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I 
 

Abstract 

 
The construction of new dams as well as the evolution and improvement of existing 

ones create an important need of developing modern tools and design methods allowing for 
taking into account realistically and completely the dam-reservoir-foundation system 
interaction. 
  

The seismic design of concrete dams implies several difficulties to estimate the dam’s 
dynamic stress, the response of the dam-reservoir-foundation system interaction and the 
assessment of the impact regarding the parameters involved. 
  

The current work examines the effect of foundation representation, reservoir water 
modeling and Rayleigh’s viscous damping on the dynamic response of the dam-reservoir-
foundation system. This study is achieved using ANSYS, one of the leading commercial finite 
elements software worldwide. 
 

Three approaches have been adopted to investigate the dynamic behavior and the 
interaction phenomenon of the dam-foundation system: 
- Dam alone, 
- Dam and foundation without consideration of its mass, 
- Dam and foundation with its mass taken into account. 
 

The dam-reservoir and foundation-reservoir interfaces have been modeled using the 
following assumptions: 
 

1- Interface modeling with coupling equations, 
2- Interface modeling by contact elements, 
3- Interface modeling by added masses. 

 
The third method consists in splitting the water reservoir’s mass in a great number of 

small added masses, using the ‘surf’ elements available via the ANSYS code library (added 
masses approach). The calculations take into account the hydrostatic pressure of the water 
reservoir. The results of all three methods are then compared. 
 

These analyses results have been used to carry on a parametric study. They allowed for 
understanding the effect of the above mentioned parameters on the dynamic behavior of 
Brezina’s concrete arch dam, located in Elbayadh in Algeria and chosen as a case study in this 
work. 
Key words: 
ANSYS code, Interaction foundation-fluid-structure, concrete dam, contact element, coupling 
equations 

 



II 
 

 

Résumé 

La construction des nouveaux barrages, l’évolution et l’amélioration des ouvrages déjà 
existants, nécessitent des outils modernes et méthodes de conception adaptées qui permettent  
de prendre en compte d’une manière réaliste et exhaustive l’interaction de l’ensemble du 
système barrage, réservoir d’eau et sol de fondation environnante. 

La conception sismique des barrages en béton est associée à des difficultés pour 
évaluer aussi bien les contraintes dynamiques du barrage, la réponse de l’interaction de 
l’ensemble de l’ouvrage barrage - réservoir d’eau - fondation ainsi que l’estimation de 
l’impact des divers paramètres associés. 

La présente étude démontre l’influence de la fondation, la modélisation de l’eau et 
l’amortissement proportionnel visqueux de Rayleigh sur la réponse dynamique de l’ensemble 
du système barrage - réservoir d’eau - fondation. L’étude est réalisée avec le code industriel 
américain éléments finis ANSYS.   

Trois configurations ont été examinées pour étudier le comportement dynamique  et 
appréhender le phénomène d’interaction fondation - barrage : 
-barrage seul, 
-barrage avec fondation environnante sans tenir compte de sa masse, 
- barrage avec fondation environnante en tenant compte  de sa masse. 

Les interfaces barrage - réservoir d’eau et fondation - réservoir d’eau ont été modélisées 
en utilisant les approches suivantes : 

1- Modélisation de l’interface par des équations de couplage, 
2- Modélisation  de l’interface par des éléments de contact, 
3- Modélisation par masse ajoutée. 
La troisième méthode consiste à répartir la masse du réservoir d’eau sous forme de masse 

ajoutée en utilisant les éléments ‘ surf ‘ disponibles dans la bibliothèque des éléments 
d’ANSYS (approche des masses ajoutées). La pression hydrostatique du réservoir d’eau est 
prise en compte dans les calculs. Les résultats des trois méthodes sont comparés. 

Les résultats d’analyse ont été utilisés pour mener une étude paramétrique. Ils ont permis 
de comprendre l’effet des paramètres cités ci-dessus sur le comportement dynamique du 
barrage voûte de Brézina, situé à El bayadh en Algérie, choisi comme étude pour mener ce 
travail. 
Key words: 
Code ANSYS, Interaction fondation-fluide-structure, Barrage en Béton, élément de contact, 
équations de couplage 
 



 ملخص

 
 وأساليب الأدوات الحديثة لتطوير حاجة مهمة خلق القائم منها وتحسين التطور وآذلك سدود جديدة بناء

.قاعدة -الخزان -السدالتفاعل للاخد بعين الاعتباروالسماح  تصميم  

 لنظام استجابة، لسدل ديناميكيال الإجهاد لتقدير عدة صعوبات يعني الخرسانية سدودلل الزلزالي تصميمال
.المرتبطة مختلف المعايير تأثير  وتقييمأساس -ةالخزان -سد لتفاعلا  

 على الاستجابة الديناميكية لرايلي اللزجالتخميد و المياه خزان تمثيل ,القاعدةتأثير يدرس العمل الحالي
.قاعدة-خزان - سد للنظام  

.عالمفي جميع أنحاء ال البرمج تمت الدراسة باستخدام برنامج و هو واحدة من أبرز     

  :و القاعدةوقد اعتمدت ثلاثة نهج للتحقيق في السلوك الديناميكي وظاهرة التفاعل بين السد ,
  السد وحده، -
  دون النظر في آتلته، القاعدة السد و -
  .مع آتلته تؤخذ بعين الاعتبار القاعدة السد و -
  

 الافتراضات التالية باستخدام تم تمثيلهم  خزان الماء -القاعدةماء و خزان ال -  الواجهات سد
قترانالا معادلات باستخدام واجهةال تمثيل  

الاتصال عناصر باستخدام واجهةال تمثيل   
مضافةال باستخدام الكتل واجهةال تمثيل   

باستخدام العنصر المضافة آتل شكل خزان للمياه في من الوزن توزيع الثالث هو الأسلوب  

السلوك  أعلاه على المذآورة المعلماتفهم تأثير حدودية ل اسةلإجراء در نتائج التحليل واستخدمت
.الجزائر بريزينا الدى يقع في الديناميكي لسد  

 

 :الكلمات الرئيسية

قترانمعادلات الا،الاتصال عنصر،  خرسانةبل سد  ،قاعدة -الخزان - السدالتفاعل  ، رمز  
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Introduction 

Most civil engineering structures are elements of much larger systems, called the 
overall system, containing several other system components. When subjected to transient 
loads, these structures interact with the other components of the overall system such that a 
continuous transfer of energy is established between them. The effects of interaction on the 
dynamic behavior of these structures are determined by the mechanical properties of all the 
components of the overall system, the interaction mechanism and the type of dynamic 
loading. Dams belong exactly to this category of structures. They interact with the foundation 
rock and with the reservoir. The kind and intensity of the interaction depends on the physical 
processes that occur at the interfaces of the dam with the foundation rock and the reservoir 
(Glauco Feltrin, 1997). 

Usually we speak of weak or strong interaction depending on whether the interaction 
has little or large effects on the behavior of the structure being analyzed. This classification 
has obvious implications for the modeling. In the case of weak interaction, we may neglect 
the interaction effects in the analysis without serious consequences for the accuracy. In 
contrast, strongly interacting structures impose a sophisticated modeling of the interaction 
effects in order to capture the relevant features of the response. In many cases, say for 
moderate interaction, simple models may yield very good results. However, their range of 
application is usually limited (Glauco Feltrin, 1997). 

A class of interaction problems requiring special methods for its analysis is that 
involving overall systems which are much larger in size than the structure itself. Typical 
examples are foundations resting on rock or soil or dams interacting with the reservoir and the 
foundation rock. The size of the overall system is so large that its direct modeling, e.g. with 
finite elements, is virtually impossible because of the tremendous effort needed to compute a 
solution. In addition, usually engineers are mainly interested on the response of the structure 
and its close neighborhood so that an accurate modeling is only needed for a small subdomain 
of the overall system (Glauco Feltrin, 1997). 

It is now generally known that the foundation soil significantly affects the dynamic 
response of gravity dam; (A. Bayraktar et al. 2005). Dam safety during and after an 
earthquake is an area of current concern. The failure of a dam during an earthquake may be 
catastrophic in terms of loss of life and financial loss (K. Hatami, 1997). Dam response is then 
governed by the interplay between the characteristics of the soil, the dam itself and the input 
motion. Soil-structure interaction (SSI), as this phenomenon has become known, has been of 
research interest for the past 30 years (D. Pitilakis et al. 2008).  

In the literature, four different earthquake input mechanisms are used to consider the 
effect of local soil conditions on the earthquake response of dam – foundation interaction 
systems (A. Bayraktar et al. 2005): the standard rigid-base model, the massless-foundation 
model, the deconvolved-base-rock model, and the free-field dam-foundation interface model 
(P. Leger et al. 1989). In the massless foundation model, absence of mass makes the 
foundation rock as a spring, i.e., only the flexibility of the foundation rock is taken into 
account. Theoretically, to take advantage of the dam’s geometrical characteristics and loading 
conditions, most structural analyses performed on the dam-foundation soil system are based 
on the 2D plane strain assumption.  

 



Introduction 
 

 3

Concrete dams do not possess high structural damping compared to other civil 
engineering structures. Due to the effect of the adjacent reservoir, however, there are other 
sources of damping present in a dam-reservoir-foundation system. The added damping due to 
the radiation of waves in the unbounded upstream direction of the reservoir and due to the 
absorption of incoming waves at the reservoir bottom may result in significant reduction in 
the response of a concrete dam under earthquake excitation. In addition to the radiation of 
refracted waves from the bottom of the reservoir, the foundation of the dam allows for the 
radiation of energy waves from the vibrating dam to the far field (K. Hatami, 1997). The main 
energy loss mechanism currently assumed in the analysis of concrete dams is viscous 
damping (T. O. Florin et al. 2010). Equivalent viscous damping constants have been 
determined experimentally. Shaking tests using low-level excitations have been performed on 
concrete dams throughout the world, and a damping ratio of 2 to 5 percent of the critical 
damping have been reported, (K.J. Dreher et al. 1980). However, a damping ratio as high as 
10 percent of the critical damping has been measured during higher levels’ excitations. 
Therefore, a damping ratio of 2 to 10 percent appears reasonable for most concrete dams (K.J. 
Dreher et al. 1980). 

It is well known that real modes, which are obtained assuming free natural vibrations 
without damping, can be used as a modal base in a modal superposition analysis, e.g. a 
spectrum analysis, where damping is small. However, for structures exhibiting significant 
viscous damping, for example a damping ratio of 5 percent, real modes might not be 
appropriate. In this case complex modes should be employed instead.  

The analysis of dams is a complex problem due to the dam-reservoir and dam-
foundation interaction. In addition to the static water pressure, the dam undergoes dynamic 
forces from the reservoir when the system is subjected to earthquake ground motion. The 
magnitude of this additional hydrodynamic force is quite significant and may lead to crack 
initiation and propagation in the dam even under a moderately strong seismic event (K. 
Hatami, 1997). 

In the literature, three approaches can be used to represent the hydrodynamic effect of 
the fluid: added mass approach, Lagrangian approach and Eulerian one. For the added mass 
approach, the dynamic effect of the reservoir is modeled as masses applied at the upstream 
dam face. However, in the Eulerian approach the displacements are the variables in the 
structure and the pressures are the variables in the fluid, hence a special purpose computer 
program is required to obtain the solution of the coupled systems. In the Lagrangian approach 
the behavior of the fluid and structure is expressed in terms of displacements. For that reason, 
compatibility and equilibrium are automatically satisfied at the nodes along the interfaces 
between the fluid and structure. This makes Lagrangian displacement-based fluid finite 
elements very desirable; they can be readily incorporated into a general purpose computer 
program for structural analysis, since special interface equations are not required. 

One of the important steps in dam-reservoir-fluid interaction study consists in 
modeling the reservoir–dam and reservoir–foundation interfaces. At the interfaces the normal 
components of the displacements of the reservoir–dam and reservoir–foundation interfaces 
have to be continuous (A. Bayraktar et al. 2005). In the literature this condition can be 
accomplished by using coupling equations at reservoir–dam and reservoir–foundation 
interfaces. A short and almost axially rigid truss element in the normal direction of the 
interfaces also represents a solution for this condition (A. Bayraktar et al. 2005).  

Another approach is exposed in the present thesis to model the reservoir–dam and 
reservoir–foundation interfaces, concerning the use of contact elements at the location of 
these interfaces. 
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ANSYS is one of the leading commercial finite element programs in the world and can 
be applied to a large number of applications in engineering. It performs linear and nonlinear 
analyses; nevertheless it is not specialized for SSI analysis. The first objective of the present 
work is to focus this finite elements code on the structural dynamic analysis of foundation-
fluid-structure interaction problems, whereas the second one is to examine the combined 
effect of foundation and reservoir water on the seismic response of a concrete gravity dam. 
The special emphasis of the study concerns the effects of the contact at the dam-foundation 
interface and the effects of hydrodynamic pressure on the seismic response of concrete dam 
using different approaches for fluid-structure interaction as well as for the foundation-
structure fluid interface. 

In order to achieve the above mentioned objectives, a numerical study was conducted 
using finite elements ANSYS code for “Brezina” concrete gravity arch dam, chosen as a case 
study.  

The first part of the work deals with the foundation-structure interaction problem using 
a direct method. Dynamic analyses were performed for the dam being object of the study, 
under three generated records and three foundation modeling assumptions (mass foundation 
model, massless foundation model and fixed support foundation). In the same axis, a 
parametric study was performed to view the effect of damping ratio on the modal response of 
the dam using the damped modal analysis and the undamped one. 

The second part consists in incorporating the hydrodynamic effect of reservoir water 
assuming different levels’ values. A special emphasis was done on modeling the fluid-
foundation and also the fluid-dam upstream face interfaces. Two assumptions were adopted to 
model the interfaces; the coupling equations and the contact elements available in ANSYS 
finite elements code. An important application takes place in the present work, regarding the 
modeling of “added mass approach” using “Surf Element” available in ANSYS library. 

This thesis is structured as follows: 

Introduction 

Chapter 1: Soil Structure Interaction Phenomenon 

Chapter 2: Fluid Structure Interaction Phenomenon 

Chapter 3: Structural Dynamic Capabilities of ANSYS 

Chapter 4: Dam Description, Generation of Data Base, and Inputs 

Chapter 5: Dynamic foundation Structure Interaction Study using ANSYS 

Chapter 6: Undamped and Damped Modal Response of Dam Foundation Interaction using 
ANSYS 

Chapter 7: Two-Dimensional (2D) Modal and Transient Behavior of Dam Reservoir 
Foundation System using ANSYS 

Chapter 8: Three-Dimensional Modal Behavior of Dam Reservoir Foundation System using 
ANSYS 

General Conclusion 

And of course, as in any other work, this thesis finishes by a general conclusion. 
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CHAPTER 1 

Soil Structure Interaction Phenomenon 

1.1 Introduction to Soil–Structure Interaction Phenomenon 
The response of a structure during an earthquake depends on the characteristics of the 

ground motion, the surrounding soil, and the structure itself. For structures founded on rock or 
very stiff soils, the foundation motion is essentially that which would exist in the soil at the 
level of the foundation in the absence of the structure and any excavation; this motion is 
denoted the Free field ground motion. For soft soils, the foundation motion differs from that 
in the free field due to the coupling of the soil and structure during the earthquake. This 
interaction results from the scattering of waves from the foundation and the radiation of 
energy from the structure due to structural vibrations. Because of these effects, the state of 
deformation (particle displacements, velocities, and accelerations) in the supporting soil is 
different from that in the free field. As a result, the dynamic response of a structure supported 
on soft soil may differ substantially in amplitude and frequency content from the response of 
an identical structure supported on a very stiff soil or rock (Johnson et all, 2003). Structural 
response is then governed by the interplay between the characteristics of the soil, the structure 
and the input motion. Soil structure interaction (SSI), as this phenomenon has become known, 
has been of research interest for the past 30 years (D. Pitilakis et al, 2008). 

Compared with the counterpart fixed-base system, SSI has two basic effects on 
structural response (D. Pitilakis et al, 2008): 

• Firstly, the SSI system has an increased number of degrees of freedom and thus modified 
dynamic characteristics; 

• Secondly, a significant part of the vibration energy of the SSI system may be dissipated either 
by radiation waves, emanating from the vibrating foundation-structure system back into the 
soil, or by hysteretic material damping in the soil. The result is that SSI systems have longer 
natural periods of vibration than their fixed-base counterparts. 

Some codes practice for seismic design report that any lengthening of the natural 
period of vibration will be beneficial for the seismic response of the structure. However, SSI 
effects can give rise to an increased structural response in certain seismic and soil 
environments, depending mostly on the design response spectrum at the site. 

Moreover, the simplification ignores the fact that a structure experiencing SSI is not 
subjected to the free-field ground motion. Instead, the input motion depends on the properties 
of the foundation soil and the dynamic characteristics of the superstructure. 

Analysis method for SSI that were developed in the late 1960s and 1970s are still in 
use today, although much enhanced by latter day advanced in information technology and 
numerical processing. 

 Eurocode 8, Part 5 (2008) specifies that the effects of dynamic soil-structure 
interaction (DSSI) shall be taken into account where P-delta (2nd order) effects are significant, 
for structures with massive or deep-seatd foundations (such as bridge abutments and gravity 



Soil Structure Interaction Phenomenon 

7 
 

walls, piles, diaphragms and caissons), for slender tall structures and for structures supported 
on very soft soil, with average shear wave velocity less than 100m/s (Srbulov, 2008).  

1.2 Types of Dynamic Soil Structure Interaction 
 Two types of dynamic soil structure interaction are commonly referred to in the 
literature: 

1.2.1 Kinematic Interaction  
It is caused by inability of a foundation to follow ground motion due to greater 

foundation stiffness in comparison with ground stiffness. In effect, stiff foundation filters high 
frequency ground motion to an average translational and rotational foundation motion. 
Average values are smaller than the maximum values and therefore “kinematic” interaction is 
beneficial except if averaged motion results in significant rotation rocking of a foundation 
(Srbulov, 2008). 

1.2.2 Inertial Interaction 
It is caused by the existence of structural and foundation masses. Seismic energy 

transferred into a structure is dissipated by material damping and radiated back into ground 
causing superposition of incoming and outgoing ground waves. As a result, the ground 
motion around a foundation can be attenuated or amplified, depending on variety of factors. 

The most important factor in determining the response is the ratio between the 
fundamental period of a foundation and the fundamental period of adjacent ground in the free 
field. The ratio of unity indicates resonance condition between foundation and its adjacent 
ground, which is to be avoided. Considerable research, involving analytical, numerical and 
experimental modeling, has produced a variety of techniques for the evaluation of the 
interaction (Srbulov, 2008). 

Analyses of inertial interaction effects predict the variations of first-mode period and 
damping ratio between the actual “flexible-base” case and a fictional “fixed-base” case. The 
flexible-base modal parameters can be used with a free field response spectrum to evaluate 
design base shear forces for the structure. The analyses for kinematic interaction predict 
frequency dependent transfer function amplitudes relating foundation and free field motions 
Wang Jiachun, 2005). 

1.3 Methods of Analysis of Dynamic Soil Structure Interaction Phenomenon 
Modeling and analysis of dynamic soil structure interaction during earthquakes have gone 

through various stages, but always in two distinct directions, that is, the direct method and the 
substructure method, depending on the modeling method for the soil around the structure. 
(Wang Jiachun, 2005). 

1.3.1 Direct Method (Global Method) 
In a direct method, the soil and structure are included within the same model and 

analyzed in a single step (Wang Jiachun, 2005). It solves the dynamic equation in its matrix 
form as: 

guIMUKUCUM &&&&& −=++                                                                                                (1.1)  

Where: 

U : Represent the system relative displacements vector with respect to the base, 

I : Influence vector, indicates gu&&  sollicitation direction, 
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M , C , K : System mass, damping  and stiffness matrix respectively. 

gu&&  : Horizontal component of ground acceleration. 

 The solution outline using global method is illustrated in Figure 1.1 and follows the steps 
below: 

First step: The design seismic motion is known at soil surface, in free field; 

Second step: The motion is calculated at the bottom model base, which is located at a 
sufficient depth so that the presence of the structure at the surface will not affect this motion.  
This step is known as seismic motion deconvolution; 

Third step: The deconvoluted motion is uniformly imposed at the soil-structure system 
base and the response is calculated by solving Eq. (1.1). 

Because the assumptions of superposition are not required, true nonlinear analyses are 
possible. However, results from nonlinear analyses can be quite sensitive to poorly defined 
parameters in the soil constitutive model, and the analyses remain quite expensive from a 
computational standpoint. Hence, direct SSI analyses are more commonly performed using 
equivalent linear methods to approximate the effects of soil nonlinearity (Wang Jiachun, 
2005). 

Identical

Model base

Reference Free field

Frequency

Identical

Ac
ce

le
ra

tio
n

Structure base

Model base

Free field

 
Figure 1.1: Solution outlines using global method. 

To activate the SSI within a computer program it is only necessary to identify the 
foundation mass in order that the loading is not applied to that part of the structure. Most 
structural analysis computer programs automatically assign seismic loading to all mass 
degrees of freedom within the computer model and cannot solve the SSI problem.  This lack 
of capability has motivated the development of the massless foundation model which allows 
the correct seismic forces to be applied to the structure. However, the inertia forces within the 
foundation material are neglected. 

1.3.2 Substructure Method (Multistep Method) 
Substructuring techniques is particulary popular. Based on the decomposition of the 

complete soil foundation structure domain to several subdomains, the solution of the initially 
complex problem can be very fast and easy to implement. However, methods using 
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substructuring rely on the principle of superposition and, consequently, are limited to either 
the linear elastic or the viscoelastic domain (D. Pitilakis et al, 2008). 

The envisaged substructures are constituted by the soil on one hand and the structure on 
the other, as indicated in Figure 1.2. Equilibrium equations are written for each subsystem, 
and then compatibility conditions at the interface, continuity of displacement, and stress 
vector are satisfied. 

PF

uF

uB

us

uF

 
Figure 1.2: Substructure method scheme. 

As mentioned earlier, ground motions that are not influenced by the presence of structures 
are called free field motions. When structures are present, the structure interacts with the soil 
through a process referred to as soil-structure interaction (SSI). SSI has little effect on the 
response of some systems and a large effect on the response of others. SSI effect is of most 
significance for stiff and/or heavy structures supported on relatively soft soils.  For soft and/or 
light structures founded on stiff soils, SSI effect is generally small (Kramer, 1996). 

1.4 Soil Structure Interaction Modeling                                                                                                           
For SSI problems, the dynamic behavior of the foundation-superstructure system can be 

modeled using either the finite element method (FEM) or equivalent mass-spring dashpots 
models. The soil, in contrast, can be modeled by the FEM or, utilizing both the theory of 
integral equations and Green’s functions, by the boundary element method (BEM). 

1.4.3 Viscoelastic foundation rock model 

In this approach, the stiffness and damping characteristics of foundation-structure 
interaction in a viscoelastic half plane (2-D) or half space (3-D) model are described by the 
impedance function. Mathematically, an impedance function is a matrix that relates the forces 
(i.e., shear, thrust, and moment) at the base of the structure to the displacements and rotations 
of the foundation relative to the free field. The terms in an impedance function are complex 
and frequency dependent with the real component representing the stiffness and inertia of the 
foundation and the imaginary component characterizing the radiation and material damping  
(V. Saouma, 2006). 

1.4.2 Massless finite element foundation model 
The effects of dam-foundation interaction can most simply be represented by 

including, in the finite element idealization, foundation rock or soil region above a rigid 
horizontal boundary. The response to the earthquake excitation applied at the rigid base 
(bedrock) is then computed by the standard procedures. Such an approach, however, can lead 
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to enormous foundation models where similar materials extend to large depths and there is no 
obvious ”rigid” boundary to select as a fixed base. Although the size of foundation model can 
be reduced by employing viscous or transmitting boundaries to absorb the wave energy 
radiating away from the dam, such viscous boundaries are not standard features of the 
general-purpose structural analysis programs.  

These difficulties can be overcome by employing a simplified massless foundation 
model, in which only the flexibility of the foundation rock is considered while its inertia and 
damping effects are neglected. The size of a massless foundation model need not be very 
large so long as it provides a reasonable estimate of the flexibility of the foundation rock 
region. A foundation model that extends one dam height in the upstream, downstream, and 
downward directions usually suffices in most cases. Unlike the homogeneous viscoelastic half 
plane model described previously, this approach permits different rock properties to be 
assigned to different elements, so that the variation of rock characteristics with depth can be 
considered (ex : foundation mass soil). The massless foundation model also permits the 
earthquake motions recorded on the ground surface to be applied directly at the fixed 
boundaries of the foundation model. This is because in the absence of wave propagation, the 
motions of the fixed boundaries are transmitted to the base of the dam without any changes 
(V. Saouma, 2006). 

It should be pointed out that numerical modeling of dynamic soil structure interaction is 
still in its course of development. The various current models are no longer restricted only in 
the time or the frequency domain alone. Techniques used to establish numerical models are 
not restricted to be finite element method or boundary element method. On the contrary, all 
these are always incorporated with one and another, and some new analysis techniques have 
been introduced into the problem, such as a coupling model of finite elements and scaled 
boundary finite elements, and a coupling model of finite elements, boundary elements, infinite 
elements and infinite boundary elements (Wang Jiachun, 2005). 

1.5 Earthquake Input Mechanisms for SSI Problems  
In the literature, four different earthquake input mechanisms are used to consider the 

effect of local soil conditions on the earthquake response of structure – foundation interaction 
systems (A. Bayraktar et al, 2005): 

 The standard rigid- base input model: the earthquake motion applied to the 
base of the soil layer by foundation rock is an accelerogram that had been recorded previously 
by a strong motion seismograph located at the soil surface. 

 The massless-foundation input model: for this model, the rigid base rock input 
motions are transmitted instantaneously through the foundation rock to the base of the 
structure, without any wave propagation effects. These assumptions neglect the interaction 
effects due to radiation damping of the infinite mass rock and the non-uniform input motions 
along the foundation base. 

It is clear that the motions occurring at the base of soil layer cannot be identical to 
those recorded at its free surface which means that the two cited models are deficient. 
Overcoming this deficiency can be done, either by the deconvolution of the free-field surface 
record which represents the third earthquake input mechanisms (the deconvolved-base-rock 
input model), or by employing a formulation of the analysis procedure that applies the 
recorded accelerogram as a free –field input which is the forth earthquake input mechanisms 
(the free-field structure-foundation interface input model). 
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1.6 Material Nonlinearity 
With SSI analysis there are two kinds of nonlinearities. The first one which has 

received most attention from researchers and practicing engineers, and is associated with the 
nonlinear behavior of the soil. The second is associated with the partial separation (uplift) of 
the foundation from the soil mass, resulting from the inability of the soil to resist tension. Soil 
is the most complicated engineering material, especially when considering the effects of 
seismic and dynamic loading (M. Kutanis et al, 2000). 

A number of recent researches have provided insights into the seismic response 
characteristics of structures. Application of system identification techniques to measure 
earthquake response data for structures has indicated that structure foundations and the 
surrounding soil constitute a strongly coupled system. The dynamic behavior of the structure 
foundations and the surrounding soil has a first order influence on the dynamic response of 
the structure. Analysis of measured strong motion response data has also indicated that local 
nonlinear behavior of soil can result in significant nonlinear global behavior of the entire 
system, even when the structure remains linear. However, the different boundary assumption 
may lead to erroneous results, and the different codes result in different analysis results 
(Wang Jiachun, 2005). 

For seismic analysis of such high arch dams to resist strong earthquakes, it is 
necessary to consider some important factors:  (1) complete interaction effects between the 
dam and the rock foundation; (2) nonlinearities of the dam with contraction joint opening 
during the extreme ground motions (Z. Chuhan et al, 1998). Some state of the art procedures 
dealing with seismic analysis of arch dams assume a truncated massless rock foundation and 
apply the design earthquake input at the rigid base beneath the truncated rock foundation. 
These assumptions neglect the interaction effects due to radiation damping of the infinite 
mass rock and the non-uniform input motions along the canyon. With regard to the nonlinear 
behaviour of arch dams, the most important nonlinearity is initiated by the contraction joint 
opening during strong ground motions. This phenomenon often occurs in the upper portion of 
a dam where the largest tensile stresses up to 5-6 Mpa are expected to occur in the arch 
direction for moderately strong earthquake motion (Z. Chuhan et al, 1998) 

1.7 Numerical Analysis procedures for dynamic soil structure interaction problems: 
For a long time, modeling of dynamic soil structure interaction was carried out in the 

frequency domain, which restricted the analysis of the soil structure system to be linear. 
Nonlinearity of the soil was taken into account only in an approximate manner through 
equivalent linear analysis procedure in which dynamic soil parameters were adjusted in 
accordance with the peak or the average strain during iterative solutions of the system in 
frequency domain, whereas the structure had to be assumed to be linear. To address this 
problem, the direct method went into the time domain, using well-established procedure of 
structural dynamics. But, at this stage, the direct method still could not model the energy 
radiation effect, whereas the substructure method, which remained in the frequency domain, 
could model this phenomenon very well. In response, there began in the direct method the 
development of “transmitting boundaries”, such as the early “viscous boundary” proposed by 
Lysmer, J. etc, and then the various kinds of “consistent boundaries” (Wang Jiachun, 2005). 

More recent researches of dynamic soil structure modeling tend to be concentrated in the 
time domain, not only because the problem of nonlinearity can be better simulated in the time 
domain than in the frequency domain, but also that the typical structural analyst is not 
accustomed to working in the frequency domain; its natural approach is to consider the 
sequence of developments from one time to the next that is to apply the time domain concept 
(Wang Jiachun, 2005). 
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1.8 Domain Boundaries 
Finite element model is able to treat soil domains of arbitrary layer geometry and 

accommodate material nonlinearity, anisotropy and inhomogeneity, but does not satisfy the 
radiation-towards-infinity condition at the boundaries, a phenomenon inherent in SSI. Special 
boundary conditions have to be introduced to simulate the unbounded nature of the soil 
medium. 

Modeling of domain boundaries is one of the biggest problems in dynamic SSI. Because 
of limited computational resources the computational domain needs to be small enough so 
that it can be analyzed in a reasonable amount of time. By limiting the domain however an 
artificial boundary is introduced. As an accurate representation of the soil-structure system 
this boundary has to absorb all outgoing waves and reflect no waves back into the 
computational domain. The general purpose of these”transmitting boundaries” is to avoid the 
reflection of waves emanating from the structure and the adjacent soil. Some more recent 
“transmitting boundaries” are frequency dependent and made the direct method enter the 
frequency domain again and ready to model the hysteretic nature of soil damping (Wang 
Jiachun, 2005). 

Many numerical methods or techniques have been developed to solve this problem, such 
as transmitting boundaries of different kinds, boundary elements, and infinite elements and 
their coupling procedures (M. Kutanis et al, 2000). 

