruits à bande limitée.
- les bruits colorés.

6.4. Bruit à bande large [15]

Il contient toutes les fréquences de $-\infty$ à $+\infty$, sa densité spectrale de puissance qui est constante sur l'étendue des fréquences, on l'appelle bruit blanc.

\[S_b(f) = \sigma_b^2, \forall f \in \mathbb{R} \] \hspace{1cm} (3-10)

Sa fonction d'auto-corrélation est donc :

\[\gamma_b(\tau) = \sigma_b^2 \delta(\tau) = \begin{cases} \sigma_b^2 & \text{si } \tau = 0 \\ 0 & \text{ailleurs} \end{cases} \] \hspace{1cm} (3-11)

Ce bruit peut être considéré comme une suite de variables aléatoires non corréllées ayant la même variance σ_b^2.

52
Chapitre III
Prétraitement et analyse du signal FID

![Graph](image.jpg)

Fig. 3.9. Représentation temporelle, densité spectrale de puissance et fonction d'auto-corrétion, d'un bruit blanc à bande large

6.5. Bruit à bande limitée [15]

Dans la pratique, on préfère travailler avec un modèle aussi simple, mais plus réaliste ; c'est le bruit à densité spectrale constante et à bande limitée. Ce bruit contient toutes les fréquences de $-f_{max}$ à $+f_{max}$. Sa puissance finie est souvent désignée par la variance σ^2, sa densité spectrale de puissance est :

$$S_b(f) = \begin{cases} \frac{\sigma^2}{2f_{\text{max}}} & \text{pour } -f_{\text{max}} < f < +f_{\text{max}} \\ 0 & \text{ailleurs} \end{cases}$$ \hspace{1cm} (3-12)

et sa fonction d'auto-corrétion est donnée par :

$$\gamma_b(\tau) = \sigma_b^2 \frac{\sin(2\pi f_{\text{max}} \tau)}{2\pi f_{\text{max}} \tau}$$ \hspace{1cm} (3-13)

![Graph](image.jpg)

Fig. 3.10. Représentation temporelle, densité spectrale de puissance et fonction d'auto-corrétion, d'un bruit blanc à bande limitée

Il contient toutes les fréquences de $-\infty$ à $+\infty$, mais son spectre s’atténue lorsque la fréquence augmente. D’autre part il est caractérisé par une puissance finie et sa densité spectrale de puissance est donnée par la relation suivante :

$$S_b(f) = \frac{\sigma^2}{\pi f_c} \frac{1}{1 + \left(\frac{f}{f_c}\right)^2} \quad -\infty < f < +\infty$$ \hspace{1cm} (3-14)

Où f_c est la fréquence de coupure.

La fonction d’auto-corrélation sera :

$$\gamma_b(\tau) = \sigma_b^2 e^{-a|\tau|} \quad \text{avec} \quad a = 2\pi f_c$$ \hspace{1cm} (3-15)

![Fig. 3.11. Représentation temporelle, densité spectrale de puissance et fonction d’auto-corrélation, d’un bruit blanc coloré](image)

7. Applications

Avant d’entamer ces simulations, il est intéressant de rappeler certaines conditions expérimentales dans lesquelles nous recueillons le signal FID. Ce signal est le résultat d’une sommation de réponses à plusieurs excitations de l’échantillon (RMN pulsée). Si nous assimilons chaque réponse à une variable aléatoire de loi fixée, et l’ensemble de ces variables aléatoires sont indépendantes, nous pouvons affirmer que le bruit qui affecte le signal FID peut être caractérisé par une loi gaussienne : cela est prouvé par le théorème de la limite centrale [14, 15, 16].
Dans ce qui suit, nous avons simulé un bruit blanc gaussien à bande limitée caractérisé par sa variance σ^2 (paramètre de dispersion), et sa valeur moyenne m (paramètre de position).

![Graphique 3.12](image1.png)

Fig. 3.12. Représentation temporelle et densité spectrale de puissance d’un Bruit gaussien à moyenne nulle et variance unitaire, sur une durée de 1.02375 s

![Graphique 3.13](image2.png)

Fig. 3.13. Représentation temporelle et densité spectrale de puissance d’un Bruit coloré à moyenne nulle et variance unitaire, sur une durée de 1.02375 s

Nous avons jugé utile de considérer un FID qui s’approche de la réalité expérimentale, autrement dit, il contient plusieurs pics de résonance. Ce FID est caractérisé par :

- Fréquences d’offsets (déplacements chimiques) respectives de 200, 590, 600, 610 et 1000 Hz.
- Constantes de relaxation transversales respectives de $T_2 = 0.2$, 0.28, 0.16, 0.28 et 0.33 s.
- D’une durée d’acquisition de 1.02375 s.
- D’un nombre de points de $N = 4096$.
Le signal provient d’une expérience RMN dont les conditions de mesures sont satisfaisantes :

- Champ statique B_0 homogène.
- Filtrage analogique adapté à la bande passante de l’échantillon.
- Débruitage à tous les niveaux (émission, réception, digitalisation).
- Ligne de base corrigée
- Phase corrigée.

L’association du bruit gaussien au FID précédent nous permet de générer un processus aléatoire représentant le signal RMN pris dans des conditions expérimentales réelles Figure(3-15).

Fig. 3.15. Représentation temporelle et spectrale du signal RMN simulé perturbé par un bruit blanc gaussien de valeur moyenne nulle et de variance unitaire.

(SNR = 23.52 dB)
En examinant les figures (3-14) et (3-15), nous confirmons l’effet néfaste du bruit sur le spectre qui consiste au fait que les discontinuités additives aux contours spectaux peuvent être considéré par erreur comme des massifs susceptibles.

Sur la base des deux performances d’analyse spectrale (résolution et dispersion spectrale), on peut décrire la qualité d’estimation de la densité spectrale de puissance du signal FID obtenue à partir de plusieurs méthodes d’analyse. Nous sommes intéressés à leur formalisme théorique et des applications pour un signal FID dans les chapitres suivants.
Chapitre IV

Analyse spectrale non-paramétrique du FID

1. Introduction

La représentation du signal FID sous la forme temporelle $x(t)$ est une démarche naturelle mais elle ne correspond pas forcément à sa meilleure représentation physique. En effet, l'individu ou les systèmes électroniques sont souvent plus sensibles à la puissance et à la fréquence des signaux.

La représentation du signal RMN sous la forme de sa répartition de puissance en fonction de la fréquence permet souvent d'extraire de manière plus immédiate l'information utile. Nous pouvons extraire la fréquence de résonance, le déplacement chimique et le temps de relaxation T_2. Nous avons considéré précédemment le FID comme un processus aléatoire ; il ne possède pas donc une équation temporelle. Il est caractérisé par une fonction d'autocorrélation $r_{xx}(r)$. Dans le cas où le signal est stationnaire au sens large, nous pouvons le représenter par une fonction $P(f)$ appelée Densité Spectrale de Puissance (DSP). Le passage de $r_{xx}(r)$ à $P(f)$ constitue l'Analyse Spectrale.

Il existe deux grandes classes de méthodes pour estimer la densité spectrale de puissance d'un signal FID. La première est l'estimation spectrale non-paramétrique qui n'utilise aucune connaissance à priori sur le signal et elle est fondée uniquement sur son observation temporelle. La deuxième est l'estimation spectrale paramétrique, qui utilise un modèle paramétrique décrivant le signal, modèle à partir duquel il est aisé d'obtenir la densité spectrale de puissance.

La première partie de ce chapitre consiste à déterminer la densité spectrale de puissance du signal FID à partir de la méthode du périodeogramme. C'est une méthode d'estimation très utile lorsque le signal est observé sur une longue plage de stationnarité.

La deuxième partie est consacrée à l'estimateur de Welch afin d'améliorer le temps de calcul sans sacrifier la précision de quelques paramètres spectraux. Notons
d’emblée que l’estimateur de Welch est une variante de la méthode du périodogramme. Il est considéré comme un périodogramme modifié et moyenné \([5, 7, 8, 9, 10, 11, 15]\).

2. Périodogramme

2.1. Introduction

Avant d’introduire l’expression du périodogramme, nous avons jugé utile de préciser certains concepts liés au caractère aléatoire du signal FID. C’est un processus aléatoire stationnaire constitué par plusieurs réalisations \(x_i(t)\), \(i = 1, 2, \ldots\). La transformée de Fourier de \(x_i(t)\) n’existe pas, en général, car la condition de convergence de l’intégrale suivante n’est pas satisfaite :

\[
\int_\infty^{-\infty} |x_i(t)| dt < \infty
\]

(4.1)

Mais nous pouvons considérer une fonction apériodique \(x_i(t, T)\) obtenue par troncature d’une réalisation en utilisant une fonction porte de durée \(T\); alors il est possible d’établir la relation suivante :

\[
x_i(t) = \lim_{T \to \infty} x_i(t, T)
\]

(4.2)

La fonction \(x_i(t, T)\) admet généralement une transformée de Fourier. Nous allons exploiter cette idée pour étendre ce raisonnement aux signaux aléatoires en établissant la notion de périodogramme.

2.2. Expression du périodogramme

La Transformée de Fourier de la fonction d'auto-corrélation \(r_{xx}(\tau)\) du FID, dans le cas où il est considéré comme un processus aléatoire stationnaire et ergodique, s’écrit :

\[
P(f) = \int_{-\infty}^{+\infty} r_{xx}(\tau) e^{-j2\pi \tau f} d\tau
\]

(4.3)

La quantité \(P(f)\) est appelée densité spectrale de puissance \(P(f)\) du processus \(x(t)\). Elle est exprimée par le théorème de Wiener–Khintchine.

