REPUBLIQUE ALGERIENNE DEMOCRATI, QUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Abou bakr Belkaïd - Tlemcen

Faculté des Sciences Département de Biologie Moléculaire et Cellulaire « Laboratoire des Produits Naturels (Laprona) »

THESE

Pour l'obtention d'un Doctorat en

Biologie Moléculaire et Cellulaire

Option Biochimie

Présentée par: M^{rne} Bekhechi Chahrazed

<u>'Theme</u>

Analyse (les btiiles essentielles de quelques espèces aromatiques (le la région de TJe.iicen par (PG, CP(,-S\I et RMN '(et étude de leur pouoir antibactérien

Soutenue le

•U...

ï

devant le jury compose de

Président:	M' Taleb Bendiab S. A.	Professeur	U. de Tlemcen
Invité:	M Casanova J	Professeur	U. de Corse
Examinateurs:			
	M' Guermouche M. H	Professeur	U.S.T.H.B. d'Alger
	M' Kihel M.	Professeur	U. d'Oran
	Mr Tomi F.	Professeur	U. de Corse
Directeur de thèse:	Mme Atik-Bekkara F.	Professeur	U. de Tlemcen
Co-directeur:	Mr Abdelouahid D. E.	M. de Conférences	U. de Tlemcen

Année universitaire: 2008 - 2009

affl.

« Le don d'une plante utile me paraît plus précieux que la découverte d'une mine d'or et d'un monument plus durable qu'une pyramide ». Bernardin de Saint-Pierre (1737-1814) Le jardin des pamplemousses, lie Maurice

R., cmerciements

Ce travail a été effectué en grande partie au laboratoire des «Produits Naturels» (Laprona) du département de Biologie, de la Faculté des Sciences, de l'Université Abou Bakr Belkaîd de Tlemcen, sous la direction de le Professeur Fewzia Atik-Bekkara et Djamel Eddine Abdelouahid, comme co-directeur; et au laboratoire de «Chimie et Biomasse» de l'Université de Corse, sous la direction de le Professeur Feux Tomi.

n

Н

Η

A Madame Fewzia Atik-Bekkara, Professeur et Chef d'équipe «Etude des composés volatils (huiles essentielles) et des composés phénoliques (flavonoïdes) », au laboratoire des «Produits Naturels» de l'Université de Tlemcen, j'exprime ma profonde reconnaissance et gratitude tant pour m'avoir guidée et aidée tout au long de la réalisation de cette thèse. Ses conseils et encouragements m'ont permis de mener à bien cette étude.

Je veux exprimer à M^t Djamel Eddine Abdelouahid, Maître de Conférences à l'Université de Tlemcen, ma très vive reconnaissance et ma gratitude pour sa collaboration, son encadrement et pour avoir veillé au bon déroulement de ce travail

Je veux exprimer mes vifs remerciements à M' Joseph Casanova, Directeur du laboratoire « Systèmes Physiques de l'environnement », équipe «Chimie et Biomasse» de l'Université de Corse au CNRS (UMR 6134), pour son accueil au sein de son laboratoire et ma profonde gratitude pour sa collaboration et sa confiance qu'il m'a accordée.

Mes vifs remerciements vont à ^{Mt} Feux Tomi, Professeur à l'Université de Corse, pour sa collaboration, sa disponibilité et à l'attention particulière qu'il a accordée à mon travail. Ses conseils, ses recommandations et son aide durant mon stage au sein de l'équipe «Chimie et Biomasse », ont permis à l'aboutissement d'une bonne partie de cette étude. Il trouve ici l'expression de ma profonde reconnaissance pour m'avoir aidée tout au long de la réalisation de cette thèse. Sa participation au jury est un honneur pour moi.

Je tiens également à remercier le reste des membres de l'équipe «Chimie et Biomasse », spécialement Kai Lu pour sa disponibilité et sa précieuse aide.

Je réjouis également que M' le Professeur Sid Ahmed Taleb Bendiab, directeur du laboratoire des «Produits Naturels» ait consenti à participer à cette commission d'examen et à présider le jury, qu'il trouve ici l'expression de ma considération et mes vifs remerciements.

Que Mr le Professeur Moulay Hassen Guermouche de l'Université des Sciences et de la Technologie Houari-Boumédiène-Alger, trouve ici l'expression de ma reconnaissance pour l'honneur qu'il me fait en acceptant d'apporter un regard critique sur ce travail.

Je suis très sensible à l'honneur que me fait ^{Mr} Mebrouk Kihel, Professeur à l'Université d'Oran, pour avoir accepté de participer à ce jury. Qu'il trouve ici l'expression de ma gratitude.

Je remercie vivement M Abdellah Moussaoui, Maître de Conférences à l'Université de Béchar et Ali Mansri, Professeur à l'Université de Tlemcen, pour m'avoir aidé et accueilli dans leur laboratoire.

Mes remerciements vont à l'endroit de M ^r Djamel Benmansour, Maître de Conférences à l'Université de Tlemcen, pour ses conseils et son aide précieuse pour le traitement statistique des données concernant le pouvoir antibactérien des huiles essentielles des plantes étudiées. Ce fut un grand plaisir de travailler avec lui.

Mes vifs remerciements vont à l'égard de M^r le Professeur Mohamed Bouazza (laboratoire d'Ecologie et de Gestion des Ecosystèmes Naturels), pour ses conseils, son accueil dans son laboratoire et pour m'avoir aidé à identifier les espèces végétales étudiées.

J'adresse aussi mes remerciements les plus vifs à M ^r Noury Benabadji, Professeur à l'Université de Tlemcen et M ^r Hamza Bouabdellah, chargé de cours à l'Université de Tlemcen pour leur aide et leur accueil dans leur laboratoire.

Je tiens également à remercier Slimane Amel et M^r Abdelkader Dahmani pour leur aide précieux, qu'ils'trouvent ici le témoignage dé ma reconnaissance.

Enfin, ma profonde gratitude va à l'égard de toutes les personnes qui, de prés ou de loin, ont contribué à la réalisation de cette thèse.

Rjsumé

Dans le cadre de la valorisation des plantes aromatiques poussant à l'état spontané dans la région de Tlemcen, nous nous sommes proposés de déterminer la composition chimique et le pouvoir antibactérien des huiles essentielles de six espèces végétales : *Thymus fontanesii* Boiss. et Reut., *Origanum glandulosum* Desf., *Ammoïdes verticillata* Desf., *Ziziphora hispanica* L., *Mentha pulegium* (L) et *Satureja calamintha* subsp. *nepeta* (L.) Briq., qui font partie intégrante de l'arsenal thérapeutique traditionnel de la population locale.

La détermination de la composition chimique des huiles essentielles a été réalisée par une application conjointe de plusieurs méthodes chromato graphiques et spectroscopiques (CPG-Ir, CC, CPG-SM et RMN ¹³C, méthode mise au point et développée par l'équipe «Chimie et Biomasse» de l'université de Corse).

L'étude détaillée des huiles essentielles de Ziziphora hispanica, est caractérisée par P une prédominance de monoterpènes oxygénés possédant un squelette du type p-menthane en position C-3, à savoir la pulégone (77,6-79,5%) qui est le composé majoritaire. Les cinq échantillons de l'huile essentielle de *Thymus fontanesii*, présentent une composition chimique P homogène et stable dominée par le carvacrol (66,7-69,5%). Ces huiles essentielles sont très riches en monoterpènes, soit 24 sur 28 composés identifiés. Les cinq échantillons d'huile essentielle d'Origanum glandulosum analysés, sont quantitativement et qualitativement très proches. Douze composés ont été identifiés dans ces huiles essentielles avec du thymol comme composé majoritaire (41,0 et 48,8%). Les huiles essentielles d'Ammoïdes verticillata, de Mentha pulegium et de Satureja calamintha subsp. nepeta sont caractérisées par une abondance de monoterpènes oxygénés. Le thymol (48,7 à 51,6%) est le composé majoritaire dans l'huile essentielle d'Ammoïdes verticillata. Celle de Mentha pulegium est riche en pulégone et en menthone. Ces derniers représentent respectivement 62,7 à 78,0% et 7,7 à 23,1%, soit environ 85,7 à 86,7%. Au total 17 composés ont été identifiés dans l'huile essentielle de Satureja calamintha subsp. nepeta, dominés par la pulégone (33,3 35,5%), suivi de l'isomenthone (17,2 - 24,1%).

Concernant le pouvoir antibactérien des produits naturels de ces plantes sur des souches de référence et celle d'origine hospitalière, l'huile essentielle de *Satureja calamintha* s'est révélée plus active sur la majorité des bactéries par rapport à celles de *Menthapulegium* et de *Ziziphora hispanica* qui possèdent une action contre seulement les Staphylocoques, *TE*. coli de référence et la Salmonelle. Pour les autres huiles essentielles à activité antibactérienne considérable, nous avons déterminé trois paramètres: CMI, CMB et QMI. L'huile essentielle de *Thymus fontanesii* reste la plus efficace. Néanmoins, on peut qualifier les huiles *essentielles d'Origanum glandulosum* et *d'Ammoïdes verticillata*, d'être active sur la quasitotalité des bactéries testées. Les souches *Staphylococcus aureus*, *E. coli* de référence et la *Salmonella typhi* sont les plus sensibles vis-à-vis de ces produits. Par contre les souches *Pseudomonas aeruginosa* se sont révélées très résistantes. Les CMBs obtenues en présence du Tween 80 sont nettement supérieures à celles obtenues en présence de l'agar ou de l'éthanol.

Mots clés: Huiles essentielles, RMN ¹³C, CPG-Ir, CPG-SM, Pouvoir antibactérien, *CMI, CMB, QMI, Thymus fontanesii Boiss.* & Reut., *Origanum glandulosum* Desf., *Ammoïdes verticillata* Desf., *Ziziphora hispanica* L., *Mentha pulegium* (L.) et *Satureja calamintha* subsp. *nepeta* (L.) Briq..

)46stract

As part of the recovery of aromatic plants growing wild in Tlemcen region, we proposed to determine the chemical composition and the antibacterial activity of essential oils of six plant species: Thymus fontanesii Boiss. and Reut., Origanum glandulosum Desf., mmoïdes verticillata Desf., Ziziphora hispanica L., Mentha pulegium L. and Satureja calamintha subsp. nepeta L. Briq. which are an integral part of the traditional therapeutic arsenal of the local population.