In numerical simulation of soil structure interaction, usually only a finite region of the 
problem domain is discretized and analyzed to save computational cost. Two important 
characteristics that distinguish the dynamic soil-structure interaction system from other 
general dynamic structural systems are the unbounded nature and the nonlinearity of the soil 
medium. Generally, when the numerical dynamic soil-structure interaction models are 
established, radiation of dynamic energy into the unbounded soil, the hysteretic nature of soil 
damping, separation of the soil from the structure, other inherent nonlinearities of the soil and 
the structure should be taken into account.  

If no special boundary treatment is used to prevent outwardly radiating waves from 
reflecting from the boundary of computational region, errors will be introduced into the 
results. In order to model this problem using computational simulation procedure, two main 
difficulties should be taken into consideration: transmitting boundary conditions and soil 
structure interface (Wang Jiachun, 2005). 

 Fixed or free 

By fixing all degrees of freedom on the domain boundaries any radiation of energy away from 
the structure is made impossible. Waves are fully reflected and resonance frequencies can 
appear that don’t exist in reality. The same happens if the degrees of freedom on a boundary 
are left free, as at the surface of the soil. 

A combination of free and fully fixed boundaries should be chosen only if the entire model is 
large enough and if material damping of the soil prevents reflected waves to propagate back to 
the structure. 

 Absorbing Lysmer Boundaries 

A way to eliminate waves propagating outward from the structure is to use Lysmer 
boundaries. This method is relatively easy to implement in a finite element code as it consists 
of simply connecting dash pots to all degrees of freedom of the boundary nodes and fixing 
them on the other end (Figure 1.3). 
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Figure 1.3: Absorbing boundary consisting of dash pots connected to each degree of freedom 

of a boundary node. 

Lysmer boundaries are derived for an elastic wave propagation problem in a one 
dimensional semi-infinite bar. It can be shown that in this case a dash pot specified 
appropriately has the same dynamic properties as the bar extending to infinity. 

The damping coefficient C of the dashpot equals: 

cAρC =                                                                                                                               (1.2) 

Where A is the section of the bar, ρ  is the mass density and c the wave velocity that has 
to be selected according to the type of wave that has to be absorbed (shear wave velocity sc  
or compressional wave velocity pc ). 

In a 3D or 2D model the angle of incidence of a wave reaching a boundary can vary from 
almost 0o up to nearly 180o. The lysmer boundary is able to absorb completely only those 
under an angle of incidence of 90o. Even with this type of absorbing boundary a large number 
of reflected waves are still present in the domain. By increasing the size of the computational 
domain the angles of incidence on the boundary can be brought closer to 90o and the amount 
of energy reflected can be reduced (Ismail et al, 2000). 

 Infinite elements 

The infinite element type can also be used as transmitting boundary condition in place of 
traditional ones (dashpots) (Ismail et al, 2000). 

The advantages of infinite elements can be summarized as: 

 Unlike a dashpot element, an infinite element does not require calculations of 
coefficients, which require knowledge of detailed soil properties and mesh geometry. 
The infinite element offers a slight improvement in the regularity of the wave 
absorbing characteristics computed in the idealized cases examined, and infinite 
elements radiation damping performance is reliable (Wang Jiachun, 2005). 

 For 2D problems, one infinite element can replace four dashpot elements and, for 3D 
problems up to twelve dashpot elements, which reduces the total number of elements 
in the model achieving significant economy in the case of large models. 
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 Unlike a dashpot, the infinite element is more manageable and accessible. 

 Infinite Elements radiation damping performance for Rayleigh waves is reliable. 

1.9 Some Existing Studies on Soil Structure Interaction phenomena 
Chopra & Zhang (1991) developed an analytical procedure considering hydrodynamic 

effects to determine the response history of earthquake-induced sliding of a rigid or flexible 
dam monolith supported without bonding on a horizontal rock surface. Their results indicated 
that this approximate procedure, which has been widely used in estimating the deformations 
of embankment dams, cannot provide accurate estimates of the concrete dam sliding 
displacement, as its precision can only be used to approximate the order of magnitude. In 
addition, base sliding was shown to be more important than rocking of the dam for the cases 
considered. 

An important result of Chopra & Zhang (1991) was that, even if the ground motion 
contains spikes of downstream acceleration large enough to initiate tipping, the influence of 
the resulting rocking of the dam on its sliding motion is negligible. Thus, the rocking motion 
may be ignored when evaluating the sliding response. This observation is valid, provided that 
the dam is directly founded on rock. Conversely, it can be unrealistic when the dam is 
founded on a compliant soil layer. Usually when soft soils are encountered, embankment 
dams are more preferable than concrete dams. However, in certain situations, the local site 
conditions may not permit the construction of embankment dams, and the construction of a 
concrete dam is unavoidable. If a concrete dam is constructed on a soft soil layer, sliding 
effects are trivial and the rocking response is progressively increased. Inadequate results are 
available for this issue, thus, further research is needed to cope with the aforementioned cases. 

 

A shaking table study of concrete dam monoliths was performed by Donlon & Hall 
(1991). The three small-scale concrete gravity dam models examined showed good 
performance, which is attributed to the favourable crack orientations that can be attributed to 
sliding failure resistance in each case. Plizzari et al. in 1991 presented results of centrifuge 
modeling of concrete gravity dams. Among the types of dam models tested in the centrifuge 
there was a concrete dam which was cast on a rock foundation, so that failure was expected to 
occur along the damfoundation interface. Using water for upstream loading ensured that uplift 
pressure inside the crack was maintained. Comparison of the experimental data with 
numerical fracture mechanics-based finite-element solutions showed an excellent consistency 
of the results. 

Mir & Taylor (1995) performed a series of shaking table tests to assess the possible 
failure mechanisms of medium to low height dams which were subjected to simple motions 
and artificial earthquake excitations. The hydrodynamic pressure was simulated using 
Westergaard's added mass approach. Although the main failure mechanism was observed to 
be base cracking, after the full crack development at the interface, a tendency of the models to 
slide and rock was observed in some cases. 
In any case, to obtain realistic estimates of the base sliding displacement for a dam, it is 
necessary to include the effects of dam-foundation interaction. Dam foundation interaction 
generally reduces the amount of base sliding and the earthquake response of a gravity dam, 
primarily due to increased energy dissipation. The assumption of rigid foundation can 
overestimate the base sliding displacement significantly compared to more realistic estimates 
obtained from including dam foundation interaction, particularly for tall dams. Chavez & 
Fenves (1995) conducted finite element analyses for a dam monolith. The monolith was 
modeled using plane stress finite elements with linear elastic material properties, while the 
base of the dam was assumed rigid. The foundation layer was idealized as a homogeneous, 
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isotropic and viscoelastic half-plane. The main finding of this study was that the accumulated 
sliding displacement is influenced by the duration, the amplitude and the characteristics of the 
free-field ground motion. Sliding is more pronounced when the duration and the amplitude 
get higher. Moreover, sliding increases when the ground motion has several significant cycles. 
In addition, sliding displacements are strongly dependent on the value of the coefficient of 
friction. This dependency decreases for shorter dams and for dams founded on a flexible 
foundation layer. 

The dynamically induced sliding characteristics of a typical low height gravity dam 
monolith cracked at its base was examined in a series of dynamic slip tests on a concrete 
gravity dam model, conducted on a shaking table by Mir & Taylor (1996). A comparison of 
the observed displacements with those calculated via the popular Newmark's sliding block 
method indicated that the latter gives conservative estimates of seismic induced sliding of 
gravity dams. 

The foundation on rock, which is usually modeled as being bonded with the dam, has 
been considered to behave linearly elastically (Akköse et al. 2008 a, b, Bilici et al. 2009), or 
visco-elastically (Aznárez et al. 2006). Nonlinear base sliding behavior has been examined by 
Chopra & Zhang (1991), where the concept of critical acceleration is used to study the 
horizontal base displacements of rigid and flexible dams. This type of behavior was also 
studied by Danay & Adeghe (1993), where an empirical formula was developed to estimate 
the sliding displacement of a concrete gravity dam using statistical methods. In all the 
aforementioned studies the rocking displacement (rotation) of the dam is considered 
negligible when it is free to slip horizontally. Nevertheless, the rocking motion can 
significantly reduce the normal stresses at the base of the dam, which contribute to its sliding 
resistance. The sliding displacement has proved to decrease in the case of compliant 
foundation (Chavez & Fenves, 1995). For this reason, various possibilities of dam foundation 
interface de-bonding have been considered (Javanmardi et al. 2005, Arabshahi & Lotfi, 2008), 
whereas energy dispersion in infinite foundation has been studied by Du et al. (2007). 

Three examples were used by Chongbin.Z  in 1998 to show how engineering practice 
soil structure interaction problems are solved using the infinite elements method:  

The first example was about a three dimensional multi-storey frame structure with a 
plate foundation resting on a rock medium which was considered to investigate the effect of 
foundation flexibility on the dynamic response of a structure with the soil-structure interaction 
included. The frame structure was modelled using 3D frame elements, while the plate and the 
near field of the rock mass were modelled using the thick plate elements and solid elements 
respectively. To reflect the wave propagation between the near and far fields, the far field of 
the rock mass was modelled using 3D infinite element. The plate foundation was considered 
both flexible and rigid so that the related results can be compared with each other. It was 
observed that when the frame is subjected to a horizontal movement induced by the dynamic 
load on the plate, the maximum value of the displacement difference within each storey of the 
frame structure occurs in the ground storey of the frame for both rigid and flexible plate 
foundations. This implies that the safety of the columns in the ground storey is the controlling 
factor in the seismic design of the frame structures. In addition, the flexibility of the plate 
foundation has a significant effect on the displacement response of the ground storey of the 
frame structure. 

The second example was about a coupled method of finite and infinite elements which 
was investigated for solving the dynamic behaviour of a retaining wall. The near field of this 
problem consists of the retaining wall, the backfill soil and part of the natural soil, while the 
far field was comprised of the rest of the natural soil and the base rock mass. Finite elements 
and dynamic infinite elements are used to model the near and far fields of the natural soil and 
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rock mass respectively. It was concluded that the configuration of a retaining wall may affect 
significantly the amplification factor of the retaining wall to an input earthquake. 

However the third example was about a typical embankment dam with either a central 
clay core or an upstream inclined concrete apron, where the dam and the near field of its 
foundation medium were modelled using finite elements, but the far field was modelled using 
dynamic infinite elements. It was observed that the resonant frequencies of the system with an 
upstream inclined concrete apron are different from those of the system with a central clay 
core because the concrete apron is much stiffer than the central clay core. However, since the 
thickness of the inclined concrete apron was not profound although it deserves being 
considered in the analysis. In terms of the amplification factors of the system due to different 
impervious members, it has recognized that the types of impervious members have a 
significant influence on the dynamic response of the system in the low frequency range of 
excitation. The reason for this is that the material damping of the system plays a considerable 
role in the dynamic response of the system for low frequency excitation. 

The effect of both the dam-canyon interaction and the local nonlinearity of the 
contraction joint opening between the dam monoliths on the response of high arch dams were 
considered by Z. Chuhan et al in 1998 and combined by into one program. The substructuring 
technique was employed, thus the equilibrium iteration involved only the degrees of freedom 
in nonlinear substructure. The Big Tujunga arch dam, located in Big Tujunga canyon, Los 
Angele country, California was chosen as an engineering example. 3D boundary elements 
(BEs) and infinite boundary elements (IBEs) were used for discretization of the canyon, 
taking into account the irregular geometrical conditions in the near field of the canyon. The 
effects of reservoir water can be viewed as added mass by finite elements and attached to 
dam-fluid interface. The impedance of the canyon rock were transformed into discrete 
parameters and attached to the dam-canyon interface. The remaining task was to solve the 
equations of motion of the dam body which includes linear elastic cantilevers and a set of 
nonlinear contraction joints. 3D nonlinear joint element was used to model the nonlinear 
contraction joints of dam. The earthquake ground motion used in the analysis in the lake 
Hughes No.12 record obtained during the 1971 San Fernando earthquake having a maximum 
peak acceleration of 0.6g. Time step ∆t of 0.01 sec was used although ∆t of 0.005sec was also 
examined to verify the convergence of the response. Dynamic analysis was first conducted for 
linear analysis assuming the contraction joints were closed. Nonlinear analysis was then 
performed allowing for the opening of the contraction joints. Both linear and nonlinear 
analyses are performed using massless and infinite mass foundation for comparison. It had 
been concluded that the effects of contraction joint opening of arch dams on the response are 
significant and that the effects of canyon radiation due to the infinite mass foundation are also 
significant on both linear and nonlinear responses of dams. 

W. Shiming et al in 1998, analyzed vibration impedance function of raft and pill 
foundations on layered media with 3D model consisting of special beam, column and panel 
elements. The authors presented superstructure-foundation-soil 3-D dynamic interaction 
equations and corresponding program with substructure method. The results were compared 
for commonly used frame and frame-shear wall structures on different subsoil, different types 
of foundation and different input of seismic waves. The results show variation of vibration 
period of structure, displacement, stresses under consideration of interaction.  

The control effectivness of Tuned Mass damper (TMD) device was studied by L. 
Menglin et al in 1998 for high rising building rested on the soft soil, subjected to seismic 
excitation. Two approaches, random analysis in frequency domain and determinative analysis 
in time domain, were applied for evaluating the effects of soil-structure interaction (SSI) on 
the dynamic response of the structure with TMD device. The shear buildings with (LxL) 



Soil Structure Interaction Phenomenon 

17 
 

square cross-section, rested on half space, were selected for illustration. As well as two types 
of structure’s base foundation, surface foundation and group piles foundation, were taken in 
consideration respectively. The TMD device was installed at the building top. Its damping 
ratio was designed as 8% and mass was equal to 2% of the first modal mass of the building. 
El centro and San Fernando earthquake records were selected as the horizontal seismic input.  

The numerical cases studied gave the following several results: 

 The function of TMD control to suppress the seismic response of the building is weakened by 
the soil structure interaction with decrease of the shear wave velocity of the soil. The stronger 
interaction between the soil and the structure, the more reduction of the TMD control 
effectiveness. 

 If the high-rising building with higher modal damping, for example 5% in reinforced concrete 
structure, is rested on soft soil, TMD technique is not available to control the seismic response 
of the building efficiently. 

 If the soil is not very soft and damping of the building is small, for example about 1% or 2% 
in the steel structure, TMD control can still be applied to reduce the seismic response of the 
building. However, the frequency of the TMD device has to be designed to equal 
approximately to the fundamental frequency of the soil structure system rather than the 
fundamental frequency of the structure without considering the SSI effect. 

Cases studies of the structure seismic response on the campus of the University of 
Mississippi by Ismail and all in 2000, have highlighted the importance of interaction between 
structure foundations and soil deposits. Two different ABAQUS models have been used to 
study this problem, one with dashpots and the other with Infinite Element. In this problem a 
sinusoidal dynamic displacement history has first been applied to an assumed rigid interface 
surface between the soil and footing and the interaction forces at the edge of both models have 
been determined. Second an earthquake load of moderate intensity has been applied from 
underneath, and a displacement history at one of the interface nodes has been calculated for 
each model. It had been concluded that responses of both models were almost the same in 
both models, which gave a positive impression about using the Infinite Elements as 
transmitting boundary conditions. 

Evaluating the interaction of Soil -Structure system subjected to a seismic load is an 
important step in any dynamic analysis. One of the most important problems in this kind of 
analysis is the local nonlinear behavior between the soil and the structure foundation. For this 
reason, Ismail et al. in 2000, used one of the contact-surface modeling procedures available in 
the commercial software package, ABAQUS, which is the Master-Slave technique. In this 
technique, the model was divided into two submodels one called the Master and the other 
called the Slave. The two sub-models interact along a user-defined contact surface. By virtue 
of this surface, it is not necessary to have compatibility of the meshes at the interface. By 
using the standard sub-structural approach, the program determined the displacement for the 
Master nodes on the contact surface, then the Slave ones. It was concluded that contact 
surface technique is well suited to handle the Soil-Structure Interaction problem. It can 
successfully capture the most important local nonlinear behaviors at the soil-structure 
interface. Two practical cases of seismic loading, a gravity retaining wall and a rectangular 
spread footing for a building column have been introduced. 

M. Kutanis et al. in 2000 presented an idealized 2-dimensional plain strain finite 
element seismic soil-structure interaction (SSI) analysis based on a substructure method by 
using original software developed by the authors. The accelerogram (E-W component) for the 
Erzincan earthquake of 1992 was employed as the horizontal ground motion applied to the 
analysis model and scaled to have different peak accelerations: 0.15g, 0.3g and 0.45g. In 
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another case for a different site soil with a shear wave velocity of 200, 300 and 500 m/s, a 
linear SSI analysis was performed. To investigate the effects of soil-structure interaction with 
each input motion level, the following cases were studied: 

 Neglecting the effect of soil-structure interaction, i.e. assuming the structure being fixed at its 
base, the soil was assumed to be completely rigid and only the superstructure was considered 
for analysis. 

 Linear soil-structure interaction analysis. 
 Nonlinear soil-structure interaction analysis. 

In the analysis, the radiation condition was fully accounted for, the soil plasticity was 
modeled with the Von Mises failure criterion, basemat uplift was not considered, and the 
action of gravity was not taken into consideration. It had been shown that: 

 At the 0.15g acceleration, the level linear and nonlinear responses are coincident, but, as the 
acceleration level increases nonlinear response becomes significant. 

 Fixed base analysis gives somewhat greater displacements. 
 As the shear wave velocity of the soil increases the response decreases. 

Cheng H.C and al. in 2003, were investigated the effects of soil-structure interaction 
on the dynamic response of a soil-structure system. A model with a simple structure supported 
on elastic half space is used to derive a factor noted as SSIF that can completely represent the 
effects of soil-structure interaction. This factor characterizes the altering of predominant 
frequency and damping ratio of the system when compared to the conventional rigid-base 
type structural analysis. Based on that, an equivalent fixed base (EFB) model, which takes the 
effects of soil-structure interaction into account, was constructed. Field test results were used 
to verify the applicability of the proposed equivalent fixed base (EFB) model. 

D. Pitilakis et al, in 2008 provided an insight into the numerical simulation of soil-
structure interaction (SSI) phenomena studied in a shaking table facility. The shaking table 
test was purposely designed to confirm the ability of the numerical substructure technique to 
simulate the SSI phenomenon. A model foundation-structure system with strong SSI potential 
was embedded in a dry bed of sand deposited within a purpose designed shaking-table soil 
container. The experimental system was subjected to a strong ground motion. The numerical 
simulation of the complete soil-foundation-structure system was conducted in the linear 
viscoelastic domain using substructure approach. Significant increases in damping were 
recorded in both laboratory experiment and numerical simulations. Both stiffness decrease 
and damping increase lead to a decrease of the acceleration forces at the top of the structure, 
while the vibration cycles were reduced significantly in number and increases in period. The 
principal effects of the SSI were attested in both the laboratory experiments and the numerical 
solution. 

M. Yahyai et al in 2008 evaluated the effect of Soil-Structure Interaction (SSI) on 
seismic behavior of two adjacent 32 story buildings such as time period, base shear and 
displacements. The interaction effects were investigated for variable distance between the two 
buildings. Three types of soil such as soft clay, sandy gravel and compacted sandy gravel 
were considered for this study. The result obtained showed that the Structure-Soil-Structure 
Interaction effects causes the time period increasing of buildings and considering of this effect 
often causes increasing the base shear and displacements and these increasing depends on the 
distance of two adjacent buildings. The Soil-Structure Interaction effects changes the 
maximum lateral displacement up to three times to without considering the Soil-Structure 
Interaction effects and the applying base shear up to two times to without considering the 
Soil-Structure Interaction effects. 
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A 3D discrete element model was proposed by J.V. Lemos et in 2008 for the dynamic 
behaviour analysis of Cabril dam taking into account the contraction joints effect. The dam 
study was performed for different water levels. The water effect in the dam dynamic response 
was evaluated by the analysis of the natural frequencies variation. Numerical and 
experimental results are compared. The numerical analysis was based on two types of 
numerical models: i) a 3D finite element model, which was used in the analysis of the dam 
assumed as a continuous structure (without joints); ii) a discrete element model, which made 
it possible to consider the contraction joints of the dam and their non-linear behaviour. The 
hydrodynamic interaction is represented on both types of software by adding masses to the 
upstream face of the dam, which are calculated by Westergaard’s hypothesis. 

1.10 Conclusion 

In this chapter an overview about the elements of soil structure interaction effect and 
the different methods used to take into account this phenomenon have been presented, also 
some works and not all works done in the past have been discussed. 

In the next chapter, the fluid domain will be introduced in our discussion field to get 
an interaction between three elements instead two only; we talk about soil-fluid-structure 
interaction phenomenon. 
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CHAPTER 2 

Fluid Structure Interaction Phenomenon 

2.1 Introduction to Fluid–Structure Interaction Phenomenon 
The distress of a concrete dam is affected by several parameters, such as the 

compressibility of the impounded water, the various dynamic interactions which can be 
incorporated in the general term “dam-reservoir-foundation interaction”, the possible 
existence of a sedimentary material at the bottom of the reservoir, the effect of surface 
(sloshing) waves, and the selection of an appropriate upstream boundary condition to 
represent the infinite extent of the reservoir in the upstream direction. The impact of these 
factors has been investigated in the past by many researchers analytically, numerically, or 
even experimentally as it will be briefly discussed in the sequence. The main scope of this 
chapter is to present the most commonly used analytical and numerical methods for the 
evaluation of the seismic distress and response of concrete dams and their interaction with the 
retained water and the foundation soil layer. 

2.2 Different Approaches used to Model the Fluid–Structure Interaction Phenomenon 
In order to cope with fluid-structure interaction problems, three approaches have been 

developed in the past: the added mass approach; the Eulerian approach and the Lagrangian 
approach. 

2.2.1 The added mass approach: 
The modeling of interaction effects in the field of earthquake analysis of dams has a 

long tradition. The first to study these types of problem was Westergaard in 1933. He 
considered the problem of fluid-structure interaction of a two-dimensional dam-reservoir 
system subjected to horizontal earthquake ground motion. The dam was assumed to be rigid 
and the reservoir was supposed to be semi-infinite and of constant depth. With analytical 
methods he derived the pressure distribution in the fluid at the dam-reservoir interface. His 
finding was that the interaction forces are proportional to the acceleration of the earthquake 
ground motion such that they may be approximated by a mass density distributed 
parabolically over the height of the dam. This technique is called added mass approach 
(Glauco Feltrin, 1997). 

The added mass approach of Westergaard allows modeling an important effect of 
fluid-structure interaction which is in close agreement with more elaborated models. Because 
of the additional mass, the eigen frequencies of the coupled dam-reservoir system relevant for 
the earthquake response of the dam are significantly lower than those of the dam alone. 
However, the added mass approach doesn’t consider any radiation damping so that energy 
dissipation is only due to the structural damping of the dam. Nevertheless, because of its 
simplicity, it has been one of the most frequently used models for the numerical analysis of 
dams in engineering practice (Glauco Feltrin, 1997). 
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2.2.2 Eulerian approach: 
Since in this approach the displacements are the variables in the structure and the 

pressures are the variables in the fluid, a special purpose computer program is required for the 
solution of the coupled systems. 

a. Dam-reservoir interaction 
In the Eulerian-based FEM approaches the variables describing the response of the fluid 

are the pressures, the velocities, or the velocity potentials. The hydrodynamic pressure 
distribution in the reservoir is governed by the pressure wave equation. Assuming that water 
is linearly compressible and neglecting its viscosity, the small-amplitude irrotational motion 
of water is governed by the two dimensional wave equations: 

),,(1),,( 2
2 tyx

V
tyx

p

φφ &&=∇                                                                                         (2.1) 

The relations between pressure p, the velocity vector {v} and the velocity potential φ  are 
as follows: 

{ } φ∇=v                                                                                                                     (2.2) 

φρ &−=p                                                                                                                     (2.3) 

The velocity potential distribution within each finite element is represented in terms of 
nodal parameters φ  by: 

[ ]{ }φφ N=                                                                                                                   (2.4) 

For the case of an earthquake excitation at the dam-reservoir boundary the boundary 
condition usually imposed is: 
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Where ρ is the density of water, p is the pressure given by (2.3) and ),,( tyxan is the 
component of acceleration on the boundary along the direction of the inward normal n. 
According to finite element method formulation, equation (2.1) results in the following matrix 
form: 

[ ]{ } [ ]{ } { }FPHPG =+&&                                                                                                 (2.6) 

Where the terms of the matrices are given by the following relations: 
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In which Ae denotes the element’s area and se is the prescribed length along the boundary 
of each finite element. 

b. Impact of compliant reservoir bottom 
Usually, an absorbing boundary condition is imposed at the reservoir-bottom interface. It 

has been observed that the existence of compliant soil (or sediments) on the bottom of the 
reservoir has significant effect on the seismic distress and response of a concrete gravity dam. 
The soft soil layers do not behave as totally reflective boundaries like rigid rock, and there 
exists dynamic interaction between the reservoir and the underlying soil. 

As far as the reservoir bottom is concerned, the following boundary conditions (Li et al. 
1996, Küçükarslan et al. 2005) are considered appropriate: 
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Where q  is a damping coefficient which characterizes the effects of the reservoir bottom 
materials given by: 
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ρr and Vr denote the density and longitudinal velocity of the material comprising the reservoir 
bottom, respectively. To incorporate the reservoir bottom effect into the finite element 
solution, Eq. (2.6) is rewritten as follows: 

[ ]{ } [ ]{ } [ ]{ } { }FPHPCPG =++ &&&                                                                                        (2.14) 

[ ]C  is the diagonal damping matrix, and its terms contain the damping coefficient q . 

c. Truncation boundary conditions 
To simulate infinite upstream direction, the reservoir is usually separated into a small 

region adjacent to the dam, called near-field reservoir and the far-field reservoir which 
extends from the upstream boundary of the near-field reservoir to infinity, or any other 
physical boundary existent in real conditions. Whenever the far-field reservoir is neglected for 
computational reasons, the boundary imposed at the upstream direction of the near-field 
reservoir is called truncation boundary. The boundary condition imposed at the truncation 
boundary while calculating the near-field reservoir is of critical importance, as the 
computational domain is significantly reduced compared to the initial reservoir configuration. 

Various approaches of describing the boundary conditions if the far-field is truncated are 
available in the literature: 

• The Sommerfeld radiation condition for the truncated surface is given by 
(Küçükarslan et al. 2005): 
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• The Sharan’s boundary condition (Sharan, 1985): 
 

p
V

p
hn

p

p

&
1

2
−−=

∂
∂ π                                                                                                        (2.16) 

• The far-boundary condition (Maity & Bhattacharyya, 1999): 
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Notice that the above boundary conditions can be imposed for compressible fluids. If the 
reservoir is assumed incompressible, VP becomes infinite and the various boundary conditions 
degenerate into their incompressible counterparts (Küçükarslan 2003, Fan & Li 2008). 

d. Free surface (sloshing) waves 

The sloshing oscillations are characterised by the presence of gravity surface waves, 
which behave in a different manner than the acoustic waves. Gravity waves are non-
conservative and their velocity depends on their wavelength. It has been shown (Taylor, 1981) 
that for most concrete gravity dams free-surface waves are negligible. However, in cases 
where the duration of the excitation is long, the surface wave effect has to be taken into 
account by imposing an appropriate boundary condition at the free surface of the reservoir. 
The effects of surface waves (or sloshing waves) of the retained water have been neglected 
repeatedly in the past (Saini et al. 1978, Sharan 1985, Tsai & Lee 1991, Ghaemian & 
Ghobarah 1998, 1999, Küçükarslan 2005, Maity 2005, etc.). In such cases the pressure along 
the free surface is assumed to be equal to zero: 

0=p                                                                                                                              (2.21) 

Nevertheless, in some more recent studies sloshing effects are considered by imposing the 
following boundary condition (Maity & Bhattacharyya 2003, Gogoi & Maity 2007) at the free 
surface: 
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Moreover, sloshing waves have been studied rigorously for the design of liquid storage 
tanks and tuned liquid dampers against dynamic loading. In these cases, advanced boundary 
conditions have been developed to take realistically into account sloshing phenomena. 

e.  Effect of reservoir sediments 
Cheng in 1986 examined the effect of the existence of sediments at the bottom of the 

reservoir, where the sediment was modelled as a poroelastic material. It was found that for a 
modest amount of sediment and slight desaturation of pore water, significant changes in the 
hydrodynamic response curves can be observed. 

2.2.1 Lagrangian approach:  
In this approach the behavior of the fluid and structure is expressed in terms of 

displacements. For that reason, compatibility and equilibrium are automatically satisfied at the 
nodes along the interfaces between the fluid and structure. This makes a Lagrangian 
displacement based fluid finite element very desirable; it can be readily incorporated into a 
general purpose computer program for structural analysis, because special interface equations 
are not required. 

a. Dam-reservoir interaction 
In the Lagrangian finite element procedures the equations of motion of the fluid are 

obtained using energy principles, contrary to the Eulerian approach, where the governing 
equations are solved in the discretized domain. In the former approach fluid is assumed to be 
linearly elastic, inviscid and irrotational. For a general three-dimensional fluid, stress–strain 
relationships can be written in matrix form as follows: 
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Or 

{ } [ ]{ }εfCp =                                                                                                                   (2.24) 

p is the mean pressure, C11 is the bulk modulus of the water (C11=K), εv is the volumetric 
strain, px, py, pz are the rotational pressures C22, C33, C44 are constraint parameters and wx, wy, 
wz are rotations about the x, y, z axes, respectively. As the irrotational condition is generally 
not verified a priori, it must be imposed. 

Otherwise the solution may be corrupted by spurious modes and the frequency analysis may 
result to a number of zero-frequency modes. To impose this condition, the constraint 
parameters C22, C33, C44 are taken approximately 10 to 1000 times greater than C11 (Parrinello 
& Borino, 2007). Using the finite element approximation the total strain energy of the fluid 
system may be written as: 
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Where { }fU  and [ ]fK  are the nodal displacement vector and stiffness matrix of the fluid 
system, respectively. Moreover, [ ]fK  is calculated by summation of the stiffness matrices of 
the fluid elements: 
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In which the stiffness matrix of each element is obtained as: 
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Where [ ]e
fB  is the strain-displacement matrix of the element. An important characteristic of 

fluid systems is the ability to displace without volume changes. 

This movement is known as sloshing waves in which the displacement is in vertical direction. 
The increase in potential energy of the system due to the free surface motion can be written 
as: 
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{ }sh  is a vector consisting of interpolation functions of the free surface fluid element and 
{ }sfU  is the vertical nodal displacement vector. 