Pour \(\tau = 0\), il vient :

\[
r(0) = E[x(t)^2] = \int_{-\infty}^{+\infty} P(f) e^{-j2\pi 0} df = \int_{-\infty}^{+\infty} P(f) df
\]

(4.4)
L'hypothèse de stationnarité du second ordre au moins et d'ergodicité étant vérifiée, nous pouvons écrire la relation suivante:

$$E \left[x(t)^2 \right] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} x(t)^2 \, dt = \int_{-\infty}^{+\infty} P(f) \, df \quad (4.5)$$

Si nous reprenons cette expression et nous explicitons la fonction d'auto-corrélation, nous aurons :

$$P(f) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} x(t)x^*(t-\tau) \, e^{-j2\pi f \tau} \, d\tau \quad (4.6)$$

Nous pouvons aussi introduire le spectre complexe de la réalisation tronquée du processus $x(t)$ comme nous l'avons expliqué plus haut :

$$X_{2T}(f) = \int_{-T}^{+T} x(t) \, e^{-j2\pi f t} \, dt \quad (4.7)$$

En prenant le carré de cette expression, il vient :

$$\frac{1}{2T} \left| X_{2T}(f) \right|^2 = \frac{1}{2T} \int_{-T}^{+T} x(u) \, x^*(v) \, e^{-j2\pi f(u-v)} \, du \, dv \quad (4.8)$$

L'espérance mathématique de cette expression nous donne :

$$E \left[\frac{1}{2T} \left| X_{2T}(f) \right|^2 \right] = \frac{1}{2T} \int_{-T}^{+T} \int_{-T}^{+T} r_{xx}(u-v) \, e^{-j2\pi f(u-v)} \, du \, dv \quad (4.9)$$

En effectuant alors le changement de variable suivant :

$$\begin{cases} \tau = u - v \\ \nu' = v \end{cases}$$

Et en prenant garde aux intervalles de variation des nouvelles variables, il vient :

Pour $\tau \geq 0$, ν' varie de $-T$ à $T-\tau$ et pour $\tau \leq 0$, ν' varie de T à $-T-\tau$
Chapitre IV
Analyse spectrale non-paramétrique du FID

\[
E\left[\frac{1}{2T}\left|X_{2T}(f)\right|^2\right] = \frac{1}{2T} \int_{r=0}^{+2T} \int_{v=-T}^{T-r} r_{xx}(\tau)e^{-j2\pi\tau f} d\tau dv + \frac{1}{2T} \int_{r=0}^{-2T} \int_{v=-T}^{T-r} r_{xx}(\tau)e^{-j2\pi\tau f} d\tau dv
\]

\[
E\left[\frac{1}{2T}\left|X_{2T}(f)\right|^2\right] = \frac{1}{2T} \int_{r=0}^{+2T} r_{xx}(\tau)(2T-|\tau|)e^{-j2\pi\tau f} d\tau + \frac{1}{2T} \int_{r=0}^{-2T} r_{xx}(\tau)(-2T-|\tau|)e^{-j2\pi\tau f} d\tau
\]

Après ces changements de variables et les transformations adéquates, nous obtenons finalement l’expression suivante :

\[
E\left[\frac{1}{2T}\left|X_{2T}(f)\right|^2\right] = \int_{-2T}^{+2T} r_{xx}(\tau)\left(1-\frac{|\tau|}{2T}\right)e^{-j2\pi\tau f} d\tau \quad (4.10)
\]

En introduisant alors la fonction \(I_{4T} \) indicatrice de l’intervalle \([-2T, +2T]\), il vient :

\[
E\left[\frac{1}{2T}\left|X_{2T}(f)\right|^2\right] = TF\left[r_{xx}(\tau)\left(1-\frac{|\tau|}{2T}\right) I_{4T} \right] \quad (4.11)
\]

En vertu du théorème de Plancherel, l’expression précédente prend la forme ci-dessous :

\[
E\left[\frac{1}{2T}\left|X_{2T}(f)\right|^2\right] = P(f) * TF\left[\left(1-\frac{|\tau|}{2T}\right) I_{4T} \right] \quad (4.12)
\]

Lorsque \(T \) tend vers l’infini, le deuxième terme du produit de convolution tend vers \(\delta(f) \). d’où

\[
\lim_{T \to +\infty} E\left[\frac{1}{2T}\left|X_{2T}(f)\right|^2\right] = P(f) \quad (4.13)
\]

En considérant alors le cas numérique, où l’observation du signal \(x(t) \) se résume à \(N \) valeurs échantillonnées à la période \(T_e \), la densité spectrale de puissance peut être déterminée par l’estimateur suivant :

\[
P_{per}(f) = \frac{1}{NT_e} \left| \sum_{n=0}^{N-1} x(nT_e)e^{-j2\pi nf/T_e} \right|^2 \quad (4.14)
\]

Pour bien saisir ce passage rapide entre ces deux expressions, il y a lieu de signaler qu’il faut faire une double sommation ; l’une due à la transformée de Fourier et l’autre est due
au calcul de l’espérance mathématique. Étant donné que le processus est stationnaire et ergodique, nous considérons alors une seule réalisation. Cette considération nous permet de simplifier l’équation (4-13).

Cet estimateur de la densité spectrale de puissance du signal $x(nT_e)$ est appelé **périodogramme**.

Pour le calcul, nous devons procéder à la mise au carré de la Transformée de Fourier du signal numérique $x(nT_e)$ sur N points. Il est, depuis la mise au point de l’algorithme de la Transformation de Fourier Rapide (FFT) par J. Cooley et J. Tuckey en 1965, l’estimateur le plus employé.

3. Corrélogramme [15]

Il est possible de concevoir un autre type d’estimateur de la densité spectrale de puissance en utilisant la fonction de corrélation. La méthode consiste à estimer N' valeurs de la fonction d'auto corrélation avec $N' < N$ et à calculer la Transformée de Fourier discrète sur les N' points obtenus. Cet estimateur de la densité spectrale de puissance, dû aux travaux de Blackman et Tuckey, porte le nom de **corrélogramme**.

$$ P_{\text{cor}} (f) = \sum_{p = -(N'-1)}^{N'-1} r_{xx}(p) e^{-j2\pi pf} \tag{4-15} $$

avec :

$$ r(p) = \frac{1}{N} \sum_{n=p}^{N-1} x(n)x(n-p)^* \quad p = 0...N'-1 \tag{4-16} $$

Pour $N = N'$ les estimateurs du **périodogramme** et du **corrélogramme** sont identiques. En effet,

$$ P_{\text{cor}} (f) = \frac{1}{N} \sum_{p = -(N'-1)}^{N'-1} \sum_{n=p}^{N-1} x(n)x(n-p)^* e^{-j2\pi pf} \tag{4-17} $$

D'où :

$$ E \left[\frac{1}{2T} \left| X_{2T} (f) \right|^2 \right] = TF \left[r_{xx} (\tau) \left(1 - \frac{\mid \tau \mid}{2T} \right) I_{4T} \right] $$

Nous pouvons écrire cette expression sous une autre forme :

$$ P_{\text{cor}} (f) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi nf} \right|^2 = P_{\text{per}} (f) \tag{4-18} $$

Les deux estimateurs sont donc bien identiques pour $N = N'$.

62
4. Applications

La théorie ainsi exposée sera appliquée à l'enregistrement défini au chapitre précédent. Rappelons qu'il était caractérisé par cinq raies de résonance. La figure suivante montre le périodogramme de ce FID avec normalisation par rapport au pic maximal.

![Périodogramme normalisé du signal FID](image)

Fig. 4.1. Périodogramme normalisé du signal FID

En spectroscopie RMN les paramètres les plus importants pour la détermination de la structure moléculaire sont respectivement la fréquence de résonance, le déplacement chimique et la constante de temps T_2. Ces paramètres peuvent être déduits à partir de :

- la position des pics de résonance
- l'amplitude de chaque pic
- la largeur à mi–hauteur de chaque pic.

Le tableau suivant regroupe ces différents paramètres :

<table>
<thead>
<tr>
<th></th>
<th>Pic1</th>
<th>Pic2</th>
<th>Pic3</th>
<th>Pic4</th>
<th>Pic5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude (s^{-1}/Hz)</td>
<td>1</td>
<td>0.0918</td>
<td>0.2309</td>
<td>0.0842</td>
<td>0.4285</td>
</tr>
<tr>
<td>Largeur $\Delta \nu$ à mi–hauteur (Hz)</td>
<td>1.75</td>
<td>1.3200</td>
<td>2.4500</td>
<td>1.4500</td>
<td>1.200</td>
</tr>
<tr>
<td>Position des pics (Hz)</td>
<td>200</td>
<td>950</td>
<td>600</td>
<td>610</td>
<td>1000</td>
</tr>
</tbody>
</table>

Tableau 4.1. - Paramètres spectraux du signal FID
5. Propriétés du périodogramme [15, 18]

Le périodogramme constitue un estimateur de la densité spectrale de puissance du processus $x(nT_e)$. Les qualités requises de l’estimateur peuvent s’exprimer en fonction du biais (moment d’ordre 1) et de la variance (moment d’ordre 2).

5.1. Biais

Le biais de cet estimateur mesure la différence entre la moyenne des réalisations et la vraie valeur du paramètre à estimer. Calculons alors l’espérance du périodogramme $P_{\text{per}}(f)$:

$$
E \left[P_{\text{per}}(f) \right] = E \left[\sum_{p=-\frac{N-1}{2}}^{N-1} \frac{r_{xx}(p)}{N} e^{-j2\pi pf} \right]
$$

(4-19)

D’où :

$$
E \left[P_{\text{per}}(f) \right] = \sum_{p=-\frac{N-1}{2}}^{N-1} \frac{r_{xx}(p)N - |p|}{N} e^{-j2\pi pf}
$$

(4-20)

Cette expression pourrait être formulée en utilisant le produit de convolution suivant :

$$
E[P_{\text{per}}(f)] = P(f) \ast N \left(\frac{\sin \frac{\pi f}{N}}{\frac{N \sin \frac{\pi f}{N}}{}} \right)^2
$$

(4-21)

Sur la base de cette équation il apparaît clairement que l’estimation de la densité spectrale de puissance $P(f)$ du processus $x(nT_e)$ est biaisé. L’estimateur est en fait le résultat du filtrage de $P(f)$ dans le domaine fréquentiel par le filtre $N \left(\frac{\sin \frac{\pi f}{N}}{\frac{N \sin \frac{\pi f}{N}}{}} \right)^2$.

Lorsque N tend vers l’infini ce filtre tend vers $\delta(f)$, le périodogramme est donc asymptotiquement sans biais.

5.2. Variance [15]

La moyenne est un critère de performance de l’estimateur, mais il est insuffisant. En effet, si pour cet estimateur le biais est nul mais que les fluctuations de l’estimée autour de sa moyenne sont importantes : alors l’estimateur est peu précis. Pour juger de l’importance de ces fluctuations, nous faisons appel à la variance. Sous certaines conditions le calcul de la variance nous donne :

$$
\text{var} \left[P_{\text{per}}(f) \right] = P(f) \left[1 + N \left(\frac{\sin \frac{2\pi f}{N}}{\frac{2\pi f}{N}} \right)^2 \right]
$$

(4-22)
5.3. Interprétation

Nous avons précisé auparavant qu'il est nécessaire d'avoir une variance de faible valeur pour atténuer les fluctuations de l'estimateur. Or l'expression précédente dépend du nombre d'échantillons temporels. Par conséquent, cette variance peut diminuer en séparant l'ensemble des \(N \) valeurs de \(x(nT_e) \) en \(L = N/K \) sous ensembles avec la condition : \(K < N \). Il est alors possible de calculer \(L \) estimateurs et de faire la moyenne des \(L \) estimateurs obtenus. La variance est alors divisée par \(L^2 \). Cette amélioration de la variance de l'estimateur se fait au détriment de la résolution fréquentielle qui passe de \(1/NT_e \) pour le cas de \(N \) échantillons à \(1/KT_e \).