The determination of the chemical composition of essential oils has been carried by combination of several chromatographic and spectroscopic methods (GC-RI, CC, GC-MS and LaC NMR, a method established and developed by the team «Chimie et Biomasse» of the University of Corsica.

The detailed study of the essential oils of *Ziziphora hispanica, is* characterized by a predominance of C-3 oxygenated p-menthane derivatives, namely pulégone (77,6-79,5%) by far the major component. The five samples of the essential oil of *Thymus fontanesii*, present a uniform and stable chemical composition dominated by the carvacrol (66,7-69,5%). These essential oils are very rich in monoterpenes. The five samples of essential oil of *Origanum glandulosum* analyzed are quantitatively and qualitatively very similar. Twelve compounds were identified in these essential oils with thymol as major component (41,0 and 48,8%). The *essential oils of Ammoïdes verticillata, Mentha pulegium* and *Satureja calamintha* subsp. *nepeta* were characterized by abundance of oxygenates monoterpenes. The thymol (48,7 to 51,6%) is the major component of essential oil of *Ammoïdes verticillata*. The one of *Me nt ha pulegium is* rich on pulégone and menthone. Those latter's represented respectively 62,7 to 78,0% and 7,7 to23,1%, so about 85,7 to 86,7%. In total, 21 components were identified on essential oil of *Satureja calamintha* subsp. *nepeta*, dominated by pulégone (33,3 - 35,5%), followed by isomenthone (17,2—24,1%).

Concerning antibacterial activity of natural products of these plants against on reference strains and bacterial strains isolated from clinical, the essential oil of *Satureja calamintha* has been more active on the majority of bacteria compared to the oil of *Mentha pulegium* and *Ziziphora hispanica who* have only activity against the staphylococcus, the reference *E. cou* and Salmonella. For other essential oils which have a considerable antibacterial activity, we have determined three parameters: CMI, CMB and QMI. The essential oil of *Thymus fontanesii* remains the most effective. Nevertheless, we can describe the essential oils of *Origanum glandulosum* and *Ammoïdes verticillata*, to be active in almost ail bacteria tested. *The strains Staphylococcus aureus*, reference *E. coli* and *Salmonella typhi* are more susceptible to the action of these products. However *Pseudomonas aeruginosa* strains have proved to be very resistant. The MLC for différent bacterial species in presence of Tween 80 were significantly higher than those observed in presence of agar or ethanol.

Keywords: Essential oils, C NMR, GC-RI, GC-MS, Antibacteriai activity, MIC, MLC, MIQ, Thymus fontanesii **Boiss.** & Reut., Origanum glandulosuîn Desf., Ammoïdes verticillata Desf., Ziziphora hispanica L., Mentha pulegium L. and Satureja calamintha subsp. nepeta (L.) Briq..

Ta61 dés matières

Introduction	2
Première partie: Synthèse Bibliographique	5
Chapitre I: Synthèse Bibliographique des différentes plantes étudiées	6
1.1. Ziziphora hispanica	6
1.1.1 Présentation de la plante	6
1.1.2. Description botanique	6
1.1.2.1. Caractères botaniques	7
1.1.2.2. Systématique de Ziziphora hispanica	7
1.1.3. Propriétés thérapeutiques	7
1.1.4. Composition chimique	8
1.2 Thymus fontanesii	9
1.2.1 Présentation de la plante	9
1.2.2. Description botanique	10
1.2.2.1. Caractères botaniques	10
1.2.2.2. Systématique de <i>Thymus fontanesii</i>	11
1.2.3. Propriétés thérapeutiques de cette plante	11
1.2.4. Composition chimique	12
1.3 Origanum glandulosum	13
1.3.1 Présentation de la plante	13
1.3.2. Description botanique	15
1.3.2.1. Caractères botaniques	15
1.3.2.2. Systématique d'Origanum glandulosum	15
1.3.3. Propriétés thérapeutiques de cette plante	16
1.3.4. Composition chimique	16
1.4 Ammoïdes verticillata	18
1.4.1 Présentation de la plante	18
1.4.2. Description botanique	19
1.4.2.1. Caractères botaniques	19
1.4.2.2. Systématique d'Ammoïdes verticillata	19
1.4.3. Propriétés thérapeutiques de cette plante	20

1.4.4. Composition chimique	22
1.5 Mendia pulegium	26
1.5.1 Présentation de la plante	26
1.5.2. Description botanique	26
1.5.2.1. Caractères botaniques	26
1.5.2.2. Systématique de <i>Menthapulegium</i>	27
1.5.3. Propriétés thérapeutiques de cette plante	27
1.5.4. Composition chimique	28
1.6 Satureja calamintha subsp. nepeta	31
1.6.1 Présentation de la plante	31
1.6.2. Description botanique	32
1.6.2.1. Caractères botaniques	32
1.6.2.2. Systématique de Satureja calamintha	33
1.6.3. Propriétés thérapeutiques de cette plante	33
1.6.4. Composition chimique	33
Chapitre II: Techniques d'analyse des huiles essentielles	37
11.1 Identification des constituants d'un mélange complexe	37
11.1.1. Méthodes d'analyse par couplage (chromatographie - spectroscopie) : Voie A	40
1.1.2. Identification des constituants après purification: Voie B	41
11.1.3. Analyse par RMN du carbone- 13 sans séparation préalable: Voie C	42
11.1.3.1. Intérêt de la RIVIN du carbone-13	43
11.1.3.1.1. Identification des constituants en mélange	43
11.1.3.1.2. Observation et individualisation des signaux	44
11.1.3.2. Attribution des signaux	45
11.1.3.3. La méthode d'analyse développée au laboratoire par l'équipe	
«Chimie et Biomasse»	46
Chapitre III: Pouvoir antimicrobien des huiles essentielles	52
111.1. Activité antibactérienne, Mécanismes d'action et de résistance des antibiotiques	52
111.1.1. Mécanismes de résistance	53
111.1.1.1. Mécanismes génétiques	53
111.1.1.2. Mécanismes biochimiques	53
111.2. Les huiles essentielles	54
111.2.1. Définition	54

n

Н

Н

fl

Н

111.2.2. Domaines d'utilisation des huiles essentielles	54
111.2.2.1. En désinfection de l'air	54
111.2.2.2. En agroalimentaire	55
111.2.2.3. En traitement des infections	56
111.2.3. Mécanisme d'action des huiles essentielles	56
111.2.3.1. Mode d'action contre les bactéries	56
111.2.3.2. Mode d'action contre les champignons	57
Deuxième partie Partie expérimentale	58
I- Introduction	59
II- Matériel végétal	60
11.1. Situations géographiques des stations d'étude	60
11.2. La récolte du matériel végétal	63
11.3. Identification botanique	63
11.4. Extraction des huiles essentielles par Hydrodistillation	63
III- Analyses des huiles essentielles	64
111.1. Chromatographie en phase gazeuse (CPG)	64
111.1.1. Conditions opératoires	64
111.1.2. Identification des constituants	64
111.2. Analyse par chromatographie en phase gazeuse couplée à la spectrométrie de	
masse (CPG-SM)	65
111.2.1. Conditions opératoires	65
111.2.2. Identification des constituants	65
111.3. Analyse par spectroscopie de la résonance magnétique du carbone 13	
(RMN ¹³ C)	66
111.3.1. Conditions opératoires	66
111.3.2. Identification des constituants	66
111.4. Fractionnement de l'huile essentielle de Ziziphora hispanica	66
IV. Etude du pouvoir antibactérien des huiles essentielles des différentes	
espèces végétales	68
IV. 1. Provenance des germes étudiés	68

IV.2. Vérification de la pureté des bactéries et identification des souches d'origine	
hospitalière	69
IV.2. 1. Identification des bactéries	70
IV.2. 1.1. Caractères étudiés	70
IV.3. Techniques d'étude du pouvoir antibactérien des huiles essentielles des différentes	
espèces végétales	71
IV. 3. 1. Méthode de diffusion par disque (Aromatogramme)	71
IV.3.2. Méthode de contact direct en milieu gélosé	71
IV. 3.2.1 Détermination des concentrations minimales inhibitrices (CMI)	72
IV. 3.3. Méthode de contact direct en milieu liquide (Technique de Maruzzella)	73
IV.3 .2.1 Détermination des concentrations minimales bactéricides (CMB5)	73
IV.3.4. Méthode de microatmosphère	75
IV.4. Préparation des inoculums	76
V. Etude statistique	76
Troisième partie Résultats et discussion	77
I. Caractères organoleptiques	78
II. Rendements en huiles essentielles des différentes plantes	78
III. Analyse des huiles essentielles des différentes plantes	81
111.1. Analyse de l'huile essentielle de Ziziphora hispanica	81
111.2. Analyse de l'huile essentielle de <i>Thymus fontanesii</i>	92
111.3. Analyse de l'huile essentielle d' Origanum glandulosum	98
111.4. Analyse de l'huile essentielle d'Ammoïdes verticillata	102
111.5. Analyse des huiles essentielles de Mentha pulegium et de Satureja calamintha	
subsp.Nepeta	107
IV. Etude du pouvoir antibactérien des huiles essentielles des différentes	
Plantes	117
IV. 1. Identification des bactéries d'origine hospitalière	119
IV.2. Etude du pouvoir antibactérien des huiles essentielles des différentes plantes	122

IV.2.1. Détermination de l'activité antibactérienne des huile essentielles par la méthode	
de diffusion par disque (aromatogramme)	122
IV.2.2. Activité antibactérienne des huiles essentielles par la méthode de contact direct en	
milieu gélosé et détermination des concentrations minimales inhibitrices (CMIs)	128
IV.2. 3. Activité antibactérienne des huiles essentielles par la méthode de contact direct en milieu liquide et détermination des concentrations minimales bactéricides (CMBs)	133
IV.2.4. Activité antibactérienne de la phase volatile des huiles essentielles et détermination	
des quantités minimales inhibitrices (QMIs)	139
V. Etude statistique	148
V. 1. Méthode de l'aromatogramme	148
V.2. Méthode de contact direct en milieu gélosé	152
V.3 Méthode de contact direct en milieu liquide	155
V.4. Méthode de microatmosphère	167
Conclusion	172
Références bibliographiques	180
Annexes	206