Finally, the kinetic energy of the fluid system can be written as: 
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[ ]H  is a matrix consisting of interpolation functions of the fluid element and 

{ }fU&  is the nodal velocity vector of the fluid. Equations (2.25), (2.28) and (2.31) are 
combined and using the Lagrange’s equation (Clough & Penzien, 1993): 
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The following set of equations is obtained: 
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[ ]{ } [ ]{ } { }fffff RUKUM =+ ∗&&                                                                                    (2.35) 

Where [ ]fK ∗ , { }fU&&  and { }fR are system stiffness matrix that includes the free surface 
stiffness, nodal acceleration vector and time-varying nodal force vector for the fluid system, 
respectively. In addition, qi and Qi represent the generalized coordinate and force, 
respectively.  

The total potential energy results from addition of strain energy and the potential energy due 
to surface waves: set Π+Π=Π . Along the dam-reservoir boundary continuity of 
displacements is imposed, i.e. the nodal displacement of the reservoir 

is equal to the nodal displacement of the dam: 

{ } { }+− = nn UU                                                                                                               (2.36) 

where Un is the normal component of the interface displacement. Eventually, the coupled 
matrix differential equations are extracted, which describe the motions of the dam and the 
retained water. 

b. Truncation boundary condition 
In the case of a displacement–based formulation, the boundary conditions described for 

the Eulerian case cannot be utilized to represent infinite reservoir domain in the upstream 
direction. When the waves present are merely acoustic, the Sommerfeld condition reproduces 
efficiently the outgoing-waves problem. However, a fluid dynamic problem involving free 
surface is characterized by the contemporaneous presence of acoustic and gravity (sloshing) 
waves. The acoustic waves are characterized by propagation velocity independent of the 
exciting frequency, whereas the sloshing waves are dispersive and their velocity depends on 
frequency and water depth. The gravity wave velocity is given by: 
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In which λS is the sloshing wavelength and h the depth of the reservoir. It is evident that the 
sloshing wave velocity depends on the wavelength, and consequently on the frequency. 
Therefore, the Sommerfeld boundary condition is inadequate to handle problems which 
involve acoustic and sloshing wave propagation. 

An accurate non-reflecting boundary condition was initially proposed by Higdon in1994. This 
boundary condition can be used with both pressure- and displacement- formulated problems. 
The Sommerfeld condition can be considered as the first approximation of this more general 
non-reflecting boundary condition. 

Assuming that the x-axis is normal to the truncation boundary, for a generic variable field 
),( yxφ  (displacement, pressure, etc.) Higdon’s absorbing boundary of order J is defined as: 
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For the imposition of the Higdon boundary condition Eq. (2.39) is applied to both 
displacement components ux and uy. An exact response is obtained if the set J of parameters 
cj contains all possible wave speeds for the examined problem (Parrinello & Borino, 2007). 

2.3 Some Existing Studies On Soil-fluid-Structure Interaction 
The methods used for the analysis of concrete dams under earthquake loading range from 

the simple pseudo-static method initially proposed by Westergaard in 1931 to advanced 
numerical methods that include not only the well-known FEM, BEM and FEM-BEM hybrid 
numerical approaches, but methods utilizing semidiscrete hyperelements. In between these 
two extreme categories there exist some other methods, such as the Fenves & Chopra (Fenves 
& Chopra, 1984) refined pseudo-static method (the so-called “equivalent lateral force 
method”) and the methodology suggested by the US Corps of Engineers (2007). The method 
proposed by Westergaard assumes that the hydrodynamic effect on a rigid dam is equivalent 
to the inertial force resulting from a mass distribution added on the dam body. The refined 
pseudo-static method suggested by Fenves & Chopra takes into account the influence of the 
dam response on the foundation distress, as the latter is considered flexible. The guidelines of 
US Corps of Engineers recommend that if high tensile stresses develop at the base of the dam 
then a finite element analysis may have to be conducted to incorporate the variation of the 
natural period due to cracking at the base. Whenever the aforementioned assumptions are not 
satisfied, then the engineer has to carry out sophisticated numerical simulations of the whole 
dam structure and its interaction with the foundation and the retained water. 

The added mass concept is fundamental in seismic concrete dam design. Although it 
seems a rather simplified procedure, it is often utilized in cases where the computational cost 
of simulating the whole dam-reservoir model is unaffordable. Nevertheless, such cases are 
very common in engineering practice, since dam–foundation interface non-linearities are 
usually present and need to be included in the analysis (Arabshahi & Lotfi, 2008, Du et al. 
2007). The most characteristic cases are base sliding and uplifting, in which dam-foundation 
interface elements increase the computational cost. In these studies the hydrodynamic effects 
of the reservoir were simulated as added masses on the dam. A plasticdamage model for 
earthquake analysis of concrete dams was developed by Lee & Fenves (1998), in which 
emphasis was given on the advanced constitutive model. Moreover, the inclusion of the 
reservoir domain requires a huge computational effort, thus, the added mass approach was 
implemented. The effect of monolith interaction on the overall dynamic response of concrete 
gravity dams was investigated by Ghobarah et al. (1994). In that study the monoliths are 
represented by beam elements connected by shear links. The effect of hydrodynamic 
interaction is considered as added mass to the dam structure. Therefore, it is evident that the 
added-mass approach is vital for the evaluation of complicated dam geometries, for dams 
comprised by individual monoliths, or in cases in which the dam foundation interaction is 
associated with substantial non-linearities, as the computational cost of the solution is greatly 
reduced. 

The finite difference method for fluid field and the finite element method 
(isoparametric four-node quadrilateral finite element) for the pine flat dam response were 
used by B.F.Chen in 1996 to calculate the nonlinear hydrodynamic pressure on dam faces and 
the corresponding structural dynamic responses of the dam. Both analyses with and without 
surface waves and convective accelerations were made. Four earthquake records were 
adopted as exciting ground motions. The results include rigid horizontal dam motion, flexible 
horizontal dam motion and flexible dam motion under simultaneous action of vertical and 
horizontal ground motions.  The hydrodynamic force coefficient on a rigid dam face was be 
predicted by the formula CF=0.525 ah + av where ah and av are the ratio of the horizontal and 
vertical components, respectively, of the ground acceleration to the acceleration due to 
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gravity.The characteristics of the relationships between the hydrodynamic force coefficient, 
the rise of the water surface and the time history of the ground motion were studied.  

It was being seen that: 

• The flexibility of the dam could significantly increase the hydrodynamic force 
coefficient, especially due to the horizontal and vertical ground acceleration 
exciting simultaneously. 

• The vibration of the dam face and the vertical component of the ground 
acceleration do not affect either the magnitude or the shape of the profiles of 
the rise of the water surface at the dam face. 

• The effects of surface wave and nonlinear convective acceleration of the fluid 
could be neglected in the dynamic structural analysis of concrete gravity dam. 

• Evaluation of the rise of the water surface still is necessary.  

F.Guan et al in 1997 proposed a hybrid Numerical for the dynamic frequency domain 
response of the earth dams resting on a multi-layered foundation. A new technique was 
described to determine the frequency dependent added masses and loads contributed by the 
reservoir at the inclined upstream dam face. For the reservoir-dam interaction a green function 
was developed and the influence matrices are determined using the Garlerkin weighted 
residual method. The developed technique did not involve any discretization of the reservoir 
beyond the dam face. For the soil-structure interaction, the impedance of the multi-layered 
foundation was obtained using the layer transfer matrix and the dam was modelled by finite 
elements. An interface function was defined using interpolating functions to maintain 
equilibrium of the interface forces and the displacement compatibility at the interface nodes. 
Numerical results, including transient responses of the earth dam at La Villita (Mexico) to the 
S90W El Centro earthquake ground motion (1940), were presented to illustrate the modelling 
of reservoir-dam and soil-dam interaction. The damping ratios in both fluid and solid were 
assumed to be 5% in the analyses. 

The performance of four different dam-reservoir finite element models, suitable for 
direct time domain analysis of the earthquake response of concrete gravity dams including 
dynamic fluid-structure interaction was investigated by B. Tiliouine et al in 1998. Namely, 
these models are respectively: 1) the standard rigid dam-incompressible water model, 2) the 
flexible dam-incompressible water model, 3) the rigid dam-compressible water model and 4) 
the flexible dam-compressible water model. First, the discrete system of finite element 
equations resulting from a Galerkin variational formulation of the governing equations of the 
pressure and displacement fields was established for each model. Then, the distribution of the 
dynamic pressure coefficient at the upstream face of a typical concrete gravity dam and the 
hydrodynamic pressure time histories at its base, derived from the application of the four 
fluid-structure models have been determined. linearly elastic properties were assumed for the 
material of the dam and the water of the reservoir. The motion of the dam-reservoir system 
was considered as two dimensional and restricted to small amplitudes. The fluid was assumed 
to be inviscid and extends to infinity in the upstream direction. However, the effects of 
surface waves, water compressibility, dam flexibility, radiation damping at the upstream 
boundary of the reservoir and the slope of the upstream dam wall were considered. It was 
choosen to retain a pressure field for the representation of the fluid action and a displacement 
field for the description of the dam behavior. The dam and the reservoir domains, were thus 
modeled separately and it was demonstrated that the dynamic interaction forces linking the 
two subsystems at the dam-water interface were caused by hydrodynamic pressures from the 
fluid region acting on the upstream face of the dam, and the structural accelerations at the 
interface acting in turn on the reservoir. 
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A study of seismic behaviour of a high arch dam with dynamic interaction with 
reservoir and foundation based on the wave propagation in a non-uniform and local non-linear 
medium by using an explicite finite element method with transmitting boundaries was 
presented by C. Houqun et al in 1998. The calculated Xiawan arch dam is located in the upper 
reach of the Lanchuang Rviver in Yunnan province. It is a parabolical double curvature dam 
of 292m high. Its design earthquake intensity was IX degree with a horizontal peak 
acceleration of 0.308g, while the vertical peak acceleration was 2/3 of the horizontal one. 
Only the most important fault located 76m apart from the dam heel was considered in the 
analysis. A nonlinear constitutive relation with Druker-Prager cap model was adopted for this 
fault. A finite element mesh automatically generated in the program and the dam foundation 
system was modelled by 1364 8-node 3D solid elements. For simplicity, the dam reservoir 
interaction was considered through added mass with neglect the compressibility of the 
reservoir water. The acceleration recorded at rock foundation during and after shock of 
Tangshan earthquake in 1976 with its peak acceleration scaled to one half of the design values 
were used as the incident s and p waves in the analysis. For comparison, three alternatives of 
input, with one streamwise component, one cross-stream component, and all three 
components simultaneously were applied respectively. In order to reveal the effect of the 
fault, three foundation models were analyzed separately. They are: Model without fault, 
Model with fault of linear property and Model with fault of non linear property. 

J. Nasserzare et al, in  2003 were developed a procedure which can be used to identify 
the natural frequencies and natural modes in vacuum of an Arch-Dam from forced vibration 
testing data of partially filled reservoir. The effect of hydrodynamic pressure was removed by 
using an efficient algorithm. To verify the procedure, a simple structure was substituted for 
the dam with known properties in vacuum. Then a thin SSSF-plate was considered as the 
retaining wall representing of the dam and a sub-structuring technique was used with regard 
to a three dimensional linear compressible inviscid fluid body. The calculated resonance in 
the illustrated example replaces the resonance which in practical in-situ has been measured. 
Also the effect of the wave absorption at the bottom and bank of the reservoir was considered. 
The hydrodynamic pressure of the reservoir was calculated using boundary element method. 
The results which derived by solving an inverse problem, were compared with the exact 
analytical responses of the plate.  

Dam-water, dam-foundation rock and dam-water foundation rock interactions on the 
linear and nonlinear responses of a selected arch dam to earthquake ground motion were 
investigated by M. Akkose et al in 2004. The hydrodynamic effects on the dynamic response 
of a selected arch dam were examined by modeling water in the reservoir with 8-noded 
Lagrangian fluid finite elements. The element including compressible behavior and surface 
sloshing motion of the fluid has been coded and incorporated into a general-purpose computer 
program, NONSAP. The step-by-step integration was used to solve the dynamic equations of 
motion. The El-Centro N-S component of the Imperial Valley earthquake, on May 18, 1940, 
has been used as the ground motion. The response of the dam was characterized by crest 
displacements and envelopes of maximum tensile stresses. As conclusions: 

• Hydrodynamic effects considerably affect the linear and nonlinear responses of the 
dam to earthquake ground motion. 

• The step-by-step integration technique may be efficient in the linear and nonlinear 
analyses of the response of arch dams to earthquake ground motion and water in the 
reservoir can be successfully represented by 3-dimensional 8-noded Lagrangian fluid 
elements. 

• Both the hydrodynamic and the foundation flexibility effects significantly increase the 
linear and nonlinear responses of the dam to earthquake ground motion. 
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• The effects of dam-water interaction on the linear and nonlinear responses of the dam 
to earthquake ground motion are qualitatively similar to those for rigid and flexible 
foundations. 

• The hydrodynamic effects influence the distribution of the maximum tensile stresses 
on the upstream and downstream faces of the dam similarly, whether the foundation 
rock is flexible or rigid. 
 

• Dam-water interaction has more influence on the response of the dam with a flexible 
foundation than on that of the dam on a rigid foundation in both linear and nonlinear 
analyses. 

• A large portion of the upstream and downstream faces of the dam is affected by the 
excessive tensile stresses due to hydrodynamic effects for both the linear and the 
nonlinear analyses. 

Numerical models for the analysis of the water sloshing in a tank during the impact 
with the ground have been developed by M. Anghileri et al in 2005 and validated using 
experimental data. The standard approach to the study of an event consists of developing a 
numerical model utilising experimental data. When these data are not available, it is necessary 
to perform appropriate tests. Therefore, in 1998, at Dipartimento di Ingegneria Aerospazial 
(DIA) of the Plitecnico di Milano, an intensive test programme was performed in order to 
collect data regarding the impact of a filled tank with the ground. It was being stated that the 
full FE approach is appropriate for structure design development whereas the coupled analysis 
using the SPH model of the water is appropriate for the design verification and that the 
coupled analysis using the Eulerian and ALE models of the water remain still reasonable for 
specific problems where, for instance, the presence of the air has a deep influence on the 
results. 

  N. Bouaanani et al in 2004 presented some results regarding the dynamic behaviour of 
concrete dams with ice-covered reservoirs using a mathematical formulation. The method was 
programmed and incorporated to a finite element code specialized for the seismic analysis of 
concrete dams using substructure method. The Outardes 3 gravity dam was chosen as a model 
for this numerical study. A parametric study where the dam alone, ice–dam, and ice–dam–
reservoir systems were successively studied was carried out to evaluate the influence of 
various factors on the dynamic behaviour of the ice–dam–reservoir system. Main features of 
this influence were emphasized and discussed in a parametric study through the analysis of: 
(i) acceleration frequency response curves at the dam crest, (ii) hydrodynamic frequency 
response curves inside the reservoir, and (iii) the hydrodynamic pressure distribution on the 
upstream face of the dam. Both the dam and the ice cover were modelled by quadrilateral 
isoparametric finite elements, including incompatible displacement modes to ensure a better 
shear behaviour. At the ice–reservoir interface, the derivation of boundary condition includes 
the effect of possible damping at the ice–reservoir interface represented by the viscous 
damping term β. The reservoir and the ice cover extend to infinity in the upstream direction. 
However, finite element modelling of the ice cover requires the definition of a boundary 
condition at its far upstream end. Ideally, this condition must take account of the friction of 
the ice cover at the reservoir border and allow for energy dissipation at this location using 
appropriate impedance functions. This effect could also be simulated with a reasonable degree 
of accuracy by truncating the ice cover at a given distance from the dam face and finding the 
adequate transmitting boundaries. These questions were difficult to address, because of the 
complexity of the dynamic behaviour of the ice cover and its interaction with the reservoir 
border, which was associated with the lack of related experimental evidence. For this reason it 
was assumed that the ice cover was clamped at its far upstream end, due to the small 
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deformations induced in the ice cover during the in-situ dynamic tests. To account for energy 
dissipation in the system, a hysteretic damping factor ηs = 3.0% was considered, 
corresponding to a viscous damping ratio ξs = 1.5%. The hyrodynamic pressure inside the ice-
covered reservoir was defined by the authors of this article as the sum of an infinite number of 
reservoir modes. In practice, this sum has to be truncated at a finite number Nw, small enough 
to reduce computational time and large enough to include all reservoir modes contributing 
significantly to the overall dynamic response within the frequency range considered. It was 
been clearly concluded that: The ice cover affects the dynamic response of the ice–dam– 
reservoir system, the ice cover influences the shape of the frequency response curves and 
produces additional resonant modes with more less pronounced peaks, with amplitudes 
generally lower than those obtained for the dam without ice cover and that the ice cover 
causes the hydrodynamic pressure to increase in the vicinity of the ice-reservoir interface and 
to diminish closer to the reservoir bottom. 

An algorithm for the analysis of coupled dam-reservoir systems was presented by D. 
Maity et al, 2005. The complete system had been considered to be composed of two sub-
systems, namely, the reservoir and the elastic dam. The water was considered inviscid and 
compressible and the equations of motion were expressed in terms of the pressure variable 
alone. Structural damping of the dam material and the radiation damping of the water have 
been accounted for in the analysis. The solution of the coupled system was accomplished by 
solving the two sub-systems separately with the interaction effects at the dam-reservoir 
interface enforced by a developed iterative scheme. Non-divergent pressure and displacement 
fields were obtained simultaneously through a limited numbers of iterations. The method was 
computationally economical, stable and capable of taking into account the arbitrary geometry 
of the systems and may be applied for practical application. The parametric study of the 
coupled system showed the importance of water height of the reservoir and the material 
property of the dam. 

A. Bayraktar et al in 2005 were examined the effect of the base rock characteristics on 
the stochastic dynamic response of dam-reservoir-foundation systems subjected to earthquake 
forces using the Lagrangian approach. The dam object of this study was Sariyar concrete 
gravity dam constructed on the river Sakarya, which is located 120 km to the northwest of 
Ankara, Turkey. The S16E component recorded on the Pacoima dam during the San Fernando 
earthquake in 1971 was selected as a ground motion. For this purpose, three different 
earthquake input mechanisms were used as: the standard rigid-base input model, the massless-
foundation input model and the deconvolved-base-rock input model. The deconvolved 
accelerogram of the ground motion was calculated by using the computer program 
SHAKE91, which is based on the one dimensional wave propagation theory. The fluid was 
assumed to be inviscid. The normal components of the displacements of the reservoir dam and 
reservoir foundation interfaces were to be continuous. This condition was accomplished by 
using short and axially almost rigid truss element in the normal direction of the interfaces. 
Since the extent of the reservoir was large, it was necessary to truncate the reservoir at a 
sufficiently large distance from the dam. A length of reservoir equivalent to three times its 
depth was appropriate for adequate representation of hydrodynamic effects on the dam. The 
nodes representing the extreme side of the reservoir were free to displace in the vertical 
direction only. The depth of the foundation was taken as much as the depth of the reservoir. 
Plane strain conditions are taken into account in the calculations. The dam material was 
assumed to be linear-elastic, homogeneous and isotropic. A damping ratio of 5% was assumed 
for the coupled system. Surface sloshing, volume change and rotational frequencies occur in 
the modal analysis of fluids when the Lagrangian approach is used, so the selection of the 
mode number in the modal analysis based on the Lagrangian approach is very important. The 
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number of surface sloshing modes, which varies with the finite element model of the 
reservoir, becomes very high and takes place in the first range of the frequency table. The 
effects of these modes on the behaviour of the dams are very little. Therefore, the first 30 
modes are taken into account this study. It had been concluded that: 

• The mean of the maximum values of the displacements, stresses and hydrodynamic pressures 
obtained using the deconvolved-base-rock input model is smaller than those of the others two 
models. 

• The standard rigid-base input model introduces very significant amplification in the response 
quantities of interest. 

• It was also thought that the standard rigid-base input model is inadequate to evaluate the 
dynamic response of dam-reservoir-foundation interaction systems subjected to random load. 

• The massless-foundation input model, although not as accurate as the deconvolved-base-rock 
input model, can be used for practical analyses. 

A new method for seismic analysis of containers in three-dimensional space was 
introduced by M.R. Kianoush et al in 2006, in which the effects of both impulsive and 
convective components and their corresponding damping are accounted for in time domain.  
A case study was performed to investigate the behaviour of a concrete rectangular container 
under the effects of horizontal and vertical ground motions using the scaled earthquake 
components of the 1940 El-Centro earthquake record. Two dimensional behaviour of the tank 
was assumed. The results of the study were compared with those obtained using the current 
practice and those determined from finite element (FE) analysis based on a lumped mass 
model. The results of the FE analysis with the equivalent added masses and rigid walls were 
in good agreement with those from the current practice. Compared with the proposed method, 
however, the current practice overestimates the response of the container. Also, the vertical 
excitation leads to a significant response in the container, but combining the effects of 
horizontal and vertical excitations reduces the response of the structure in the considered 
system. A 1 m strip of the tank wall was modeled to simulate the two-dimensional behavior of 
the system. It was assumed that the tank rests on a rigid foundation and the effect of soil–
structure interaction was ignored. It was also assumed that the tank was anchored at its base 
and the effect of uplift pressures was not considered. It was been showed that the proposed 
staggered displacement method can be successfully used in the analysis of rectangular 
structures for containing liquid. 

R. Livaoglu et al in 2006 presented a review of simplified seismic design procedures 
for elevated tanks and the applicability of general-purpose structural analyses programs to 
fluid–structure–soil interaction problems for these kinds of tanks. Ten models were evaluated 
by using mechanical and finite-element modelling techniques. An added mass approach for 
the fluid–structure interaction, and the massless foundation and substructure approaches for 
the soil–structure interactions were presented. The applicability of these ten models for the 
seismic design of the elevated tanks with four different subsoil classes were emphasized and 
illustrated. It was concluded that single lumped-mass models underestimate the base shear and 
the overturning moment.  

Reservoir water level effects on nonlinear dynamic response of arch dams were 
investigated by M. Akkose et al in 2008. The nonlinear behaviour of dam concrete was 
idealized as elasto-plastic using the Drucker–Prager model. Instead of the nonreflective 
boundary condition, the reservoir length was selected as three times of the reservoir depth to 
consider the damping effect arising from the propagation of pressure waves in the upstream 
direction. Foundation rock was assumed to be linearly elastic and represented by eight-noded 
three-dimensional solid elements up to a certain distance from the dam. To avoid reflection of 
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the outgoing waves, these elements were assumed to be massless. One hundred and sixty-four 
three-dimensional elements were used in the finite element mesh of the foundation rock. The 
fluid was assumed to be linearly elastic, inviscid and irrotational. The bulk modulus and mass 
density of the fluid are taken as 0.207x107 kN/m2 and 1000 kg/m3, respectively. 512 eight-
noded three-dimensional fluid elements were used to represent the water in the reservoir. The 
rotation constraint parameters of the fluid about each Cartesian axis were taken as 1000 times 
of the bulk modulus. The optimum value of the rotation constraint parameter changes with the 
properties of material and it can be a different value for various problems. The parameter 
should be as high as necessary to enforce the rotational constraint but small enough to avoid 
causing numerical ill-conditioning in the assembled stiffness matrix. This parameter is 
generally taken as 100 times of the bulk modulus in two-dimensional fluid–structure 
problems. But, it was taken as 1000 times of the bulk modulus in three-dimensional fluid–
structure problems due to the mentioned reasons. The fluid was only able to transmit normal 
forces to both solid (canyon sides) and structure (dam) boundaries. This is because of its 
inviscid nature. The slip condition at the solid–fluid interface can be modelled by the use of 
constraint relations, interface elements or short and axially almost rigid link (truss) elements 
in the normal direction of the interface. 

 At the interface of the reservoir–canyon, one node, which corresponds to the canyon 
side, of the link element was completely restrained (grounded), whereas the other is capable 
of moving in the translational directions. At the interface of the dam–reservoir, each of nodes 
of the link element allows translational motions. The length and the elasticity modulus of the 
truss elements were taken as 0.001m and 2 x1016 kN/m2, respectively . 

Nonlinear dynamic analyses of the selected arch dam are performed according to the 
assumption that the dam is subjected to uniform ground motion along the dam–foundation 
interface. The El-Centro N–S record of Imperial Valley earthquake, on May 18, 1940, 
measured on a rock-like surface, was chosen as the ground motion (PEER: Pacific Earthquake 
Engineering Research Center, 2005). The record was applied to the coupled systems in the 
upstream–downstream direction (y-direction). In the analysis only the first 6.5 s of the 
earthquake was considered. The time step increment is chosen was 0.001 s for the integration. 

Initial (static) stresses and displacements can have strong effects on the nonlinear 
dynamic response. Therefore, static analysis of the dam–water–foundation rock system under 
self-weight and the hydrostatic pressure was carried out to establish the initial condition for 
dynamic analysis. Subsequently, the linear and nonlinear dynamic analyses of the system 
were performed. Water levels in the reservoir were considered as 40, 60, 80, 100 and 120m to 
investigate the water level effects on the nonlinear dynamic response of the selected arch dam. 

It was concluded that reservoir water level effects must be considered in the elasto-
plastic analysis of arch dams to earthquake ground motion. The Drucker–Prager elasto-plastic 
model can overcome the problem and predict realistic distribution and levels of stresses in the 
dam body. It was thought that the elasto-plastic analyses of arch dams are very important for 
the determination of the plastic regions in the dam body.  

A 3D discrete element model was proposed by J.V. Lemos et in 2008 for the dynamic 
behaviour analysis of Cabril dam taking into account the contraction joints effect. The results 
obtained with this 3D discrete element model were compared with the results obtained from a 
3D finite element model assuming the structural continuity. The dam study was performed for 
different water levels. The water effect in the dam dynamic response was evaluated by the 
analysis of the natural frequencies variation. Numerical and experimental results were 
compared. The numerical analysis was based on two types of numerical models: i) a 3D finite 
element model, which was used in the analysis of the dam assumed as a continuous structure 
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(without joints); ii) a discrete element model, which made it possible to consider the 
contraction joints of the dam and their non-linear behaviour. The hydrodynamic interaction 
was represented on both types of software by adding masses to the upstream face of the dam, 
which were calculated by Westergaard’s hypothesis. 

Two approaches were studied by B. Poursartip et al, in 2008 for modal analysis of 
concrete arch dams in time domain. The results of these investigations were compared against 
the direct approach which was envisaged as an exact method. The decoupled modal approach 
relies on independent modes of the dam and the reservoir, and coupled modal approach, 
which employs mode shapes of coupled system. An asymmetric eigenvalue problem was 
required to be solved to calculate the coupled modes, which makes the programming very 
complicated. However, in the decoupled modal approach, a symmetric eigenvalue problem 
was employed which was resulted by elimination of asymmetric parts of the initial equation. 
The mode shapes extracted through this problem were utilized to calculate the response. The 
analysis of Shahid Rajaee concrete arch dam was considered as a controlling example, and the 
number of required mode shapes for an accurate analysis was compared for these two modal 
approaches. 

A semi-analytical procedure for solution of dam-reservoir interaction in the 
fundamental mode shape was described by P. Marcelo et al in 2009. The fundamental 
frequency was solved using a generalized coordinate approach mixed with a wave equation 
analytical solution for a flexible boundary, resulting in a coupled system equilibrium 
frequency equation. Pressure field in the fluid domain and fluid added mass were obtained 
upon the solution of this equation. Results indicate good agreement between finite element 
solution for the coupled system and the resulting fluid added mass solution. This methodology 
provides a useful resource for solution of the coupled system and can be readily applied in 
dam engineering problems.  

Hydrodynamic pressures induced due to seismic forces and Fluid-Structure Interaction 
(FSI) were evaluated by H. Shariatmadar et al in 2009. The interaction of reservoir water-dam 
structure and foundation bed rock were modeled using the ANSYS computer program. The 
analytical results obtained from over twenty 2D finite element modal analysis of concrete 
gravity dam show that the accurate modeling of dam-reservoir-foundation and their 
interaction considerably affects the modal periods, mode shapes and modal hydrodynamic 
pressure distribution. 

2.4 Conclusion 
  This chapter is dedicated to the fluid structure interaction phenomenon, it comports the 
different approaches used to model the mutual reaction between the fluid and the structure. A 
list of some works done in this axe of research has been presented and detailed. The next 
chapter will be offered to a one of the first finite element code in the word which is ANSYS, 
and which will be used in the following chapters of this thesis. 
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CHAPTER 3 

Structural Dynamic Capabilities of ANSYS 

3.1 Introduction 
The finite element method (FEM) is the most popular simulation method to predict the 

physical behaviour of systems and structures. Since analytical solutions are in general not 
available for most daily problems in engineering sciences numerical methods have been 
evolved to find a solution for the governing equations of the individual problem. Although the 
finite element method was originally developed to find a solution for problems of structural 
mechanics it can nowadays be applied to a large number of engineering disciplines in which 
the physical description results in a mathematical formulation with some typical differential 
equations that can be solved numerically. 

Much research work has been done in the field of numerical modelling during the last 
twenty years which enables engineers today to perform simulations close to reality. Nonlinear 
phenomena in structural mechanics such as nonlinear material behaviour, large deformations 
or contact problems have become standard modelling tasks. Because of a rapid development 
in the hardware sector resulting in more and more powerful processors together with 
decreasing costs of memory it is nowadays possible to perform simulations even for models 
with millions of degrees of freedom. 

ANSYS provides finite element solutions for several engineering disciplines like 
statics, dynamics, heat flow, fluid flow, electromagnetics and also coupled field problems. 
The ANSYS user is able to run simulations for linear and nonlinear problems in engineering 
where structural nonlinearities may occur due to nonlinear material behaviour, large 
deformations or contact boundary conditions. 

With this chapter, we give an overview of the present capabilities of ANSYS in the 
field of structural dynamics. A general classification of dynamical calculation disciplines will 
be provided. The algorithms that are available with ANSYS code are discussed together with 
their typical applications. Considering the time integration method for transient problems we 
emphasize implicit and explicit solution capabilities of ANSYS. Furthermore, we focus on 
algorithms that reduce the solution time of dynamical calculations significantly. Two methods 
will be discussed in detail: First of all, to determine the natural frequencies of very large 
models where typically solid elements are used ANSYS provides an algorithm called 
Powerdynamics Method which shows quite good results when comparing the solution time 
with other classical algorithms. In addition, the QR Damped Method is introduced which 
enables the user to model non-proportional damping not only in a modal analysis but also in a 
transient and harmonic analysis when based on the modal superposition technique. Again this 
results in less computation time. We also will mention how damping can be modelled in 
ANSYS. 

3.2 Problems of Structural Dynamics - Numerical Methods in ANSYS 
Here we give a general overview of typical problems in structural dynamics. Based on 

d’Alemberts principle and due to the discretization process of a continuous structure with 
finite elements the following equation of motion can be derived: 
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f(t)UKUCUM =++ &&&
                                                                                              (3.1) 

M , C , K : System mass, damping  and stiffness matrix respectively. 