Enfin, les lobes secondaires de \(N \left(\frac{\sin \pi f N}{\pi f N} \right)^2 \) peuvent être atténuées en introduisant des fenêtres de pondération appliquées directement sur le signal observé \(x(nT_e) \).

Alors l'idée principale est de décomposer l'enregistrement \(x(nT_e) \) de longueur \(N \) en un ensemble de \(L \) segments de largeur \(K \). Pour chaque segment, nous associons une fenêtre de pondération dans le but d'avoir un bon compromis entre le biais et la variance.

Ainsi, l'estimateur de Welch consiste à estimer la DSP de notre FID par moyennage des \(L \) périodogrammes partiels propres à chaque segment modifié par la fenêtre de pondération \(\omega(t) \).

![Fig. 4.2. Principe de l'estimateur de Welch](image)

La densité spectrale de puissance \(P_{Welch}(f) \), en considérant l'algorithme de Welch, est obtenue par :

\[
P_{welch}(f) = \frac{1}{L} \sum_{\ell=0}^{L-1} P_{\ell}(f)
\]

\((4-23) \)

avec

\[
P_{\ell}(f) = \frac{1}{K} \left| \sum_{n=0}^{K-1} x(n + \ell K) \omega(n) e^{-j 2 \pi f n} \right|^2
\]

\((4-24) \)
Chapitre IV
Analyse spectrale non-paramétrique du FID

où $P_i(f)$ est le périodogramme de chaque segment.

L’objectif de cette étude est d’améliorer la qualité de l’estimation de Welch en agissant sur le type et la taille de la fenêtre d’apodisation, ainsi que l’intérêt de méthode vis-à-vis de l’influence du bruit sur le signal FID. Un autre avantage de cette technique est la réduction du temps de calcul.

6. Effet du type de la fenêtre de troncature

Nous considérons le signal FID caractérisé par ses cinq pics de résonances. Pour estimer sa densité spectrale de puissance par la méthode de Welch, ce FID sera segmenté successivement par les fenêtres d’apodisation Boxcar, Bartlett, Blackman, Hamming, Hanning, Kaiser et Chebyshev, de durée 0.2557 (segment de 1024 points). L’étude comparative sera axée sur les valeurs d’amplitude de chacun des pics pour les deux variantes du périodogramme. Nous regroupons alors les résultats des simulations sur le tableau suivant :

<table>
<thead>
<tr>
<th></th>
<th>P_2</th>
<th></th>
<th>P_3</th>
<th></th>
<th>P_4</th>
<th></th>
<th>P_5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mag (V²/Hz)</td>
<td>% d’erreur</td>
<td>Mag (V²/Hz)</td>
<td>% d’erreur</td>
<td>Mag (V²/Hz)</td>
<td>% d’erreur</td>
<td>Mag (V²/Hz)</td>
</tr>
<tr>
<td>Boxcar</td>
<td>0.0815</td>
<td>11.22</td>
<td>0.1978</td>
<td>14.34</td>
<td>0.0620</td>
<td>26.37</td>
<td>0.3228</td>
</tr>
<tr>
<td>Bartlett</td>
<td>0.0606</td>
<td>33.99</td>
<td>0.2249</td>
<td>2.60</td>
<td>0.0570</td>
<td>32.30</td>
<td>0.3197</td>
</tr>
<tr>
<td>Blackman</td>
<td>0.0684</td>
<td>25.49</td>
<td>0.2492</td>
<td>7.93</td>
<td>0.0696</td>
<td>17.34</td>
<td>0.3173</td>
</tr>
<tr>
<td>Hamming</td>
<td>0.0658</td>
<td>28.32</td>
<td>0.2304</td>
<td>0.20</td>
<td>0.0625</td>
<td>25.77</td>
<td>0.3193</td>
</tr>
<tr>
<td>Hanning</td>
<td>0.0644</td>
<td>29.85</td>
<td>0.2380</td>
<td>3.07</td>
<td>0.0646</td>
<td>23.28</td>
<td>0.3185</td>
</tr>
<tr>
<td>Kaiser</td>
<td>0.0654</td>
<td>28.76</td>
<td>0.2380</td>
<td>3.07</td>
<td>0.0646</td>
<td>23.28</td>
<td>0.3185</td>
</tr>
<tr>
<td>Chebyshev</td>
<td>0.0760</td>
<td>17.21</td>
<td>0.2002</td>
<td>13.30</td>
<td>0.0718</td>
<td>14.49</td>
<td>0.3080</td>
</tr>
</tbody>
</table>

Tableau 4.2. – Magnitudes des DSP pour différentes fenêtres d’apodisation

Quant aux densités spectrales de puissance obtenues par l’estimateur de Welch pour les différentes fenêtres, elles sont représentées par les figures suivantes :
Fig. 4.3. Graphes de la DSP estimée du FID pour des fenêtres d’apodisation respectives : Boxcar (a), Bartlett (b), Blackman (c), Hamming (d), Hanning (e), Kaiser (f), Chebyshev (g)
Il ressort de l'examen de ces résultats que :

- la position de pics de résonance reste inchangée, et ceci quel que soit le type de la fenêtre ; nous pouvons donc déterminer les déplacements chimiques de l'échantillon à partir du premier segment. Ceci est justifié par l'idée que la fenêtre de troncature influe sur l'enveloppe du signal sans changer la fréquence porteuse ; en d'autres termes la fenêtre agit sur la forme de la raie spectrale.

- le pourcentage d'erreur sur la magnitude varie d'une fenêtre à l'autre. Nous remarquons que les deux fenêtres Boxcar et Chebyshev donnent les meilleurs résultats pour les différentes composantes spectrales.

- les fenêtres Hamming et Hanning sont plus adaptées pour l'estimation de la densité spectrale de puissance pour des tailles de faible valeur (longueur inférieure à 1024 points).

- la fenêtre Blackman dégrade considérablement la résolution spectrale. Nous remarquons le fusionnement des pics 2, 3 et 4 à partir d'une longueur de 1024 points. Ceci est justifié par le fait que cette fenêtre présente un lobe principal de largeur supérieure à l'écart entre la position des deux pics. Dans notre cas la largeur du lobe principal de la fenêtre est de $L=20 \text{ Hz}$.

![Spectre de la fenêtre Blackman](image)

Fig.4.4. Spectre de la fenêtre Blackman de durée 0.255 s

Et l'écart entre les deux pics P_2 et P_3 est de $\Delta f = 10 \text{ Hz}$. Alors la condition de troncature n'est pas vérifiée par conséquent la résolution spectrale dégrade d'une façon considérable.
Nous savons que la mesure de la largeur à mi-hauteur de chaque pic de résonance représente un paramètre fondamental pour la détermination des constantes de relaxation spin–spin qui sont liés directement à la résolution spectrale. D’un autre coté, cette résolution est influencée par le degré de troncature du signal à l’échelle temporelle, c’est-à-dire que plus la taille de la fenêtre est minimale, mauvaise est la résolution spectrale.

Dans ces conditions, notre objectif est de diminuer l’influence de l’effet de troncature sur la résolution spectrale, alors nous sommes intéressés par l’influence du type de la fenêtre de troncature sur la largeur de chaque composante spatiale : nous constatons que la fenêtre de Chebyshev \(\omega(k) \) donne de bons résultats moyennant un choix judicieux de la constante \(\beta \), constante d’ondulation de la bande d’arrêt (Stop Band Ripple). Elle est donnée par l’expression suivante:

\[
\omega(k) = \text{FFT}^{-1} \left[\cos(n \cos^{-1}(\beta \cos(\pi k / n))) / \cosh(n \cosh^{-1}(\beta)) \right].
\]

Pour \(\beta \) grand (de l’ordre de 50 dB), cette fenêtre donne de bons résultats sur la magnitude. Le pic 3 atteint une valeur de 0.232 (Tableau 4.2.) correspond à une erreur de 0.4%. Par contre, l’erreur sur la largeur à mi-hauteur est de 67.5%.

Pour \(\beta \) petit, (de l’ordre de 16 dB), l’erreur sur la largeur à mi-hauteur diminue pour atteindre 40%. Alors il faut trouver un bon compromis pour la valeur du paramètre \(\beta \) pour minimiser ces erreurs (Figure 4-5).

Fig. 4.5. Représentation d’une portion du périodogramme modifié du FID pour un choix de la constante de Chebyshev 16, 20, 50 dB
Mais malgré ces améliorations, l’erreur sur la largeur de la composante spectrale reste importante, pour un segment inférieur ou égal à 1024 points.

Nous pouvons affirmer que la méthode de Welch est utile pour la détermination des déplacements chimiques et la densité électronique autour du noyau. Par contre, cette méthode reste peu précise pour la détermination de la constante de relaxation spin–spin. Nous remarquons aussi que la diminution de la constante de β apporte une composante continue supplémentaire et influe sur la ligne de base du spectre (Figure (4.6)).

![Graphique](image)

Fig. 4.6. Variation de la ligne de base du spectre pour $\beta = 10 \text{ dB}$

7. **Effet de la largeur de la fenêtre sur le temps de calcul**

Un autre aspect de cette étude concerne le temps de calcul qui est lié au recouvrement entre fenêtres ainsi que leurs durées. Mais cette performance du temps de calcul se fera au détriment de la qualité des spectres.

Le recouvrement entre fenêtres est un paramètre essentiel pour la qualité du spectre. Les différentes simulations que nous avons menées nous montrent qu’un recouvrement de 50% (moitié de la fenêtre) donne de meilleurs résultats. A titre d’exemple pour la fenêtre Hamming, faisons une comparaison entre l’estimateur de Welch obtenu précédemment sans recouvrement (0%), et celui obtenu avec un recouvrement de (50%). Les différents résultats pour les raies de résonance qui nous intéressent sont regroupés dans le tableau suivant :

<table>
<thead>
<tr>
<th>Recouvrement</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>P₅</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mag (ν²/Hz)</td>
<td>% d’erreur</td>
<td>Mag (ν²/Hz)</td>
<td>% d’erreur</td>
</tr>
<tr>
<td>0%</td>
<td>0.0658</td>
<td>28.32</td>
<td>0.2304</td>
<td>0.20</td>
</tr>
<tr>
<td>50%</td>
<td>0.0720</td>
<td>21.57</td>
<td>0.2200</td>
<td>4.30</td>
</tr>
</tbody>
</table>

Tableau 4.3. – Magnitudes des DSP avec et sans recouvrement des fenêtres d’apodisation
Chapitre IV
Analyse spectrale non-paramétrique du FID

Fenêtre d'apodisation

Signal

Recouvrement

Fig. 4.7. Recouvrement entre fenêtres

Pour illustrer l'effet de la largeur de la fenêtre d'apodisation sur le temps de calcul et la qualité spectrale, on a effectué un ensemble de mesures des temps CPU nécessaire pour estimer la DSP par cette méthode pour trois largeurs respectives : 512, 1024, 2048 (tableau 4.4).