Publications

qàbfe Les itïustration.s

Liste dès ta6(eaux

Tableau (1) : Composé majoritaire des huiles essentielles des différentes espèces du genre Ziziphora	9
Tableau (2): Composition chimique de l'huile essentielle de <i>Thymus fontanesii</i>	13
Tableau (3): Composition chimique des huiles essentielles d'Origanum gladulosum	17
Tableau (4): Enquête thérapeutique effectuée au niveau de la région de Tlemcen sur la plante Ammoïdes verticillata	21
Tableau (5): Comparaison de la composition chimique des huiles essentielles entre la partie aérienne et les graines d'Ajowan	23
Tableau (6): Comparaison de la composition chimique de l'huile essentielle d'Ajowan extraite par CO2 supercritique et par hydrodistillation	24
Tableau (7): Composition de l'huile essentielle de <i>Trachyspermum copticum</i> (L.) Link	24
Tableau (8): Composition chimique des huiles essentielles d'Ammoïdes verticillata	25
Tableau (9) : Composition de l'huile essentielle de Mentha pulegium	29
Tableau (10): Composition chimique de l'huile essentielle <i>Mentha pulegium</i>	30
Tableau (11): Composition chimique de l'huile essentielle de <i>Satureja calamintha</i> subsp. <i>nepeta</i>	34
Tableau (12) : Composition chimique de l'huile essentielle de <i>Satureja calamintha</i> (L.) Savi subsp. <i>nepeta</i>	35
Tableau (13): Provenance des plantes, situation géographique et bioclimat des différentes stations	61
Tableau (14): Fractionnement de l'huile essentielle de Ziziphora hispanica	67
Tableau (15): Provenance des germes étudiés	69
Tableau (16) : Liste des tests étudiés au niveau des plaques API	70
Tableau (17) : Gamme de concentration (en tg/ml) des huiles essentielles utilisées pour l'évaluation de l'activité antibactérienne en milieu gélosé	72
Tableau (18) : Gamme de concentration (en ig/ml) d'huile essentielle utilisées pour la détermination de la concentration minimale inhibitrice en milieu gélosé	72

Tableau (19) : Gamme de concentration (en tg/ml) des huiles essentielles utilisées pour l'évaluation de l'activité antibactérienne en milieu liquide	73
Tableau (20): Gamme de concentration (en pg/ml) d'huile essentielle utilisées pour la détermination de la concentration minimale bactéricide en milieu liquide	74
Tableau (21) : Caractéristiques organoleptiques des différentes espèces étudiées	78
Tableau (22): Rendements (%) en huiles essentielles des différentes plantes	207
Tableau (23): Etages bioclimatiques, altitude et rendements en huile essentielles	79
Tableau (24): Composés identifiés par RMN C dans l'huile essentielle de Ziziphora hispanica	81
Tableau (25): Fractionnement de l'huile essentielle de Ziziphora hispanica	83
Tableau (26) : Composés identifiés dans la première fraction de l'huile essentielle de <i>Ziziphora hispanica</i> éluée avec le pentane	83
Tableau (27): Composés identifiés dans la deuxième fraction de l'huile essentielle de <i>Ziziphora hispanica</i> éluée avec le mélange pentane/oxyde de diéthyle (95/5)	85
Tableau (28): Composés identifiés dans la troisième fraction de l'huile essentielle de <i>Ziziphora hispanica</i> éluée avec de l'oxyde de diéthyle	87
Tableau (29): Composition chimique de l'huile essentielle de Ziziphora hispanica	90
Tableau (30): Composition chimique de l'huile essentielle de <i>Thymus fontanesii</i>	96
Tableau (31): Teneurs des composés majoritaires identifiés dans les huiles essentielles de Thyinusfontanesii	97
Tableau (32): Composés identifiés par RMN - C dans l'huile essentielle de <i>d'Origanun glandulosum</i> des différentes stations	n 99
Tableau (33): Composés identifiés par RMN C dans l'huile essentielle d'Ammoïdes verticillata	103
Tableau (34): Composés identifiés par RMN - C dans l'huile essentielle de <i>Mentha pulegium</i>	108
Tableau (35): Composés identifiés par RMN — C dans l'huile essentielle de Satureja calamintha subsp. nepeta	a 112
Tableau (36): Liste des bactéries utilisées pour l'étude de pouvoir antibactérien des huiles essentielles des différentes plantes	117
Tableau (37) :Caractères morphologiques et type respiratoire des différentes souches	120

Tableau (38): Identification des entérobactéries et <i>Pseudomonas aeruginosa</i> par plaque API 2OE	e 121
Tableau (39): Identification du Staphylococcus aureus par plaque API STAPH	121
Tableau (40): Aromatogramme: Moyennes des diamètres des zones d'inhibition (en mm) des huiles essentielles à composé majoritaire à pulégone relatives aux différentes souches selon la méthode de Vincent	
Tableau (41): Aromatogramme: Moyennes des diamètres des zones d'inhibition (en mm) des huiles essentielles riches en phénols (thymol ou carvacrol) sur différentes souches selon la méthode de Vincent	
Tableau (42): Pouvoir antibactérien de l'huile essentielle de <i>Thymus fontanesii</i> selon la méthode de contact direct	a 129
Tableau (43): Pouvoir antibactérien de l'huile essentielle d'Origanum glandulosum selon la méthode de contact direct	n 129
Tableau (44): Pouvoir antibactérien de l'huile essentielle d'Ammoïdes vertidilata selon la méthode de contact direct	n 130
Tableau (45): Concentrations minimales inhibitrices (CMI5) en <i>tg/ml</i> des huiles essentielles des trois plantes relatives aux bactéries testées	s 209
Tableau (46): Pouvoir antibactérien de l'huile essentielle <i>d'Ammoïdes verticillata</i> selon la méthode de Maruzzella	n 134
Tableau (47): Pouvoir antibactérien de l'huile essentielle <i>de Thymus fontanesii</i> et <i>d'Origanum glandulosum</i> selon la méthode de Maruzzella	t 135
Tableau (48): Concentrations minimales bactéricides (CMBs) en jug/ml des huiles essentielles des trois plantes relatives aux bactéries testées	210
Tableau (49): Effet de la phase volatile des huiles essentielles des trois plantes sur la croissance des bactéries	140
Tableau (50): Quantité minimales inhibitrices (QMIs) en Fil des huiles essentielles des trois plantes relatives aux bactéries testées	211
Tableau (51): Rapport CMB/CMI des huiles essentielles des trois plantes relatives aux bactéries testées	212

Т

T

T

Т

Liste 6esfigures

Figure (1): Les méthodes d'analyse d'un mélange complexe	39
Figure (2): Identification des constituants d'un mélange complexe par RMN du carbone ⁻ 13	48
Figure (3): Situation géographique des stations d'étude	62
Figure (4) : Rendements (%) en huiles essentielles des différentes plantes	78
Figure (5): Spectre RMN —C de l'huile essentielle brute de Ziziphora hispanica (Z 1 2005)	82
Figure (6) : Spectre RMN - C de la première fraction l'huile essentielle de Ziziphora hispanica	ı 84
Figure (7): Structure des composés identifiés par RMN — C dans la première fraction de l'huile essentielle de Ziziphora hispanica	85
Figure (8) : Spectre RMN - C de la deuxième fraction de l'huile essentielle de Ziziphora hispanica	1 86
Figure (9): Structure des composés identifiés par RMN - C dans la deuxième fraction de l'huile essentielle de <i>Ziziphora hispanica</i>	86
Figure (10) : Spectre RMN C de la troixième fraction de l'huile essentielle de <i>Ziziphora hispanica</i>	87
Figure (11): Structure des composés identifiés par RMN — C dans la troisième fraction de l'huile essentielle de <i>Ziziphora hispanica</i>	88
Figure (12) : Structure des composés identifiés par CPG-SM dans l'huile essentielle de <i>Ziziphora hispanica</i>	89
Figure (13): Spectre RMN ¹³ C de l'huile essentielle de <i>Thymus fontanesli</i> (échantillon de Remchi)	93
Figure (14): Structure des composés identifiés par RMN - C dans l'huile essentielle de <i>Thymus fontanesii</i>	94
Figure (15): Structure des composés identifiés par CPG-SM dans l'huile essentielle de <i>Thymus fontanesii</i>	95
Figure (16): Spectre RMN ¹³ C de l'huile essentielle d' <i>Origanum glandulosum</i> (échantillon de Sebdou)	99
Figure (17): Structure des monoterpènes identifiés par RMN — C dans les huiles essentielles d'Origanum glandulosum	100

Figure (18) : Spectre RMN ¹³ C de l'huile essentielle <i>d'Ammoïdes verticillata</i> (échantillon récolté durant l'année 2004)
Figure (19) : Structure des monoterpènes identifiés par RMN ¹³ C dans les huiles essentielles d'Ammoïdes vertidilata ¹⁰⁴
Figure (20) : Spectre RMN - C de l'huile essentielle de <i>Mentlia pulegium</i> (échantillon récolté durant l'année 2004)
Figure (21) : Structure des molécules identifiés par RMN - C dans les huiles essentielles de Menthapulegium 110
Figure (22) : Spectre RMN ¹³ C de l'huile essentielle de <i>Satureja calamintha subsp. nepeta</i> (échantillon récolté durant l'année 2005) 113
Figure (23): Structures des molécules identifiés par RMN — C dans les huiles essentielles de Satureja calamintha subsp. nepeta 114
Figure (24): Aromatogramme: Moyennes des diamètres des zones d'inhibition (en mm) des huiles essentielles riches en phénols (thymol ou carvacrol) relatives aux différentes souches selon la méthode de Vincent
Figure (25): Concentrations minimales inhibitrices (CMIs) en jig/ml des huiles essentielles des trois plantes relatives aux bactéries testées 131
Figure (26): Concentrations minimales bactéricides (CMBs) en pg/ml de l'huile essentielle <i>d'Ammoïdes verticuillata</i> en fonction des trois émulsifiants (Tween, agar, éthanol) relatives aux bactéries testées
Figure (27): Concentrations minimales bactéricides (CMBs) en pg/mI des huiles essentielles des trois plantes relatives aux bactéries testés 138
Figure (28): Quantité minimales inhibitrices (QMIs) en id des huiles essentielles des trois plantes relatives aux bactéries testées 142