The vectors of nodal accelerations, velocities and displacements are   Uand   U,U &&&  

f(t) is the vector of applied forces. Dynamical equilibrium is obtained if equation (3.1) holds 
for all times « t ». 

All problems in structural dynamics can be formulated based on the above equation of motion 
(Eq. 3.1). A coarse classification is obtained by taking different representations for the time 
varying applied forces. For this classification Figure 3.1 presents a diagram where several 
analysis types of structural dynamics are listed according to the representation of the applied 
load. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 : Classification of Problems in Structural Dynamics 

Furthermore, a structural analysis that accounts for damping has to be distinguished 
from an analysis where damping is neglected. Finally, since not every engineering application 
results in the formulation of symmetric system matrices we should further distinguish 
between analyses with symmetric and unsymmetric matrices. 

In the following sections we briefly describe the different analysis types mentioned in 
the above Figure 3.1. We also discuss present solution algorithms of ANSYS and describe 
practical applications for each type of dynamic analysis. 

3.3 Modal Analysis 
A modal analysis is used to determine the vibration characteristics of a structure while 

it is being designed. Hence, the goal of a modal analysis is determining the natural 
frequencies and mode shapes. The right hand side of the equation of motion (3.1) is 
considered to be zero, i.e. 0f(t) = . A modal analysis can also be taken as a basis for other 
more detailed dynamic analyses such as a transient dynamic analysis, a harmonic analysis or 
even a spectrum analysis based on the modal superposition technique. The modal analysis is a  
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linear analysis. Any nonlinearity which may have been specified by the user is ignored. 
However, prestress effects may be considered. 

3.3.1 Solution Algorithms for a Modal Analysis and Typical Applications 
In a mathematical sense the computation of natural frequencies and mode shapes is 

equivalent with the solution of an eigenvalue problem. Depending on the presence of damping 
and the form of the resulting system matrices the numerical effort to solve the eigenvalue 
problem may vary. However, ANSYS provides a lot of different eigenvalue solvers. Many of 
them are designed for special application purposes and it is important to know which 
eigenvalue solver best suits the physics of the individual problem. Therefore, we will give an 
overview of all eigensolvers which are currently available in ANSYS together with typical 
applications. 

a. Systems without damping and symmetric matrices: 
In many engineering applications damping effects are neglected and the system 

matrices are symmetric. For those problems ANSYS provides the following eigensolvers: 

• Block Lanczos Method  

• Subspace Method 

• Reduced Method  

• Powerdynamics Method 

The Block Lanczos Method is a very efficient algorithm to perform a modal analysis 
for large models. It is a fast and robust algorithm and used for most applications as the default 
solver.  

The Subspace Method was popular in earlier years since very little computer resources 
were necessary to perform a modal analysis. However, compared with the Block Lanczos 
Method the Subspace Method is fast for small models but solution time increases as soon as 
larger models are considered.  

The Reduced Method is also an old eigensolver which works with reduced matrices in 
order to minimize the number of dynamic degrees of freedom. Master degrees of freedom 
have to be chosen which represent the dynamic response of the system as accurately as 
possible. Neither the Subspace Method nor the Reduced Method are popular today.  

The Powerdynamics Method is a special algorithm based on the Subspace Method. 
During the Subspace Algorithm linear systems of equations have to be solved. For this 
purpose, ANSYS provides several equation solver. Typical solver for problems in structural 
mechanics are the Sparse Solver, the Frontal Solver and the Pre-conditioned Conjugate 
Gradient Solver (PCG-Solver). Each of these equation solver has its special characteristics. 
By default the Subspace Method as mentioned above uses the Frontal Solver to obtain the first 
natural frequencies of a structure. This solver works efficiently for small models of up to 
50,000 active degrees of freedom. However, if models consist mainly of solid elements with 
more than 50,000 active degrees of freedom, the Subspace Method combined with the PCG-
Solver should be the preferred solution method. In ANSYS the combination of the Subspace 
Method together with the PCG-Solver is called Powerdynamics Method. For large models of 
up to 10,000,000 degrees of freedom, this method significantly reduces solution time. Another 
characteristic of the Powerdynamics Method is the lumped mass matrix formulation. In a 
lumped mass approach, the mass matrix is diagonal since the mass is considered concentrated 
at the nodes. Note that the Subspace Method is the only eigensolver in ANSYS where the user 
has the option to specify the equation solver.  
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b. Systems without damping and unsymmetric matrices: 
Some engineering applications in which structural damping is ignored may lead to 

unsymmetric system matrices. In those cases the ANSYS user can take advantage of the 
following eigensolver called: 

• Unsymmetric Method 

In fact, this method uses a Lanczos algorithm to solve the resulting unsymmetric 
eigenvalue problem which is commonly encountered in fluid-structure-interaction problems. 
For example if interest lies in the natural frequencies of a steel ring which is submerged in a 
compressible fluid the matrices are unsymmetric and the user has to apply the Unsymmetric 
Method as an appropriate eigensolver. 

c. Damped systems with symmetric matrices: 
If damping is considered and the system matrices are symmetric, the user can choose 

the following eigensolver to calculate damped natural frequencies of a structure: 

• QR Damped Method 

The QR Damped Method typically consists of two parts: First, the Block Lanczos 
Method mentioned earlier in this section is used to compute the solution of the undamped 
system. Hence, all natural frequencies and mode shapes will be calculated for zero damping. 
Note that the Block Lanczos Method ignores the damping matrix even if it is set up by the 
program.  

In a second step, the equation of motion now including the damping matrix is 
transformed with the matrices of undamped mode shapes into the modal subspace. This 
procedure is identical with the first step of the modal superposition technique which will be 
discussed in the next subsection. After some further mathematical manipulations an extended 
eigenvalue problem can be formulated. The resulting eigenvalues of this problem are 
complex. Each real part of an eigenvalue physically represents the damping coefficient 
multiplied with the undamped natural frequency of the considered mode whereas the 
imaginary part consists of the damped natural frequency itself.  

Let us briefly summarize the main properties of the QR Damped Method as an 
eigensolver: Damped natural frequencies are computed as well as modal damping coefficients 
of each mode. However, the effects of damping are not considered for the computation of the 
resulting mode shapes which simply means that only undamped mode shapes are obtained. 
Furthermore, we should mention that the QR Damped Method gives reasonable results only if 
undercritical damping is specified. Considering the solution speed the QR Damped Method 
shows a better performance especially when compared with the Damped Method which will 
be discussed next. 

d. Damped systems with symmetric/unsymmetric matrices: 
Let us assume damping is considered and the resulting damping matrix is either 

symmetric or unsymmetric. For such applications ANSYS provides the eigensolver called: 

 • Damped Method 

This method accounts for the damping matrix for the formulation of the considered 
eigenvalue problem. From a mathematical point of view this results in a so called quadratic 
eigenvalue problem. The obtained eigenvalues are again complex. The real part physically 
represents the product of the modal damping coefficient and the undamped natural frequency. 
The imaginary part, however, obtains the damped natural frequency.  
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In contrast to the QR Damped Method the effect of damping is also considered for the 
computation of mode shapes which has the consequence that all mode shapes are obtained in 
a complex form. Therefore, the dynamic response in each mode consists of a real and an 
imaginary part.  

In summary, we note that the Damped Method computes the damped natural 
frequencies and the real and imaginary parts of each mode shape. Considering solution time, 
the Damped Method works less efficiently compared with the QR Damped Method described 
above.  

Finally, we discuss in which engineering discipline a symmetric damping matrix is 
obtained and in which case the damping matrix appears as an unsymmetric one. The modal 
analysis of damped systems which are at rest leads in general to a symmetric formulation of 
the resulting damping matrix. Different possibilities to model the effect of damping will be 
summarized later on in this paper. However, if a modal analysis of a spinning structure has to 
be performed the effect of the resulting gyroscopic forces has to be included. Indeed these 
effects are physically comparable with structural damping and therefore a so called 
gyroscopic matrix has to be set up. In the equation of motion (Eq. 3.1) it typically occurs at 
the same position where usually the damping matrix can be found. It should be noted that for 
problems involving such rotordynamic stability this gyroscopic matrix is usually 
unsymmetric. Hence, the Damped Method has to be chosen to perform the analysis. 

3.3.2 Modal Superposition Technique for Problems in Structural Dynamics 
At this stage we would like to describe briefly the modal superposition technique since 

it is based on a modal analysis which has been discussed so far in this chapter. Many solution 
disciplines of structural dynamics require a transient or harmonic analysis that can be 
performed efficiently when the modal superposition technique is used. Also remember the 
fact that the spectrum analysis always uses the modal superposition as a basic concept. 

We refer to Figure 3.1 where the important role of the modal superposition technique 
is shown in context with classical solution disciplines of structural dynamics. The basic idea 
of the modal superposition technique is to describe the dynamic response of a structure by a 
linear combination of its first n undamped mode shapes. This can be formulated as : 
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where iϕ denotes the undamped mode shape of mode i and )(tyi is its modal 
coefficient. In the columns of the modal matrix φ , we find the n undamped mode shapes 

iϕ and the vector )(ty consists of the n modal coefficients )(tyi . By substituting equation (3. 
2) into the equation of motion (3.1) and further pre-multiplying with the transposed modal 
matrix Tφ we obtain: 

)(.)(.)(.)(. tftyKtyCtyM TTTT φφφφφφφ =++ &&&                                                                      (3.3) 

Since the undamped mode shapes are orthogonal with respect to the mass and stiffness 
matrix, (3.3) is decoupled and represents n equations each describing a generalized single 
degree of freedom model in the modal subspace. Strictly speaking, a set of decoupled 
equations is only achieved if the damping matrix is proportional to the total mass and/or the 
total stiffness matrix. This kind of damping is often called proportional or Rayleigh damping. 
If non-proportional damping is specified, for example by using discrete damping elements, 
the above equation (3.3) is coupled.  
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It should be mentioned again that based on equation (3.3) a transient and harmonic 
analysis or even a spectrum analysis can be performed quite efficiently since for these three 
analysis disciplines just the right hand side will be different.  

If equation (3.3) is decoupled for example in case of Rayleigh damping the solution 
speed increases rapidly. However, if non-proportional damping is specified it may also be 
convenient to work in the modal subspace since all system matrices are reduced to the order 
n×n independently of the form of the resulting damping matrix.  

To sum up, we notice that working in the model subspace always reduces the original 
dimension of the considered problem. Consequently, we obtain better performance in terms of 
solution time. 

3.4 Transient Dynamic Analysis 

A transient dynamic analysis is a technique which is used to determine the time history 
dynamic response of a structure to arbitrary forces varying in time. On the right hand side of 
equation (3.1) any function for the load vector may be specified, i.e. )()( tftf = . This type of 
analysis yields the displacement, strain, stress and force time history response of a structure to 
any combination of transient or harmonic loads.  

To obtain a solution for the equation of motion (3.1) a time integration has to be 
performed. In the literature, several time integration algorithms are discussed in detail. They 
can be broadly classified into implicit and explicit methods. Considering the stability of these 
two types of integration methods we notice that implicit methods are usually unconditionally 
stable which means that different time step sizes can be chosen without any limitations 
originating from the method itself.  

Explicit methods on the other hand are only stable if the time step size is smaller than 
a critical one which typically depends on the largest natural frequency of the structure. Due to 
the small time step necessary for stability reasons explicit methods are typically used for 
short-duration transient problems in structural dynamics.  

Since both types of time integration methods are available with the ANSYS product 
family we will discuss them below in more detail. We will also mention typical applications 
for both methods. 

3.4.1 Implicit Time Integration and its Typical Application  
The implicit time integration algorithm in ANSYS is the Newmark method. The 

stability of this method is controlled by two parameters that are set up by default so that the 
scheme is unconditionally stable and the effect of numerical damping is minimized. Applying 
the Newmark method to the equation of motion (3.1) results in a linear system of equation for 
each time step. Since the stiffness matrix appears on the left hand side it must be inverted in 
each time step in the incremental solution process. Since its inversion is computationally 
expensive especially for highly nonlinear problems the implicit solution technique in ANSYS 
is always a good choice to solve a transient analysis if the problem is not crucially dominated 
by nonlinearities.  

To solve a transient analysis ANSYS provides different solution options which will be 
discussed according to their importance and computational efficiency in more or less detail:  

• Full Method  

• Reduced Method  

• Modal Superposition Method  
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The Full Method does not reduce the dimension of the considered problem since 
original matrices are used to compute the solution. As a consequence it is simple to use, all 
kinds of nonlinearities may be specified, automatic time stepping is available, all kinds of 
loads may be specified, masses are not assumed to be concentrated at the nodes and finally all 
results are computed in a single calculation. The main disadvantage of the Full Method is the 
fact that the required solution time will increase with the size of the considered model.  

The Reduced Method originates from earlier years. Because of the reduced system 
matrices which are used to solve the transient problem, this method has an advantage when 
compared with the Full Method with respect to the required solution time. However, the user 
has to specify master degrees of freedom which represent the dynamic behaviour as good as 
possible. The only nonlinearity which can be specified is node-to-node contact via a gap 
condition. However, automatic time stepping is not possible. Consequently, this method is not 
very popular any more since all its disadvantages do not really compensate the advantage of 
lower costs in solution time.  

The Modal Superposition Method usually reduces the dimension of the original 
problem as well since the transient analysis is finally performed in the modal subspace which 
has the dimension of the number of mode shapes used for the superposition. The main 
advantage is again the reduction of solution time. It turns out that this method is actually the 
most efficient one compared with the other two. The accuracy just depends on the number of 
mode shapes used for the modal superposition. Even if a few modes shapes are taken the 
requested solution time might still be less when compared with the Full and the Reduced 
Method. Contact can be applied using the gap condition we mentioned in the discussion of the 
Reduced Method. The time step has to be chosen as constant which means that automatic time 
stepping is not available for this method. It should also be noted that a modal analysis has to 
be performed before the transient problem can be solved with the modal superposition 
technique. Hence, the solution process consists basically of two analyses, the modal analysis 
and the transient analysis in the modal subspace. Since for most problems in structural 
dynamics the natural frequencies of a structure are of interest this is not really a disadvantage. 
Summing up, using the modal superposition technique for a transient analysis reduces not 
only solution time, but the user also obtains information about the natural frequencies and the 
undamped mode shapes, respectively.  

Comparing the above solution options the Modal Superposition Method is the most 
powerful method considering the required solution time. However, it cannot handle 
nonlinearities. The Full Method requires more time to finish the analysis but can handle 
nonlinearities. 

3.4.2 Explicit Time Integration and its Typical Application 

ANSYS also provides the possibility to perform an explicit transient analysis. 
ANSYS/LS-DYNA as a product of the ANSYS family combines the LS-DYNA explicit finite 
element solver with the powerful pre- and postprocessing capabilities of ANSYS. 

 As an explicit time integration algorithm, LS-DYNA uses a central difference 
scheme. Similarly as the implicit Newmark method linear systems of equation have to be 
solved in each time step. However, the stiffness matrix will appear on the right hand side 
during the solution process and therefore does not need to be inverted in each step. For this 
reason ANSYS/LS-DNYA can handle highly nonlinear problems in transient dynamics very 
well. Fast solution capabilities are provided for short-time large deformation dynamics, quasi-
static problems with large deformations and multiple nonlinearities and also for complex 
contact/impact problems. For highly nonlinear transient problems the product ANSYS/LS-
DYNA might be the better choice compared with ANSYS in its implicit version.  
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Because of the small time step which has usually to be taken for stability reasons in 
ANSYS/LS-DYNA long-time transient problems might run inefficiently with this code and 
ANSYS in its implicit form could be a better choice.  

With ANSYS/LS-DYNA, the user can perform the complete preprocessing in 
ANSYS, obtain the explicit dynamic solution via LS-DYNA and review the results using 
again the ANSYS postprocessing tools the user might be already familiar with. It is also 
possible to transfer geometry and result information between ANSYS and ANSYS/LS-DYNA 
to perform a sequential implicit-explicit/explicit-implicit analysis, such as required for a drop 
test or a springback analysis. 

3.5 Harmonic Response Analysis 
Any sustained cyclic load will produce a sustained cyclic response in a structure which 

is often called a harmonic response. The harmonic response analysis solves the equation of 
motion (3.1) for linear structures undergoing steady-state vibrations. All loads and 
displacements vary sinusoidally with the same known frequency although not necessarily in 
phase. The use of a complex notation allows a compact and efficient description of the 
problem. For the function of applied force on the right hand side of the equation of motion 
(Eq. 3.1) the following expression is used, i.e : 

) (
max .eff(t) Ψ+Ω= ti                                                                                                               (3.4) 

In this formulation maxf  represents the amplitude of the force, Ω denotes the imposed 
circular frequency measured in radians/time and Ψ stands for the force phase shift which is 
measured in radians. 

As for the transient dynamic analysis ANSYS provides several solution options to solve a 
harmonic response analysis which will be discussed more or less in detail according to their 
immediate meaning:  

• Full Method  

• Reduced Method  

• Modal Superposition Method  

Note that the same three solution methods which are available for the transient dynamic 
analysis are provided to perform a harmonic response analysis. Since the mean characteristics 
of these methods have been already explained earlier we will not repeat them at this stage. All 
discussed advantages and disadvantages remain the same if the above methods are applied to 
a harmonic response analysis. Some features which are typical for these methods when used 
in the harmonic response analysis are discussed as follows.  

One feature of the Full Method which should be mentioned here is the capability of 
handling unsymmetric matrices which occur in problems of fluid-structure-interaction or 
rotordyamics. However, considering the solution time the Reduced Method and the Modal 
Superposition Method will still provide better performance, but cannot handle unsymmetric 
matrices.  

The Reduced Method and the Modal Superposition Method have the capability to take 
into consideration the effects of pre-stressing within a harmonic analysis. With the general 
improvement in solution time this turns out as an advantage when compared with the Full 
Method. Nevertheless, the Modal Superposition Method itself shows the best performance 
when observing the solution time.  
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3.6 Spectrum Analysis 
A spectrum analysis is a dynamical calculation discipline in which the results of a 

modal analysis are used together with a well-known spectrum to calculate certain quantities in 
the structure like displacements and stresses for example. A spectrum is simply a graph of a 
spectral quantity like the acceleration versus frequency that captures the intensity and 
frequency content of time-history loads.  

The spectrum analysis is often used instead of a transient dynamic analysis to 
determine the response of structures due to random or time-dependent loading conditions such 
as earthquakes, wind loads, ocean wave loads, jet engine thrusts, rocket motor vibrations and 
so on. Contrary to a transient analysis a spectrum analysis does not calculate the dynamic 
answer for the whole considered time range where the dynamic forces have been acting. 
Rather a conservative estimation for the maximum response of a certain quantity like the 
displacements or stresses is obtained from this type of analysis.  

To discuss further aspects of a spectrum analysis we should distinguish the 
deterministic way of consideration from the non-deterministic one. Up to now each analysis 
type has been of a deterministic nature since the load function has been always a clearly 
defined one. This assumption holds for the most engineering applications of today. Strictly 
speaking, dynamic loads appear quite often to be statistical in nature and hence a non-
deterministic probabilistic consideration could be even more suitable. In the following two 
subsections we provide detailed information about the deterministic response spectrum 
analysis and the non-deterministic random vibration analysis. 

3.6.1 Deterministic Response Spectrum Analysis 
For the deterministic response spectrum analysis the following types of spectra are 

available in ANSYS and we will try to explain their main characteristics as follows:  

• Response Spectrum  

Single-point Response Spectrum  

Multi-point Response Spectrum  

• Dynamic Design Analysis Method  

A response spectrum represents the response of a single degree of freedom system to a 
time-history loading function. It is a graph of response versus frequency where the response 
might be a displacement, velocity, acceleration, or even a force. In a single-point response 
spectrum analysis you specify one response spectrum curve at a set of points in the model, 
such as at all supports. On the other hand, in a multi-point response spectrum analysis you 
specify different spectrum curves at different sets of points.  

The dynamic design analysis method is a technique used to evaluate the shock 
resistance of shipboard equipment. The technique is essentially a response spectrum analysis 
in which the spectrum is obtained from a series of empirical equations and shock design tables 
provided in the U.S. Naval Research Laboratory Report NRL-1396. 

3.6.2 Non-deterministic Random Vibration Analysis 

For the non-deterministic random vibration analysis the following type of spectrum is used in 
ANSYS:  

• Power Spectral Density (PSD)  

PSD is a statistical measure defined as the limiting mean-square value of a random 
variable. It is used in a random vibration analysis in which the instantaneous magnitudes of 
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the response can be specified only by a probability distribution function that shows the 
probability of the magnitude taking a particular value. A PSD is a statistical measure of the 
response of a structure to random dynamic loading conditions. It is a graph of the PSD value 
versus frequency where the PSD may be a displacement PSD, velocity PSD, acceleration 
PSD, or a force PSD. Mathematically spoken, the area under a PSD-versus-frequency curve is 
equal to the variance that is simply the square of the standard deviation of the response. 

 Similarly to the response spectrum analysis a random vibration analysis may be 
single-point or even multi-point. In a single-point random vibration analysis you specify one 
PSD spectrum at a set of points. In a multi-point random vibration analysis, you specify 
different PSD spectra at different points. 

3.7 Various Possibilities to Model the Effect of Damping in ANSYS 
In nature, every dynamic process is subjected to the effect of damping. A totally 

undamped vibration actually does not exist in reality. In ANSYS, there are several 
possibilities available to model the effect of structural damping. The aim of this chapter is to 
give an overview of currently existing damping models of ANSYS. Since not every kind of 
damping can be applied in each solution method that is available for the different calculation 
disciplines, we have to discuss which damping model can be used in which solution method.  

Assuming that the damping matrix in the equation of motion (3.1) is set up directly 
and no transformation into the modal subspace is performed the following formulation can be 
given taken from: 

{
32143421

43421

4

13
3

11

   .  .    .. ∑∑
==

++++=
NEL

j
jc

NMAT

i
ii CKKKMC βββα                                                                      (3.5) 

The first term in equation (3.5) represents the well-known Rayleigh damping. Clearly, 
this part of the damping matrix is proportional to the total mass and stiffness matrix of the 
system. Damping which is proportional to the total mass matrix is often called « α » damping 
whereas damping proportional to the total stiffness matrix is often called « β » damping. The 
second term describes material dependent damping since the element stiffness matrices 
covering the same material properties are just multiplied by a constant factor. If just one 
material is used the second term is actually identically with « β » damping. The third term is 
only used in a full or reduced harmonic response analysis and will therefore be discussed 
later. The fourth term of equation (3.5) describes damping due to the presence of discrete 
damping elements.  

We describe below which kind of damping can be used considering the different 
dynamic calculation methods mentioned in this paper so far: 

3.7.1 Modal analysis including damping 
In a modal analysis, the user can apply Rayleigh damping as well as material 

dependent damping. Furthermore, discrete damping elements can be used. The available 
eigensolver for this purpose can be the Damped Method or the QR Damped Method. These 
eigensolver have been already characterized in detail together with typical applications. We 
should mention again that the QR Damped Method reduces the required solution time for a 
damped modal analysis significantly when compared with the Damped Method. 
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3.7.2 Transient dynamic analysis including damping 
In a transient dynamic analysis that is performed using the Full or the Reduced 

Method, Rayleigh damping can be specified as well as material dependent damping. Discrete 
damping elements may also be used. 

3.7.3 Harmonic response analysis including damping 
Considering the harmonic response analysis solved by the Full or Reduced Method the 

user is not just able to specify Rayleigh damping, material dependent damping or even make 
use of discrete damping elements. With the third term of equation (3.5) it is also possible to 
specify a constant damping ratio regardless of each natural frequency. Remember that the 
damping ratio is defined as the ratio between the actual damping and the critical damping 
itself. The specified damping ratio for the harmonic response analysis is internally used to get 

the stiffness matrix multiplier cβ  appearing in equation (3.5) which further depends on each 
imposed exciting frequency. 

3.7.4 Performing a dynamical analysis in the modal subspace including damping 
It has been mentioned earlier that a transient dynamic analysis or a harmonic response 

analysis can be solved much more efficiently considering the required solution time if they 
are performed in the modal subspace so that the modal superposition technique can be 
applied.  

We have also mentioned that a spectrum analysis cannot be performed without modal 
superposition. Remember that the basis of the modal superposition technique is the 
decoupling process of the equation of motion (3.3) into generalized single degree of freedom 
models.  

This decoupling process only works properly if Rayleigh damping is specified which 
finally results in a modal damping ratio depending on the parameters « α » and « β ». 
Additionally, a constant modal damping ratio for all modes and an individual damping ratio 
for each mode can be specified when working in the modal subspace independently of « α » 
and « β ». This results in the following formulation for the total modal damping ratio which is 
taken from : 

{ {
32

1

2
.

.2 mi
i

i
i ξξωβ

ω
αξ +++=

43421

                                                                                                      (3.6) 

In equation (Eq. 3.6) the first term represents « α » and « β » damping. The second one 
describes the constant modal damping ratio used for all modes and the third term represents 
the individual modal damping ratio which can be prescribed for each single mode differently.  

It has been mentioned already that it is quite convenient to perform a dynamic analysis 
in the modal subspace since the dimension of the problem is reduced according to the number 
of mode shapes you consider. However, the modal superposition technique in its classical 
form cannot take into account the effects of non-proportional damping, i.e. when material 
dependent damping is used or discrete damping elements are present. In such a case the 
decoupling process of the resulting damping matrix does not work properly.  

Nevertheless, if the user wants to apply non-proportional damping but also likes to 
take advantage of working in the modal subspace ANSYS provides a special method to do 
this. The modal analysis has to be done by using the QR Damped Method as an eigensolver. 
Every kind of non-proportional damping can be considered further in a transient, harmonic or 
in a spectrum analysis when performed in the modal subspace. Hence, the QR Damped 
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Method does not just reduce the solution time in a modal analysis it also enables the user to 
work in the modal subspace with non-proportional damping which results again in a better 
performance considering the solution speed. 

3.8  ANSYS Contact Capabilities 
Contact problems fall into two general classes: rigid-to-flexible and flexible-to-

flexible. In rigid-to-flexible contact problems, one or more of the contacting surfaces are 
treated as rigid (i.e., it has a much higher stiffness relative to the deformable body it contacts). 
In general, any time a soft material comes in contact with a hard material, the problem may be 
assumed to be rigid-to-flexible. The other class, flexible-to-flexible, is the more common 
type. In this case, both (or all) contacting bodies are deformable. An example of a flexible-to-
flexible contact is bolted flanges. 

ANSYS supports five contact models: node-to-node, node-to-surface, surface-to-
surface, line-to-line, and line-to-surface. Each type of model uses a different set of ANSYS 
contact elements and is appropriate for specific types of problems. 

To model a contact problem, you first must identify the parts to be analyzed for their 
possible interaction. If one of the interactions is at a point, the corresponding component of 
your model is a node. If one of the interactions is at a surface, the corresponding component 
of your model is an element: either a beam, shell, or solid element. The finite element model 
recognizes possible contact pairs by the presence of specific contact elements. These contact 
elements are overlaid on the parts of the model that are being analyzed for interaction. The 
different contact elements that ANSYS uses, and procedures for using them, are described in 
the remaining chapters of ANSYS guides. 

At this stage we will present sorface-to-surface contact element which will be used in 
the thesis work. 

3.8.1 Surface-to-Surface Contact Elements 
ANSYS supports both rigid-to-flexible and flexible-to-flexible surface-to-surface contact 
elements. These contact elements use a "target surface" and a "contact surface" to form a 
contact pair.  

• The target surface is modeled with either TARGE169 or TARGE170 (for 2-D and 3-
D, respectively). 

• The contact surface is modeled with elements CONTA171, CONTA172, CONTA173, 
and CONTA174. 

To create a contact pair, assign the same real constant number to both the target and contact 
elements. You can find more details on defining these elements and their shared real constant 
sets in "Surface-to-Surface Contact".  

These surface-to-surface elements are well-suited for applications such as interference fit 
assembly contact or entry contact, forging, and deep-drawing problems. The surface-to-
surface contact elements have several advantages over the node-to-node element CONTA175. 
These elements:  

• Support lower and higher order elements on the contact and target surfaces (in other 
words, corner-noded or midside-noded elements). 

• Provide better contact results needed for typical engineering purposes, such as normal 
pressure and friction stress contour plots. 



Structural Dynamic Capabilities of ANSYS 

49 
 

• Have no restrictions on the shape of the target surface. Surface discontinuities can be 
physical or due to mesh discretization. 

Using these elements for a rigid target surface, you can model straight and curved surfaces in 
2-D and 3-D, often using simple geometric shapes such as circles, parabolas, spheres, cones, 
and cylinders. More complex rigid forms or general deformable forms can be modeled using 
special preprocessing techniques. 

Surface-to-surface contact elements are not well-suited for point-to-point, point-to-
surface, edge-to-surface, or 3-D line-to-line contact applications, such as pipe whip or snap-fit 
assemblies. You should use the node-to-surface, node-to-node, or line-to-line elements in 
these cases. You also can use surface-to-surface contact elements for most contact regions and 
use a few node-to-surface contact elements near contact corners. 

The surface-to-surface contact elements only support general static and transient 
analyses, buckling, harmonic, modal or spectrum analyses, or substructure analyses. 

3.9 Conclusion 
In this chapter, we have given an overview of the present capabilities of ANSYS in the 

field of structural dynamics. Various computation disciplines have been discussed together 
with available algorithms of ANSYS. Considering the solution speed of eigenvalue problems 
we have focused on a few quite powerful eigenvalue solvers available in ANSYS especially 
the QR Damped Method and the Powerdynamics Method that decrease the required solution 
time significantly. In addition, we have mentioned that this algorithm is able to perform a 
transient, harmonic and also a spectrum analysis quite efficiently in the modal subspace even 
if non-proportional damping is modelled. 

It is important to note that the totality of this chapter is taken from the course of Erke 
Wang and Thomas Nelson (2001) about Ansys applicability. 
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CHAPTER 4 

Dam Description, Generation of Data Base, and Inputs 

4.1 Introduction  
This section is dedicated to « Brezina » case study dam description, different materials 

properties and the different elements used in the modeling of dynamic foundation-fluid-dam 
interaction by ANSYS finite element code.  

4.2 Dam Description  
The concrete gravity arch dam of Brezina is located in El Beyadh at the west of 

Algeria. It transmits part of its actions to both sides of the valley through arching effect, 
whereas the bottom part acts on the foundation.  

The dam is 60 m high, its maximum arch length is 78.5 m and its thickness varies 
from 5m at the crest to 36.3 m at the foundation level. Figure 4.1 shows Brezina concrete arch 
dam location, and Figure 4.2 illustrates its actual geometry. 

 
Figure 4.1: Location of Brezina Concrete Arch Dam in Algeria map. 
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Figure 4.2: Brezina concrete arch dam. 

Figure 4.3 and Table 4.1 present the geometrical characteristics used to model Brezina 
dam. 

 
Figure 4.3: Geometrical characteristics of Brezina dam. 