<table>
<thead>
<tr>
<th>Largeur (points)</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temps CPU(s)</td>
<td>0.047</td>
<td>0.063</td>
<td>0.078</td>
</tr>
</tbody>
</table>

Tableau 4.4. Temps CPU pour différentes valeurs de largeur de la fenêtre Hanning

Les spectres de puissance obtenus sont représentés par les figures suivantes :

Fig. 4.8. Spectres obtenus pour différentes tailles de la fenêtre Hanning (512 (a), 1024 (b), 2048 (c))
Chapitre IV
Analyse spectrale non-paramétrique du FID

Les spectres obtenus affirment qu'au-delà d'une longueur de 1024 points, nous ne pouvons pas espérer avoir des spectres de bonne qualité. Le spectre obtenu avec 1024 points est largement suffisant pour déterminer les principaux paramètres spectraux de la RMN. Par conséquent il est tout à fait possible de restreindre le temps de calcul en se fixant un seuil pour la qualité d'un spectre. En passant en revue toutes les fenêtres, nous constatons que la fenêtre de Hanning est très performante pour l'estimation des paramètres spectraux à partir des tailles restreintes.

8. Etude de l'estimateur de Welch en présence du bruit

Cette partie consiste à étudier l'avantage de l'estimateur de Welch par rapport au périodogramme classique en présence du bruit. Pour cela nous avons choisi deux types de bruit additifs simulés, l'un est blanc gaussien et l'autre coloré de variance unitaire et de valeur moyenne nulle. Pour ces deux bruits, le rapport signal sur bruit SNR est de 23.52 dB.

Les paramètres d’estimation choisis sont :
- Fenêtre d’apodisation est de type Hanning.
- Largeur de la fenêtre est de 1024 points (0.25575 s).
- Pas de recouvrement entre fenêtres.

Les densités spectrales de puissance du FID calculées à partir des deux méthodes pour les deux types de bruits additifs sont regroupées dans les figures suivantes :

![Diagramme de puissance spectrale de FID perturbé par un bruit blanc gaussien de variance unitaire calculé par les deux méthodes d’estimation](image)

Fig. 4.9. Densité spectrale de puissance du FID perturbé par un bruit blanc gaussien de variance unitaire calculée par les deux méthodes d'estimation
Chapitre IV
Analyse spectrale non-paramétrique du FID

Fig. 4.10. Densité spectrale de puissance du FID perturbé par un bruit coloré de variance unitaire calculée par les deux méthodes d’estimation

Cette figure nous montre clairement que le spectre obtenu par le périodogramme présente de nombreuses discontinuités et une ligne de base présentant plusieurs massifs et ce malgré un bruit gaussien de faible variance. Par contre le spectre obtenu par l’estimateur de Welch est plus lissé au prix d’une ligne de base fortement déformée. Pour la figure (4-9), où nous avons pris en compte un bruit blanc gaussien, le contour spectral et la ligne de base sont nettement bons par rapport au périodogramme classique.

En somme l’estimateur de Welch présente l’avantage d’être à faible variance grâce à l’opération du moyennage des spectres locaux. Cet avantage ce traduit sur le plan fréquentiel par un très bon lissage des contours spectraux. L’inconvénient majeur de cette méthode est la dégradation de la résolution spectrale. Contrairement au périodogramme qui est très affecté par une instabilité statistique, mais il délivre une bonne résolution spectrale.
Chapitre V
Analyse du FID par STFT

1. Introduction

Le chapitre précédent était consacré à l’analyse spectrale d’un FID stationnaire et ergodique ; il représente le signal utile de la spectroscopie par résonance magnétique nucléaire des structures stables à l’instar de la RMN des solides [2, 3, 5].

Dans le cas général de la RMN, des structures moléculaires, nous trouvons des situations où le comportement chimique de la structure change au cours de l’examen de l’échantillon. Ce changement se traduit par une non–stationnarité du FID au cours du temps et une allure spectrale différente. A titre d’exemple, nous pouvons citer le cas de la RMN en haute température ou bien à haute pression [9].

Considérons le cas de la RMN des protéines [3, 5, 20]. Les protéines ont la particularité d’être très flexibles en solution, cette flexibilité provoque de petits changements d’état. Ce changement se traduit sur l’échelle spectrale par l’apparition des déplacements chimiques dynamiques (Chemical Shift Dynamics, CSD).

![Chemical Shift Dynamics Diagram](image)

Fig. 5.1. Interactions dynamiques entre le proton d’amide et l’azote d’amide

L’objectif de ce chapitre est alors d’effectuer une analyse spectrale qui permet de détecter la non–stationnarité du FID. En d’autres termes, l’idée est de trouver un moyen de contrôle des déplacements chimiques dynamiques au cours de l’expérience RMN.

La solution préconisée dans ce cas est d’établir une analyse temps–fréquence pour détecter l’évolution spectrale au cours du temps. Autrement dit il faut localiser la
dynamique des déplacements chimiques de la matière. Cette situation nous ramène à
implanter l’algorithme de la transformée de Fourier rapide d’une façon locale, c’est-à-
dire d’avoir le contenu spectral du FID dans des intervalles de temps bien déterminés.
Cette méthode est connue sous le nom de la transformée de Fourier à court terme ou
(Short-Time Fast Fourier Transform, STFT).

2. Transformée de Fourier à court terme [21, 22]

A l’origine, la STFT était mise au point pour palier à l’un des inconvénients
majeurs de la FFT relatif à l’apport d’informations temporelles : le début et la fin du
signal FID, l’instant d’apparition d’une singularité, les éventuels artefacts. L’originalité
de cette technique est donc de disposer conjointement d’informations spectro-
temporelles.

Le principe de base de cette méthode est de décomposer le signal en petits
segments et nous appliquons, sur chacune des sections, la transformée de Fourier en
obtenant ainsi le spectre local. Cette segmentation de l’horizon temporel et la totalité
des spectres locaux nous renseignent sur la variation temporelle du spectre.

Du point de vue mathématique, la STFT peut être interprétée comme l’analyse
de Fourier de tranches successives pondérées par une fenêtre temporelle $h(t)$. Ce
principe est équivalent à l’approximation du signal par un ensemble de fonctions
élémentaires semi-localisées simultanément en temps et en fréquence :

$$G(t, \nu) = \int x(\tau) h^*_t(\tau) d\tau = \int x(\tau) h^* (\tau - t) e^{-2\pi i\nu\tau} d\tau \quad (5-1)$$

Cette relation représente le produit scalaire entre le signal $x(t)$ et les fonctions de base :

$$h_t(\tau) = h (\tau - t) e^{2\pi i\nu\tau} \quad (5-2)$$

En pratique, nous utilisons le Spectrogramme qui est le module au carré de la STFT.
Lorsque les valeurs de la STFT sont, en général, complexes, le module au carré nous
assure que la valeur du spectrogramme sera toujours une valeur réelle. Le
spectrogramme est alors défini comme une densité d’énergie soit :

$$S(t, \nu) = \left| \int x(\tau) h^* (\tau - t) e^{-2\pi i\nu\tau} d\tau \right|^2 \quad (5-3)$$

La STFT ou le spectrogramme considère implicitement un signal non-
stationnaire comme une succession de situations quasi–stationnaires, à l’échelle de la
fenêtre à court terme \(h(t) \). La résolution temporelle d’une telle analyse est fixée par la largeur de la fenêtre, la résolution fréquentielle étant fixée par la largeur de sa transformée de Fourier. Ces deux largeurs étant antagonistes, un compromis entre les résolution temporelle et fréquentielle est à prendre en considération. En effet :

- Pour un signal fortement non stationnaire, une bonne résolution temporelle est requise, ce qui impose de travailler avec une fenêtre \(h(t) \) courte, limitant par conséquence la résolution fréquentielle.

- Réciproquement, si une analyse fréquentielle fine est nécessaire, une fenêtre \(h(t) \) longue doit être utilisée, afin de moyennir les contributions fréquentielles sur la durée de la fenêtre et de dégrader la résolution temporelle.

Pour en déduire les propriétés générales de la STFT, nous introduisons la notion de fonction caractéristique du spectrogramme, selon :

\[
M_{SP}(\theta, \tau) = \iint S(t, \nu) e^{j2\pi \theta t + j2\pi \nu \tau} \, dt \, d\nu = A_x(\theta, \tau) A_h(-\theta, \tau) \quad (5-4)
\]

où

\[
A_x(\theta, \tau) = \int x^*(t - \frac{\tau}{2}) x(t + \frac{\tau}{2}) e^{j2\pi \theta t} \, dt \quad (5-5)
\]

\(A_x \) et \(A_h \) sont respectivement les fonctions d’ambiguïté du signal \(x(t) \) et de fenêtre \(h(t) \).

3. Propriétés générales de la STFT et du spectrogramme

3.1 Énergie totale

L’énergie totale est obtenue par l’intégration sur tout le support temporel et fréquentiel. En utilisant la fonction caractéristique définie ci-dessus \((5-4)\) et \((5-5)\), nous obtenons la relation suivante :

\[
E_{SP} = \iint S(t, \nu) dtd\nu = M_{SP}(0,0) = A_x(0,0) A_h(0,0) = \left(\int |S(t)|^2 \, dt \right) \left(\int |h(t)|^2 \, dt \right) \quad (5-6)
\]

Pour que l’énergie soit conservée, par l’application du spectrogramme, nous déduisons à partir de la relation \((5-6)\), que la fenêtre devrait avoir une énergie unitaire

\[
\int |h(t)|^2 \, dt = 1 \quad (5-7)
\]

3.2 Marginales en temps et en fréquence

Pour déterminer les expressions des marginales en temps et en fréquence, nous introduisons les notations suivantes:
\[x(t) = A(t)e^{i\varphi(t)}; h(t) = A_h(t)e^{i\varphi_h(t)} \]
\[X(v) = B(v)e^{i\psi(v)}; H(v) = B_H(v)e^{i\psi_H(v)} \] (5-8)

La marginale en temps est obtenue par intégration du spectrogramme sur tout l’axe fréquentiel :
\[P(t) = \iiint S(t,v)^2 \, dt \, dv = \int A^2(\tau) A^2_h(\tau-t) \, d\tau \] (5-9)

D’une manière similaire, la marginale en fréquence sera donnée par :
\[P(v) = \iiint S(t,v)^2 \, dt \, dv = \int B^2(v) A^2_h(v-u) \, dv' \] (5-10)

Nous pouvons observer, à partir des relations (5-9) et (5-10), que les marginales en temps et en fréquence du spectrogramme ne correspondent pas les marginales correctes du signal :
\[P(t) \neq A^2(t) = |x(t)|^2 \]
\[P(v) \neq B^2(v) = |X(v)|^2 \] (5-11)

Si nous faisons appel au théorème de Parseval, nous comprenons bien qu’il y a conservation de l’énergie lors d’une transformation de Fourier. Or, la STFT modifie le contenu informationnel dans l’espace des temps et dans l’espace des fréquences. Pour réduire cet effet, il est impératif de satisfaire la relation (5-7).