n

T

Liste des pli otos	
Photo I: Ziziphora hispanica	6
Photo II: Thymus fontanesii	10
Photo III: Origanum glandulosum	14
Photo IV : Ammoïdes verticillata	18
Photo V: Menthapulegium	26
Photo VI: Saturejacalamintha subsp. nepeta	3.
Photo VII: Aromatogramme: E. cou (E6) (huile essentielle d'Origanum glanduloss	ım) 12'
Photo VIII: Aromatogramme: <i>Staphylococcus aureus (St3)</i> (huile essentielle de <i>fontanesii)</i>	Thymus 127
Photo IX : Contact direct : E. coli à la dilution 1/6 (Huile essentielle d'Orglandulosum)	riganun 133
Photo X : Contact direct : E . $coli$ à la dilution $1/5$ (Huile essentielle $d'Onglandulosum$)	riganun 133
Photo XI: Milieu liquide (huile essentielle d'Ammoïdes verticillata): Pseudo aeruginosa	omonas 137
Photo XII: Milieu liquide: <i>Pseudononas aeruginosa</i> (P ₂) à la dilution 1/1,8 essentielle <i>d'Ammoïdes vertidilata</i> en présence d'ethanol)	3 (huile 137
Photo XIII: Milieu liquide: <i>Pseudononas aeruginosa (</i> P2) à la dilution 1/1,7 essentielle <i>d'Ammoïdes verticillata</i> en présence d'éthanol)	7 (huile 137
Photo XIV: Milieu liquide: <i>Enterobacter cloaceae</i> à la dilution 1/25 (huile essent <i>Thymus fontanesif</i>)	tielle de 139
Photo XV: Milieu liquide: <i>Enterobacter cloaceae</i> à la dilution 1/24 (huile essent <i>Thymus fontanesil</i>)	tielle de 139
Photo XVI: Microatmosphére: Listeria monocytogenes (L_{11}) à la QMI 1201 essentielle de Thymus fontanesif)	(huile 141
Photo XVII: Microatmosphére : Listeria monocytogenes (1, 11) au niveau du témoi	n 141
Liste Les annexes	

Annexe I: Rendements en huiles essentielles des différentes plantes 207

Annexe II: Pouvoir antimicrobien des huiles essentielles de Thymus fontanesii d'Origanum glandulosum et d'Ammoïdes verticillata 208

Annexe III : Chromatogrammes enregistré par CPG sur colonnes apolaire et polaire des huiles essentielles des plantes étudiées 213

)1hréviation

ATTC: American type culture collection

A.: Apiacées

CPG: Chromatographie en phase gazeuse

CPG-SM: Chromatographie en phase gazeuse couplée à la spectrométrie de masse

CPGP: Chromatographie en phase gazeuse préiarative

HPLC: Chromatographie Liquide Haute Performance

CC: Chromatographie sur colonne

CCM: Chromatographie sur couche mince

CMI: Concentration minimale inhibitrice

CMB: Concentration minimale bactericide

°C: Degré Celsius

FID: Détecteur à ionisation de flamme

g: Gramme

h: Heure

HE: Huile essentielle

JE: Impact électronique

1K: Indice de Kovats

Ir: Indice de rétention

IRFT : Infrarouge Transformé de Fourrier

L: Litre

L.: Lamiacées

m: Mètre

ptg: Microgramme

pi : Microlitre

pin: Micromètre

mg: Milligramme

ml: Millilitre

mm: Millimètre

Min: Minute

OMS: Organisation Mondiale de Santé

ppm: Partie par million

w: Poids

%: Pourcentage

QMI: Quantité minimale inhibitrice

RMN 'H / ¹³C: Résonance Magnétique Nucléaire du proton / du carbone

Depuis la nuit des temps, les hommes apprécient les vertus apaisantes et analgésiques des plantes. Elles font partie de l'héritage traditionnel et médical de tous les peuples. Aujourd'hui encore, les deux tiers de la pharmacopée ont recours à leurs propriétés curatives.

Les plantes sont de véritables pharmacies naturelles que la nature a établie sur cette terre afin de vaincre la souffrance, prévenir les maux, voir les guérir et d'améliorer la santé des hommes (Larousse, 2001 : Beloued, 2001).

Actuellement, les plantes sont de plus en plus utilisées par l'industrie pharmaceutique car les effets secondaires induits par les médicaments inquiètent les utilisateurs, qui se tournent vers des soins moins agressifs pour l'organisme (Larousse, 2001).

Le développement des techniques d'analyses chimiques a permis de révéler qu'une espèce végétale peut synthétiser des milliers de constituants chimiques différents ceux-ci appartiennent à deux types de métabolisme : primaire et secondaire.

Le métabolisme secondaire, modelé par le temps et l'évolution, caractérise le profil chimique original de chaque espèce végétale, conduisant à une grande biodiversité moléculaire (Wichtl et Anton, 1999).

La pharmacologie utilise ces molécules car elles ont un effet spécifique sur d'autres organismes, parmi ces substances, les huiles essentielles qui caractérisent les plantes aromatiques (**Remmai** et al, 1993).

Aujourd'hui, les traitements par les plantes reviennent au premier plan, car l'efficacité des médicaments tels que les antibiotiques (considérées comme la solution quasi universelle aux infections graves) décroît. Les bactéries se sont peu à peu adaptées aux médicaments et leur résistent de plus en plus (Essawi et Srour, 2000 : Larousse, 2001).

résistance aux antibiotiques est devenue un grave problème de santé public touchant la quasi-totalité des agents antibactériens dans tous leurs champs d'action. Les antibiotiques perdent de leur efficacité et les maladies que l'on croyait éradiquées réapparaissent. Des bactéries autrefois sensibles développent donc des résistances à des médicaments jusque-là efficaces. Cette diminution de l'efficacité des moyens de lutte oblige donc à explorer de nouvelles pistes, en synthétisant de nouveaux composés aux vertus bactéricides.

La nouvelle démarche consiste à s'intéresser à la recherche d'un principe actif dans les produits naturels d'origine végétal, plus particulièrement les métabolites secondaires à savoir les huiles essentielles, issues de plantes aromatiquessui sont utilisées depuis longtemps pour traiter des pathologies et pour améliorer santé et bien être.

En effet, les essences naturelles ont un pouvoir bactériostatiques qu'elles doivent à leurs composés phénoliques, terpéniques et aussi dans une plus faible mesure, à leurs alcools et aldéhydes (Meyer et al., 1994).

L'Algérie est dotée d'un patrimoine floristique tout aussi riche que varié, notamment dans le domaine des plantes aromatiques. Cette richesse se doit aujourd'hui d'être exploitée, et plus particulièrement en ce qui concerne l'extraction des huiles essentielles vu l'importance économique qu'elles représentent du fait de leurs propriétés biologiques, thérapeutiques, odoriférantes....., de leur impact au niveau de l'environnement et de leurs multiples utilisations dans diverses industries (pharmaceutique, cosmétique et alimentaire).

Ainsi, dans le cadre de la valorisation des plantes aromatiques de la région de Tlemcen, nous nous sommes intéressés à l'étude des plantes suivantes

Ammoïdes verticillata, Thymus fontanesii, Origanum glandulosum, Me ntha pulegium, Satureja calamintha subsp. nepeta et Ziziphora hispanica. Ces plantes poussant à l'état spontané, sont très utilisées par la population locale et possédant principalement des propriétés antalgiques, anti-infectieuses et antispasmodiques. Les huiles essentielles d'Ammoïdes verticillata, d'Origanum glandulosum et de Thymus fontanesii, sont très riches phénols (thymol et carvacrol) (Kambouche et E1-Abed, 2003, Sari et al., 2006; Kabouche et al., 2005) doués d'une activité antimicrobienne considérable (Burt., 2004). Les huiles essentielles de Ikentha pulegium, de Satureja calamintha su1sp. nepeta et de Ziziphora hispanica sont caractérisées par une prédominance en pulégone (Velasco Neguerela et Mata Rico, 1986; Daferera et al. 2003; Baldovini et al. 2000). A l'isue de ces appréciations, les huiles essentielles de ces plantes sont susceptibles d'avoir un irtérêt industriel, de manière à pouvoir les commercialiser.

Par ailleurs, la caractérisation et la détermination de l'activit antimicrobienne des huiles essentielles de *Thymus fontanesii*, ont fait l'objet que de deux travaux, celui de **Ghannadi** et al., en 2004 et de **Kabouche** et al., en 2005.

Par contre, la détermination de la composition chimique de l'huile essentielle de *Ziziphora hispanica*, a fait l'objet d'une seule étude, celle de **Velasco Neguerela** et **Mata Rico** en **1986.**

Ainsi, le principal objectif visé durant ce travail, consiste à la contribution à une bonne connaissance de la composition chimique des huiles essentielles de ces espèces végétales et à l'étude de leur pouvoir antibactérien.

Dans la première partie de ce manuscrit, Nous avons commencé par une étude bibliographique qui comporte 3 chapitres. Dans le premier chapitre, nous rappelons la

description (les caractères botaniques et la systématique) des différentes espèces végétales, les T propriétés thérapeutiques et les travaux déjà réalisés sur ces plantes. Dans le deuxième, chapitre, nous avons évoqué les principales techniques d'analyse des huiles essentielles et nous avons présenté la méthode d'analyse par RMIN du carbone-13 mise au point et développée par l'équipe « Chimie et Biomasse» de l'Université de Corse. Le dernier chapitre portera sur le pouvoir antimicrobien des huiles essentielles, leurs utilisations dans différents domaines ainsi que leur mécanismes d'action sur les microorganismes.

Dans la deuxième partie, nous avons envisagé la partie expérimentale ou nous présenterons les techniques utilisées dans ce travail et qui se déroule en deux axes

Dans le premier axe, nous avons effectué une analyse chimique dont les étapes sont les suivantes

• Obtention des huiles essentielles des différentes espèces végétales.