Elevation Re  RI  LF  DF  cX  cY  
m m m degree degree m m 

910 67.8 62.8 34.7 34.7 0 67.8 
900 67.8 56.8 34.7 34.7 0 67.8 
890 65 50.8 33 34.7 0 67.8 
880 65 44.8 31 34.7 0 67.8 
870 65 28.7 23 20 0 67.8 
860 65 28.7 13 15 0 67.8 
850 65 28.7 1.5 5 0 67.8 

Table 4.1: Geometrical characteristics of Brezina dam. 

The material properties used for the next applications are summarized in Table 4.2  for 
concrete dam and foundation rock, and in Table 4.3 for reservoir water respectively. : 
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Material Young’s Modulus (N/m2) Poisson’s ratio Density (kg/m3) 
Concrete dam 28.5e+09 0.2 2500 

Foundation rock 14.5e+09 0.25 2100 

Table 4.2: Material properties of Brezina concrete dam and its rock foundation 

Compressibility 
Modulus (N/m2) Poisson’s Ratio Density (kg/m3) Viscosity 

2.068E+09 0.49 1000 0.001 

Table 4.3 : Reservoir water properties 

4.3 Dam-foundation rock finite element Geometry 
The dam-foundation rock system is investigated using 2D finite element models in one 

hand and 3D finite element models in the other hand. 

4.3.1  2D finite element Geometry: 
For the 2D finite element representation, two models are used; the first one represent 

the dam only (without surrounding rock), however the second on represent the dam with 
adjacent rock.  

PLANE 42 is used for 2-D modeling of solid structures. The element can be used 
either as a plane element (plane stress or plane strain) or as an axisymmetric element. The 
element is defined by four nodes having two degrees of freedom at each node: translations in 
the nodal x and y directions. The geometry, node locations, and the coordinate system for this 
element are shown in Figure 4.4, The element input data includes four nodes, a thickness (for 
the plane stress option only) and the orthotropic material properties. 

 
Figure 4.4: PLANE 42 Geometry (ANSYS help, version 2011) 

Another 2D finite element is used to model the cylindrical tank in chapter 8; it is about 
SHELL 181 sketched in figure 4.5. SHELL 181 is suitable for analyzing thin to moderately-
thick shell structures. It is a 4-node element with six degrees of freedom at each node: 
translations in the x, y, and z directions, and rotations about the x, y, and z-axes. (If the 
membrane option is used, the element has translational degrees of freedom only). The 
degenerate triangular option should only be used as filler elements in mesh generation. 
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Figure 4.5: SHELL 181 Geometry (ANSYS help, version 2011) 

4.3.2  3D finite element Geometry: 
As for the 2D finite element representation, the 3D one also contains two models: the 

dam without rock foundation model and the dam with adjacent rock foundation model.  

SOLID185 is used for the 3-D modeling of solid structures. It is defined by eight 
nodes having three degrees of freedom at each node: translations in the nodal x, y, and z 
directions. The element has plasticity, hyperelasticity, stress stiffening, creep, large deflection, 
and large strain capabilities. It also has mixed formulation capability for simulating 
deformations of nearly incompressible elastoplastic materials, and fully incompressible 
hyperelastic materials. Figure 4.6 shows SOLID185 element geometry. 

 
Figure 4.6: SOLID185 Geometry (ANSYS help, version 2011) 

4.4 Fluid finite element models 
To model the fluid two, approaches are chosen, in the first one the fluid is modeled as 

added mass which represent added mass approach using surf element available in ANSYS 
Library, however in the second approach, the reservoir is modeled by fluid element already 
available in ANSYS Library. Depending on the finite element model kind which means if the 
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model is in two dimensions (2D) or three dimensions (3D), two fluid elements are used; the 
FLUID 79 (for 2D modeling) and FLUID80 (for 3D modeling). 

4.4.1 SURF153 (for 2D modeling) 
SURF153 may be used for various load and surface effect applications. It may be 

overlaid onto a face of any 2-D structural solid element. 

The geometry, node locations, and the coordinate system for this element are shown in 
Figure 4.7. 

 
Figure 4.7: SURF153 Geometry (ANSYS help, version 2011) 

The element is defined by two or three node points and the material properties. The 
element x-axis is along to the I-J line of the element. The mass calculation uses the density 
(material property DENS, mass per unit volume) and the real constant ADMSUA, the added 
mass per unit area. The stiffness matrix calculation uses the in-plane force per unit length 
(input as real constant SURT) and the elastic foundation stiffness using pressure-per-length 
(or force-per-length-cubed) units (input as real constant EFS). The foundation stiffness can be 
damped, either by using the material property DAMP as a multiplier on the stiffness or by 
directly using the material property VISC. 

4.4.2 SURF154 (for 3D modeling) 
SURF154 may be used for various load and surface effect applications. It may be 

overlaid onto an area face of any 3-D element. The element is applicable to 3-D structural 
analyses. Various loads and surface effects may exist simultaneously. The geometry, node 
locations, and the coordinate system for this element are shown in Figure 4.8. The element is 
defined by four to eight nodes and the material properties. 

 
Figure 4.8: SURF154 Geometry (ANSYS help, version 2011) 

 The mass calculation uses the density (material property DENS, mass per unit 
volume) and the real constant ADMSUA, the added mass per unit area. The stiffness matrix 
calculation uses the in-plane force per unit length (input as real constant SURT) and the 
elastic foundation stiffness using pressure-per-length (or force-per-length-cubed) units (input 
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as real constant EFS). The foundation stiffness can be damped, either by using the material 
property DAMP as a multiplier on the stiffness or by directly using the material property 
VISC. 

4.4.3 FLUID 79 (for 2D modeling) 
FLUID79 is a modification of the 2-D structural solid element (PLANE42). The fluid 

element is used to model fluids contained within vessels having no net flow rate. The fluid 
element is particularly well suited for calculating hydrostatic pressures and fluid/solid 
interactions. Acceleration effects, such as in sloshing problems, as well as temperature effects, 
may be included. The fluid element is defined by four nodes having two degrees of freedom at 
each node: translation in the nodal x and y directions. The element may be used in a structural 
analysis as a plane element or as an axisymmetric ring element. The geometry, node locations, 
and the coordinate system for this element are shown in Figure 4.9. 

 
Figure 4.9: FLUID79 Geometry (ANSYS help, version 2011) 

The element input data includes four nodes and the isotropic material properties. EX, 
which is interpreted as the "fluid elastic modulus", should be the bulk modulus of the fluid. 
The viscosity property (VISC) is used to compute a damping matrix for dynamic analyses. 

4.4.4 FLUID80 (for 3D modeling) 
FLUID80 is a modification of the 3-D structural solid element (SOLID45). The fluid 

element is used to model fluids contained within vessels having no net flow rate. The fluid 
element is particularly well suited for calculating hydrostatic pressures and fluid/solid 
interactions. Acceleration effects, such as in sloshing problems, as well as temperature effects, 
may be included. 

The geometry, node locations, and the coordinate system for this element are shown in 
Figure 4.10. 
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Figure 4.10: FLUID80 Geometry (ANSYS help, version 2011) 

4.5 Interfaces finite element Geometry 
Also in the next applications two contact elements type will be used depending already 

on whether the modeling is in two dimensions (2D) or in three dimensions (3D); we talk 
about CONTA172 (for 2D models) and CONTA174 (for 3D models). 

4.5.1 CONTA172 (for 2D models) 
CONTA172 is used to represent contact and sliding between 2-D "target" surfaces 

(TARGE169) and a deformable surface, defined by this element. The element is applicable to 
2-D structural and coupled field contact analyses. It has the same geometric characteristics as 
the solid element face with which it is connected (Figure 4.11). Contact occurs when the 
element surface penetrates one of the target segment elements (TARGE169) on a specified 
target surface. Coulomb and shear stress friction is allowed. This element also allows 
separation of bonded contact to simulate interface delamination. 

 
Figure 4.11: CONTA172 Geometry (ANSYS help, version 2011) 

4.5.2 CONTA174 (for 3D models) 
CONTA174 is used to represent contact and sliding between 3-D "target" surfaces 

(TARGE170) and a deformable surface, defined by this element. The element is applicable to 
3-D structural and coupled field contact analyses. This element is located on the surfaces of 3-
D solid or shell elements with mid-side nodes. It has the same geometric characteristics as the 
solid or shell element face with which it is connected (Figure 4.12). Contact occurs when the 
element surface penetrates one of the target segment elements (TARGE170) on a specified 
target surface. Coulomb and shear stress friction is allowed.  
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Figure 4.12: CONTA174 Geometry (ANSYS help, version 2011) 

4.6 Conclusion 
All elements discussed in this chapter will be used in the next chapters, where the case 

study dam will be modelized by Ansys finite element code. 
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CHAPTER 5 

Dynamic foundation Structure Interaction Study using ANSYS 

5.1 Introduction 
The effect of the surrounding rock foundation, as depicted by the foundation-structure 

interaction phenomenon, on the dynamic behavior of Brezina concrete gravity arch dam 
described in chapter 4 is investigated in the present one using “Direct method”. Both modal 
and transient analyses are performed for this dam using ANSYS finite element code.  

The results of these analyses constitute a data base for a parametric study that treats 
the effect of the rock-structure interaction, the mass of rock foundation, and the viscous 
damping ratio on the dynamic behavior of Brezina concrete arch dam under three different 
generated synthetic earthquake excitations (Armouti, N.S. 2004) (with a peak ground 
acceleration equal to 0.2g).  

It is important to note that the water effect is not taken into account in the present 
chapter. It is the target of the next chapters. 

5.2 Finite Element Meshing of Brezina Concrete Arch Dam without foundation and 
Dam with Adjacent foundation Using ANSYS Software 

The dam-foundation system is investigated using three 3D finite element models. The 
first model or dam alone, neglecting the foundation, represents the dam only, which is 
clamped at its base on the foundation (Figure 5.1). The second model or dam-massless 
foundation, represents the dam and the adjacent foundation but the foundation’s mass is 
neglected. The foundation is also clamped at its base (Figure 5.2). Lastly, the third model or 
dam-foundation with foundation mass, is similar to the second one, except that the mass of the 
foundation is taken into account (Figure 5.2). These finite elements models are created using 
the finite element commercial package, ANSYS, with a mapped meshing (Ansys theory 
manual, 2011). The finesse of the mesh has been determined by performing a convergence 
analysis (mesh sensitivity).  

The first model, i.e., dam alone, possesses 972 quadratic solid elements (SOLID185) 
and 1378 nodes (Figure 5.1). The second and third model (with the foundation) exhibits 
16252 quadratic solid elements and 19035 nodes (Figure 5.2). 

The length and width of the foundation, along the global X and Y axis, respectively, 
are taken to be 150m, while its depth, along the Z direction, is taken to be 100 m. These sizes 
are chosen so that the applied boundary condition will not affect the modal responses of the 
dam.  
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Figure 5.1 : 3D finite element model of Brezina arch dam without adjacent foundation and 

boundary conditions. 

 
Figure 5.2: 3D finite element model of Brezina arch dam with adjacent foundation and 

boundary conditions. 

5.3 Methodology 
For each input motion (each generated record), the following cases are investigated: 

 Neglecting the effect of dam-foundation interaction, i.e. assuming the structure 
as being fixed at its base, the foundation is assumed to be completely rigid (the 
modulus of elasticity is infinite). 

 Linear dam-foundation interaction analysis assuming massless foundation 
(neglecting the inertial effect of foundation) having a modulus of elasticity equals 
to a half of the dam modulus of elasticity. 

 Linear dam-foundation interaction analysis while allowing for the mass of the 
foundation (taking into account the inertial effect of the foundation) the foundation 
modulus of elasticity is taken as half of the dam concrete modulus of elasticity. 

 All the analyses above are repeated for different earthquake records applied in 
x direction, and for different damping ratios (2%, 5% and 10%). 

5.4 Generation of Data Base 

5.4.1 Introduction 
Earthquakes and consequently acceleration time histories are characterized by their 

randomness and their dependency on many factors that are also random such as: site 
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condition, earthquake source-to-site distance, earthquake magnitude, source-mechanism 
characteristics and others. 

Using actual earthquake records in the design of earthquake-resistant structures does 
not always suit the actual conditions in terms of the above cited factors. Additionally, actual 
records do not cover all areas nor predict future earthquakes that may occur. 

The resort is to develop synthetic acceleration time histories based on theoretical 
models that reflect the specified conditions. 

5.4.2 Synthetic Earthquakes 
Armouti (2004) developed a computer program named GNREQ for generation of 

synthetic earthquakes; this program is used in the present thesis to generate the required 
earthquake records. The program generates synthetic records to represent randomness of the 
earthquakes and to include site characteristics in the generation process such characteristics 
are given in terms of dominant ground frequency gω , ground damping ratio gζ  and equivalent 

earthquake duration nT . 

The maximum duration of synthetic earthquakes is selected to 15 seconds and the 
corresponding circular frequency is 60 rad/second, these values are adopted because they are 
sufficient to express the earthquake effects, additional ground excitations are minimal at the 
end of these periods. 

The site characteristic of the foundation of Brezina dam is rock and hence, its 
dominant ground frequency gω , ground damping ratio gζ , equivalent earthquake duration nT  , 
may be assigned according to Table 5.1 (Armouti, 2004).  

foundation 
type gω  gζ  nT  

Rock π8  0.6 10 

Table 5.1: Site condition parameters (Armouti, 2004). 

Three artificial earthquakes are generated for rock foundation of Brezina arch dam 
using three different identified random numbers initializers as: 17962, 16454 and 18124 (the 
peak ground acceleration is maintained the same at 0.2 g). These three acceleration time 
histories are presented in Figure 5.3, Figure 5.4 and Figure 5.5 respectively. 
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Figure 5.3: Acceleration time history for random number initializer equals to 17962 

(PGA=0.2g). 
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Figure 5.4: Acceleration time history for random number initializer equals to 16454 

(PGA=0.2g). 

Figure 5.5: Acceleration time history for random number initializer equals to 18124 
(PGA=0.2g) 
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5.5 Record Deconvolution Using Shake Program 
As mentioned above, two models will be adopted for Brezina concrete arch dam. In 

the first one, analyses will be performed without considering the adjacent foundation, while in 
the second model the dam foundation is taken into account. 

The second step of direct method procedure for studying SSI consist of calculating the 
motion at the bottom model base (which is chosen at a sufficient depth so that the presence of 
a structure at surface can not affect this motion), which means the necessity to do the 
deconvolution of the above generated synthetic earthquakes at the bottom model level. This 
process is to be achieved by Shake computer program but because the dam object of the 
present study is built on rock, the deconvoluted records are similar (with a very little 
variation) to the generated ones, because rock is reliable in transmitting seismic waves.  

5.6 Dam Damping Ratios 
Viscous damping is the damping of choice in many cases for describing the response 

of single degree of freedom dynamic systems. One of the main reasons for selecting viscous 
damping is associated with the fact that this damping is the most amenable for solving the 
dynamic equilibrium differential equation. When these concepts are extended to multiple 
degree of freedom systems, serious shortcomings come into play, because there is no such a 
clear relationship between the physical phenomena and its mathematical modelling (L. E. 
Garcia et al, 2003). 

A multi-degree of freedom system with viscous damping under ground motion is 
described by the following equilibrium equations:  

guIMUKUCUM &&&&& −=++
                                                                                    

(5.1) 

The force exerted by a viscous damper is proportional to the relative velocity between 
the two ends of the damper. The procedure to obtain the elements of the damping matrix [ ]C  
is by imposing a unit velocity to one degree of freedom at a time, while maintaining the 
velocity of all other degrees of freedom in zero. The internal forces exerted in all degrees of 
freedom of the structure by the dampers affected by the unit velocity of the selected degree of 
freedom compose the column of the damping matrix corresponding to the selected degree of 
freedom (L. E. Garcia et al, 2003). 
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C                                                                                             (5.2) 

Limitation in current knowledge about damping of structural materials, or structural 
members built with these materials; make the described procedure difficult to apply in most 
practical cases. The procedure generally involves approximations based on experimentally 
measured damping on structures that somewhat resemble the structure under study. These 
procedures generally employ what is called modal damping. Modal damping is based on the 
principle that the damping matrix can be uncoupled by the vibration modes obtained from the 
mass and stiffness properties. This means that matrix [ ]C when pre-multiplied by [ ]TΦ  and 
post-multiplied by [ ]Φ turns into a diagonal matrix: 
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[ ] [ ][ ] [ ]ii
T ω2ξΦCΦ =                                                                                                          (5.3) 

In Eq. (5.3) [ ]iiω2ζ  is a diagonal matrix and iζ is the viscous damping associated 
with mode « i ». This type of damping in which the damping matrix is uncoupled by the 
vibration modes obtained only from mass and stiffness matrices [ ]M  and[ ]K , is known as 
classic damping. However, we have to be careful that under this premise, the main property of 
the damping matrix is the possibility of being uncoupled by the computed modes, a 
mathematical property that has little relation to the physical phenomena (L. E. Garcia et al, 
2003). 

By stating that the damping matrix is a linear combination of mass [ ]M  and stiffness 
matrix[ ]K , where α  and β  are constants: 

[ ] [ ] [ ]KβMαC +=                                                                                                               (5.4) 

The damping matrix can be uncoupled to produce the following result: 

[ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ] [ ] [ ] [ ]2
i

2TTT βωαωβIαΦKΦβΦMΦαΦCΦ +=+=+=                       (5.5) 

Where [ ]2
iβωα + is a diagonal matrix and each one of the terms of the diagonal corresponds 

to iiω2ξ . Then the damping coefficient iζ  for each uncoupled equation is: 

2
βω

2ω
αξ i

i
i +=                                                                                                                   (5.6) 

Where: 

α : Alpha damping or mass damping. 

β : Beta damping or stiffness damping. 

This type of damping is known as Rayleigh damping, and correspond to a particular 
case of the classic damping. From Eq. (5.6) it is evident that damping is a function of the 
corresponding mode frequency, being thus different for each mode. If we know 
experimentally obtained values for damping in two modes, say  « r »and « s », it is possible to 
state two simultaneous equations from which we can solve for α  and β : 
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If the damping coefficients of two modes are equal )ξξ(ξ sr == , solution of the 
simultaneous equations leads to: 
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Figure 5.6 shows the relationship between damping and frequency. Cases of damping being 
proportional only to the mass and proportional only to stiffness are also shown in the same 
figure. 
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Figure 5.6: Relationship between damping and frequency for Rayleigh’s damping (L. E. 

Garcia et al, 2003). 

It is convenient to take rω as the value of the fundamental frequency and sω as the 
frequency corresponding to the last of the upper modes that significantly contribute to the 
response. This way the first mode and mode « s » will have exactly the same damping, and all 
modes in between will have somewhat smaller similar values and the modes with frequencies 
larger than sω will have larger damping values thus reducing their contribution to response 
(L. E. Garcia et al, 2003). 

In many practical structural problems, alpha damping (or mass damping) may be 
ignored 0)(α = (it is specified only for bodies which resist to wind or for submarine 
applications) (Ansys theory manual, 2011). In such cases, β can be evaluated from known 
values of  iξ  and iω , as: 

i

i

ω
2ξβ =                                                                                                                                 (5.9) 

5.7 Integration Time Step 
For the time integration techniques, there is an important concept named “integration 

time step” noted∆t which is defined as the temporal increment from one temporal point to 
another. 

The accuracy of the transient dynamic solution depends on the integration time step: 
the smaller the time step, the higher the accuracy. A time step that is too large will introduce 
error that affects the response of the higher modes (and hence the overall response). A time 
step that is too small will waste computer resources. To calculate an optimum time step, the 
following guidelines should be considered (Ansys theory manual, 2011): 

 Resolve the response frequency. The time step should be small enough to 
resolve the motion (response) of the structure. Since the dynamic response of a 
structure can be thought of as a combination of modes, the time step should be able to 
resolve the highest mode that contributes to the response. For the Newmark time 
integration scheme, it has been found that using approximately twenty points per cycle 
of the highest frequency of interest results in a reasonably accurate solution. That is, if 
f  is the frequency (in cycles/time), the integration time step (ITS) is given by 

20f
1ITS =                                                                                                                          (5.10) 
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Smaller ITS values may be required if acceleration results are needed (Ansys manual, 
version 11). 

 Resolve the applied load-versus-time curve(s). The time step should be small 
enough to “follow” the loading function. The response tends to lag the applied loads, 
especially for stepped loads. Stepped loads require a small ITS at the time of the step 
change so that the step change can be closely followed. ITS values as small as Eq. 
2.2 may be needed to follow stepped loads (Ansys theory manual, 2011). 

180f
1ITS =                                                                                                                        (5.11)      

 Resolve the wave propagation. If you are interested in wave propagation 
effects, the time step should be small enough to capture the wave as it travels through 
the elements (Ansys theory manual, 2011) 

3c
∆xITS ≤                                                                                                                           (5.12) 

∆x : Element size  

20
L∆x ≤                                                                                                                              (5.13) 

L : The structure length along the waves direction.  

c : Elastic wave velocity. 

ρ
Ec =                                                                                                                               (5.14) 

E : Young’s modulus. 

ρ : Mass density. 

For transient dynamic analysis which is the present study type Eq. 2.1 is the more 
important (Ansys theory manual, 2011). 

5.8 Recaptulation 
At first, seismic free field input motion at ground surface is determined.  This is 

achieved by analyzing the unexcavated virgin foundation in the absence of the structure.  
The free field motion will be calculated using the power spectral density for the 

foundation.  To carry out this step, computer program GNREQ is utilized (Armouti, N.S, 
2004).Then the deconvolution of this motion is carried out using the computer program 
“Shake”. 

 In the second step the rock foundation-structure behavior is assumed linear.  
In the third step, the analysis of the foundation-structure system under the action of 

ground motion determined in the first step; and using the linear foundation-structure behavior 
assumed in second step, the analysis is carried out using ANSYS (Saeed Moaveni 1999).   

The analysis is carried out for different damping ratios, using two assumptions of rock 
foundation (mass and massless foundation), and two values of foundation modulus of 
elasticity, infinite value (rigid base), and half the modulus of elasticity of the dam (Table 4.2). 
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It is important to note that for each case of analysis named above, modal analysis must 
be done to calculate the fundamental frequency and consequently to calculate the value of 
structural damping β  from the assumed damping ratio using Eq.(5.9). The results are 
tabulated, presented graphically, analyzed and compared. 

5.9 Dynamic Analysis and Parametric Study 

5.9.1 Modal Analysis 
The five lowest natural frequencies and the corresponding effective masses and 

participation factors of Brezina dam without foundation, Brezina dam with massless 
foundation, and Brezina dam with mass foundation are presented in Table 5.2, Table 5.3, and 
Table 5.4, respectively. 

Mode Frequency 
(Hz) 

Effective 
mass (Kg) 

Participation 
factor 

1 12.42 0.3078e+08 5548.5 

2 18.56 219.850 -14.827 

3 24.83 0.2918e+08 -5402.2 

4 26.53 0.1062e+08 3259.9 

5 27.80 38388.0 -195.93 

Table 5.2: The first ten natural frequencies of the dam without foundation. 

Mode Frequency 
(Hz) 

Effective 
mass (Kg) 

Participation 
factor 

1 9.334 0.5948e+08 7712.6 

2 13.67 872.768 -29.543 

3 14.28 0.3305e+08 5749.5 

4 16.27 59275.8 -243.47 

5 16.78 0.3838e+08 -6195.4 

Table 5.3: The first ten natural frequencies of the dam with massless foundation. 
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Mode Frequency 
(Hz) 

Effective 
mass (Kg) 

Participation 
factor 

1 6.48 0.10664e+08 -3265.6 

2 6.90 112.840 -10.623 

3 7.40 33858.1 184.01 

4 7.83 0.52358e+10 72359. 

5 8.57 0.16137e+10 -40172. 

Table 5.4: The first ten natural frequencies of the dam with mass foundation. 

Table 5.2, shows that frequencies are very important; vary between 12.42 Hz and 
27.80 Hz, which implies that the dam is very rigid, this is obvious as the dam is fixed end. 

From Tables 5.3 and 5.4, it is clear that for the case of dam with massless foundation, 
the frequencies are much greater than those for the case of the dam with mass foundation.  
This is due to the fact that the mass matrix is located at the denominator in the frequency 
formula, thus decreasing the mass leads to increased the frequency and vice versa. 

5.9.2 Transient Analysis 
A transient analysis using full Newmark method is performed for the three models 

representing Brezina concrete arch dam using ANSYS finite element code. Three generated 
records are used having the same peak ground acceleration (0.2 g) and different random 
numbers initializers and assuming three values of viscous damping (three values of structural 
damping β ). 

Using Eq. (5.11) leads to an integration time step equals to 0.005   but after a 
sensitivity analysis and because of the huge size of the output file and also the long duration 
of the run operation a time step of 0.01 second is judged sufficient. 

It is important to denote that the results of the transient analysis are presented below 
for one synthetic earthquake record having an initialized number of 17962 but these results 
remain applicable for the three other generated earthquakes having initialized numbers of 
16454 and 18124. 

a.  Displacements Comparison 

Figure 5.7, Figure 5.8, and Figure 5.9 represent the displacement contours in x 
direction for the dam without foundation, dam with massless foundation, and dam with mass 
foundation respectively subjected to the first generated record of random number initializer of 
17962 with a damping ratio equal to 0.05ξ = . 
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Figure 5.7: Nodal displacement contours (m) in x direction for dam without foundation 

for 05.0=ξ and random number initializer of 17962 

 
Figure 5.8: Nodal displacement contours (m) in x direction for dam with massless foundation 

for 05.0=ξ  and random number initializer of 17962 

 
Figure 5.9: Nodal displacement contours (m) in x direction for dam with mass foundation 

for 05.0=ξ  and random number initializer of 17962. 

It is important to note that the maximum displacements in the dam structure occur at 
the same nodes for the case of the dam without foundation and the dam with foundation.  For 
example the maximum displacement in x direction occurs at node 123 located at the middle 
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crest of the dam without foundation in the downstream face, which is the node 339 in the case 
of dam with foundation (the same results are obtained in Y and Z direction). 

Figure 5.10, Figure 5.11, and Figure 5.12 represent a comparison of the displacements 
for the crest part of the dam structure in x, y, and z directions for the three studied cases (dam 
without foundation, dam with massless foundation, and dam with mass foundation) for 
viscous damping ratio equal to 0.05ξ = and generated record of random number initializer of 
17962.  

 
Figure 5.10: Displacements in x direction along the crest for the three studied cases for 

0.05ξ =  and random number initializer of 17962. 

 
Figure 5.11: Displacements in y direction along the crest for the three studied cases for 

0.05ξ =  and random number initializer of 17962. 
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Figure 5.12: Displacements in z direction along the crest for the three studied cases for 

0.05ξ =  and random number initializer of 17962. 

From these figures two observations can be made: 

The first one is that the case of the dam with foundation leads to more displacements 
amplitude than the case of the dam without foundation, where the foundation is modeled by 
fixed end supports.  This is due to the presence of the foundation which gives more flexibility 
to the dam body to displace.  

The second observation is that displacements are larger when the foundation mass is 
considered than for the case of massless foundation. The results of modal analysis can be used 
to interpret this observation; Table 5.3 and Table 5.4 show that frequencies for the case of 
dam with mass foundation are less than those for the case of dam with massless foundation 
which means that the periods and, consequently, the displacements of the first case are greater 
than those for the second case. This is not enough to take conclusions. For design purposes, 
stresses are of great interest. 

b. Stress Variation 
 As for the displacement contours, the maximum stresses in the dam structure occur at 
the same nodes for the case of the dam without foundation and the dam with foundation. 

Since the response of the dam is complex, the maximal stresses obtained are 
represented for the two essential parts of the upstream face of the dam: the central zone with 
its cantilever effect and the crest with its arch effect. 

Figure 5.13, Figure 5.14, Figure 5.15, and Figure 5.16 represent a comparison of the 
maximal stresses in x, y, z direction as well as Von Mises stress respectively for the three 
studied cases; dam without foundation, dam with massless foundation, and dam with mass 
foundation. 
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Figure 5.13: Variation of stresses in x direction in the central part of the dam for the three 

cases studied for 0.05ξ =  and random number initializer of 17962 

 
Figure 5.14: Variation of stresses in y direction in the central part of the dam for the three 

cases studied for 0.05ξ =  and random number initializer of 17962 
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Figure 5.15: Variation of stresses in z direction in the central part of the dam for the three 

cases studied for 0.05ξ =  and random number initializer of 17962. 

 
Figure 5.16: Variation of Von Mises stresses in the central part of the dam for the three cases 

studied for 0.05ξ =  and random number initializer of 17962. 
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It can be seen from the previous three figures that the presence of foundation develops 
more stresses in the dam body compared with the case of dam without foundation, 
furthermore, when the foundation is modeled as mass foundation, the same results are 
obtained along the crest part of the dam for the three cases studied. 

c. Effect Of Viscous Damping On Displacement And Stress For The Three Cases 
Studied 

The present study shows that damping ratio has a very small effect on the dynamic 
behavior of the dam without foundation, the dam with massless foundation, and the dam with 
mass foundation, where the stresses increase with decreasing the damping ratio which is 
obvious. 

5.10 Discussion of Results and conclusion 
From this parametric study, the following conclusions can be drawn: 

 The case of the dam with foundation is more conservative; it develops more 
displacement amplitude and more stresses than the case of dam without foundation. 

 The case of the dam with mass foundation is more conservative than the dam 
with massless foundation. 

 The damping ratio has a very small effect on the dynamic behavior of the dam 
without foundation, the dam with massless foundation, and the dam with mass 
foundation, where the stresses increase with decreasing the damping ratio which is 
obvious. 

To interpret the first two results, response spectra (maximum accelerations as function 
of the natural periods of vibration) which excite the natural periods of the three models need 
to be compared. In this study, response spectra are constructed using customized program 
RESSPEC (Armouti, N.S, 2004). Figure 5.17 depicts the response spectra for the first record 
having an initializer number of 17962 for the three damping ratios (2%, 5% and 10%) which 
excite the natural periods of the dam (for the three studied cases).  

 
Figure 5.17: Response spectrum for the record of initializer number of 17962 at different 

damping ratios. 
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From Figure 5.17, it is clear that the spectral accelerations that excite the dam without 
foundation is smaller than that with foundation (both mass and massless foundation) which 
means that neglecting the foundation is not safe in term of design. 

The dam with foundation is more excited than the dam without foundation, which 
justifies the difference of stresses and displacement for the different cases studied. This is due 
to the fact that the modulus of elasticity of the rock foundation for the case of dam with 
foundation is less than the modulus of elasticity of the rock foundation for the case of dam 
without foundation where the foundation is modeled as a fixed support (which means that the 
modulus of elasticity is infinite). 