3.3. Conservation des supports temporel et fréquentiel

Cette propriété consiste à considérer qu’une représentation temps-fréquence (RTF) est nulle en dehors des supports physiques d’un signal. En effet, pour un signal \(s(t) \) et son spectre \(S(f) \), cette propriété s’écrit :

Soit
\[
\begin{cases}
 s(t) \neq 0 & \text{pour } t \in [t_0 - T/2, t_0 + T/2] \\
 s(t) = 0 & \text{Ailleurs}
\end{cases}
\]

Et
\[
\begin{cases}
 S(f) \neq 0 & \text{pour } f \in [f_0 - B/2, f_0 + B/2] \\
 S(f) = 0 & \text{Ailleurs}
\end{cases}
\]

On dit qu’une RTF respecte la propriété de conservation des supports temporels et fréquentiel si :
\[
\begin{cases}
 RTF_s(t,f) \neq 0 & \text{pour } t \in [t_0 - T/2, t_0 + T/2] \text{et } f \in [f_0 - B/2, f_0 + B/2] \\
 RTF_s(t,f) = 0 & \text{Ailleurs}
\end{cases}
\] (5-12)
Dans le cas du spectrogramme, cette propriété n’est pas vérifiée, car même si \(s(t) = 0 \) pour \(t_0 \), en raison de la pondération du signal par une fenêtre \(h(t) \) le terme \(x(\tau)h(\tau-t) \) ne sera pas nul à cet instant et, par conséquent, le spectrogramme ne sera pas nul pour cette valeur de \(t \). Ceci est illustré sur la figure suivante où nous avons considéré, comme signal test, un atome gaussien et, pour \(t_0 = 45s \), nous constatons clairement que, même si le signal est nul, le produit \(x(\tau)h(\tau-t) \) est différent de 0, alors le spectrogramme ne conserve pas le support temporel du signal.

Fig.5.2. Non-conservation du support temporel

Des considérations similaires peuvent être faites pour le cas fréquentiel, ainsi le spectrogramme et la STFT ne respectent pas la propriété de conservation des supports temporel et fréquentiel.

3.4. Inversibilité du spectrogramme

Lors du passage du domaine temporel au domaine spectral par la FFT, l’information portée sur la phase du signal est perdue. Contrairement au cas du Spectrogramme qui garde cette information, mais avec quelques précautions sur le choix de la fenêtre de troncature.

A partir de la relation (5-4), la fonction d’ambiguïté du signal peut s’écrire de manière équivalente :

\[
A_x(\theta, \tau) = \frac{M_{SP}(\theta, \tau)}{A_h(-\theta, \tau)} = \frac{1}{A_h(-\theta, \tau)} \int S(t, \nu) e^{j2\pi kt + j2\pi \nu \tau} d\tau d\nu
\]

(3-13)

et selon l’expression (5-5), le signal peut être généré comme suit :
Chapitre V
Analyse du FID par STFT

\[x^*(t - \frac{\tau}{2})x(t + \frac{\tau}{2}) = \frac{1}{2\pi} \int A_x(\theta, \tau)e^{-j2\pi\thetak} d\theta \] (5-14)

Pour une valeur particulière de \(t = \tau/2 \) cette relation devient :

\[x^*(0)x(\tau) = \frac{1}{2\pi} \int A_x(\theta, \tau)e^{-j2\pi\thetar/2} d\theta \] (5-15)

Compte tenu de (5-13) et (5-15), la formule d'inversion du spectrogramme est :

\[x(\tau) = \frac{1}{2\pi x^*(0)} \int \frac{M_{Sp}(\theta, \tau)}{A_b(-\theta, \tau)} e^{-j2\pi\thetar/2} d\theta \] (5-16)

La reconstruction à partir d'un spectrogramme est possible lorsque la fonction d'ambiguïté de \(h(t) \) est différente de 0, ce qui introduit des contraintes sur le choix de \(h(t) \).

3.5. Invariance du spectrogramme

Pour le spectrogramme, la propriété d’invariance par translation temporelle et fréquentielle s’écrit selon :

\[\tilde{x} = x(t - t_0)e^{-j2\pi\nu t_0} \Rightarrow S_x(t, \nu) = S_x(t - t_0, \nu - \nu_0) \] (5-17)

4. Pavage temps–fréquence généré par le spectrogramme

La STFT peut être interprétée comme la projection du signal \(x(t) \) sur les fonctions de base :

\[h_{1,\nu}(\tau) = h(\tau - t)e^{j2\pi\nu t} \] (5-18)

Le pavage temps–fréquence introduit par cette transformée est illustré sur la figure suivante :
Fig. 5.3. Pavage du plan temps-fréquence

Par ailleurs, la transformée identité peut être interprétée comme la projection du signal sur un ensemble d’impulsions décalées, représentant une meilleure localisation temporelle au détriment d’une mauvaise localisation fréquentielle.

5. Considérations sur la discrétisation du spectrogramme

La discrétisation des expressions de la STFT et du spectrogramme est fortement imposée par des raisons qui tiennent de l’implémentation de ces approches soit sur des processeurs numériques de signaux, dans le cas des applications en temps réel soit sur l’ordinateur, comme outil de simulation et d’analyse. Ainsi, les expressions de la STFT et du spectrogramme sont données par:

\[
TFCT(k, \nu) = \sum_{n=0}^{N-1} h(n) \chi(k+n)e^{-2\pi j k n}
\]

\[
S(k, n) = \left| \sum_{n=0}^{N-1} h(n)\chi(k+n)e^{-2\pi j k n} \right|^2
\]

(5-19)

(5-20)

6. Application

Considérons un signal FID non-stationnaire caractérisé par deux déplacements chimiques dynamiques dont les fréquences d’offset respectives sont de 400 Hz et 450 Hz. Les constantes de relaxation \(T_2\) respectives sont 0.1 s et 0.125 s. Le temps à partir du quel ces deux fréquences sont introduites est de \(T_{10} = 0.5 \text{ s} \) (Figure (5-4)).
Fig. 5.4. Représentation temporelle et spectrale du FID caractérisé par deux déplacements chimiques dynamiques et perturbé par un bruit gaussien de variance unitaire

L’objectif de cette étude est de faire une analyse spectro-temporelle en agissant sur deux paramètres essentiels, à savoir ; le type et la durée de la fenêtre d’analyse.

6.1. Influence de la durée de la fenêtre sur le comportement spectro-temporel du FID

Afin d’évaluer l’effet la fenêtre d’apodisation sur la qualité spectro-temporelle, considérons la fenêtre de Hanning avec une longueur variant de 64 à 1024 points (fréquence d’échantillonnage de 4 kHz). Les spectrogrammes ainsi obtenus sont regroupés dans les figures suivantes :
Chapitre V
Analyse du FID par STFi
Fig. 5.5. Spectrogrammes du FID pour différentes tailles de la fenêtre d’analyse 64(a), 128(b), 256(c), 512(d) et 1024 points (e)

Pour mener une étude comparative par rapport à la taille de la fenêtre, prenons comme critère le temps d’apparition de la non-stationnarité, fixé au préalable à 0.5s. Nous pouvons alors définir des pourcentages d’erreurs sur la localisation des déplacements chimiques dynamiques pour différentes tailles de la fenêtre (tableau 5).

<table>
<thead>
<tr>
<th>0.0158 s (64 points)</th>
<th>0.0318 s (128 points)</th>
<th>0.0388 s (256 points)</th>
<th>0.1283 s (512 points)</th>
<th>0.2560 s (1024 points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{DC} (s)$</td>
<td>% d’erreur</td>
<td>$T_{DC} (s)$</td>
<td>% d’erreur</td>
<td>$T_{DC} (s)$</td>
</tr>
<tr>
<td>0.488</td>
<td>2.4</td>
<td>0.464</td>
<td>7.2</td>
<td>0.480</td>
</tr>
</tbody>
</table>

Tableau 5. Pourcentages d’erreurs relatifs aux différentes tailles de la fenêtre d’apodisation

Ces résultats montrent clairement que la résolution temporelle est améliorée par l’utilisation d’une fenêtre de taille réduite, au prix d’une dégradation de la résolution spectrale. Afin de mettre en exergue cet effet, prenons les deux cas extrêmes de la durée de la fenêtre d’analyse (64 et 1024 points).
Fig. 5.6. Représentation temps–fréquence en niveau de gris pour deux Longueurs différentes de la fenêtre
Hanning : 64 (a) et 1024 points (b)

Les spectrogrammes du signal FID ainsi calculés sont représentés d’une façon bidimensionnelle en niveau de gris. Dans ce type de représentation l’apport en résolution spectrale d’une fenêtre d’analyse de longue durée au spectrogramme obtenu est mis en évidence par des segments de plus en plus étroits.

6.2. Influence du type de la fenêtre sur le comportement spectro–temporel du FID

Etant donné que la STFT adopte le même procédé de calcul de la méthode de Welch, le spectrogramme se trouve affecté par les mêmes limitation de ce périodogramme modifié.

Afin d’améliorer la résolution spectrale nous avons opter pour la même démarche de sélection du type de la fenêtre adopté au chapitre IV. En effet, la fenêtre de Chebyshev moyennant un choix judicieux de sa constante d’ondulation de la bande d’arrêt \(\beta \) est la plus performante en terme résolution temporelle et fréquentielle, cependant le spectre obtenu présente une forte déformation de la ligne de base. L’influence du paramètre \(\beta \) sur la qualité spectrale est très visible sur une représentation spectro–temporelle (Figure (5-8)).
Fig. 5.8. Spectrogramme du FID pour une fenêtre de Chebyshev de 1024 points caractérisée par une constante β de 16 dB.

La première trame de cette représentation montre que la déformation la ligne de base du spectre utile favorise toutes les composantes spectrales du bruit, cet effet influe considérablement sur l’interprétation des paramètres physiques de l’échantillon.
Chapitre VI

Analyse spectrale du FID par les méthodes paramétriques.