Détermination de la composition chimique des huiles essentielles, par une application conjointe de plusieurs méthodes chromatographiques et spectroscopiques (CPG-Ir, CC, CPG-SM et RMN - C pour l'analyse des mélanges, méthode mise au point et développée par l'équipe « Chimie et Biomasse » de l'université de Corse.

Dans le deuxième axe, nous nous sommes intéressées au pouvoir antibactérien des huiles essentielles de ces espèces végétales vis-à-vis de 18 souches bactériennes. Pour cela, nous avons évalué l'activité antibactérienne des huiles essentielles en effectuant plusieurs méthodes (aromatogramme, contact direct en milieu gélosé et en milieu liquide et microatmosphére).

Dans la troisième partie, nous avons rapporté les résultats obtenus concernant la caractérisation chimique des huiles essentielles des différentes espèces végétales, l'identification des bactéries et l'étude de l'activité antibactérienne des huiles essentielles des différentes plantes.

Partie II Synthèse Bi6fiographique

Chapitre I: Synthèse Bibliographique des différentes plantes étudiées:

I.!. Ziziphora hispanica:

1.1.1 Présentation de la plante:

Ziziphora hispanica (L.) est une plante odorante qui appartient à la famille des lamiacées. Sa saveur est fortement aromatique et son odeur est intense, fraîche et pénétrante, rappelant celle de la menthe pouliot.

Selon les traditions iraniennes, la partie aérienne séchée de cette plante est fréquemment utilisée pour aromatiser les plats culinaires. Elle est considérée également bénéfique pour la santé (Sezik et **Tumen**, 1986; **Zargari**, 1995).

Photo I: Ziziphora hispanica (Anonyme I)

Noms vernaculaires:

En Français:

Menthe pouliot des lieux secs (par traduction littérale de sa désignation en langue arabe) (Boullard, 2001)

- En Arabe:
 - Fliou

Nom scientifique:

- Ziziphora hispanica L. (Quezel et Santa, 1963)

1.1.2. Description botanique:

Le genrel Ziziphora regroupe 5 espèces qui poussent à l'état spontané en Turquie, Iraq, Afghanistan et partout en Iran. Ces espèces sont: Ziziphora clinopodioides Lam., Ziziphora capitata L., Ziziphora persica Bunge., Ziziphora tenuior L. et Ziziphora taurica Boiss. qui

regroupe 2 subespèces : Z. taurica subsp. taurica et Z. taurica subsp. cleonio ides (Rechinger, 1982; Baser, 2002).

1.1.2.1. Caractères botaniques:

Le genre Ziziphora, appartenant à la famille des Lamiacées, est une petite plante annuelle. En Algérie, ce genre est représenté par 3 espèces: Ziziphora capitata L., Ziziphora hispanica L. et Ziziphora tenui r L. (Desf.) (Quezel et Santa, 1963).

L'espèce Ziziphora hispanica pousse spontanément dans les régions Ibéro-Mauritaniennes, au niveau des pelouses arides. Elle a des inflorescences spiciformes formées de verticillastres superposées pauciflores. Les feuilles, toutes semblables, sont ovales lancéolées et ciliées sur les marges (Quezel et Santa, 1963).

1.1.2.2. Systématique de Ziziphora hispanica:

D'après Quezel et Santa (1963), Tutin (2001), et Guignard et Dupont (2004), la classification qu'occupe *Ziziphora hispanica* dans la systématique est la suivante:

Embranchement: Phanérogames ou Spermaphytes

Sous-embranchement: Angiospermes

Classe: Eudicots

Sous-classe: Astéridées

Ordre: Lamiales

Famille: Lamiacées

Genre: Ziziphora

Espèce: Ziziphora hispanica L.

1.1.3. Propriétés thérapeutiques de cette plante:

Le Ziziphora est reconnue en médecine traditionnelle, pour ses activités antiseptique, apéritive et carminative (Baytop, 1999). Il est par conséquent indiqué pour ses propriétés antidiarrhéiques, antipyrétiques (Ozel et al., 2005), pour le traitement du rhume et de la toux (Zargari, 1995). En médecine traditionnelle, cette plante jouit d'une grande faveur populaire en Iran et en Turquie, son infusion est utile comme sédative, carminative et stomachique (Ozturk et al., 1995).

Enfin, Meral et al. (2002) ; Salehi et al. (2005), rapportent que cette plante a plusieurs utilisations en phytothérapie et possède une activité antioxydante approprié.

1.1.4. Composition chimique:

L'analyse chimique des huiles essentielles des différentes espèces du genre ziziphora a fait l'objet de très peu de travaux (Tableau 1), permettant d'avancer une prédominance de la pulégone:

Les premiers travaux ont été réalisés par Sezik et **al. (1991)**, qui rapportent que l'huile essentielle de *Z. tenuior* est caractérisée par une richesse en pulégone, de l'ordre de 87,1%.

L'analyse chimique de l'huile essentielle de *Z. taurica* subsp. *cleonioides*, espèce endémique de Turquie, révèle des pourcentages élevés en pulégone (81,9%), suivi de limonène (4,5%) et de pipériténone (2,3%) (Meral et al., 2002).

D'autre part, **Salehi** et **al.** (2005), rapportent que l'huile essentielle de *Z. clinopodioides* subsp. *rigida*, poussant à l'état spontané en Iran, contient une forte teneur en pulégone (45,8%). D'autres composés sont également présents en quantités appréciables: la pipériténone (17,4%), lep-Menth-3-en-8-ol (12,5%), le thymol (8,0%), le 1,8-cinéole (2,7%), le néo-menthol (2,1%), la menthone (1,8%), l'isomenthol (1,6%), le pipéritone (1,4%) et le D-germacrène (1,1%).

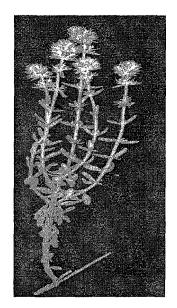
En outre, Les huiles essentielles de Z. *clinopodioides*, poussant à l'état spontané en Turquie, est caractérisée par une prédominance des composés suivants : le 1 ,8-cinéole (7,4%), le menthol (8,9%), le menthone (17,1%), l'isomenthone (8,0%) et la pulégone (33%) (**Schulz** et **al., 2005**).

Enfin, **Ozel** et **al.** (2005) ont déterminé la composition chimique de l'huile essentielle de *Z. taurica* subsp. *taurica*, récolté en Turquie. La pulégone est également le composé majoritaire avec une teneur de (37,20%). D'autres composés sont également identifiés: le cis-carvéol (8,2%), le trans-carvéol (6,9%), la verbénone (4,1%), le bornéol (3,7%), le cis-verbénol (3,5%), l'oxyde de limonène (3,2%), le a-pinène (2,5%), le menthofuranone (2,5%) et le carvacrol (2,3%).

Par contre, la caractérisation de l'huile essentielle de *Ziziphora hispanica* a fait l'objet d'un seul travail effectué par **Velasco Negueruela** et **Mata Rico** en **1986.** L'étude menée par ces auteurs sur l'huile essentielle de cette plante récoltée en Espagne, révèle une grande richesse en pulégone soit entre 64,5 et 76,7%, suivi de pipériténone (11,7 - 16,7%). Ces auteurs avancent également l'existence d'autres composés, à savoir: isopulégol, trans-isopipériténol, -Cadinène et le cis-nérolidol.

Tableau (1) : Composé majoritaire des huiles essentielles des différentes espèces du genre Zizinhora

Différentes espèces du genre Ziziphora	Composé majoritaire		Références	
Z. tenuior	Pulégone	(85 _ 87)	Baser (2002)	
Z. taurica subsp. cleonioides	Pulégone	(66-78)	Baser (2002)	
Z. taurica subsp. taurica	Pulégone	(65)	Baser (2002)	
Z. clinopodioides	Pulégone	(22)	Baser (2002), Ozturk et Ercisli (2007)	
Z. persica	Thymol	(31)	Baser (2002)	
	Pulégone	(79,3)	Ozturk et Ercisli (2006)	
	Pulégone	(27,8)	Rustaiyan et al. (2006)	
Z. hispanica	Pulégone	(64,5 _ 76,7)	Velasco Negueruela et Mata Rico (1986)	


1.2 Thymus fontanesii:

1.2.1 Présentation de la plante:

Le mot «thym » provient du terme grec « Thymos » qui signifie « odeur ». Son parfum est agréable, fort, frais et balsamique (**Padrini** et **Lucheroni**, 1996).

Les philosophes de la Rome Antique avaient coutume de boire une infusion de thym avant de commencer à travailler car en tant que stimulant, il agit à la fois au niveau de la psyché, éveillant l'intelligence, et améliorant la mémoire et la capacité de concentration, en cas de fatigue mentale, de stress, de surmenage et au niveau physique, activant la circulation artérielle, augmentant la tension, tonifiant le foie, améliorant la digestion, renforçant les défenses immunitaires (**Padrini** et **Lucheroni**, 1996).

Le thym est largement utilisé en qualité de plante aromatique dans les préparations culinaires tels que les soupes, les sauces et les viandes (Karawya et Hifnawy, 1974; Reddy et al., 1998) et en particulier dans la cuisine méditerranéenne (Richard et, al., 1985).

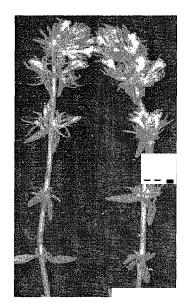


Photo II: Thymus fontanesii

Noms vernaculaires:

 \mathbf{T}

Т

- En Français:
 - Thym (Quezel et Santa, 1963)
- En Arabe:
 - Zaateur (Quezel et Santa, 1963)
 - Zaatar (**Kabouche** et ai., 2005)

Nom scientifique:

- Thymus fontanesii Boiss. et Reut. (Quezel et Santa, 1963)

1.2.2. Description botanique:

Le thym est un arbuste odorant qui pousse spontanément dans le vieux continent, dans la région Macaronisienne (les Canaries, les Açores et le Madère), dans le Nord de. l'Afrique (le Maroc, la Tunisie, l'Algérie et la Libye), dans la péninsule de Sinaï (lEgypte), dans la péninsule Ibérique (l'Espagne) ainsi qu'en Sibérie et en Europe Nordique. Cependant, la plupart des espèces se concentrent dans le pourtour du bassin Méditerranéen (Morales, 1997; Salgueiro et ai, 1997; Pedersen, 2000 Stahl-Biskup, 2002).