Adding the foundation to the dam leads to a change in the system dynamic properties 
(natural frequencies) and consequently a change in its total response. This is known as the 
foundation-structure interaction. The foundation with its properties (which are totally different 
from those of the dam) affect the dam and vice versa. 

The presence and the behavior of the rock foundation have an important effect on the 
dynamic response of the dam structure. This response depends on the dynamic properties of 
the dam itself, the rock foundation and the excitation (record). 

Taking the mass of the rock foundation into account proved to be more conservative 
than ignoring it. Since Brezina dam is embedded in rock, the foundation mass surrounding the 
dam will participate in the interaction by its inertial force exerted on the dam, and 
consequently, the interaction effect becomes more pronounced than the case where the 
foundation is considered massless (the foundation inertial effect is ignored). 
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CHAPTER 6 

Undamped and Damped Modal Response of Dam Foundation Interaction 
using ANSYS 

6.1  Introduction 
In this chapter, modal undamped and damped responses of the Brezina concrete arch 

dam taking into account  structure interaction effect, are determined using the finite elements 
commercial packages ANSYS. It is well known that real modes, which are obtained assuming 
free natural vibrations without damping, can be used as a modal base in a modal superposition 
analysis, e.g. a spectrum analysis, where damping is small. However, for structures exhibiting 
significant viscous damping, for example a damping ratio of 5 percent, real modes might not 
be appropriate. In this case complex modes should be employed rather (Ansys theory manual, 
2011).  

To the best of the authors’ knowledge, consideration of the foundation with its mass in 
the dam-foundation modeling has been the subject of a few work; and by taking into account 
the damping ratio, even fewer papers can be found in the literature.  

6.2  Mode extraction methods 
Two mode extraction methods are used here to extract the mode shapes and the 

complex natural frequencies for the system object of the present study; the Block Lanczos 
method and the QR damped one (Ansys theory manual, 2011). 

6.2.1 block lanczos method 
The block lanczos method is applied for any free, undamped system where equations 

of motion can be written as (Ansys theory manual, 2011): 

[ ]{ } [ ]{ } 0xKxM =+&&                                                                                                              (6.1) 

Where it is assumed that the motion is harmonic: 

                                                                                                                (6.2) 

 

The equations of motion can then be written as: 

[ ] [ ]( ){ } 0eKMω tjω
i

2
i

i =+− φ                                                                                                    (6.3) 

i ω  : The eigenvalue (frequency value) 

The eigenvalue problem posed above is solved in order to obtain the natural 
frequencies and mode shapes of the system.  

6.2.2 The QR damped eigenvalue method 
The QR damped eigenvalue extraction method provides significant speed 

improvements over the older damped method for modal analyses involving damping. 

{ } { } tωj  
ii

iex φ=
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If damping is added, the equations of motion are (Ansys theory manual, 2011): 

[ ]{ } [ ]{ } [ ]{ } 0xKxCxM =++ &&&                                                                                                    (6.4) 

And the behavior is expressed by complex eigenvectors and eigenvalues: 

{ } { } ( ) t
iii

 j  ωσ ii e   x ±±= υφ                                                                                                         (6.5) 

In the above cases,  tj)ω(σ ii ± express both a time-decay term as well as the damped, free 
vibration term.  tσ ie represents the time decay if iσ is negative, which is representative of 
stable systems. On the other hand, if iσ  is positive, this indicates unbounded exponential 
increase in amplitude and represents an unstable system. The  tj ωie term is the damped, free 
vibration term similar to an undamped system as noted above. 

j)  ω   (σ ii ± represents the complex eigenvalue. 

i σ is the real part of the eigenvalue. 

i ω is the imaginary part of the eigenvalue. 

{ }ii υφ   ±  represents the complex eigenvector. 

On the other hand, the complex eigenvectors represent the mode shapes. In certain 
cases, the various nodes (DOF) in the system may be out of phase with one another. As a 
result, the real and imaginary values can be used to determine the actual response of the 
system. 

To understand better when the nodes (DOF) may be out of phase with one another, it 
is instructive to look at the damping matrix. If proportional (Rayleigh) damping is used, the 
damping matrix can be expressed as a linear combination of the mass and stiffness matrices 
(Ansys theory manual, 2011) (T. O. Florin et al, 2010): 

The equations of motion result in only complex eigenvalues, not complex 
eigenvectors. 

[ ]{ } [ ]{ } [ ]{ } 0xKxCxM =++ &&&                                                                                                    (6.6) 

( )[ ] ( )[ ]( ){ } 0Kjβω1Mjαωω iii
2

i =+++− φ                                                                               (6.7)         

However, for non-proportional damping, the damping matrix [ ]C  cannot be simplified 
in this manner. Thus, the eigenvectors and eigenvalues solved for are complex. This means 
that the nodes (DOF) will be out of phase with one another (Ansys theory manual, 2011). 

6.3  Aim of investigation 
The goal of this study is to examine the effect of the presence of foundation on the 

modal unpamped and the modal damped dynamic response of Brezina concrete arch dam 
using ANSYS finite element code. To achieve these objectives the following cases are 
studied:  

(1) Neglecting foundation-structure interaction effect; assuming the dam as being fixed at its 
base which means that the  is assumed being completely rigid (the modulus of elasticity is 
infinite);  
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(2) Linear -structure interaction using the direct method; while allowing for the mass of the 
foundation  (taking into account the inertial effect of the foundation );  

(3) Linear -structure interaction using already the direct method; assuming massless 
foundation  (neglecting the inertial effect of the foundation ).  

Some group of structure-sub interaction problems can be successfully modeled as 2D 
phenomenon however there is a group of problems, which requires full 3D modeling e.g. 
concrete arch dam, which is the case of the present study. To achieve the modal damped 
analysis three damping coefficients are assumed; 2%, 5% and 10%. 

6.4 Definition of some parameters used in the modal analysis and given by Ansys code 

6.4.1 Participation factor 
The participation factor for a given excitation is given as: 

{ } [ ]{ }D M  P T
ii f φ=                                                                                                                   (6.8)         

Where: 

i fP  : Participation factor for the ith mode. 

{ }D  : vector describing the excitation direction 

{ }iφ  : Eigenvector normalized using equation [16] 

{ }T
iφ  : Normalized Eigenvector transpose. 

6.4.2 Effective mass 
The effective mass in a given direction is defined by: 

{ } [ ]{ }i
T
i M

M
φφ

2
i f

i e
P  =                                                                                                                 (6.9) 

i eM  : The effective mass for the ith mode 

With: 

{ } [ ]{ } 1=i
T
i M φφ                                                                                                                     (6.10) 

It is important to note that in ANSYS code the frequencies are normalized by default 
with respect to the mass but it is also possible to normalize it with respect to the unity. 

6.4.3 Total effective mass 
The total masse effective is: 

∑= i e totale M M                                                                                                                   (6.11) 

 totaleM  : The total effective mass. 

6.4.4 Ratio 
The ratio is defined as: 

max   i f

i f

P
P

Ratio =                                                                                                                    (6.12) 
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max   i fP  : The maximal participation factor. 

6.4.5 Modal damping ratio 

The modal damping ratio i α  is given by: 

2
i

2
i

i
i

 ω σ

 σ α
+

=                                                                                                                    (6.13) 

6.4.6 Cumulative mass fraction 
The cumulative mass fraction is given by: 

 total

i e

M
M

fraction mass cumulative ∑=
                                                                               (6.14) 

 totalM  : Total mass of the system 

6.5 ANSYS validation for the modal damped and undamped analyses methods 

6.5.1 Modal undamped analysis applied for mass spring system 
A modal undamped analysis is performed for a simple mass-spring system having as 

properties: 

k=3,8 N/m 

m=0.15 kg 

The analytical results and the one given by ANSYS are presented in Table 6.1:  

Analytical results 

Mode Frequency 
(HZ) 

Period 
(sec) Pfi Ratio Mei (kg) 

Cumulative 
mass fraction 

(kg) 
1 0.801 1.248 0.387 1 0.150 1 

Results given by ANSYS code 

Mode Frequency 
(HZ) 

Period 
(sec) Pfi 

Ratio 
 Mei(kg) 

Cumulative 
mass fraction 

(kg) 
1 0.801 1.248 0.387 1 0.150 1 

Table 6.1: Analytical and ANSYS modal results for a mass-spring system 

6.5.2 Modal damped analysis applied for mass spring system 
A damped analysis is also performed for the same system with a damping coefficient 

(mass-spring-damper system) equal to:  

c=0,6 kg/sec 
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Both analytical and results given by ANSYS are presented in Table 6.2: 

Analytical results 

Mode Frequency 
(real part) 

Frequency 
(im part) 

(HZ) 

Period 
(sec) Pfi 

Ratio
 

Mei 
(kg) 

Cumulative 
mass fraction 

(kg) 
i α  

1 -0,318 0,735 1,360 0.274 1 0.75e-
01 1 0,397

Results given by ANSYS code 

Mode Frequency 
(real part) 

Frequency 
(im part) 

(HZ) 

Period 
(sec) Pfi 

Ratio
 

Mei 
(kg) 

Cumulative 
mass fraction 

(kg) 
i α  

1 -0.318 0.735 1.360 0.274 1 0.75e-
01 1 0.397

Table 6.2: Analytical and ANSYS modal results for a mass-spring-damper system 

It is clear from Table 6.1 and Table 6.2 that ANSYS results are in a perfect agreement 
with analytical ones. 

6.5.3  Undamped modal analysis results 
This section covers the detailed undamped modal responses of the Brezina arch dam-

foundation system, which is presented briefly in section 5.9.1. The same finite elements 
models used in chapter 5 are conserved for the present one (figure 5.1 and figure 5.2). The 
modal responses are calculated using the Block Lanczos method (Ansys theory manual, 
2011). Reported quantities are the first natural mode frequencies and the corresponding 
participation factor, Pfi along X direction, its ratio to the maximum participation factor, Ratio 
and effective mass, Mei. Table 6.3, Table 6.4 and Table 6.5 list these quantities for the dam 
alone, dam with massless , and dam- with  mass, respectively (results are along X direction). 
The number of modes reported is such that the ratio of the cumulative effective mass to the 
total mass reaches a minimum of 0.9 along each of the three, X, Y and Z directions. 
Quantities along Y and Z direction are omitted herein. 

The fundamental mode is defined as the one that involves the maximum mass, i.e., the 
most dominant mode having a ratio, Ratio of one for the direction considered (here along X 
direction).  
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Mode 

Frequency 
(Hz) Pfi Ratio Mei 

(Kg) 
1 12.42 5548.5 1.00000 0.3078e+08 
2 18.56 -14.827 0.00267 219.850 
3 24.83 -5402.2 0.97363 0.2918e+08 
4 26.53 3259.9 0.58753 0.1062e+08 
5 27.80 -195.93 0.03531 38388.0 
6 30.37 -1909.8 0.34419 0.3647e+07 
7 33.17 -143.98 0.02595 20730.7 
8 35.86 190.59 0.03435 36323.9 
9 38.56 4063.6 0.73238 0.1651e+08 
10 44.41 -1961.4 0.35350 0.3847e+07 
11 44.74 1253.8 0.22596 0.1571e+07 
12 46.51 331.38 0.05972 109814. 
13 48.04 1684.0 0.30349 0.2835e+07 
14 49.02 -836.08 0.15068 699027. 
15 51.22 160.33 0.02889 25706.9 
16 51.46 -1437.2 0.25902 0.2065e+07 
17 53.00 -2126.5 0.38326 0.4522e+07 

Table 6.3: Dam alone first undamped natural frequencies in X direction. 

Mode Frequency 
(Hz) Pfi Ratio Mei 

(Kg) 
1 9.334 7712.6 1.00000 0.5948e+08 
2 13.67 -29.543 0.00383 872.768 
3 14.28 5749.5 0.74546 0.3305e+08 
4 16.27 -243.47 0.031567 59275.8 
5 16.78 -6195.4 0.8032 0.3838e+08 

Table 6.4: Dam with massless  first undamped natural frequencies in X direction. 
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Mode Frequency 
(Hz) Pfi Ratio Mei 

(Kg) 
1 6.48 -3265.6 0.04513 0.10664e+08 
2 6.90 -10.623 0.00014 112.840 
3 7.40 184.01 0.00254 33858.1 
4 7.83 72359. 1.00000 0.52358e+10 
5 8.57 -40172. 0.55516 0.16137e+10 
6 8.81 -493.93 0.00682 243963. 
7 9.16 -36506. 0.50451 0.13327e+10 
8 9.74 -12211. 0.16875 0.14911e+09 
9 9.83 -941.21 0.01300 885870. 
10 10.04 -4659.5 0.06439 0.21711e+08 
11 10.065 -33267. 0.45975 0.11067e+10 
12 10.57 -202.47 0.00279 40992.7 
13 10.72 3511.3 0.04852 0.12329e+08 
14 11.64 0.9712 0.00001 0.943311 
15 11.70 10302. 0.1423 0.1061e+09 
16 11.94 995.11 0.0137 990249. 
17 12.15 33474. 0.4626 0.1120e+10 

Table 6.5: Dam- with  mass first undamped natural frequencies in X direction. 

As expected, the highest frequencies are obtained from the dam alone model (Table 
6.3) while the lowest ones are due to the dam- with  mass (Table 6.5). Qualitatively, these 
results can be explained with the single degree of freedom mass-spring system for which the 
circular frequency is: 

   
m
kω =                                                                                                                (6.15) 

where k is the stiffness of the spring and m the mass (Shabanna,1995). With respect to 
the dam alone model, the dam-massless  has the same total mass, but is globally less rigid 
since the ’s Young’s modulus is almost half the value of that of the concrete dam (Table 4.2), 
thus from Eq.6.15, lower frequencies are obtained from the latter model. Also, between the 
dam-massless  and dam- with  mass, the global stiffness is identical but the total mass is 
evidently larger for the dam- with  mass, hence, again from Eq. (6.15), lower frequencies are 
obtained from the latter model. It is worth noting that the position of the fundamental mode is 
unchanged from the dam alone to the dam-massless  model (mode number one of Table 6.3 
and Table 6.4), while it switches to the fourth position when the mass of the  is taken into 
account (Table 6.5). 

In terms of numerical values, the dam alone shows much higher frequencies than that 
of the dam-massless  (12.42 Hz compared to 9.334 Hz for the first mode). This latter’s 
frequencies, in turn, are also much higher than that of the dam- with  mass (6.48 Hz for the 
first mode). These results are depicted for the first 5 modes in Figure 6.1. Table 6.6 
summarizes the frequencies decrease between the three models for the first 5 modes. The 
calculations performed highlight the need to model the foundation  as a deformable structure, 
and to take into account its mass. 
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Figure 6.1: Undamped first 5 frequencies for the three models. 

Mode Dam-massless  
/Dam alone (%) 

Dam- with mass  
/Dam alone (%) 

Dam- with mass  
/Dam-massless  (%) 

1 24,85 47,80 30,54 
2 26,30 62,79 49,52 
3 42,46 70,18 48,18 
4 38,64 70,45 51,84 
5 39,62 69,15 48,91 

Table 6.6: Frequencies decrease (%) between the three models 

6.6 Damped modal analysis results 
In this section, damped modal responses of the Brezina arch dam-foundation  system 

are investigated. Recall that the free damped vibration equations (Reddy, 2002) are 

 0=++ xKxCxM &&&                                                                                                (6.16) 

where ,M C and K is the mass, damping and stiffness matrix, respectively; xxx &&&,, is the 
displacement, velocity and acceleration vector, respectively. Herein, viscous damping is 
assumed to be of the Raleigh form (R. Priscu et al. 1982): 

  KβMαC +=                                                                                                                 (6.17) 

where βα , are constants refereed to as mass and stiffness damping, respectively. From Eq. 
6.17), the following relation can easily be established: 

 
βω

ω
αξ i

i
i 22

+=                                                                                                                  (6.18) 

where iξ  is the viscous damping ratio to critical damping for mode i, and iω the corresponding 
circular frequency. The mass damping ,α which is important for bodies resisting to wind or for 
submarine applications (ANSYS Theory Manual, 2011), is neglected herein. Hence, 
assuming 0,α = Eq. 6.18 is reduced to 

 
ω
ξ

β
i

i2
=                                                                                                                              (6.19) 
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which yields β  for given iξ and iω . Searching harmonic solutions, and making use of the 
Raleigh damping assumption Eq. 6.17 with ,0=α  Eq. 6.16 becomes: 

[ ]     0)1( 0
2 =−+ xMKj ωωβ                                                                                            (6.20) 

where j is the unit complex number, 12 −=j and 0x the modal vector. 

For the parametric study conducted herein, the viscous damping ratioξ  will be 2%, 
5% and 10%, while iω will be the circular frequency of the fundamental mode (that involves 
the largest effective mass). The damped modal responses are calculated using the QR damped 
method (ANSYS Theory Manual, 2011). Reported quantities are the first eigenvalues in terms 
of imaginary part, ,iω  and real part, ,iσ  the corresponding participation factor along X 
direction, Pfi, the ratio to the maximum participation factor, Ratio, the effective mass, Mei, 
and the modal damping ratio,  iγ . Recall that the imaginary part iω of the eigenvalue iρ is the 
frequency whereas the real part iσ of iρ  is the damping related quantity for mode i. The modal 
damping ratio, ,iγ  is 

22/ iiii ωσσγ +=                                                                                                             (6.21)  

Table 6.7, Table 6.8 and Table 6.9 list these modal quantities for the dam alone, dam-massless 
, and dam- with  mass, respectively. The input damping ratioξ is 2% )02.0( =ξ . Firstly, these 
results show that the frequencies are almost identical, but very slightly lower, as compared to 
that of the undamped modes for each model studied, e.g. 12.42 Hz from Table 6.3 and 
12.41Hz from Table 6.7. These findings are not surprising. Consider the mass-damper-spring 
single degree of freedom system for which the circular frequency is 

m
ckm

2
4 2−

=ω                                                                                                                    (6.22) 

where k is the stiffness of the spring, m the mass and c the damper (A.A. Shabana, 1995). It is 
assumed that the system is far from over damped so that in the above equation, 04 2 >− ckm . 
Eq. 6.22 shows that the frequency is always lower than that of the mass-spring system, and 
that the two frequencies are almost identical if the damping c is small enough, i.e., if the 
system is only moderately damped. This is obviously the case for the 3D dam- models under 
study. The second remark worth noting is the negative values of ,iσ  indicating that the dam- 
system is stable. This is expected as the analogy can be made again with the simple system for 
which  

 
2m
c

−=σ                                                                                                                            (6.23) 

It should be noted that under the Raleigh damping assumption with ,0=α the damping 
c, in the above mass-damper-spring system, becomes .kc β=  Recall thatσ andω are the real 
and imaginary part, respectively, of the roots of the characteristic equation (A.A Shabana, 
1995). Lastly, Table 6.7 shows that adding damping to the dam- system switches the 
fundamental mode. For example, mode number five is now the fundamental mode for the dam 
alone (Table 6.7) while without damping, the fundamental mode is number one (Table 6.3).  

For ,02.0=ξ Figure 6.2 depicts the frequencies decrease from the dam alone to the dam- 
with  mass model for the first 5 modes, and Figure 6.3 illustrates the decrease of the damping 
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related quantity iα . Like the comments made in the preceding section, qualitatively, the 
frequencies decrease between the three models can be explained from Eq. 6.22. Also, from 
Eq. 6.23 and ,kc β=  the damping decrease, in absolute value, from the dam alone to the 
dam- with mass model is obvious. Finally, this decrease in percentage is summarized in Table 
6.10 and Table 6.11. 

Mode 
Im part 
, iω  (Hz) R part, iσ Pfi Ratio Mei 

(kg) 
 iγ  

1 12,41 -0,251 19,267 0,01331 371,23 2,017E-02 
2 18,55 -0,560 -0,071 0,00005 5,09E-03 3,015E-02 
3 24,81 -1,002 -8,933 0,00617 79,804 4,034E-02 
4 26,51 -1,143 -601,100 0,41524 361323 4,310E-02 
5 27,77 -1,255 1447,600 1 2,10E+06 4,516E-02 
6 30,34 -1,499 -1305,700 0,90195 1,70E+06 4,934E-02 

Table 6.7: Dam alone first natural damped frequencies, viscous dampingξ  = 2%. 

Mode 
Im part 
, iω  (Hz) R part, iσ Pfi Ratio Mei 

(kg) 
 iγ  

1 9,33 -0,188 1240,4 0,01337 1,54E+06 2,01E-02 
2 13,67 -0,403 1,2709 0,00001 1,61521 2,95E-02 
3 14,28 -0,440 -741,23 0,00799 549425 3,08E-02 
4 16,27 -0,571 -50129 0,54016 2,51E+09 3,51E-02 
5 16,78 -0,607 92804 1,00000 8,61E+09 3,62E-02 
6 22,63 -1,107 -83822 0,90322 7,03E+09 4,88E-02 

Table 6.8: Dam with massless  first natural damped frequencies, viscous dampingξ  = 2%. 

Mode 
Im part 
, iω  (Hz) R part, iσ Pfi Ratio Mei 

(kg) 
 iγ  

1 6,48 -0,107 4453,6 0,00055 1,98E+07 1,66E-02 
2 6,90 -0,122 812,13 0,00010 659548 1,76E-02 
3 7,40 -0,140 -1,20E+05 0,01493 1,45E+10 1,89E-02 
4 7,84 -0,157 -8,05E+06 1,00000 6,49E+13 2,00E-02 
5 8,57 -0,188 5,73E+06 0,71113 3,28E+13 2,19E-02 

Table 6.9: Dam- with  mass first natural damped frequencies, viscous dampingξ  = 2%. 
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Figure 6.2: Damped first 5 frequencies for the three models, viscous dampingξ  = 2%. 

 
Figure 6.3: First 5 damping related quantities for the three models, viscous dampingξ  = 2%. 

Mode 
Dam-massless  
/Dam alone (%)
 

Dam- with  mass
/Dam alone (%) 
 

Dam- with  mass 
/Dam-massless  (%) 
 

1 24,85 47,80 30,54 
2 26,30 62,79 49,51 
3 42,44 70,17 48,17 
4 38,62 70,43 51,83 
5 39,60 69,13 48,89 

Table 6.10: Frequencies decrease (%) between the three models, viscous dampingξ  = 2%. 
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Mode
Dam-massless  
/Dam alone (%)
 

Dam- with mass 
/Dam alone (%)
 

Dam- with mass  
/Dam-massless  (%) 
 

1 25,07 57,16 42,83 
2 27,93 78,23 69,80 
3 56,07 86,02 68,18 
4 50,05 86,27 72,52 
5 51,63 85,04 69,07 

Table 6.11: Damped related quantities in absolute values decrease (%) between the three 
models, viscous dampingξ  = 2%. 

Similar results for the input damping ratioξ of 5% and 10% are reported in Tables 6.12-6.14 
and Tables 6.17-6.19, respectively. From these results, same comments as forξ  = 2% can be 
made although the differences in frequencies are slightly more pronounced with respect to 
that of the undamped modes: the larger the damping ratio, the bigger the differences. This is 
clearly supported by Eq. 6.22. Figures 6.4-6.5 and Figures 6.6-6.7 depict the frequency and 
damping related quantity decrease between the three models 
for 05.0=ξ and ,1.0=ξ respectively. Tables 6.15-6.16 and Tables 6.20-6.21 summarize theses 
evolutions in percentage. 

Mode 
Im part 
, iω  (Hz) R part, iσ  Pfi Ratio Mei 

(kg) 
 iγ  

1 12.40 -0.625 -38.605 0.01331 1490.36 0.503e-01 
2 18.50 -1.396 0.143 0.00005 0.204e-01 0.503e-01 
3 24.70 -2.499 17.899 0.00617 320.386 0.752e-01 
4 26.37 -2.853 1204.4 0.41524 0.145e+07 0.752e-01 
5 27.62 -3.132 -2900.5 1.000 0.841e+07 0.100 
6 30.14 -3.740 2616.1 0.90195 0.684e+07 0.100 

Table 6.12: Dam alone first natural damped frequencies, viscous dampingξ  = 5%. 

Mode 
Im part 
, iω  (Hz) R part, iσ Pfi Ratio Mei 

(kg) 
 iγ  

1 9.32 -0.468 457.64 0.01336 209432. 0.501e-01 
2 13.64 -1.005 0.46888 0.000014 0.219844 0.734e-01 
3 14.24 -1.096 -273.46 0.00798 74781.7 0.767e-01 
4 16.21 -1.423 -18494. 0.54016 0.342e+09 0.874e-01 
5 16.71 -1.513 34238. 1.00000 0.117e+10 0.901e-01 
6 22.49 -2.758 -30924. 0.90322 0.956e+09 0.121 

Table 6.13: Dam with massless  first natural damped frequencies, viscous dampingξ  = 5%. 
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Mode 
Im part 
, iω  (Hz) R part, iσ Pfi Ratio Mei 

(kg) 
 iγ  

1 6.47 -0.268 229.81 0.0005 52811.6 0.413e-01 
2 6.89 -0.304 41.906 0.0001 1756.11 0.440e-01 
3 7.39 -0.349 -6204.3 0.015 0.3849e+08 0.472e-01 
4 7.82 -0.391 -0.415e+06 1.000 0.1726e+12 0.499e-01 
5 8.56 -0.469 0.295e+06 0.711 0.8733e+11 0.546e-01 

Table 6.14 Dam- with  mass  first natural damped frequencies, viscous dampingξ  = 5%. 

 
Figure 6. 4: First 5 damped frequencies for the three models, viscous dampingξ  = 5%. 

 
Figure 6.5: First 5 damped related quantities for the three models, viscous dampingξ  = 5%. 
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Mode Dam-massless  
/Dam alone (%)

Dam- with mass 
/Dam alone (%)

Dam- with mass  
/Dam-massless  (%) 

1 24,85 47,78 30,52 
2 26,29 62,72 49,43 
3 42,33 70,06 48,08 
4 38,52 70,32 51,72 
5 39,48 69,00 48,78 

Table 6.15: Frequencies decrease (%) between the three models, viscous dampingξ  = 5%. 

Mode Dam-massless  
/Dam alone (%)

Dam- with mass 
/Dam alone (%)

Dam- with mass  
/Dam-massless  (%) 

1 25,14 57,13 42,73 
2 27,99 78,21 69,75 
3 56,11 86,010 68,12 
4 50,09 86,26 72,47 
5 51,67 85,023 69,01 

Table 6.16: Damped related quantities in absolute values decrease (%) between the three 
models, viscous dampingξ  = 5%. 

Mode 
Im part 
, iω  (Hz) R part, iσ Pfi Ratio Mei 

(kg) 
 iγ  

1 12.35 -1.250 -35.469 0.013 1258.08 0.10 
2 18.34 -2.792 0.1314 0.00004 0.172e-01 0.15 
3 24.32 -4.999 16.445 0.0061 270.452 0.201 
4 25.91 -5.706 1106.6 0.4152 0.1224e+07 0.215 
5 27.08 -6.264 -2664.9 1.000 0.71019e+07 0.225 
6 29.44 -7.480 2403.6 0.901 0.57774e+07 0.246 

Table 6.17: Dam alone first natural damped frequencies, viscous dampingξ  = 10%. 

Mode 
Im part 
, iω  (Hz) R part, iσ Pfi Ratio Mei 

(kg) 
 iγ  

1 9.28 -0.930 -171.52 0.013366 29420.3 0.997e-01 
2 13.53 -1.998 -0.17574 0.000014 0.308e-01 0.146 
3 14.12 -2.181 102.49 0.007987 10505.1 0.152 
4 16.03 -2.830 6931.6 0.540160 0.480e+08 0.173 
5 16.51 -3.009 -12832. 1.00 0.164e+09 0.179 
6 21.98 -5.485 11591. 0.903 0.134e+09 0.242 

Table 6.18: Dam with massless  first natural damped frequencies, viscous dampingξ  = 10%. 
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Mode 
Im part 
, iω  (Hz) R part, iσ  Pfi Ratio Mei 

(kg) 
 iγ  

1 6.46 -0.536 -642.87 0.0005 413279. 0.826e-01 
2 6.87 -0.608 -117.23 0.0001 13742.5 0.8807e-1 
3 7.37 -0.699 17356. 0.0149 0.3012e+09 0.9444e-01 
4 7.79 -0.783 0.11625e+07 1.0000 0.1351e+13 0.9998e-01 
5 8.52 -0.938 -0.8267e+06 0.7111 0.6834e+12 0.1093 

Table 6.19: Dam- with  mass first natural damped frequencies, viscous dampingξ  = 10%. 

 
Figure 6.6: Damped first 5 frequencies for the three models, viscous dampingξ  = 10%. 

 
Figure 6.7:  First 5 damped related quantities for the three models, viscous dampingξ  = 10%. 
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Mode Dam-massless  
/Dam alone (%)

Dam- with  mass
/Dam alone (%) 

Dam- with  mass 
/Dam-massless  (%) 

1 24,84 47,72 30,43 
2 26,25 62,51 49,17 
3 41,94 69,69 47,80 
4 38,13 69,89 51,34 
5 39,03 68,53 48,38 

Table 6.20: Frequencies decrease (%) between the three models, dampingξ  = 10%. 

Mode Dam-massless  
/Dam alone (%)

Dam- with  mass
/Dam alone (%) 

Dam- with  mass 
/Dam-massless  (%) 

1 25,57 57,13 42,40 
2 28,42 78,21 69,57 
3 56,37 86,01 67,93 
4 50,38 86,26 72,31 
5 51,95 85,02 68,83 

Table 6.21: Damped related quantities in absolute value decrease (%) between the three 
models, viscous dampingξ  = 10%. 

Influences of the viscous damping ratioξ  on the frequencies and the damping related 
quantity are summarized in Figures 6.8-6.9 and Tables 6.22-6.23 for the dam without model, 
Figures 6.10-6.11 and Tables 6.24-6.25 for the dam with massless  model, and Figures 6.12-
6.13 and Tables 6.26-6.27 for the dam- with  mass model. 

 
Figure 6. 8: Influence of viscous dampingξ on the frequencies for the dam alone model. 
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Mode Undamped Damping of 2% Damping of 5% Damping of 10% 
1 12,42 12,41 12,40 12,35 
2 18,56 18,55 18,50 18,34 
3 24,83 24,81 24,70 24,32 
4 26,53 26,50 26,37 25,91 
5 27,80 27,77 27,62 27,08 
6 30,37 30,34 30,14 29,44 

Table 6.22: Influence of viscous dampingξ on the frequencies for the dam alone model. 

 
Figure 6.9: Influence of viscous dampingξ on the damping related quantities for the dam 

alone model. 

Mode Damping of 2% Damping of 5% Damping of 10% 
1 -0,250 -0,625 -1,250 
2 -0,559 -1,396 -2,792 
3 -1,001 -2,499 -4,999 
4 -1,143 -2,853 -5,706 
5 -1,255 -3,132 -6,264 
6 -1,499 -3,740 -7,480 

Table 6.23: Influence of viscous dampingξ on the damping related quantities for the dam 
alone model. 
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Figure 6.10: Influence of viscous dampingξ on the frequencies for the dam with massless  

model. 