1. Introduction

Contrairement à l’analyse non-paramétrique du FID qui n’utilise aucune connaissance à priori sur le signal, et part uniquement de son observation temporelle ; l’analyse paramétrique utilise un modèle paramétrique décrivant le FID, à partir duquel il est aisé d’obtenir la densité spectrale de puissance. Cette modélisation s’effectue à travers des algorithmes d’estimation paramétrique très connus en traitement du signal, à savoir l’algorithme Auto-Régressif (AR), l’algorithme à moyenne mobile (MA) et l’algorithme autorégressif à moyenne mobile (ARMA) [15, 18, 19].

Notre objectif principal est d’exploiter les performances de ces méthodes afin d’avoir une bonne estimation de la densité spectrale de puissance du signal FID.

2. Estimation spectrale paramétrique

A la différence de l’estimation spectrale non-paramétrique, qui ne faisait aucune hypothèse sur le signal observé $x(n)$, si ce n’est les propriétés de stationnarité à l’ordre 2, l’estimation spectrale paramétrique suppose que ce signal suit un modèle donné. Ce modèle comporte un certain nombre de paramètres qui sont déterminés en fonction du signal observé.

2.1. Modèle Auto-Régressif (AR)

Dans ce type de modélisation, le signal FID $x(n)$ est supposé être prédictible en fonction d’un certain nombre de ses valeurs antérieures.
Chapitre VI
Analyse spectrale du FID par les méthodes paramétriques

Fig. 6.1. Prédiction de $x(n)$ à partir de $\{x(n-1) \ldots x(n-k)\}$

Il peut donc s'écrire sous la forme suivante :

$$ x(n) = \sum_{i=1}^{k} a_i x(n-i) + e(n) \quad (6-1) $$

Les coefficients $(a_i)_{i=1,k}$, constituent les paramètres du modèle et $e(n)$ représente un bruit blanc non-corrélé avec $x(n)$ ayant une variance σ^2 qui représente l'erreur de prédiction.

La transformée en z de l'équation (6-1) donne :

$$ X(z) \left(1 - \sum_{i=1}^{k} a_i z^{-i}\right) = E(z) \quad (6-2) $$

D'après ce modèle, le signal $x(n)$ peut être vu comme le résultat du passage d'un bruit blanc $e(n)$ de variance σ^2 à travers un filtre de fonction de transfert $H(z)$.

Fig. 6.2. Principe de prédiction AR

avec :

$$ H(z) = \frac{1}{1 - \sum_{i=1}^{k} a_i z^{-i}} \quad (6-3) $$

Les paramètres $(a_i)_{i=1,k}$ permettent d'estimer la densité spectrale de puissance $P_{ww}(f)$ selon l'expression suivante :

$$ P_{ww}(f) = \frac{\sigma^2}{\left|1 - \sum_{i=1}^{k} a_i e^{-j2\pi f i}\right|^2} \quad (6-4) $$
La modélisation AR consiste à déterminer les coefficients \((a_i)_{i=1...k}\) d’un filtre à

Réponse Impulsionnelle Finie (RIF) caractérisé par la structure suivante :

\[
\begin{array}{c}
x(n) \\
\downarrow \\
x(n-1) \\
\downarrow \\
x(n-k) \\
\end{array}
\begin{array}{c}
Z^{-1} \\
\downarrow \downarrow \\
a_1 \\
\downarrow \\
a_2 \\
\downarrow \\
a_k \\
\end{array}
\begin{array}{c}
e_a(n) \\
\uparrow \\
e_a(n) \\
\end{array}
\]

\textit{Fig.6.3. Structure du modèle AR}

Où \(e_a(n)\) représente l’erreur avant qui correspond à une prédiction de \(x(n)\) à partir de \(\{x(n-1), x(n-2), ..., x(n-k)\}\).

Ces coefficients sont déterminés à partir d’un critère de minimisation d’erreur quadratique donné par l’expression suivante :

\[
E[e_a(n)^2] = E\left[(x(n) - X_k^\top (n-1)A_k)^2\right]
\]

\(\text{ où : } X_k (n-1) = [(x(n-1), x(n-2), ..., x(n-k))]^\top\) \hspace{1cm} (6-5)

\(\text{ et : } A_k = [a_1, a_2, ..., a_k]^\top\) \hspace{1cm} (6-6)

En développant \(E[e_a(n)^2]\), il vient :

\[
E[e_a(n)^2] = E\left[(x(n) - X_k^\top (n-1)A_k)^2\right] = E\left[(x(n) - X_k^\top (n-1)A_k)^\top (x(n) - X_k^\top (n-1)A_k)\right]
\]

\(\text{ où : } A_k^T X_k (n-1)x(n) - x(n)X_k^\top (n-1)A_k + A_k^T X_k (n-1)X_k^\top (n-1)A_k\) \hspace{1cm} (6-7)

En annulant la dérivée de cette expression par rapport à \(A_k\), on obtient la solution :

\[
A_k = E\left[X_k (n-1)X_k^\top (n-1)\right]^{-1} E\left[X_k (n-1)x^\top (n)\right]
\]

\(\text{ ou encore :}\)

\[
A_k = R_k^{-1} r_k^a
\]

(6-11)
Chapitre VI
Analyse spectrale du FID par les méthodes paramétriques

avec :

$$R_k = \begin{bmatrix}
 r(0) & r(1) & \cdots & r(k-1) \\
 r^*(1) & r(0) & \ddots & \\
 \vdots & \ddots & \ddots & r(1) \\
 r^*(k-1) & r^*(1) & \cdots & r(0)
\end{bmatrix} : \text{matrice de corrélation.} \quad (6-12)$$

$$r_k^a = \begin{bmatrix}
 r(1) \\
 r(2) \\
 \vdots \\
 r(k)
\end{bmatrix} : \text{vecteur de corrélation.} \quad (6-13)$$

En posant $E_{ak} = E[e^2 (n)^3]$ et suivant (6-11), il vient :

$$E_{ak} = E[x(n)^3] - 2E[X_k(n-1)x(n)]A_k + A_k^T E[X_k(n-1)X_k^T(n-1)]A_k$$

$$E_{ak} = r(0) - 2r_k^a A_k + r_k^a A_k^T$$

$$E_{ak} = r(0) - r_k^a A_k \quad (6-14)$$

En écrivant (6-11) et (6-14) sous une forme matricielle unique, il vient :

$$\begin{bmatrix}
 r(0) & r_k^a^T \\
 r_k^a & R_k
\end{bmatrix} \begin{bmatrix}
 1 \\
 -A_k
\end{bmatrix} = \begin{bmatrix}
 E_{ak} \\
 0
\end{bmatrix} \quad (6-15)$$

Cette équation présente la forme avant de l'équation de Yule–Walker. Qui permet de déterminer le vecteur A_k à partir de la matrice d'auto-corrélation R_k et de l'énergie d'erreur de prédiction avant E_{ak}. Cependant, le coût en temps de calcul est de l'ordre de k^3. Il est possible de résoudre cette équation avec un temps de calcul réduit proportionnel à k^2 en utilisant l'algorithme de Levinson.

- Algorithm de Levinson
Cet algorithme utilise une récurrence sur l'ordre k du modèle prédicteur AR. Pour cela, il est nécessaire d'introduire l'erreur de prédiction arrière.

Le modèle de prédiction avant consistait à estimer $x(n)$ à partir de $[x(n-1), x(n-2), \ldots, x(n-k)]$, en inversant l'axe des temps, on peut construire un modèle de prédiction arrière qui va
estimer $x(n-k)$ à partir de $(x(n-k+1),\ldots,x(n))$. Cela correspond à l'équation de prédiction arrière suivante :

$$x(n-k) = \sum_{i=1}^{k} b_{k-i} x(n+1-i) + e_s(n)$$ \hspace{1cm} (6-16)

dont la structure RIF est la suivante:

![Diagramme de prédiction arrière](image)

Fig. 6.4. Structure de la prédiction arrière

L'équation de prédiction arrière s'écrit de manière matricielle :

$$e_s(n) = x(n-k) - X_k^T(n)B_k$$ \hspace{1cm} (6-17)

avec : $X_k(n) = \begin{bmatrix} x(n), x(n-1), \ldots, x(n-(k+1)) \end{bmatrix}^T$ \hspace{1cm} (6-18)

et $B_k = [b_k, b_{k-1}, \ldots, b_1]$ \hspace{1cm} (6-19)

Le vecteur B_N optimal est tel qu'il minimise :

$$E_{s_k} = E \left[e_s(n)^2 \right]$$ \hspace{1cm} (6-20)

ce qui conduit à :

$$B_k = E \left[X_k(n)X_k^T(n) \right]^{-1} E \left[X_k(n)x^r(n-k) \right]$$ \hspace{1cm} (6-21)

d'où :

$$B_k = R_k^{-1} r_k$$ \hspace{1cm} (6-22)
Chapitre VI
Analyse spectrale du FID par les méthodes paramétriques

avec :

\[r_k^h = [r(k), r(k-1), \ldots, r(1)] \] \hspace{1cm} (6-23)

En reportant \(B_k \) dans l'expression de \(E_{hk} = E[e_k^h(n)] \) il vient :

\[E_{hk} = E[x(n-k)^2] - 2E[x(n-k)X_k^T(n)]B_k + B_k^T E[X_k(n)X_k^T(n)]B_k \] \hspace{1cm} (6-24)

d'où :

\[E_{hk} = r(0) - r_k^h / B_k \] \hspace{1cm} (6-25)

En réunissant (6-22) et (6-25) au sein d'une même équation matricielle, on obtient la forme arrière de l'équation de Yule Walker.

\[
\begin{bmatrix}
R_k & r_k^h \\
[r_k^h]^T & r(0)
\end{bmatrix}
\begin{bmatrix}
-B_k \\
1
\end{bmatrix}
= \begin{bmatrix}
0 \\
E_{hk}
\end{bmatrix}
\] \hspace{1cm} (6-26)

Il est aisé de vérifier que \(E_{ak} = E_{bk} \)

En effet, cette équation peut s'écrire sous la forme suivante :

\[
R_{k+1}
\begin{bmatrix}
-B_k \\
1
\end{bmatrix}
= \begin{bmatrix}
0 \\
E_{hk}
\end{bmatrix}
\] \hspace{1cm} (6-27)

En multipliant à gauche par la matrice co-identité :

\[
J_k = \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\] \hspace{1cm} (6-28)

et selon la propriété de la symétrie de \(R_k \) :

\[
J_k R_k = R_k J_k
\] \hspace{1cm} (6-29)

Il vient :

\[
R_{k+1}
\begin{bmatrix}
1 \\
- JB_k \\
0
\end{bmatrix}
= \begin{bmatrix}
E_{hk}
\end{bmatrix}
\] \hspace{1cm} (6-30)

Ou encore : \(A_k = JB_k \) et \(E_{bk} = E_{ak} = E_k \)

Ce qui revient à dire que prédire \(x(n-k) \) à partir de \(x(n-k+1), \ldots, x(n) \) est identique à prédire \(x(n) \) à partir de \(x(n-1), x(n-2), \ldots, x(n-k) \). La seule différence entre les deux prédications est le sens de parcours de la trajectoire de \(x(n) \).