1.2.2.1. Caractères botaniques:

Le genre Thymus (**Tourn.**) **L.** est une plante sous-ligneuse, érigée ou prostrée et odorante.

En Algérie, ce genre regroupe 12 espèces qui sont: *Thymus capitatus* (L.) **Hoffin.** et Link., *Thymus fontanesii* Boiss. et Reut., *Thymus commutatus* (Bali.) Batt., *Thymus dreatensis*

Batt., Thymus numidicus Poiret., Thymus guyonii de Noé, Thymus lanceolatus Desf., Thymus pallidus Coss., Thymus glandulosus Lag., Thymus hirtusWilld., Thymus algeriensis Boiss. et Reut., Thymus ciliatus Desf. qui regroupe 3 subespèces qui sont: eu-ciliatus Maire, coloratus (Boiss. et Reut.) Batt. et munbyanus (Boiss. et Reut.) Batt. (Quezel et Santa, 1963)...

L'espèce *Thymus fontanesii* est une plante endémique d'Algérie et de Tunisie, qui se trouve dans le Tel!, au niveau des pelouses et des garrigues. Cette espèce a un calice à 5 dents toutes longuement subulées bien plus longue que le tube, et à lèvre supérieure divisée dans son tiers supérieur. Les tiges sont dressées et robustes. Les feuilles oblongues-lancéolées sont plus ou moins interrompues vers le bas. Les fleurs blanches ou pâles sont à peine plus longues que le calice (**Quezel** et **Santa**, **1963**).

1.2.2.2. Systématique de *Thymus fontanesii*:

D'après Quezel et Santa (1963), Morales (1997), Pedersen (2000) et Guignard et Dupont (2004), la classification qu'occupe *Thymus fontanesii* dans la systématique est la suivante:

Embranchement: Phanérogames ou Spermaphytes

Sous-embranchement: Angiospermes

Classe: Eudicots
Sous-classe: Astéridées
Ordre: Lamiales
Famille: Lamiacées

Genre: Thymus

Espèce: Thymus fontanesii Boiss. et Reut.

1.2.3. Propriétés thérapeutiques de cette plante:

Le thym est une plante qui a une longue tradition. Il est utilisé principalement dans le domaine médical pour ses propriétés antiseptique, antispasmodique et antitussive (Karawya et Hifnawy, 1974 · Salgueiro et al., 1997).

Les 2 grandes qualités de l'essence de thym sont sa forte action stimulante et son remarquable et puissant pouvoir antimicrobien, car le thym était utilisé comme «antibiotiques des pauvres ». En effet, il a une action très intéressante sur les maladies microbiennes, et c'est le meilleur antiseptique que l'on puisse trouver dans la nature. L'huile essentielle de thym est généralement utilisée comme agent antiseptique dans beaucoup de préparations pharmaceutiques et comme aromatisant dans plusieurs préparations alimentaires (Papageorgio, 1980). Son activité bactéricide à l'encontre de nombreux germes pathogènes a

été largement prouvée (Richard et al., 1985; Ruberto et al., 1993; Lattaoui et Tantaoui-Elaraki; 1994; Tzakou et al., 1998; Juliano et ai, 2000; Karainan et ai., 2001).

Il est par conséquent indiqué en cas d'infections respiratoires telles que la bronchite, la grippe, la toux et les maux de gorge. Ainsi, il est possible de l'employer dans un diffuseur de parfum pour désinfecter la chambre d'un malade (**Padrini** et **Lucheroni**, 1996).

D'autres chercheurs avancent que l'huile essentielle de thym possède une activité antifongique (**Ruberto** et **al., 1993**) et acaricide vis-à-vis de *Varroa destructor* (parasite qui affecte les abeilles) (**Aviana** et **al.,** 2002).

L'huile essentielle de thym est caractérisée par un fort potentiel antimicrobien (Cosentino et al., 1999) et par un remarquable effet antioxydant (Economou et al., 1991; Schwartz et al., 1996; Draglant et al., 2003), liés principalement à la présence de composés phénoliques en grandes proportions dans cette huile essentielle. Le thymol, le carvacrol et le p-cymène-2,3 diol isolé à partir de l'huile essentielle du thym confirment également cette activité antioxydante (Ternes et al., 1995).

Thymus fontanesii est utilisé traditionnellement comme antiseptique, antispasmodique et antitussive, possède des propriétés carminative, stomachique, expectorante, anthelminthique, diurétique et 'est conseillée contre le rhume, la bronchite et les troubles gastro-intestinaux (Ghannadi et ai, 2004 : Kabouche et al., 2005).

Par ailleurs, **Kabouche** et **al.**, en 2005, ont notés une forte activité antibactérienne de l'huile essentielle de *Thymus fontanesii*, lors de l'étude du pouvoir antimicrobien de cette huile essentielle sur plusieurs souches bactériennes, notamment *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Kiebsiella pneumoniae*, *Proteus mirabilis* et *Escherichia cou*.

1.2.4. Composition chimique:

Le genre Thymus regroupe un grand nombre d'espèces et de variétés. La caractérisation des huiles essentielles du genre Thymus a fait l'objet de plusieurs travaux (Vila et al., 1995; Guillen et Manzanos,1998; Lozeine et al., 1998; Saez et al., 1998; Tumen et al., 1998), permettant d'avancer l'existence d'une variabilité chimique de cette huile essentielle (Stahl-Biskup, 1991).

Il a été démontré que les huiles essentielles des différentes espèces du genre Thymus sont caractérisées par une prédominance du thymol et/ou du cavacrol, suivis par le linalol, le p-cymène, y-terpinène, le bornéol, le terpinène-4-ol et le 1,8-cinéole (Guillen et Manzanos,

1998; Rustaiyan et al., 1999; Miri et al., 2002; Stahl-Biskup, 2002; Sajjadi, 2003; Sajjadi et Khatamsaz, 2003 : Bousmaha-Marroki, 2007).

L'huile essentielle de *Thymus fontanesii a* fait l'objet d'un seul travail réalisé par **Ghannadi** et **al.**, en **2004.** Cette espèce présente un rendement en huile essentielle très faible de l'ordre de 1,9%. L'analyse chimique par CPG-SM de l'huile essentielle de cette plante récoltée à Sétif (Algérie), a révélé l'existence d'un seul composé majoritaire, le. thymol. (67,8%) suivi de y-terpinène (15,9%) et de p-cymène (13,0%) (Tableau 2). Ces même résultats ont été rapportés récemment par **Kabouche** et **al.**, en 2005, lors de l'étude du pouvoir antimicrobien de l'huile essentielle de *Thymus fontanesii*.

Tableau (2): Composition chimique de l'huile essentielle de *Thymus fontanesii* (Ghannadi et al., 2004)

osés	Teneur (%)	Composés	Teneur (%)
	0,1	Gis-hydrate de sabinène	t
	t	Linalol	0,3
1-octen-3-ol	t	Terpinéne-4-ol	0,1
Myrcéne	0,2	u —terpinéol	0,1
ct-terpinène	0,1	Méthyl éther de thymol	t
Para-cymène	13,0	Thymol	67,8
Limonène	0,1	Carvacrol	1,7
-terpinène	15,9		

t: Trace

1.3 Origanum glandulosum:

1.3.1 Présentation de la plante:

L'origan est souvent considéré comme une forme sauvage de la marjolaine, c'est l'ornement odorant des montagnes. Cependant, le terme origan provient de deux mots grecs «Oros» et « Genos » c'est-à-dire « Eclat des montagnes » (Richard, 1974).

Origanum glandulosum (Syn. Origanum vulgare subsp. glandulosum (**Ietswaart, 1980**) est une plante odorante qui appartient à la famille des lamiacées. Elle est endémique (**Boulos, 1983**; **Baba Aïssa, 1999**) et pousse spontanément dans le nord de l'Afrique (en Algérie et en Tunisie en particulier) (**Quezel** et **Santa, 1963**; **Sari, 1999**)

La saveur de cette plante est fortement aromatique et piquante et son odeur est forte, fraîche et balsamique. Les espèces du genre Origanum sont utilisées comme des désinfectants puissants

et comme des agents odoriférants dans les produits cosmétiques (Richard, 1974; Cbiej, 1984).

Cette plante est très utilisée dans les préparations culinaires (soupes et en particulier avec les viandes et les poissons grillés) et est employée en industrie alimentaire en tant qu'épices (Garland, 1980 : Baser et al., 1993 : Ruberto et al., 2002).

Traditionnellement, les turques pulvérisés leurs corps de poudre de cette plante car elle a une actiontimulante. En effet, c'est une plante rééquilibrante et sédative en cas d'insomnie et de nervosité (**Padrini** et **Lucheroni**, **1996** : **Belhattab** et **al.**, 2005).

Par ailleurs, *Origanum glandulosum* est considérée essentiellement comme une plante médicinale pour traiter les maladies sévères (**Mahmoudi**, **1990**).

Enfin, l'huile essentielle de cette plante possède une activité antioxydante considérable qui est due à la présence des composés phénoliques (thymol et carvacrol) (**Ruberto** et **al., 2002**).

Photo III: Origanum glandulosum (Anonyme II)

Noms'vernaculaires:

- En Français:
 - Marjolaine sauvage, Grande marjolaine, Pied de lit (Garnier et al., 1961), Origan (Fourment et Roques, 1941 ; Garnier et al., 1961)

En Arabe:

Zateur (Quezel et Santa, 1963)

- Zaâter (Baba Aïssa, 1991 | Sari et al., 2006)

Noms scientifiques:

- *Origanum glandulosum* **Desf.** (**Quezel** et **Santa, 1963**) (Syn. *Origanum vulgare* (*L.*) subsp. *glandulosum* (**Ietswaart, 1980**)).

1.3.2. Description botanique:

Le genre Origanum, appartenant à la famille des Lamiacées, comporte plusieurs espèces aromatiques, il est originaire de Sud-Est méditerranéen et de l'Asie occidentale (Vokou et al., 1993). Ce genre regroupe 38 espèces qui sont largement répandus dans les régions Eurosibérienne et Irano-sibérienne. Cependant, la plupart des espèces, environ 75% sont concentrés dans le pourtour méditerranéen et en particulier dans les régions méditerranéennes de l'Est. Dans l'espèce *Origanum vulgare*, *il* existe 6 subespèces qui différent par le nombre des glandes, des bractées et des calices, ainsi que par la taille et la couleur des bractées et des fleurs (Ietswaart, 1980; Greuter et al., 1986; Kokkini, 1996).