Mode Undamped Damping of 2% Damping of 5% Damping of 10% 
1 9,33 9,33 9,32 9,28 
2 13,67 13,67 13,64 13,53 
3 14,28 14,28 14,24 14,12 
4 16,27 16,26 16,21 16,03 
5 16,78 16,77 16,71 16,51 
6 22,66 22,63 22,49 21,98 

Table 6.24: Influence of viscous dampingξ on the frequencies for the dam with massless  
model. 

 
Figure 6.11: Influence of viscous dampingξ on the damping related quantities for the dam 

with massless  model. 
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Mode Damping of 2% Damping of 5% Damping of 10% 
1 -0,187 -0,468 -0,930 
2 -0,403 -1,005 -1,998 
3 -0,440 -1,096 -2,181 
4 -0,571 -1,423 -2,830 
5 -0,607 -1,513 -3,009 
6 -1,106 -2,758 -5,485 

Table 6.25: Influence of viscous dampingξ on the damping related quantities for the dam with 
massless  model. 

 
Figure 6.12: Influence of viscous dampingξ on the frequencies for the dam- with  mass 

model. 

Mode Undamped Damping of 2% Damping of 5% Damping of 10% 
1 6,48 6,48 6,47 6,46 
2 6,90 6,90 6,89 6,87 
3 7,40 7,40 7,39 7,37 
4 7,83 7,83 7,82 7,79 
5 8,57 8,57 8,56 8,52 

Table 6.26: Influence of viscous dampingξ on the frequencies for the dam- with  mass model. 
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Figure 6.13: Influence of viscous dampingξ on the damping related quantities for the dam- 

with  mass model. 

Mode Damping of 2% Damping of 5% Damping of 10% 
1 -0,107 -0,268 -0,536 
2 -0,121 -0,304 -0,608 
3 -0,140 -0,349 -0,699 
4 -0,156 -0,391 -0,783 
5 -0,187 -0,469 -0,938 
6 -0,198 -0,495 -0,991 

Table 6.27: Influence of viscous dampingξ on the damping related quantities for the dam- 
with  mass model. 

Quantitatively, results reported in this section point out, again, the importance of 
taking into account the  with its mass. For any of the damping ratio under study, the dam 
alone shows significantly higher frequencies than that of the dam-massless . This latter’s 
frequencies are also much higher than that of the dam- with  mass. The damping values 
calculated are also much lower in absolute value from the dam- with  mass than that from the 
other two models. The results reported also show that adding only a small damping ratio, e.g. 

,02.0=ξ  to the dam- model reduces the number of modes needed to obtain 90% of the 
system’s total mass. For example, for the undamped dam alone model, 17 modes are needed 
to reach 91.73 % of the total mass, whereas for its damped counterpart with ,02.0=ξ  6 modes 
are sufficient to reach 96.9 % of the total mass. This feature is of practical importance as it 
reduces the CPU time for a further analysis based on the modal superposition method such as 
a spectrum analysis or a modal superposition transient response analysis. 

6.7 Conclusions 

Modal responses of the Brezina dam-foundation  system are calculated using the finite 
element software, ANSYS. The following conclusions are drawn based on the numerical 
experiments conducted herein: 

For the study of the dam- system, the foundation  should be modeled as a deformable 
structure with its mass taken into account. The natural frequencies of either undamped or 
damped modes are much lower from the dam- with  mass than that from the dam alone, and 
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significantly lower than that from the dam-massless  model. Modeling the  with its mass also 
affects the mode shape by changing the fundamental mode position.  

Likewise, for any of the damping ratio under study, the damping related values 
calculated are significantly lower, in absolute value, from the dam- with  mass than that from 
the dam-massless , and much lower than that from the dam alone model.  

Adding only a small damping ratio of 2% to the dam- model reduces the number of 
modes needed, as compared to the undamped model, to obtain 90% of the system’s total 
mass. This is of practical importance as it reduces the CPU time for a further analysis based 
on the modal superposition method, such as a modal superposition transient response analysis, 
which will be undertaken following the present work. 
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CHAPTER 7 

Two Dimensional (2D) Modal and Transient Behaviour of Dam-Reservoir-
Foundation System using ANSYS 

7.1 Introduction 

 Gravity dams are fluid – structure – foundation interaction problems. It is obvious that the 
foundation and water reservoir affect the dynamic characteristics (especially modal frequencies) 
and consequently the dynamic response of gravity dams during earthquakes. A parametric study 
is performed in the present chapter to view the combined effect of foundation, water reservoir 
presence, fluid-dam and fluid-foundation interfaces modeling on both modal and transient 
behaviour of “Brezina” concrete dam. 

 Two assumptions are adopted to model the fluid reservoir using Ansys finite element 
code; the fluid finite element (representing the Lagrange approach) and the surface element 
(representing the added masses approach). 

 Two assumptions are also performed to model the dam-fluid and the foundation- fluid 
interfaces: the contact elements and the coupling equations. Also three approaches are adopted to 
investigate the foundation-dam interaction phenomenon: the fixed support foundation, the 
massless foundation and the mass foundation.   

7.2 Constraint Equations and Boundary Conditions 

 The equations of motion for a fluid system have the similar form to that of the structure 
when the Lagrangian approach is used. But requires a different sensitivity to determine interface 
condition of the coupled system.  

 In order to satisfy the continuity conditions between the fluid and solid media at the 
boundaries, the nodes at the common lines of the fluid element and the plane elements are 
constrained to be coupled in the normal directions of the interfaces, while relative movements are 
allowed to occur in the tangential directions, this is implemented by two methods: 

 First: by the use of contact elements available in the ANSYS software (CONTA 172); 

 Second: by attaching the coincident nodes at the common lines between the fluid element 
(representing the fluid reservoir) and the plane elements (representing either the dam or the 
foundation system) in the normal direction. 

 Another approach is modeled here using surface element available in Ansys library to 
represent water reservoir using the added masses approach. The water mass is applied uniformly 
on the container face plus the hydrostatic pressure, the surface element (SURF 153) is 
characterized by its length and its thickness, these two properties depends on both water level and 
the contact length between the fluid and the container. 
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7.3 Ansys Validation 

 The model is to be developed from the elements available in the ANSYS software, the 
validity of the software via the fluid-structure interaction problem is judged by an example about 
a rectangular liquid container for the two approaches of fluid-structure interfaces modeling 
(coupling equations and contact elements). The geometry and the finite element model of the 
rectangular liquid container are given by Figure 7.1. 

 The liquid in an open container can oscillate at discrete natural frequencies. The liquid 
sloshing, at the lowest of these frequencies is of concern in this study; since the container natural 
sloshing frequency is to be tuned to the structure system natural frequency.  

 Water properties are given by Table 4.3 however for the container is characterized by a 
Elastic modulus of 3e+10N/m2,a Poisson’s ratio of 0.23 and a Density about 2500 kg/ m3: 200 
FLUID79 finite elements are used to model the fluid container; however, 228 PLANE 42 finite 
elements are used to model the container itself. This later is constrained (fixed) at its base.  

 Two approaches are adopted for the fluid-container interfaces modeling: 

First: by coupling the coincident nodes at these interfaces in the normal direction only, 

Second, by modeling these interfaces using contact elements available in Ansys code library 
considering the container as target elements (TARGE 169) and water as contact elements 
(CONTA 172) (view figure 4.10). 

 Another approach is applied here to model the fluid instead the fluid finite elements, it is 
the added masses approach using the element “surf” already available in Ansys code Library. The 
water mass is applied uniformly on the container faces plus the hydrostatic pressure, the surface 
finite element “SURF 153” is characterized by its length and its thickness, these two properties 
depends on both water level and the contact length between the fluid and the container. 

 From the linear wave theory, the natural frequencies of the first sloshing modes are 
calculated as follows (Robert D. Blevins, 2001): 

 
Figure 7.1: Reservoir finite element model 

a
i h π tanh

a
i 

π
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2
1fi =                                                                                                             (7.1) 
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Where: 

g= Acceleration due to gravity; 

h= Depth of liquid in basin; 

a= Basin length; 

i= 0, 1, 2….etc 

1st sloshing Mode shape 2 nd sloshing Mode shape 

3rd sloshing Mode shape  

4th sloshing Mode shape 

Figure 7.2: The four first sloshing mode shapes for the rectangular container 
example 
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Mode 
Number 

Theoretical 
frequency (Hz) 

Interface fluid-container 
modeled using 

coupling equations 
 

Interface fluid-container 
modeled using 

contact elements 

Frequency 
(Hz) i eM  (kg) Frequency 

(Hz) i eM  (kg) 

1 0,131 0,133 89368,1 0,133 89368,1 
2 0,299 0,304 5378,17 0,304 5378,17 
3 0,394 0,404 1076,58 0,404 1076,58 
4 0,467 0,486 326,539 0,486 326,539 

 Table 7.1: The first four sloshing modal frequencies with their corresponding effective 
masses for coupling and contact interfaces approaches. 

 

 Figure 7.2 sketches the four first sloshing modes shapes for the rectangular container 
example, while Table 7.1 shows the consistence of the results between the theoretical and the 
finite element modeling (for the two approaches of fluid-container interface modeling). 

 

 

 

 

 

 

 

 

 

 



Two Dimensional (2D) Modal and Transient Behaviour of Dam-Reservoir-Foundation System 
using ANSYS 

104 

 

1st coupled Mode shape 
 

2nd coupled Mode shape 

3rd coupled Mode shape 4th coupled Mode shape 

Figure 7.3: The four first coupled mode shapes for the rectangular container. 

Mode 
Number 

Interface fluid-container 
modeled using 

coupling equations

Interface fluid-container 
modeled using 

contact elements
Added masses approach 

Coupled 
frequency 

(Hz) 
Ratio 

Coupled 
frequency 

(Hz) 
Ratio

Coupled 
frequency 

(Hz) 
Ratio

1 5.026 0.679 5,026 0,679 5.071 1 

2 26.188 0.5169 26,179 0,517 28.900 0.609

3 63.423 0.299 63,148 0,298 74.296 0.284

4 80.251 0.024 80,226 0,023 79.966 0.230

Table 7.2: The first four coupled modal frequencies for coupling and contact interfaces 
approaches. 
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 Table 7.2 represents the four first values of coupled modes shapes for the container 
example for the two approaches used to model the fluid-container interface; coupling equations 
and contact elements. However, figure 7.3 sketches these frequencies. The table 7.2 shows a good 
consistence of the results for the two fluid-container interface approaches. Modeling the fluid-
container interface using coupling equations or contact elements leads to the same results of 
coupled system frequencies. 

7.4 Materials And Methods 

 The objective of this chapter is to study the effects of dam-reservoir-foundation 
interaction on modal behaviour of “Brezina” gravity dam.  It is important to note that this dam is 
named Arch dam but it has no arch effect in it behaviour, for this reason plane strain behaviour is 
considered for the medium cross section. Hence, 2-D finite element models are created using 
ANSYS program. Water is also treated as compressible fluid. For simplicity, no absorption is 
considered at reservoir bottom. Material properties of the concrete dam structure, the foundation, 
and reservoir water are given in table 4.2 and table 4.3 respectively.  

 Since the extent of the reservoir is large, it is necessary to truncate the reservoir at a 
sufficiently large distance from the dam. A length of reservoir equivalent to three times its depth 
is appropriate for adequate representation of hydrodynamic effects on the dam, a length of 150 m 
on each side in X direction is judged sufficient after doing a sensitivity analysis, and the same 
length is chosen as extension of foundation (in X direction). The nodes representing the extreme 
side of the reservoir are free to displace in the vertical direction only. The depth of the foundation 
is taken as 100 m. Plane strain conditions are taken into account in the calculations. 

 The dam material is assumed to be linear-elastic, homogeneous and isotropic.  

 A two dimensional (2D) finite element model with 1521 nodes and 1394 plane elements 
(PLANE 42) is used to model Brezina dam with surrounding foundation.  

 A two dimensional (2D) finite fluid element model with 273 nodes and 240 plane 
elements (FLUID 79) is used to model the reservoir water for the first assumption; however for 
the second one; where the reservoir water is modeled as added masses, 42 surface elements 
(SURF 153) are used. The water mass is applied uniformly on the upstream face of the dam plus 
the hydrostatic pressure, the surface element (SURF 153) is characterized by its length and its 
thickness, these two properties depends on both water level and the contact length between the 
fluid and the system (dam- foundation system). 

 It is important to note that the number of elements used to model the reservoir water 
depends on the water level. 

 As mentioned above, two approaches are used to model the interfaces (fluid-dam and 
fluid–foundation): 

 First one: using contact elements;  

 Contact elements generated by ANSYS software are applied at the interfaces fluid- 
concrete dam and fluid- foundation, considering the foundation and the dam as target elements 
(TARGE 169) and water as contact elements (CONTA 172) (view figure 4.10). 

 Second: using coupling equations; by coupling the interface nodes in the normal direction 
only and let it free in all other directions. 
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 Three assumptions of foundation models are suggested using the direct method; the fixed 
support foundation, the mass foundation to take into account the inertial effect of the foundation 
and the massless foundation to neglect it. 

 Figure 7.4 sketches the dam with fixed support without water and the dam with fixed 
support with full reservoir water. However, Figure 7.5 sketches dam with foundation without 
water and dam with foundation and full reservoir water.  

 To investigate the modal behaviour of the dam, twelve different cases are taken as follow: 

 Dam with fixed support; Empty reservoir,  named “Fixed-Empty”; 

 Dam with fixed support; Full reservoir; fluid-dam and fluid- foundation interfaces 
modeled by contact elements named “Fixed-contact”; 

 Dam with fixed support; Full reservoir; fluid-dam and fluid- foundation interfaces 
modeled by coupling equations,  named “Fixed-coupling”; 

 Dam with fixed support; Full reservoir; fluid modeled as added masses named “Fixed-
surf”;  

 Dam with massless foundation; Empty reservoir,  named “Massless-Empty”; 

 Dam with massless foundation; Full reservoir; fluid-dam and fluid- foundation interfaces 
modeled by contact elements named “Massless-contact”; 

 Dam with massless foundation; Full reservoir; fluid-dam fluid- interface foundation 
modeled by coupling equations, named “Massless-coupling”; 

 Dam with massless foundation; Full reservoir; fluid modeled as added masses, named 
“Massless-surf”;  

 Dam with mass foundation; Empty reservoir, named “Mass-Empty”; 

 Dam with mass foundation; Full reservoir; fluid-dam and fluid- foundation interfaces 
modeled by contact elements, named “Mass-contact”; 

 Dam with mass foundation; Full reservoir; fluid-dam and fluid- foundation interfaces 
modeled by coupling equations, named “Mass-coupling”; 

 Dam with mass foundation; Full reservoir; fluid modeled as added masses, named “Mass-
surf”; 
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Figure 7.4: Finite element modeling of dam-reservoir interaction (foundation modeled as fixed 

support) 

 
Figure 7.5: Finite element modeling of dam reservoir foundation interaction 

(foundation modeled as mass foundation / massless foundation) 

7.5 Modal Analyses of dam-fluid-foundation systems 

 Modal analyses are performed for dam-fluid-foundation models presented in section 7.4 
using Block Lanczos extraction method available in Ansys finite element code. Results of these 
analyses are then summarized and discussed in this section, starting by sloshing modes and then 
the coupled modes frequencies of systems. 

7.5.1 Sloshing mode frequencies of dam-fluid-foundation systems 

 The first four sloshing mode shapes are presented in figure 7.6 for the case of dam with 
fixed support and in figure 7.7 for the case of dam with foundation; these modes are similar to 
those presented in figure 7.2 (similar in shapes only). Values of these sloshing frequencies are 
summarized in Table 7.3. 
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1st sloshing mode shape 

 
2nd sloshing mode shape 

 
3rd sloshing mode shape 

 
4th sloshing mode shape 

Figure 7.6: The first four sloshing mode shapes for the case of dam with fixed support. 
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1st sloshing mode shape 

 
2nd sloshing mode shape 

 
3rd sloshing mode shape 

 
4th sloshing mode shape 

Figure 7.7: The first four sloshing mode shapes for the case of dam with mass foundation. 

  Table 7.3 shows that using coupling equations or contact elements to model fluid -
dam and fluid-foundation interfaces gives the same sloshing frequencies values.  

Mode 
Number Fixed-coupling Fixed- contact 

 Frequency (Hz) Ratio Frequency (Hz) Ratio 

1 3,85E-04 1 3,84E-04 1 

2 5,39E-04 0,247756 5,35E-04 0,235694 

3 8,63E-04 0,104371 8,59E-04 0,100223 

4 1,13E-03 0,049275 1,13E-03 0,049275 

Table 7.3: The first four sloshing modal frequencies values for the case of dam with fixed  

supports. 
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Mode 
Number Massless-coupling Massless - contact 

 Frequency (Hz) Ratio Frequency (Hz) Ratio 

1 9,87E-05 1 1,19E-04 1 

2 5,20E-04 0,223915 5,42E-04 0,251464 

3 7,04E-04 0,003701 7,24E-04 0,012851 

4 8,31E-04 0,086763 8,52E-04 0,110919 

Table 7.4:  The first four sloshing modal frequencies values for the case of dam with massless 
foundation. 

Mode 
Number Mass-coupling Mass - contact 

 Frequency (Hz) Ratio Frequency (Hz) Ratio 

1 9,87E-05 0,505445 1,19E-04 0,383475 

2 5,20E-04 0,113177 5,42E-04 0,09643 

3 7,04E-04 0,001871 7,24E-04 0,004928 

4 8,31E-04 0,043854 8,52E-04 0,042535 

Table 7.5:  The first four sloshing modal frequencies values for the case of dam with mass 
foundation. 

 
Figure 7.8: Effect of foundation-dam interaction and fluid-dam and fluid-foundation 

interface modeling on fluid sloshing frequencies values.  
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 Table 7.3 and figure 7.8 show also that fluid sloshing frequencies values are independent 
on the foundation inertia; but little influenced by the system boundary condition. 

7.5.2 Coupled mode frequencies of dam-fluid-foundation systems 

The first four coupled mode shapes for the dam-fluid-foundation system are sketched in 
figure 7.9 for the case of dam with fixed support and in figure 7.10 for the case of dam with 
foundation support. 

 
1st coupled mode shape 

 
2nd coupled mode shape 

 
3rd coupled mode shape 

 
4th coupled mode shape 

Figure 7.9 The first four coupling mode shapes for the case of dam with fixed support. 
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1st coupled mode shape 

2nd coupled mode shape 

 
3rd coupled mode shape 

 
4th coupled mode shape 

Figure 7.10: The first four coupling mode shapes for the case of dam with mass 
foundation. 

From figure 7.9 and figure 7.10 it is clear that coupled mode shapes (shapes of modes) are 
independent on whether the foundation is presented or not (modelized by fixed support). 
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7.5.2.1 Effect of water reservoir and interface modeling on the modal coupled 
frequencies of dam-fluid-foundation system 

a. Case of fixed support foundation model 

 
Figure 7.11: Combined effect of reservoir water and fluid-dam and fluid- 

foundation modeling on the modal frequencies of the dam-fluid-foundation system 
for the case of fixed support foundation model 

 The Figure 7.11 represents for the case of fixed support foundation the effect of the 
reservoir water presence and the interface modeling on modal frequencies of the dam object of 
this study. As mentioned above, the Fixed- Empty, the Fixed-contact, the Fixed-coupling and the 
Fixed-surf cases represent respectively for the fixed foundation model the system without water 
effect, the system with full reservoir and interfaces modeled by contact elements, the system with 
full reservoir and interfaces modeled by coupling equations and finally the case of the system 
with full reservoir modeled as added masses. 

 It is clear from this figure that the presence of water leads to a decrease of the modal 
frequencies of the dam and that modeling the interface fluid structure by coupling equations or 
using contact elements give the same results, however the added masses approach overestimate 
the frequencies modes values. 

 By modeling the reservoir water, the total mass of the system increases which leads to a 
decrease of system frequencies. For the two fluid modeling approaches the same quantity of 
water is added to the dam- foundation system, but the application manner is different. By fluid 
finite element, the water effect is transmitted to the structure (dam) as displacements (view § 
4.5.2), while by modeling the fluid using surface element, the water effect is applied as uniform 
masses at the upstream dam face which increases the system stiffness. For this reason the 
frequencies obtained using surf elements are much greater than those obtained using fluid finite 
elements.  
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b. Case of massless foundation model 

 
Figure 7.12: Combined effect of reservoir water and fluid dam/or foundation modeling on the modal 

frequencies of the foundation-dam-fluid system for the case of massless foundation model 

 The Figure 7.12 represents for the case of massless foundation the effect of the reservoir 
water presence and the interface modeling on modal frequencies of the dam object of this study. 

 As mentioned above, the Massless- Empty, the Massless -contact, the Massless -coupling 
and the Massless-surf cases represent respectively for massless foundation model the system 
without water effect, the system with full reservoir and interfaces modeled by contact element, 
the system with full reservoir and interfaces modeled by coupling equations and finally the case 
of the system with full reservoir modeled as added masses. 

 It is clear that the presence of water leads to a decrease of the modal frequencies of the 
dam and that modeling the interface fluid-dam by coupling equations or using contact elements 
give the same results, however the added masses approach overestimate the frequencies modes 
values, but the rate of this overestimation is less than that obtained for the case where the dam 
foundation is clamped. This is due to the fact that the stiffness added by the uniform masses 
applied at the upstream dam face is loosed by taking into account the massless foundation (the 
massless foundation model is more flexible than the fixed foundation one).  
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c. Case of mass foundation model 

 
Figure 7.13: Combined effect of reservoir water and fluid dam/or foundation 

modeling on the modal frequencies of the foundation-dam-fluid system for the 
case of mass foundation model 

 The Figure 7.13 represents for the case of mass foundation the effect of the reservoir water 
presence and the interface modeling on modal frequencies of the dam object of this study. 

 As mentioned above, the Mass-Empty, the Mass-contact, the Mass-coupling and the Mass 
-surf cases represent respectively for mass foundation model the system without water effect, the 
system with full reservoir and interfaces modeled by contact element, the system with full 
reservoir and interfaces modeled by coupling equations and finally the case of the system with 
full reservoir modeled as added masses. 

 In this case the presence of water leads to a little decrease of the modal frequencies of the 
dam-reservoir-foundation system. The added masses approach using surf elements overestimate 
these frequencies, but this overestimation is neglected compared with that founds in the case of 
clamped foundation and massless foundation.   
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7.5.2.2 Effect of dam-foundation interaction modeling on the modal coupled frequencies of 
dam -fluid-foundation system 

a. Empty reservoir case 

 
Figure 7.14: Effect of foundation structure interaction modeling on the modal 

frequencies of the dam-foundation system. 

 Figure 7.14 represents the modal frequencies for Fixed-Empty, Massless-Empty and 
Mass-Empty case which represent respectively the case of dam with fixed support with empty 
reservoir, the case of dam with massless foundation with empty reservoir and the case of dam 
with mass foundation with empty reservoir. 

 The Figure 7.14 shows that adding foundation to dam in the modeling which means taking 
into account the foundation structure interaction effect leads to a decrease in the modal 
frequencies values furthermore for the mass foundation model. Adding foundation to dam 
structure leads to a decrease in its stiffness and consequently a decrease in frequencies values 
furthermore when taking into account the mass of the added foundation, because this leads to an 
increase in the mass system and since this later is situated at the denominator in the frequency 
formula, the obtained value is smaller.   
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b. Full reservoir case (fluid dam/or foundation interface modeled by contact element) 

 
Figure 7.15: Effect of foundation structure interaction modeling on the modal 
frequencies of the dam-foundation-fluid system (interfaces modeled by contact 

elements). 

 Figure 7.15 represents the modal frequencies for Fixed-contact, Massless-contact and 
Mass-contact cases which represent respectively the case of dam with fixed support, the case of 
dam with massless foundation and the case of dam with mass foundation with fluid dam and fluid 
foundation interface modeled by contact elements. As previously, the figure 7.11 shows that 
adding foundation to dam structure decreases the system frequencies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Two Dimensional (2D) Modal and Transient Behaviour of Dam-Reservoir-Foundation System 
using ANSYS 

118 

 

c. Full reservoir case (fluid dam/or foundation interface modeled by coupling equations) 

 
Figure 7.16: Effect of foundation structure interaction modeling on the modal 

frequencies of the dam-foundation-fluid system (interfaces modeled by coupling 
equations). 

 Figure 7.16 represents the modal frequencies for Fixed-coupling, Massless-coupling and 
Mass-coupling cases which represent respectively the case of dam with fixed support, the case of 
dam with massless foundation and the case of dam with mass foundation with fluid dam and fluid 
foundation interface modeled by coupling equations. 

 
Figure 7.17: Effect of foundation structure interaction modeling on the modal 

frequencies of the dam-foundation-fluid system (Fluid modeled as added masses). 

 Figure 7.17 represents the modal frequencies for Fixed-surf, Massless- surf and Mass- 
surf cases which represent respectively the case of dam with fixed support, the case of dam with 
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massless foundation and the case of dam with mass foundation with fluid modeled by surf 
element representing the added masses approach. 

 From Figure 7.14, Figure 7.15, Figure 7.16 and Figure 7.17 it’s clear that dam-foundation 
interaction modeling has the same effect on the modal frequencies for both cases of interfaces 
and fluid modeling; which means that taking into account the foundation structure interaction 
effect leads to a decrease in the modal frequencies even if the reservoir water is modeled (either 
by fluid finite element or added masses) or not (Empty case)  and even if the fluid-dam and fluid- 
foundation interfaces are modeled by contact element or by coupling equations. 

7.5.2.3 Reservoir water level effect on the modal coupled dam-fluid-foundation system 
frequencies 

To expand the study, the effect of water level on the dynamic characteristics of the dam 
and consequently on its dynamic behaviour is examined. This is achieved for different foundation 
models and for the two assumptions of interface modeling; coupling equations and contact 
elements. 

Considering the great importance of natural vibration modes, 27 first frequencies of dam-
reservoir-foundation system in six different water levels for Brezina dam body were extracted 
(from figure 7.18 to figure 7.21). 

In this paragraph the “HW” denotes the water level height, and the “Hc” denote the 
concrete dam height which is about 60 m. 

a. Interface modeled using coupling equations and foundation modeled as mass 
foundation 

 
Figure 7.18: Reservoir water level effect on the modal frequencies of dam-fluid-

foundation system for the case where the foundation is modeled as mass foundation and the 
interfaces modeled using coupling equations. 
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b. Interface modeled using coupling equations and foundation modeled as massless 
foundation 

 
Figure 7.19: Reservoir water level effect on the modal frequencies of dam fluid 

foundation system for the case where the foundation is modeled as massless foundation and the 
interfaces modeled using coupling equations. 

c. Interface modeled using contact elements and foundation modeled as mass 
foundation  

 
Figure 7.20: Reservoir water level effect on the modal frequencies of dam fluid 

foundation system for the case where the foundation is modeled as mass foundation and the 
interfaces modeled using contact elements. 
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d. Interface modeled using contact elements and foundation modeled as massless 
foundation 

 
Figure 7.21: Reservoir water level effect on the modal frequencies of dam fluid 

foundation system for the case where the foundation is modeled as massless foundation and the 
interfaces modeled using contact elements. 

Figure 7.18, Figure 7.19, Figure 7.20 and Figure 7.21 show that modal frequencies are 
inversely proportional with the reservoir water level; which means that frequencies decrease 
when water level increase (the amount of period grows with arising reservoir water level which is 
because of increasing total mass of the system and differences are meaningful for ten first 
modes). The same conclusion is obtained for “DEZ” high double curvature arch dam by M.A 
Hariri et al in 2011. 

It is also shown that this decrease is more pronounced for the massless foundation case 
than it for the mass foundation case, this is due to the fact that for the same reservoir water level, 
the report of water mass with respect to the massless foundation system mass is more important 
than the report of the same water mass with respect to the mass of mass foundation system.  

7.6 Two dimensional transient analysis of dam- foundation –reservoir interaction  

In this part of the chapter, transient Analyses are performed for the same system presented 
previously (Brezina dam-foundation-reservoir system).  

The system is excited at the foundation boundaries using the generated synthetic 
earthquake record having random number initializer of 17962 (view chapter 5).  

The material properties and the same finite element model of Brezina dam-reservoir-
foundation system; used for the previous modal analyses, were conserved for these transient 
studies using already Ansys, which can perform linear dynamic analyses using standard Rayleigh 
material damping (which takes into account a mass-proportional component and a stiffness-
proportional component). The Rayleigh damping constants were adjusted so that the overall 
model had critical hysteretic damping ratio equal to ξ=5% for the whole frequency range 
considered. 
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From literature review (M.A Hariri et al in 2011), it has been confirmed that the worst 
case for high arch dams occurs in low water levels, for this reason in the present study the water 
reservoir level is taken about 30 m height which represents the half of the total dam height. 

Inasmuch as from the modal analyses it has been concluded that modeling the dam-
reservoir and foundation-reservoir using coupling equations or contact elements leads to the same 
system Eigen frequencies values, here in this application (transient study) only the coupling 
approach has been performed. 

7.6.1 Reservoir water behaviour 

Starting by water behaviour, two nodes located at the reservoir surface are chosen to 
represent water displacements, velocities and accelerations time histories, these nodes are “Node 
N1” and “Node N2” presented in figure 7.22. 

 
Figure 7.22: Location of nodes where results about water reservoir transient behaviour are 

presented 
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7.6.1.1 Water behaviour at node N1 

a. Displacement in x direction at node N1 

 
Figure 7.23: Water displacement in x direction at “Node N1” 

b. Velocity in x direction at node N1 

 
Figure 7.24: Water velocity in x direction at “Node N1” 
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c. Acceleration in x direction at node N1 

 
Figure 7.25: Water acceleration in x direction at “Node N1” 

d. Displacement in y direction at node N1 

 
Figure 7.26: Water displacement in y direction at “Node N1” 
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e. Velocity in y direction at node N1 

 
Figure 7.27: Water velocity in y direction at “Node N1” 

f. Acceleration in y direction at node N1 

 
Figure 7.28: Water acceleration in y direction at “Node N1” 

Figure 7.23 to figure 7.28 show that near to the concrete dam body, reservoir water transient 
behaviour in x and y direction is independent on the foundation-dam interaction modeling. This is 
due to the fact that in this location (next to dam body), water is more influenced by the dam body 
behaviour then the total system (dam-reservoir foundation system) behaviour.  
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7.6.1.2 Water behaviour at node N2 

a. Displacement in x direction at node N2 

 
Figure 7.29: Water displacement in x direction at “Node N2” 

b. Velocity in x direction at node N2 

 
Figure 7.30: Water velocity in x direction at “Node N2” 
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c. Acceleration in x direction at node N2 

 
Figure 7.31: Water acceleration in x direction at “Node N2” 

Figure 7.29 to figure 7.31 show also that far from concrete dam body, reservoir water 
transient behaviour in x direction is independent on the foundation-dam interaction modeling, the 
same displacement, velocity and acceleration time history are found for the three approaches of 
dam-foundation interaction modeling. 