L'algorithme de Levinson se base sur une récursion sur l'ordre \(k \). Si on connaît \(A_{k-1} \) et \(B_{k-1} \) à l'ordre \(k-1 \), nous pouvons écrire pour la prédiction avant à l'ordre \(N \):
Analyse spectrale du FID par les méthodes paramétriques

\[
\begin{bmatrix}
R_k & r_k^b \\
r_k^b & r(0)
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
=
\begin{bmatrix}
E_{k-1} \\
0 \\
K_k
\end{bmatrix}
\] \hspace{1cm} (6-31)

avec :
\[K_k = r(k) - \sum_{i=1}^{k-1} a_{i,k-1} r(k-i)\]
\[k < (\frac{1}{\tau(\lambda)})\] \hspace{1cm} (6-32)

Et pour la prédiction arrière :

\[
\begin{bmatrix}
r(0) \\
r_k^a \\
r_k
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
=
\begin{bmatrix}
K_k \\
0 \\
E_{k-1}
\end{bmatrix}
\] \hspace{1cm} (6-33)

\[R_{k+1} = \begin{bmatrix}
1 \\
0 \\
-A_{k-1}
\end{bmatrix}
\begin{bmatrix}
E_{k-1} \\
0 \\
K_k
\end{bmatrix}
\] \hspace{1cm} et \hspace{1cm}
\[R_{k+1} = \begin{bmatrix}
0 \\
1 \\
-B_{k-1}
\end{bmatrix}
\begin{bmatrix}
K_k \\
0 \\
E_{k-1}
\end{bmatrix}
\] \hspace{1cm} (6-34)

Finalement, l'algorithme de Levinson est donné par les expressions suivantes :

\[A_k = \begin{bmatrix}
A_{k-1} \\
0
\end{bmatrix} - k_k \begin{bmatrix}
B_{k-1} \\
-1
\end{bmatrix}\] \hspace{1cm} (6-35)

\[E_k = E_{k-1} \left(1 - k_k^2 \right)\] \hspace{1cm} (6-36)

avec \[k_k = \frac{K_k}{E_{k-1}}\] \hspace{1cm} (6-37)

En conclusion, la modélisation AR exige la mise à jour de \(k \) coefficients \(a_i \), pour cela il faut :

- Observer au minimum \(k \) valeurs du signal,
- Calculer les coefficients d'auto-corrélation,
- Appliquer l'algorithme de Levinson (temps de calcul proportionnel à \(k^2 \)).
2.2. Modèle à moyenne mobile (MA)

Le signal \(x(n) \) peut s'écrire comme une combinaison linéaire d'échantillons décorrélés entre eux, ce qui peut se formaliser comme une combinaison linéaire d'échantillons du bruit blanc \(e(n) \):

\[
x(n) = \sum_{i=0}^{m} b_i e(n-i)
\]

(6-38)

Le signal \(x(n) \) peut donc être vu comme le résultat du passage d'un bruit blanc \(e(n) \) à travers un filtre de fonction de transfert \(H(z) \).

\[
\begin{array}{c}
e(n) \\
\downarrow \\
H(z) \\
\uparrow \\
x(n)
\end{array}
\]

Fig.6.6. Principe de la modélisation MA

avec :

\[
H(z) = \sum_{i=0}^{m} b_i z^{-i}
\]

(6-39)

La densité spectrale de puissance du signal \(x(n) \) s'écrit alors :

\[
P_{xx}(f) = \left| \sum_{i=0}^{m} b_i e^{-j2\pi fi} \right|^2 \sigma^2
\]

(6-40)

Dans le cas du modèle AR, le vecteur \(A_k \) s'obtient en optimisant un critère d'erreur quadratique. Cette optimisation conduit de manière explicite à la résolution d'un système linéaire:

\[
A_k = R_k^{-1} r_k^n
\]

Par contre, pour un modèle MA l'erreur de prédiction s'écrit:

\[
e(n) = x(n) - E_m (n-1) B_m
\]

(6-41)

avec :

\[
E_m (n-1) = [(e(n-1), e(n-2),...............e(n-m))]^T
\]

(6-42)

Le vecteur \(E_m \) dépend de \(B_m \) et le système à résoudre devient non linéaire. L'optimisation du critère est alors très délicate. Cependant, l'algorithme de Durbin permet d'approcher la solution optimale avec de bons résultats.
Chapitre VI
Analyse spectrale du FID par les méthodes paramétriques

- Algorithme de Durbin

Le principe de cet algorithme consiste à identifier le modèle MA d'ordre \(m \) avec un modèle AR d'ordre \(k \gg m \). En effet, tout modèle MA peut être identifié à un modèle AR d'ordre infini:

\[
\sum_{i=0}^{m} b_i z^{-i} = \frac{1}{\sum_{i=0}^{\infty} a_i z^{-i}} \quad (6-43)
\]

En remplaçant la borne infinie par une valeur \(k \gg m \), il est possible de faire l'approximation suivante:

\[
H(z) = \sum_{i=0}^{m} b_i z^{-i} \approx \frac{1}{\sum_{i=1}^{k} a_i z^{-i}} \quad (6-44)
\]

d'où :

\[
\sum_{i=0}^{m} b_i z^{-i} \frac{1}{1} = 1 \quad \frac{1}{\sum_{i=1}^{k} a_i z^{-i}}
\]

Ou encore dans le domaine temporel :

\[b_i * a_j = \delta_i \quad (6-45) \]

Ce qui donne \(\delta_j = \sum_{i=0}^{m} b_i a_{j-i} \), en posant \(b_0 = l \), il vient :

\[\delta_j = a_j + \sum_{i=1}^{m} b_i a_{j-i} \quad (6-46) \]

Pour \(j = 1 \ldots k \),

\[a_j + \sum_{i=1}^{m} b_i a_{j-i} = 0 \quad (6-47) \]

Les coefficients \(b_i \) du modèle MA d'ordre \(m \) du signal \(x(n) \) sont donc aussi les coefficients du modèle AR d'ordre \(m \) du signal \(a_n \).

En conclusion, l'obtention des \(m \) valeurs \(b_i \) s'effectue par l'intermédiaire de deux modélisation AR, l'une s'effectue sur le vecteur \(x(n) \), et l'autre sur le vecteur \(a_n \).

2.3. Modèle Auto-Régressif à Moyenne Mobile (ARMA)

Ce modèle est obtenu par la combinaison des modèles AR et MA où le signal \(x(n) \) peut s'écrire en fonction de \(k \) valeurs passées et de \(m \) échantillons d'un bruit blanc décorrélé.

\[x(n) = \sum_{i=1}^{k} a_i x(n-i) + \sum_{i=0}^{m} b_i e(n-i), \quad b_0 = l \quad (6-48) \]
Le signal $x(n)$ peut donc être vu comme le résultat du passage d'un bruit blanc $e(n)$ à travers deux filtres de fonctions de transferts respectives $H_1(z)$ et $H_2(z)$:

$$H(z) = \frac{\sum_{i=0}^{m} b_i z^{-i}}{1 - \sum_{i=1}^{k} a_i z^{-i}} = \frac{1}{1 - \sum_{i=1}^{k} a_i z^{-i}} \left(\sum_{i=0}^{m} b_i z^{-i} \right) = H_1(z)H_2(z) \quad (4-49)$$

Le premier filtre est identifié au moyen de l'algorithme de Levinson tandis que le deuxième est identifiable de manière approchée au moyen de l'algorithme de Durbin.

La densité spectrale de puissance du signal $x(n)$ à partir de ce modèle s'écrit alors :

$$P_{arma}(f) = \frac{\sum_{i=0}^{m} b_i e^{-j2\pi ft}}{1 - \sum_{i=1}^{k} a_i e^{-j2\pi ft}} ^2 \sigma^2 \quad (4-50)$$

3. Applications

Cette nouvelle étude consiste à estimer la densité spectrale de puissance du signal FID ayant les cinq pics de résonance déjà présenté au chapitre IV, par la modélisation autorégressive AR. Initialement, l'ordre de prédiction n'est pas défini. Une approche simpliste consiste à considérer un ordre plus élevé pour obtenir un modèle meilleur [18]. Une première règle basée sur l'expérience est que, si nous avons N échantillons du signal, l'ordre ne devrait pas dépasser $N/3$.

Une solution plus élaborée est basée sur le fait qu'on part de l'hypothèse que l'excitation est un bruit blanc. Une fois les coefficients du modèle déterminé, nous pouvons calculer cette excitation par :

$$e(n) = x(n) - \sum_{i=1}^{k} a_i x(n-i)$$

Ensuite, nous faisons un test de blancheur sur $e(n)$. Si le test n'est pas réussi, nous augmentons l'ordre.

Afin d'évaluer l'influence de l'ordre de prédiction sur la qualité des spectres, considérons des valeurs arbitrairement choisis ($k=5$, 6, 7 et 8), les densités spectrales de puissance ainsi obtenues sont illustrées sur les figures suivantes :
Fig. 6.7. Densité spectrale de puissance obtenue par un modèle AR d'ordre 5 (a), 6 (b), 7 (c) et 8 (d).

Pour des ordres 5 et 6, les spectres obtenus sont complètement déformés : tandis que ceux correspondant aux ordres 7 et 8 représentent bien des lorentziennes affectées par une dégradation considérable de la résolution spectrale (disparition des deux pics de résonance autour de 600Hz). Alors une bonne estimation paramétrique de la DSP du signal FID ne peut pas être effectuée à partir des ordres de faibles valeurs.

Dans la pratique, plusieurs critères ont été développés pour la détermination de l'ordre de prédiction, ces critères sont basés sur des considérations statistiques. Les plus connus sont:
Chapitre VI
Analyse spectrale du FID par les méthodes paramétriques

- **Critère de l'erreur finale de prédiction (FPE)** :

 Il est donné par l'expression suivante :

 \[
 FPE(k) = \sigma_k^2 \left(\frac{N + k + 1}{N - k - 1} \right)
 \]

 où \(\sigma_k^2 \) représente la variance empirique de l'excitation \(e(n) \) pour un ordre de prédiction \(k \).