1.3.2.1. Caractères botaniques:

Le genre Origanum (**Tourn.**) est une plante herbacée ou sous ligneuse à la base. En Algérie, Ce genre regroupe 3 espèces qui sont: *Origanum mai orana* (L.), *Origanum glandulosum* (**Desf.**) et *Origanumfloribundum* (**Munby**) (**Quezel** et **Santa, 1963**). L'espèce *Origanum glandulosum* pousse spontanément au niveau des broussailles et des

L'espèce *Origanum glandulosum* pousse spontanement au niveau des broussailles et des garrigues. C'est une plante à tiges toutes dressées, (souvent rougeâtres et velues (**Baba Aïssa**, 1999)). L'inflorescence (blanchâtres ou roses (**Baba Aïssa**, 1999)) est en épis denses, à fleurs restants contigus après la floraison. La corolle a une lèvre inférieure qui est bien plus longue que la lèvre supérieure (**Quezel** et **Santa**, 1963). Le périanthe a un calice tubuleux à 5 dents égales. Il y a 4 étamines saillantes dont les anthères sont pourpres. Les fruits sont des akènes (**Baba Aïssa**, 1999).

1.3.2.2. Systématique d'Origanum glandulosum:

Vu la large distribution géographique de l'origan et son immense variabilité génétique, la classification des différentes espèces et hybrides est une tâche très délicate (**Ietswaart**, 1980). D'après Quezel et Santa (1963), **Ietswaart** (1980), Guignard et Dupont (2004), la classification qu'occupe *Origanum glandulosum* dans la systématique est la suivante:

Embranchement: Phanérogames ou Spermaphytes

Sous-embranchement: Angiospermes

Classe: Eudicots

Sous-classe: Astéridées

Ordre: Lamiales

Famille: Lamiacées

Genre: Origanum

Espèce: Origanum vulgare (L.)

Subespèce: glandulosum (Desf.)

1.3.3. Propriétés thérapeutiques de cette plante:

L'origan est connu depuis l'antiquité pour ses qualités médicinales. En fait, une décoction de cette plante est utilisée contre la coqueluche, la toux, la fièvre, la bronchite (Ruberto et al., 2002), le rhume et le rhumatisme (Mahmoudi, 1990) alors que sous forme de poudre elle est employée pour soulager les doleurs rhumatismales (Ruberto et al., 2002). C'est une plante apéritif, expectorante, carminatif (Baba Aïssa, 1999), stomachique (Baba Aïssa, 1999; Sijelmassi, 1991), stimulante (Fourment et Roques, 1941; Baba Aïssa, 1999) et possèdent des propriétés antiseptique, antitussif (Baba Aïssa, 1999) et antispasmodique (Sijelmassi, 1991; Baba Aïssa, 1999).

Cette plante jouit d'une grande faveur populaire en Algérie et en Tunisie comme remède contre la toux et les affections respiratoires. Par contre, l'origan du Maroc (*Origanum* compactum) est consommé sous forme d'infusion pour calmer les coliques (**Baba Aïssa**, 1999).

Belhattab et **al.** en 2004, rapportent que les huiles essentielles de cette plante ont montré un effet inhibiteur sur les levures et les moisissures isolées à partir de l'hôpital central de Sétif.

Enfin, les huiles essentielles des différentes espèces d'Origanum ont des activités antibactériennes (Pizzal et al., 2002; Sari et al., 2006) et antifongiques (Paster et al., 1995; Sari et al., 2006).

1.3.4. Composition chimique:

L'huile essentielle *d'Origanum glandulosum* récolté dans différentes régions en l'Algérie, a fait l'objet de quelques travaux, permettant d'avancer l'existence de différents types chimiques de cette espèce selon les composés majoritaires identifiés lors de l'étude de la variabilité de cette huile essentielle:

Ruberto et **al.** (2002), ont étudié la variabilité de la composition chimique de l'huile d' *Origanum glandulosum*, récolté dans 4 stations différentes dans la région de Sétif (Algérie). Ils signalent la présence de 2 chimiotypes: chimiotype à thymol et chimiotype à carvacrol (Tableau 3).

L'analyse chimique de l'huile essentielle d'*Origanum glandulosum* récolté dans la région d'Alger, effectuée par **Houmani** et **al.** (2002), leur a permis d'obtenir des teneurs élevées en thymol (55,6%) suivi de p-cyméne (12,5%), de 7-terpinène (11,20%) et de carvacrol (2,70%).

Par ailleurs, l'étude de la composition chimique *d'Origanum glandulosum* de la région de Sétif (Algérie), réalisée par **Belhattab** et **al.** en **2005**, leur a permis de mettre en évidence 29 composés qui représentent 89,4%. Ils ont trouvé que l'huile essentielle de cette plante extraite par hydrodistillation, présente une forte teneur en carvacrol (47%), suivi de -terpinène (13,4%), dep-cymène (11,2%) et de thymol (6,6%) (Tableau 3).

En **2006**, **Sari** et **al.**, ont effectué une étude de la variabilité chimique de l'huile essentielle d'*Origanum glandulosum* récolté dans différentes régions de l'Est de l'Algérie. Ils ont identifiés 30 composés qui représentent un pourcentage variant entre 97,7% et 99,6%. Ils avancent l'existence de 2 chimiotypes: chimiotype à thymol et chimiotype à carvacrol (Tableau 3).

En 2007, les travaux réalisés par **Bendahou** et **al.**, sur l'huile essentielle *d'Origanum* glandulosum provenant de la région de Tlemcen, ont montré l'existence du thymol, comme composé majoritaire avec un pourcentage de l'ordre de 55,6%. Elle renferme également des quantités appréciables en d'autres composés à savoir: le p-cymène (12,5%), le y-terpinène (11,2%) (Tableau 3).

 ${f T}$

 \mathbf{T}

Tableau (3): Composition chimique des huiles essentielles d'Origanum gladulosum

Composés identifiés	Ruberto et al. (2002)	Belhattab et al. (2005)	Sari et al. (2006)	Bendahou et al. (2007)
a-thujène	0,3-0,7	0,3	t -0,7	0,7
a-pinène	0,5-0,6	0,7	0,1-0,7	0,6
Octen-3-ol	0,2-0,3	0,2	t-0,8	0,3
3-octanone	0,1-0,2	0,2	t -0,3	0,1
-pinène	0,1	0,2	t -0,1	1,4
J3-myrcéne	0,8-1,4	1,6	0,2-1,5	1,4
a-terpinène	0,7-1,6	1,5	0,2-2,0	0,6
p-cyméne	3,6-25,8	11,2	1,7-18,5	12,5
limonène	0,2-0,3	0,3	0,1-0,8	2,5
y-terpinène	4,8-13,2	13,4	1,1-18,7	11,2
Linalol	1,0-1,2	1,0	0,4-0,9	1,2
terpinène-4-ol	0,1-0,8	0,4	t	0,4
a-terpinéol	0,2-0,6	0,5	t-1,6	t
Thymol	7,7 ⁻ 37,8	6,6	18.5 - 73,1	55,6
Carvacrol	18,3 - 63,7	47,0	7,6 - 72,6	2,7
trans-caryophyllène	0,7 - 1,3	_	_	0,9
3-sesquiphe1landrène	0,5-1,0	0,7	0,2-0,8	0,8
Oxyde de caryophyllène	0,1-0,7	0,4	0,2 - 0,7	0,2

t :Trace; -: Composé non identifié; Les teneurs sont données en pourcentage.

1.4 Ammoïdes verticillata:

Η

Η

1.4.1 Présentation de la plante:

L'Ammoïdes est une plante qui appartient à la famille des Apiacées. Son appellation dans notre pays est Nounkha ou Nûnkha tirée du nom Perse «Nankhah» qui est utilisée en Iran, comme aromate dans le pain. En effet, «Nan» et « Khah » signifient respectivement pain et goût (Baytop et Siltliipinar, 1986).

La saveur de cette plante est fortement aromatique et piquante. Son odeur agréable, diffusible, intense et balsamique est persistante même après dessiccation. Les graines de cette plante sont très utilisées dans les préparations culinaires (pain, rôti, légumes, soupes) grâce à H leurs arômes forts. Par ailleurs, elles rendent plus digestes les légumineuses, les haricots secs et les lentilles. Elles sont souvent mélangées à d'autres épices pour atténuer leur saveur amère (Boulos, 1983). En Algérie, cette plante jouit d'une grande faveur populaire. En effet, elle est particulièrement très utilisée dans la préparation de la soupe d'escargot (Kambouche et al., 2003). Cette plante a également un pouvoir antioxydant et est recommandée comme une source potentielle d'antioxydant naturel (Mehta et al., 1994; Mehta et Zayas, 1995).

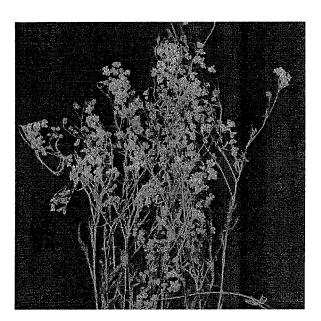


Photo IV: Ammoïdes verticilata

Noms vernaculaires:

Cette espèce est connue sous les noms vulgaires Nounkha, Nûnkha et Nanoukha (Merad, 1973; Sijelmassi, 1991; Trabut, 1935). Mais, elle est surtout connue dans le monde sous le nom suivant:

En Français: Ajowan (Wehmer, 1931, AFNOR)

- En Arabe: Taleb El Koubs (Narayana et al., 1967)

Noms scientifiques:

- Ammoïdes ou Ptychotis verticillata (Desf.) Briq. (Quezel et Santa, 1963)
- Trachyspermum ammi (L.) Sprague (Syn. Carum copticum (L.) Benth et Hook (Wehmer, 1931; Quezel et Santa, 1963; Narayana et al., 1967; Grosjean, 2004)
- Trachysperinum copticum (Schirner, 2004)

La dénomination usuelle de la plante est Ajowan et la désignation botanique est *Trachysparmum ammi* (L.) **Sprague** ex. Turr., alors que la désignation botanique usuelle en *France est Carum copticum* **Benth.** et **Hook.**; *Ptychotis ajowan* **D. C.** ou bien *Trachyspermum copticum* **Link.** (AFNOR, 1992).