To interpret this result it is imperative to review the water boundary conditions applied to the 
model; as explained in section 7.4 of this chapter and for the coupled approach of dam-reservoir 
interface modeling, nodes representing the two reservoir extremities are coupled with dam body 
face nodes in the normal direction in one side and constrained in x direction and free to displace 
in the vertical direction in the extreme side. For this reason, in x direction reservoir motion is 
independent on the dam-foundation modelling. 
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d. Displacement in y direction at node N2 

 
Figure 7.32: Water displacement in y direction at “Node N2” 

e. Velocity in y direction at node N2 

 
Figure 7.33: Water velocity in y direction at “Node N2” 
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f. Acceleration in y direction at node N2 

 
Figure 7.34: Water acceleration in y direction at “Node N2” 

Figure 7.32, 7.33 and figure 7.34 show that far from the dam upstream face (node N2), for 
the case of dam with foundation, water reservoir is more excited in y direction (in terms of 
displacement, velocity and acceleration) than the case where the foundation is modeled as fixed 
support furthermore when the foundation is modeled as mass foundation model. This is due to the 
fact that far from the concrete dam body, reservoir water displacement in y direction depends on 
the total behaviour of the all dam-reservoir-foundation system and it has been well demonstrated 
in chapter 5 that the worst case occur when the foundation dam support is modelled as mass 
foundation model. 

7.6.1.3 Comparison of water behaviour between N1 and N2 

a. Water displacement in x direction for the case of dam with mass foundation  

 
Figure 7.35: comparison of water displacement in x direction between node N1 and node N2 for 

the case of dam with mass foundation 
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b. Water velocity in x direction for the case of dam with mass foundation  

 
Figure 7.36: comparison of water velocity in x direction between node N1 and node N2 for the 

case of dam with mass foundation 

c. Water acceleration in x direction for the case of dam with mass foundation  

 
Figure 7.37: comparison of water acceleration in x direction between node N1 and node N2 for 

the case of dam with mass foundation 

Figure 7.35, figure 7.36 and figure 7.37 sketch a comparison of water displacement, 
velocity and acceleration in x direction between nodes N1 and N2 for the case of dam with mass 
foundation model. It is shown that node N2 situated far from the dam body is more excited in x 
direction than node N1.  
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d. Water displacement in y direction for the case of dam with mass foundation  

 
Figure 7.38: comparison of water displacement in y direction between node N1 and node N2 for 

the case of dam with mass foundation 

e.Water velocity in y direction for the case of dam with mass foundation  

 
Figure 7.39: comparison of water velocity in y direction between node N1 and node N2 for the 

case of dam with mass foundation 
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f. Water acceleration in y direction for the case of dam with mass foundation  

 
Figure 7.40: comparison of water acceleration in y direction between node N1 and node N2 for 

the case of dam with mass foundation 

Figure 7.38, figure 7.39 and figure 7.40 sketch a comparison of water displacement, 
velocity and acceleration in y direction between nodes N1 and N2 for the case of dam with mass 
foundation model. Unlike water behaviour in x direction between the two mentioned nodes, in y 
direction it is node N1 which is more excited than node N2. When seismic record is applied to at 
dam-reservoir-foundation system base, foundation is the first part of the system which displace 
then the dam body and then the water reservoir, and after that interaction phenomena take place, 
for this reason motions in y direction for nodes located next to dam body (as node N1) are more 
important than motions for those located far from dam body (as node N2), which is the principle 
of wave propagation along a cord excited in one side.  
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7.6.2 Crest time history behavior for the three studied cases 

 
Figure 7.41: Crest displacement in x direction for the three studied cases 

 
Figure 7.42: Crest velocity in x direction for the three studied cases 
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Figure 7.43: Crest acceleration in x direction for the three studied cases 

Figure 7.41, 7.42 and 7.43 show that the crest displacement, velocity and acceleration 
time history are more pronounced for the case of dam with mass foundation, which means that 
foundation inertia force affect the dam behavior either if the water reservoir is present or not 
(case of Empty Reservoir) (results of chapter 5). 

7.6.3 Time history behavior variation along the dam-foundation height 

In this section, the variation of the time history behavior along the dam-foundation height is 
examined, for this reason; different points are chosen to represent the results. Figure 7.46 
sketches these points.  

 
Figure 7.44: Location of nodes where results about dam and/or foundation transient behaviour 

are presented 
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a. Displacement variation in x direction along dam height for dam without foundation case 

 
Figure 7.45: Variation of displacement in x direction for the case of dam without foundation 

b. Stress variation in x direction along dam height for dam without foundation case 

 
Figure 7.46: Variation of stress in x direction for the case of dam without foundation 
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c. Stress variation in y direction along dam height for dam without foundation case 

 
Figure 7.47: Variation of stress in y direction for the case of dam without foundation 

d. Von Mises stress variation along dam height for dam without foundation case 

 
Figure 7.48: Variation of Von Mises stress for the case of dam without foundation 

Figure 7.45, Figure 7.46, Figure 7.47 and Figure 7.48 represent respectively time history 
variation of displacement in x direction, stress in x direction, stress in y direction and von mises 
stress along dam height for the case of dam without foundation case. From this figure it is shown 
that displacements are more important at the dam top where stresses are negligible; however at 
the dam bottom, these displacements are negligible and stresses are important which is in perfect 
agreement with the reality. 
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e. Displacement variation in x direction along dam height for dam with massless foundation 
case 

 
Figure 7.49: Variation of displacement in x direction for the case of dam with massless 

foundation 

f. Stress variation in x direction along dam height for dam with massless foundation case 

 
Figure 7.50: Variation of stress in x direction for the case of dam with massless foundation 
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g. Stress variation in y direction along dam height for dam with massless foundation case 

 
Figure 7.51: Variation of stress in y direction for the case of dam with massless foundation 

h. Von Mises stress variation along dam height for dam with massless foundation case 

 
Figure 7.52: Variation of Von Mises stress for the case of dam with massless foundation 

Figure 7.49, Figure 7.50, Figure 7.51 and Figure 7.52 represent respectively time history 
variation of displacement in x direction, stress in x direction, stress in y direction and von mises 
stress along dam height for the case of dam with massless foundation case. From this figure it is 
shown that displacements are more important at the dam-foundation top where stresses are 
negligible; however at the dam-foundation bottom, these displacements are negligible and 
stresses are important. 
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i. Displacement variation in x direction along dam height for dam with mass foundation 
case 

 
Figure 7.53: Variation of displacement in x direction for the case of dam with mass foundation 

j. Stress variation in x direction along dam height for dam with mass foundation case 

 
Figure 7.54: Variation of stress in x direction for the case of dam with mass foundation 
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k. Stress variation in y direction along dam height for dam with mass foundation case 

 
Figure 7.55: Variation of stress in y direction for the case of dam with mass foundation 

l. Von Mises stress variation in y direction along dam height for dam with mass foundation 
case 

 
Figure 7.56: Variation of Von Mises stress for the case of dam with mass foundation 

Figure 7.53, Figure 7.54, Figure 7.55 and Figure 7.56 represent respectively time history 
variation of displacement in x direction, stress in x direction, stress in y direction and von mises 
stress along dam height for the case of dam with mass foundation case. From this figure it is 
shown that displacements are more important at the dam-foundation system top where stresses 
are negligible; however at the dam-foundation bottom, these displacements are negligible and 
stresses are important. 
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7.6.4 Variation of concrete dam behaviour between the upstream and downstream dam 
faces  

In this section the transfert of dam-reservoir-foundation system behaviour between the 
upstream and downstream dam faces is studied. Figure 7.59 sketches the upstream and 
downstream paths where the results are presented  

 
Figure 7.57: Location of upstream and downstream paths for the case of dam with foundation 

7.6.4.1 Variation of dam behaviour between the upstream and downstream dam faces for 
the case of dam without foundation (dam alone) 

 
Figure 7.58: Variation of displacement in x direction between the upstream and downstream dam 

faces for the case of dam without foundation (dam alone) 
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a. Variation of stress in x direction between the upstream and downstream dam faces 
for the case of dam without foundation (dam alone) 

 
Figure 7.59: Variation of stress in x direction between the upstream and downstream dam faces 

for the case of dam without foundation (dam alone) 

b. Variation of stress in y direction between the upstream and downstream dam faces 
for the case of dam without foundation (dam alone) 

 
Figure 7.60: Variation of stress in y direction between the upstream and downstream dam faces 

for the case of dam without foundation (dam alone) 
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c. Variation of Von Mises stress between the upstream and downstream dam faces for 
the case of dam without foundation (dam alone) 

 
Figure 7.61: Variation of Von Mises stress between the upstream and downstream dam faces for 

the case of dam without foundation (dam alone) 

Figure 7.58, Figure 7.59, Figure 7.60 and Figure 7.61 show respectively for the case of 
dam alone (with clamped foundation) the transfer of displacement in x direction, stress in x 
direction, stress in y direction and Von Mises stress between the upstream and downstream dam 
paths.  It is shown that these stresses are important along the upstream path than along the 
downstream one. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Two Dimensional (2D) Modal and Transient Behaviour of Dam-Reservoir-Foundation System 
using ANSYS 

144 

 

7.6.4.2 Variation of dam behaviour between the upstream and downstream dam faces for 
the case of dam with mass foundation 

a. Variation of displacement in x direction between the upstream and downstream dam 
faces for the case of dam with mass foundation 

 
Figure 7.62: Variation of displacement in x direction between the upstream and downstream dam 

faces for the case of dam with mass foundation 

b. Variation of stress in x direction between the upstream and downstream dam faces 
for the case of dam with mass foundation 

 
Figure 7.63: Variation of stress in x direction between the upstream and downstream dam faces 

for the case of dam with mass foundation 
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c. Variation of stress in y direction between the upstream and downstream dam faces 
for the case of dam with mass foundation 

 
Figure 7.64: Variation of stress in y direction between the upstream and downstream dam faces 

for the case of dam with mass foundation 

d. Variation of Von Mises stress between the upstream and downstream dam faces for 
the case of dam with mass foundation 

 
Figure 7.65: Variation of Von Mises stress between the upstream and downstream dam faces for 

the case of dam with mass foundation 

Figure 7.62, Figure 7.63, Figure 7.64 and Figure 7.65 show respectively for the case of 
dam with mass foundation the transfer of displacement in x direction, stress in x direction, stress 
in y direction and Von Mises stress between the upstream and downstream dam paths.  Already it 
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is shown that these stresses are important along the upstream path than along the downstream 
one. 

Comparing figure 7.58, figure 7.62 which represent the variation of displacement in x 
direction between the upstream and downstream dam faces for dam alone and dam with mass 
foundation respectively, it is clear that the x displacement of the two dam face is independent on 
foundation modeling (displacement rate transfer is important). However comparing figure 7.59, 
figure 7.63 (representing the variation of stress in x direction between the upstream and 
downstream dam faces for dam alone dam with mass foundation respectively) lead to conclude 
that the difference of stresses in x direction between the upstream and downstream dam faces is 
more important for the case of dam with fixed support than the other two cases, otherwise, the 
rate of stress transfer between the two dam faces is more pronounced when the foundation dam is 
modelled. The same observation is made for the variation of stresses in y direction and the 
variation of Von Mises stresses already between the two dam faces. 

7.7 Conclusions 

 A parametric study is performed in the present work to investigate the combined effect of 
foundation, water reservoir presence and fluid-dam / fluid-foundation interfaces modeling on the 
modal behaviour of Brezina concrete dam. 

 The study has shown that reservoir water presence and foundation modeling have the 
same effect on the modal frequencies results which means on the modal behaviour of the concrete 
dam; they decrease the frequencies values. 

 Two assumptions are adopted in this study in the subject of the interface fluid-dam and 
fluid-foundation modeling: the contact elements and coupling equations.  

From modal analysis, it is shown that: 

 Modeling the interfaces by contact elements or by coupling equations gives the same 
results. 

 Surface finite elements available in Ansys library are a good and practical tool to represent 
the fluid using the added masses approach. 

 The coupling approach is more complicated in the modeling but it takes a little run time, 
however the contact approach is very simple in the modeling phase; but it take more run 
time because of the contact elements added to the model, for this reason the contact 
approach is more desired practical than the coupling equation one. 

From the transient analysis, the study shows that: 

 Even if reservoir water is present, the worst case of the concrete dam object of the present 
study already occurs when the foundation is modeled as mass foundation model.  

 Near to the upstream concrete dam face, reservoir water transient behaviour (water displacement 
in x and y direction) is independent on the foundation-dam interaction modelling, however far 
from the sloshing amplitude time history is more important for the dam with mass foundation 
case. 

 The transfer of stresses between the upstream and the downstream dam faces is more pronounced 
for the dam with mass foundation then the dam with fixed support.  
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CHAPTER 8 

Three Dimensional Modal Behaviour of Dam Reservoir Foundation System 
using ANSYS 

8.1 Introduction 

 A parametric study is performed in the present chapter to view the combined effect of 
foundation, fluid-dam and fluid-foundation interfaces modeling on the three dimensional (3D) 
modal behaviour of “Brezina” concrete dam situated at Algeria. 

 As natural frequencies and mode shapes are important parameters in design for dynamic 
loading conditions, it is very important to use modal analysis for determining the vibration 
characteristics (natural frequencies and mode shapes) of any system. For this reason modal 
analyses are adopted for the dam object of this study for two assumptions of dam-fluid and 
foundation- fluid interfaces modeling: the contact elements and the coupling equation, also for 
the three approaches of foundation-dam interaction modeling: the fixed support foundation, the 
massless foundation and the mass foundation. Added masses approach takes a place in this 
chapter by using surf finite element available in Ansys library. 

8.2 Ansys Validation 

 The model is to be developed from the elements available in the ANSYS software. To 
ensure the validity of Ansys models, modal analysis is performed, and results are compared with 
the available theory approximate analytical solutions for flexible tank of fixed support conditions.  

 For the purpose of comparison with other analysis solutions, linear elastic material 
properties are assumed. Water properties are given by Table 4.3 however for the tank is 
characterized by an elastic modulus of 2e+11N/m2, a Poisson’s ratio of 0.3 and a Density about 
7830 kg/ m3. 1848 FLUID79 finite elements are used to model the fluid container; however, 492 
SHELL181 finite elements are used to model the container itself. This later is constrained (fixed) 
at its base. Because of the system symmetry, one half of the tank is modeled. The finite element 
model and geometrical properties of the cylindrical liquid container is sketched in Figure 8.1. 
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Figure 8.1: cylindrical reservoir finite element model 

 As for the two dimensional analyses explained in the previous chapter, two approaches 
are supposed for the fluid-container interfaces modeling: 

 First: The content is represented as three-dimensional contained fluid elements which are 
not attached to the shell elements at the wall boundary, but have separate coincident nodes that 
are coupled only in the direction normal to the interface. The relative movements in the tangential 
and vertical directions are allowed to occur. The fluid element nodes at the base are allowed to 
move horizontally, while the shell wall is fixed around the perimeter. 

 Second: The same model as the first one, but by the use of contact elements available in 
Ansys code library instead the coupling equations, considering the container as target elements 
(TARGE 170) and water as contact elements (CONTA 174) (view figure 4.10). 

 The added masses approach takes also a place in the current three dimensional (3D) study, 
by modeling tank water using surface finite element instead the fluid finite elements already 
available in Ansys code Library. The water mass is applied uniformly on the tank faces plus the 
hydrostatic pressure, the surface finite element “SURF 154” is characterized by its length and its 
thickness, these two properties depends on both water level and the contact length between the 
fluid and the container. 

 From the linear wave theory, the fundamental natural sloshing frequency is given by this 
formula (Robert D. Blevins 2001): 

R
h

R
g

f jj
j

.
tanh

.
2
1 λλ
π

=
                                                                                                            (8.1)

 

Where: 

jf : Sloshing frequency (Hz); 

h: Fluid height (m) 

g= Acceleration due to gravity (m/sec2); 
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R= Radius of the plane form of the cylindrical container (m); 
thj=jλ  zero root of the first derivative of the first order Bessel function of 1st kind. The 

first four values of λ  are: 1.8412, 5.3314, 8.5363 and 11.7060. 

However the coupled vibrations are expressed as (Robert D. Blevins 2001): 

)(ΓI
)(ΓI

..Γ
ρ.R
E.t

2π
1

j0

j1
j3=jf

                                                                                                           (8.2)
 

Where: 

E: tank material modulus of elasticity (N/m2) 

t: thank thickness (m) 

ρ : Fluid density (kg/m3) 

I0 and I1 are the modified Bessel functions of the first kind, zero and 1st order, 
respectively (given from figure 8.2). 

And: 

H
Rπ

2
1jΓ j ⎟
⎠
⎞

⎜
⎝
⎛ −=

                                                                                                                              (8.3)
 

Where: 

H: the tank height (m) 

 
Figure 8.2: I1(x) / I0(x) values (Robert D. Blevins 2001) 
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Table 8.1 lists the first four analytical tank sloshing frequencies and the Ansys frequencies 
(extracted using Block Lanczos method) for the case where the fluid-tank interface is modeled by 
coupling equations and for the case where this interface is modeled using contact elements. It is 
shown that Ansys results are in perfect agreement with the theoretical ones. 

Frequency  
number 

Approximate 
Analytical 

Results (Hz) 

Interface fluid-
container 

modeled using 
coupling equations

Interface fluid-
container 

modeled using 
contact elements 

1 0,306 0.306 0.273 
2 0,526 0.510 0.497 
3 0,665 0.625 0.644 
4 0,779 0.770 0.673 

Table 8.1: Fundamental mode value given 

Figure 8.3 sketched the first four sloshing modes of the cylindrical tank for the two 
approaches of tank-fluid modeling. 

 
1st Mode 

 
2nd Mode 

 
3rd Mode 

 
4th Mode 

Figure 8.3: The first four sloshing mode shapes 
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Table 8.3 lists the first four analytical coupled frequencies and the Ansys frequencies 
obtained for the case where the fluid-tank interface is modeled by coupling equations and for the 
case where this interface is modeled using contact elements. Frequencies extracted for the case 
where the fluid container is modeled using added masses approach are also listed in table 8.2. It is 
shown that Ansys results are in perfect agreement with the theoretical ones for the two cases of 
fluid-tank interface modeling, however, frequencies are over-estimated for the added masses 
approach using surf finite element. 

Frequency 
number 

Approximate 
Analytical 

Results (Hz) 

Interface fluid-container
modeled using 

coupling equations 
(Hz) 

Interface fluid-container 
modeled using 

contact elements 
(Hz) 

Added masses 
approach using
Surf-elements 

(Hz) 
1 11,762 11.647 11.861 13.895 
2 28,99 28.508 28.716 30.01 
3 39,95 39.779 39.948 41.33 
4 47,276 47.869 47.163 49.02 

Table 8.2: Fundamental mode value for the three fluid modeling assumptions 

Figure 8.4 sketched the first two coupled modes of the cylindrical tank for the two 
approaches of tank-fluid modeling. 

  

Figure 8.4: The first two coupling mode shapes 

8.3 Three dimensional (3D) modeling of Brezina concrete arch dam 

Using conclusion of chapter 5 and chapter 7 about the fact that the case of dam with 
foundation is more conservative then the dam with fixed support (dam only), in this chapter only 
the dam with foundation will be studied for the two discussed approaches of dam-fluid and fluid-
foundation interfaces modeling and for the added masses approach. 

The dam-fluid-foundation system is investigated using three 3D finite element models. 
The first model or dam-fluid-massless foundation model represents the dam and the adjacent 
foundation but the foundation’s mass is neglected. The second model or fluid-dam-mass 
foundation is similar to the first one, except that the mass of the foundation is taken into account. 
These finite elements models are created using the finite element commercial package, ANSYS, 
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with a mapped meshing (Ansys theory manual, 2007). The finesse of the mesh has been 
determined by performing a convergence analysis (mesh sensitivity).  

For the two models, 23790 quadratic solid elements (SOLID185) (view figure 4.6) are 
used to model both dam body and foundation rock, whereas 3000 FLUID 80 (view figure 4.10) 
finite element are used to represent water reservoir for the two approaches of fluid-dam and fluid-
foundation interface modeling, however for the added masses approach using 600 SURF154 
finite elements are used (view figure 4.8).  

The length and width of the foundation, along the global X and Y axis, respectively, are 
taken to be 150 m, while its depth, along the Z direction, is taken to be 100 m. These sizes are 
chosen so that the applied boundary condition will not affect the modal responses of the dam. For 
the two models, water reservoir is taken about 50 m height (Figure 8.5).  

For boundary conditions, foundation is clamped at its base. Nodes at water reservoir 
extremity which is neither in contact with dam body nor foundation, are constrained in X 
direction only and they are left free in Y and Z directions, however at the interfaces water-dam 
and water-foundation: 

For coupling equation approach: The coincident nodes at the common areas between the 
fluid element (representing the fluid reservoir) and the quadratic elements (representing either the 
dam or the foundation system) are attached in the normal direction; this is achieved by rotating 
coincident nodes in local coordinate system of the common area and attaching them in the normal 
direction.   

For coupling contact elements approach: By relating the common areas between the fluid 
element (representing the fluid reservoir) and the quadratic elements (representing either the dam 
or the foundation system) using contact elements. In this case CONTA 174 is used to represent 
water and TARGE170 is used for either dam or foundation. 

For added masses approach: water reservoir is modeled as small masses applied 
uniformly at each water-dam and water-foundation interface using SURF154 finite element 
without forgetting the application of the hydrostatic pressure on these interfaces. The thickness of 
SURF154 is obtained by a simple arithmetical operation: 

)/mdensity(kgwater 
)(m areas foundation water and dam- waterinterfaces

)(m mewater voluReservoir (m) Thickness SURF 3
2

3

∗=
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Figure 8.5: 3D finite element model of Brezina arch dam with water reservoir and adjacent 

foundation and boundary conditions. 

The first four sloshing mode frequencies are sketched in figure 8.6 for the case of dam-
water-mass foundation model for the two approaches of water-dam and water-foundation 
interfaces modeling. 

 
1st sloshing Mode shape 

 
2nd sloshing Mode shape 

 
3rd sloshing Mode shape 

 
4th sloshing Mode shape 

Figure 8.6: The first four sloshing mode shapes of the dam-fluid-mass foundation model 
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8.4 Effect of water-dam and water- foundation interfaces modeling on the sloshing mode 
values of dam-reservoir-foundation system  

The effect of water-dam and water- foundation interfaces modeling on sloshing modes 
frequencies is examined in this paragraph for the two studied cases; dam with massless 
foundation and dam with mass foundation. 

8.4.1 Dam with massless foundation 

 
Figure 8.7: Effect of interface modeling on the reservoir sloshing modes frequencies for the case 

of dam with massless foundation 

Figure 8.7 sketches the effect of dam-reservoir and foundation-reservoir interface 
modeling on the dam-water- massless foundation system mode frequencies values; it is also 
shown that there is a small difference between sloshing mode frequencies values for the two 
studied cases of the interface modeling (using coupling equations or contact elements).   
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8.4.2 Dam with mass foundation 

 
Figure 8.8: Effect of interface modeling on the reservoir sloshing modes frequencies for the 

case of dam with mass foundation 

Figure 8.8 sketches the effect of dam-reservoir and foundation-reservoir interface 
modeling on the dam-water- mass foundation system mode frequencies values; it is also shown 
that there is a small difference between sloshing mode frequencies values for the two studied 
cases of the interface modeling (using coupling equations or contact elements).   

From figure 8.7 and figure 8.8 we can say that that modeling the interface fluid-dam and 
fluid-foundation by coupling equations or by contact elements give the same results in term of 
sloshing mode frequencies. 

8.5 Foundation-dam interaction modeling effect on the reservoir sloshing modes 

The effect of foundation-dam interaction modeling on the sloshing modes of dam-
reservoir-foundation system is presented here.  
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8.5.1 Interfaces modeled using coupling equations 

 
Figure 8.9: Foundation-dam interaction modeling effect on the reservoir sloshing modes for 

the case where interfaces are modeled using coupling equations 

Figure 8.9 sketches the effect of foundation-dam interaction modeling on the sloshing 
modes of dam-reservoir-foundation system for the case where water-foundation interfaces and 
water-dam interfaces are modeled using coupling equations. It is shown that sloshing modes 
frequencies are independent on the foundation-dam interaction modeling. 

8.5.2 Interfaces modeled using contact elements 

 
Figure 8.10: Foundation-dam interaction modeling effect on the reservoir sloshing modes for 

the case where interfaces are modeled using contact elements 
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Figure 8.10 sketches the effect of foundation-dam interaction modeling on the sloshing 
modes of dam-reservoir-foundation system for the case where water-foundation interfaces and 
water-dam interfaces are modeled using contact elements.  

From figure 8.9 and figure 8.10 we can conclude that reservoir water sloshing mode 
frequencies are independent on the foundation-dam interaction modeling, which is the conclusion 
founded also in chapter 7 section 7.5.1 for the two dimensional modal analyses of the same dam. 

8.6 Effect of water-foundation and water-dam interfaces modeling on the coupled 
mode values of dam-reservoir-foundation system  

In this section and due to coupled frequencies shift between the two approaches of 
interface modeling, only the fundamental modes are presented and compared. Since this shift of 
frequencies is not found for the cylindrical container studied above, we can conclude that it (shift 
of frequencies) is due to the irregular geometry of the water-dam and water-foundation interfaces. 

Figure 8.11 sketches the fundamental mode shape for dam-water-mass foundation system 
for the case where water-dam and water-foundation is modeled using coupling equations and for 
the case where these interfaces are modeled using contact elements.  

 
Figure 8.11: The fundamental coupling mode shapes of the dam-water-mass foundation system 

8.6.1 Dam with massless foundation  

The effect of water-dam and water-foundation interfaces modeling on the fundamental 
coupled modes frequencies is examined in this paragraph for dam-water-massless foundation 
case. Results are summarized in table 8.3 for the two approaches of interfaces modeling and also 
for the added masses approach. 

Table 8.3 show a perfect agreement between the frequencies obtained for interfaces 
modeled by coupling equations and by contact elements, however for the added masses approach 
using surf finite elements, fundamental frequency is more important than those found for the two 
other approaches. 
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Mode Number 

Massless-coupling Massless -contact Massless -surf 

Frequency 

(Hz) 
Ratio 

Frequency 

(Hz) 
Ratio 

Frequency 

(Hz) 
Ratio 

Fondamental 
Mode  8.80 1 8.79 1 12.22 1 

Table 8.3: Effect of water-dam and water-foundation interfaces modeling on the 
fundamental coupled mode for dam with massless foundation case 

8.6.2 Dam with mass foundation  

As discussed in the previous section (8.6.1), the effect of water-dam and water-foundation 
interfaces modeling on the fundamental coupled modes frequencies is examined in this paragraph 
for dam-water-mass foundation case. Results are summarized in table 8.4 for the two approaches 
of interfaces modeling and also for the added masses approach. 

Table 8.4 show a perfect agreement between the frequencies obtained for interfaces 
modeled by coupling equations and by contact elements, however for the added masses approach 
using surf finite elements, fundamental frequency is overestimated compared with those found 
for the two other approaches. 

Mode Number 

Mass-coupling Mass -contact Mass -surf 

Frequency 

(Hz) 
Ratio 

Frequency 

(Hz) 
Ratio 

Frequency 

(Hz) 
Ratio 

Fondamental 
Mode 7.566 1 7.55 1 8.31 1 

Table 8.4: Effect of water-dam and water-foundation interfaces modeling on the 
fundamental coupled mode for dam with mass foundation case 

8.7 Conclusion 

In this chapter three dimensional modal analyses are performed for Brezina concrete arch 
dam-foundation system for: 

 The two approaches of reservoir-dam and reservoir-foundation interfaces modeling ; 
 The added masses approach case for reservoir water representation. 

In this chapter only the fundamental frequencies are presented due to the shift of frequencies 
between the two approaches of interface modeling cited above, this shift of frequencies is caused 
by the irregular water-dam and water-foundation interfaces. 

The study shows that: 

 the results where interfaces are modeled using coupling equations are similar to results 
where interfaces are modeled using contact elements, which in the same conclusion 
founded on the last chapter for the two dimensional analyses.  
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 Water modeled using surf-element overestimates the frequencies values; this is because 
this modeling method represents “added masses” approach which is an approach that 
overestimates the analyses results. 

 Surface finite elements available in Ansys library are practical tools to modelize 
reservoir water using added masses approach. 
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Conclusion 

 This work adds a contribution to the use of the finite elements commercial packages 
ANSYS for dynamic foundation-fluid-structure interaction problems and especially for concrete 
dams. 

 At first, a dynamic foundation-structure interaction has been performed for “Brezina” 
concrete arch dam using the direct method already with ANSYS code, and assuming different 
foundation modeling assumptions (clamped foundation, mass foundation and massless 
foundation). It has been shown that adding the foundation to the dam leads to a change in the 
system dynamic properties (natural frequencies) and therefore a change in its total response, all 
the more if the foundation is modeled as mass foundation.    

 Later on, a parametric study of the viscous damping in Rayleigh form has been conducted 
for the same dam. It has been found that the natural frequencies of either undamped or damped 
modes obtained from the dam-foundation with foundation mass model are drastically lower 
compared to that of the “dam alone” model, and are significantly lower than those obtained from 
the dam-massless foundation model. Likewise, similar comparisons have been observed for the 
damping quantities, in absolute values, between the three models. An in-depth review of the 
literature reveals that the study carried out herein constitutes several elements of originality as 
only very few similar works have been undertaken.  

 The third application consists in incorporating the hydrodynamic effect of reservoir water 
assuming different levels’ values. A special emphasis was done on modeling the fluid-foundation 
and also the fluid-dam upstream face interfaces. Two assumptions were adopted to model the 
interfaces; the coupling equations and the contact elements available in ANSYS finite elements 
code. An important application takes place in the present work, regarding the modeling of water 
reservoir by “added mass approach” using “Surf Element” available in ANSYS library. The 
study has shown that reservoir water presence and foundation modeling have the same effect on 
the modal frequencies results. In other words, regarding the modal behavior of the concrete dam, 
they decrease the frequencies’ values and modeling the interfaces by contact elements or 
coupling equations gives the same results for the two-dimensional analysis. However, for three- 
dimensional one, the results are slightly different due to the irregular interfaces (water-dam and 
water-foundation) geometry of the system being object of the present study. Also, the surf 
element is a good tool that can be used to model the “added mass approach”. 

 All the results obtained in this work are in perfect agreement with the theory, which 
means that the ANSYS code is good software for solving dynamic foundation-fluid-structure 
interaction problems. 
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