- **Critère d'information d'Akaike (AIC)** :

 Ce critère est caractérisé par l'équation suivante :

 \[
 AIC(k) = N \ln(\sigma_k^2) + 2(k + 1)
 \]

 Sur la base de ces deux critères nous déterminons l'ordre du modèle AR du signal FID de dimension \(N=4096 \) points, à partir des deux courbes \(FPE(k) = f(k) \) et \(AIC(k) = f(k) \) pour \(k \) variant de 0 à 300 (Figure 6-8). En fait, en vertu du critère empirique précédent, le nombre \(k \) devrait prendre la valeur de 1365 \((N/3) \), avec les premières simulations, nous nous sommes rendus compte qu'il fallait baisser considérablement cette valeur pour atteindre 300.

![Graphiques](image)

Fig. 6.8. Optimisation de l'ordre de prédiction par le critère FPE (a), AIC (b). Evolution de l'erreur de prédiction (c)

97
Pour les premières valeurs de k comprises entre 0 et 9, les deux critères nous donnent une erreur de prédiction rapidement décroissante. Le FPE et le AIC varient lentement jusqu’au point $k=300$ en passant par un minimum de valeur $k=90$. Ce point est défini comme étant l’ordre optimal de prédiction. Pour cette valeur, la densité spectrale de puissance est représentée sur la figure suivante :

![Diagramme de densité spectrale de puissance](image.png)

Fig. 6.9. Densité spectrale de puissance obtenue par un modèle AR d’ordre de 90

Cette allure montre clairement que le spectre obtenu à partir des deux critères empiriques est toujours affecté par une dégradation de résolution spectrale. En effet les raies spectrales situées à 590 et 610 Hz ne sont pas discernables. Ainsi l’ordre qui permet de représenter la DSP d’une façon convenable se trouve dans l’intervalle ayant une erreur de prédiction proche de celle de l’ordre optimal trouvé ($k=90$). Après plusieurs tests, nous avons constatés que la résolution spectrale est améliorée au voisinage d’un ordre de prédiction $k=270$ (*Figure 6-10*). Cependant, cet ordre est trop élevé ce qui augmente considérablement le temps de calcul.
La nécessité d’augmenter l’ordre de prédiction pour l’estimation paramétrique de ce type de FID est l’une des limitations des modèles AR, dont la structure est uniquement à pôles [7]. Pour cette raison l’utilisation des structures mixtes à pôles et à zeros ARMA est indispensable. L’avantage de cette méthode réside dans le fait que le modèle obtenu dépend de manière linéaire d’un passé fini, plus un terme entièrement nouveau, non corrélé avec le passé appelée souvent innovation.

Pour déterminer l’ordre du prédicteur ARMA, nous avons suivi la même démarche que la modélisation AR, mais cette fois-ci nous changeons les valeurs du couple d’ordre k et m. Après plusieurs essais numériques nous avons constaté que l’ordre du modèle autorégressif à moyenne mobile nécessaire pour l’estimation de la DSP du FID est le couple de valeurs $k=19, m=8$ (Figure 6-11).

Fig. 6.10. Densité spectrale de puissance obtenue par un modèle AR d’ordre de 270

Fig. 6.11. Densité spectrale de puissance obtenue par un modèle ARMA d’ordre $(m=8, k=19)$
Grâce à cette simulation nous constatons que l’estimation de la densité spectrale de puissance obtenue à partir de la modélisation ARMA nécessite un ordre très réduit par rapport à la modélisation AR. En effet, l’utilisation du formeur ARMA nous a permis de passer de 270 à 19 pôles. Cette réduction du nombre de pôle se traduit par un gain important du temps de calcul.

Afin de mettre en évidence l’apport du modèle ARMA au profit de l’estimation spectrale du FID, la densité spectrale de puissance obtenue est comparée à celles des méthodes non-paramétriques (périodogramme et estimateur de Welch) comme illustré sur les Figures 6.12. En fait, cet apport regroupe les deux performances principales d’estimation ; à savoir la résolution spectrale et la stabilité statistique (biais et variance). En effet, la figure suivante montre clairement la sélectivité du pic de résonance autour de 1 kHz par un modèle ARMA (ordre AR : 19, ordre MA : 8) par rapport au autres méthodes non-paramétriques utilisées.

![Fig.6.12. DSP du FID perturbé par un bruit gaussien de variance unitaire obtenue par les trois techniques d’estimation autour du pic de résonance de 200Hz (échelle agrandie)](image)

Sur une échelle réduite, nous pouvons confirmer que le spectre obtenu par le modèle AMRA n’est pas influencé par le bruit Gaussien additif (SNR : 23,52 dB) par rapport à celui obtenu par le périodogramme, et est doté d’une stabilité statistique comparable à celle de l’estimateur de Welch. Cette stabilité statistique se traduit par un lissage de l’enveloppe spectrale.
Conclusion générale

A l’instar d’autres domaines, en instrumentation RMN, l’estimation spectrale est un outil extrêmement important pour éclucider les espèces analysées. Certes, la phase de production et d’acquisition du signal FID reste également de même importance mais ces deux fonctions sont subordonnées à la DPQ qui permet le changement de fréquence. Ce changement de fréquence est une étape indispensable mais non évolutif sur le plan technologique, du moins dans un avenir immédiat. En précisant ces points, notre but est d’affirmer que l’importance que nous discutons est liée à notre avis à deux facteurs essentiels : le rôle de la production, de l’acquisition et de l’estimation au sein d’un spectromètre RMN et leur évolution technologique.

Plusieurs stratégies ont été développées pour l’estimation du FID et pour tout type d’expérience RMN : haute température, RMN haute résolution, RMN 2D, micro imagerie ; la liste est loin d’être exhaustive. Récemment, une technique appelée ANAFOR a été développée ; elle est basée sur la prédiction linéaire [19].

Dans notre travail, nous nous sommes fixés comme objectif la compréhension des aspects déterministes et aléatoires de la fonction d’appareillage et de l’échantillon à analyser. L’étape suivante consiste à dresser une étude comparative des méthodes paramétriques et non-paramétriques pour l’analyse du FID. Pour réaliser ce travail, nous avons considéré que le signal FID est stationnaire et ergodique. Partant de cette hypothèse restrictive mais nécessaire, nous avons appliqué la technique d’estimation du périodogramme. Elle nécessite l’observation du signal sur une large plage. Cette technique présente l’avantage d’être très performante en terme de résolution spectrale ; en revanche elle est très affectée par une instabilité statistique.

Dans une seconde étape, nous avons considéré l’estimateur de Welch (périodogramme moyenné) qui se base sur le moyennage des spectres locaux du FID. Cette opération permet de réduire la variance et nombre des lobes secondaires au prix d’une dégradation de la résolution spectrale. Pour palier à cette dégradation, nous avons agi sur le choix de la fenêtre d’apodisation. En effet, la fenêtre de Chebychev nous a donné de bons résultats en agissant sur la constante d’ondulation de la bande d’arrêt.
Conclusion générale

Dans le cas d’un FID non-stationnaire qui présente des déplacements chimiques dynamiques, une analyse spectro-temporelle, en l’occurrence la STFT, est préconisée pour déceler ces non-stationnariétés. Cette méthode est une extension de la méthode de Welch dans un espace tridimensionnel (temps, fréquence et magnitude). En effet, les déplacements chimiques dynamiques sont mieux localisés dans le domaine temporel pour des fenêtres d’apodisation de courtes durées au détriment d’une résolution spectrale dégradée.

Suite aux limitations des méthodes non-paramétriques (périodogramme et estimateur de Welch) ainsi que la STFT en terme de résolution spectrale et stabilité statistique, les méthodes paramétriques (modélisation AR et ARMA) s’avère fortement recommandée. En effet, l’estimation de la densité spectrale de puissance du FID par les approches paramétriques permet d’étendre l’horizon d’observation tout en gardant une bonne résolution spectrale. Après une étude comparative des résultats, nous avons constaté que la modélisation ARMA permet d’estimer des DSP avec des ordres de prédiction réduits par rapport aux modèles AR.

Rappelons que ce travail concerne uniquement un signal FID de valeurs réelles dont l’analyse spectrale suffisait pour la caractérisation des échantillons de matière. Or dans une expérience RMN, deux facteurs essentiels sont susceptibles d’agir sur la forme phénoménologique du FID : la câblerie du spectromètre et les propriétés diélectriques de l’échantillon à analyser. En tenant compte de ces conditions pratiques, la densité spectrale de puissance devient insuffisante pour caractériser les propriétés physiques de l’échantillon, ce qui rend la phase du FID d’une nécessité accrue.
Bibliographie

Errata

Page 41 :
Fréquence d’échantillonnage \(F_e = 400 \text{Hz} \) au lieu de \(F_e = 4 \text{kHz} \)

Page 44 :
\(N = 80 \) au lieu de \(N = 400 \)

Page 60 :
\[
E \left[x(t)^2 \right] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)^2 \, dt = P(f) \text{ff} \quad \text{au lieu de} \quad E \left[x(t)^2 \right] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)^2 \, dt = P(f) \text{ff}
\]

Page 61 :
\[
- \int_{\mathbb{R}} x(i)(-2T - |i|) e^{-j2\pi i t \tau} \, d\tau \quad \text{au lieu de} \quad \int_{\mathbb{R}} x(i)(2T - |i|) e^{-j2\pi i t \tau} \, d\tau
\]

Page 62 :
L’équation \(E \left[\frac{1}{2T} \left| X_{22} (f) \right|^2 \right] = TF \left[r_{xx}(\tau) \left(1 - \frac{|\tau|}{2T} \right) I_{kT} \right] \) est remplacée par l’équation :
\[
P_{\text{cor}} (f) = \frac{1}{N} \sum_{p = -1}^{N-1} \sum_{n = 0}^{N-1} x(n) e^{-j2\pi fn} \, x(n - p) e^{j2\pi n(n-p)f}
\]

Page 63 :
- Expression actuelle :
 La fréquence de résonance, le déplacement chimique et la constante de temps \(T_2 \).
- Expression corrigée :
 Le déplacement chimique, la densité électronique autour du noyau et la constante de temps \(T_2 \).

Page 76 :
\[
\left(\int |x(t)|^2 \, dt \right) \left(\int |h(t)|^2 \, dt \right) \quad \text{au lieu de} \quad \left(\int |x(t)|^2 \, dt \right) \left(\int |h(t)|^2 \, dt \right)
\]

Page 90, 91 :
\(B_\chi \) au lieu de \(B_\chi \)

Page 94 :
\[
a_j + \sum_{i=1}^{N} b_i a_{i-j} = 0 \quad \text{au lieu de} \quad a_j + \sum_{i=1}^{N} b_i a_{i-j} = 0
\]

Page 100 :
Autour de 200 Hz au lieu de 1 kHz