1.4.2. Description botanique:

1.4.2.1. Caractères botaniques:

Le genre Ammoïdes appartient à la famille des Apiacées. Elle pousse spontanément en Egypte et en Afrique du Nord (Maroc, Algérie et Tunisie) ainsi qu'en Asie (Inde, Iran et Pakistan). Cependant, les principaux pays cultivateurs sont 1 'Egypte, l'Iran et surtout l'Inde (Quezel et Santa, 1963 ; Baytop et Sfitliipinar, 1986 ; Khajeh et al., 2004).

Ce genre regroupe 2 espèces qui sont: *Ammoïdes verticillata* (**Desf.**) **Briq.** et *Ammoïdes* atiantica (**Coss.** et **Dur.**) **Wolf..**

Selon **Quezel** et **Santa** (1963), cette espèce végétale qui pousse spontanément est annuelle, à souche filiforme, à tiges ramifiées de 10-40cm, sans rosette de feuilles basales. Feuilles inférieures pétiolées sont à nombreux segments multifides verticillés, les supérieures pennatifides sont à segments linéaires. Les ombelles principales sont à 8-15 rayons. Fruit ovoïde est de moins de 1 mm de long. On la trouve généralement dans les champs, les pelouses, les montagnes et les forêts.

1.4.2.2. Systématique d'Ammoïdes vertidilata:

Ammoïdes (ou Ptychotis) verticillata est classée selon la clé de détermination botanique, d'après Quezel et Santa (1963), et Guignard et Dupont (2004) comme suit:

Embranchement: Phanérogames ou Spermaphytes

Sous-embranchement: Angiospermes

Classe: Eudicots
Sous-classe: Astéridées
Ordre: Apiales

Famille : Apiacées

Genre: Ammoïdes Desf. (ou Ptychotis Koch.)

Espèce: Ammoïdes (ou Ptychotis) verticillata Desf.

1.4.3. Propriétés thérapeutiques de cette plante:

Les qualités thérapeutiques *d'Ammoïdes verticillata* sont connues les plus anciens dans la médecine populaire locale. En effet, Ibn El Beithar, dans son traité des simples, à l'article Athrilal signale que cette plante était utilisée dans le traitement de la lèpre par une section de la tribu des Oudjeham, prés de Bougie en 1220 (**Trabut, 1935**).

Ammoïdes verticillata est une plante qui possède de nombreuses et précieuses propriétés médicinales (Ambasta et al., 1986). Elle est considérée surtout comme une panacée (Kambouche et al., 2003). En effet, c'est une espèce aromatique utilisée comme fébrifuge (Sijelmassi, 1991; Ziyyat et al. en 1997), conseillée contre la grippe et possède des propriétés thérapeutiques contre l'hypertension et/ou le diabète (Ziyyat et al., 1997).

Cette plante possède également des propriétés antiallergique, anthelminthique (Grosjean, 2004), antibactérienne majeure à large spectre d'action, antifongique (Dubey et Mishra, 1990; Grosjean, 2004), antivirale (Grosjean, 2004) et hypocholestérolémiante (Agrawala et Pant, 1986)

Elle a également un effet expectorant (Ambasta et al., 1986), antalgique (Grosjean, 2004), carminatif, digestif (Baba Aissa, 1999; Schirner, 2004) et diurétique (Baba Aissa, 1999; Boskabady et Shaikhi, 2000).

Elle est utilisée comme apéritif, emménagogue (**Baba Aissa**, **1999**) et dans le traitement du vitiligo en Egypte (**Belekhdar**, **1997**).

En outre, Les graines d'Ammoïdes verticillata sont utilisées communément comme remède en cas de colique, de diarrhée, de dyspepsie, d'hypertension, de complications hépato-biliaires (Avesina, 1985) de choléra (Avesina, 1985; Schirner, 2004) d'asthme (Avesina, 1985; Boskabady et Shaikhi, 2000; Schirner, 2004), de troubles intestinaux (Schirner, 2004) de vomissements, de troubles du tractus urinaire, dans la dilatation des bronches et conseillée comme analgésique (Boskabady et Shaikhi, 2000).

Les huiles essentielles d'Ammoïdes verticillata ont un champ d'action à spectre très large, elles inhibent aussi bien la croissance des bactéries (Abdelouahid et Bekhechi, 2002) que celle des levures et des moisissures (Srivastava et al., 1999; Abdelouahid et Bekhechi, 2002). D'ailleurs, elle est cultivée en Inde depuis des millénaires pour son huile essentielle qui est employée dans la fabrication des bains de bouche et des dentifrices car elle est très

riche en thymol. Ce dernier est également très utilisé en médecine contre la toux, l'irritation de la gorge et dans des cas de choléra (**Bhargava** et **HaKsar**, 1961; **Joshi** et al., 1963). Une enquête thérapeutique a été réalisée auprès des herboristes et des gens de la campagne de la région de Tlemcen. Les informations qu'on a pu recueillir, ont montré que cette plante a des usages culinaires et surtout thérapeutiques et sont résumés dans le tableau (4) (**Bekhechi**, 2002).

Tableau (4) : Enquête thérapeutique effectuée au niveau de la région de Tlemcen sur la nlante *Ammoïdes verticillata* (BekhechL 2002)

Parties utilisées	Indications	Mode d'emploi
	Fièvre	Bouillir de l'eau avec la plante, mettre une serviette
Plante entière	Rhumes grippes	sur la tête, et inhaler les vapeurs dégagées. Ensuite,
	Maladies broncho-	boire une tasse de cette décoction filtrée avant de se
	pulmonaires	coucher.
	Fièvre typhoïde	
	Antipyrétique	Décoction ou infusion
	Dépuratif	
	Antispasmodique	
	Affections rénales	
	Règles douloureuses	Infusion
	Régulateur dermique	Décoction
	Asthme	Mélanger la plante lavée, séchée et broyée avec du
	Douleurs gastriques	miel. Prendre I à 2 cuillerée par jour.
	Parasites intestinaux	
	Céphalée migraines	Décoction ou infusion avec un citron. Boire une
		tasse le soir avant de se coucher.
	Sinusite	Mettre la plante dans de l'eau bouillante, laisser
		infuser, ensuite mélanger avec du henné et mettre
		sur les endroits atteintes (Sinus osseux de la face).
	Rafraîchissante	Faire une décoction avec une tranche de citron,
		laisser refroidie puis mettre au réfrigérateur (boire
		comme une boisson rafraîchissante).
	Condiment culinaire	Ajouter ces parties de la plante broyées dans des
Feuilles et fleurs		soupes ex: soupe d'escargot.
		Conserve plus longtemps les aliments et empêche la
		formation des moisissures, ex les olives.

	Irritations dermiques	Faire bouillir dans très peu d'eau, une poignée de		
Feuilles	Abcès - furoncle	feuilles fraîches. Lorsque le liquide est presque		
		complètement évaporé, mettre les feuilles cuites sur		
		une serviette et les écraser pour en supprimer le suc.		
		Laisser refroidir le cataplasme, puis l'appliquer sur		
		la partie atteinte.		
	Diarrhée	Faire bouillir pendant 20 minutes dans un litre		
Racines		d'eau des racines séchées au soleil. Filtre la		
		décoction, la sucrer avec un peu de miel et la bois		
		en trois fois au cours de la journée.		
	Diurétique	Mettre dans un litre d'eau bouillante des racines.		
		Filtrer, quand l'infusion est devenue tiède, sucrer		
		avec un peu de miel. Consommer le tout dans la		
		journée.		

1.4.4. Composition chimique:

Les huiles essentielles *d'Ammoïdes verticillata* ont fait l'objet de plusieurs travaux décrivant leurs compositions chimiques très variés:

Les premiers travaux effectués par **Nigram** et **al.** en 1963, rapportent que La composition chimique de l'huile essentielle extraite des graines d'Ajowan provenant d'Inde est la suivante: a-pinène (1,8%), camphène (0,5%), J3-pinèn (3,5%), myrcène (0,3%), 3-3-carène (0,5%), limonène (5,1%), y-terpinène (34,9%), p-cymèe, une faible quantité de carvacrol et du thymol comme composé majoritaire.

Une étude de la composition chimique (Tableau 5) de 'huile essentielle des graines et de la partie aérienne de cette plante, effectuée par **Balbaa** et **al.** en 1973, révèle l'existence de deux groupes chimiques, soit: thymol/p-cymène/y-terpinêne (graines); y-terpinène/p-cymène/thymol (partie aérienne).

Tableau (5): Comparaison de la composition chimique des huiles essentielles entre la partie aérienne et les graines d'Ajowan (Balbaa et al., 1973)

Composés	Huile essentielle des graines	Huile essentielle de la partie aérienne
a-pinène	0,41-0,80	1,30-2,30
-pinène	1,81-3,30	2,20-2,80
8-3-carène	0,20-0,50	0,52 - 1,90
myrcène	0,08-0,10	t-0,10
limonène	0,08 - 0,20	2,20 - 2,40
y-terpinène	23,80 _ 24,50	55,20 _ 64,10
p-cymène	23,60 _ 24,00	16,40 _ 20,10
Thymol	41,00 _ 44,00	6,00 - 10,50
Carvacrol	1,00-4,70	1,00-3,00

t⁻ Trace ;Les teneurs sont données en pourcentage.

Par ailleurs, en Pakistan **Ashraf et Batty** (**1975**) avancent que les composants de l'huile essentielle des graines d'Ajowan sont: a-pinène (0,33 - 0,63%), camphène (0,56 - 0,63%), - pinène (1,24 - 1,56%), 8-3-carène (0,42 - 0,80%), limonène (0,25 2,25%), y-terpinène (18,70— 20,3 5%), p-cymène (20,80 - 23,78%), carvacrol (4,50 - 6,80%) et le thymol comme composé majoritaire avec un pourcentage variant entre 45,20 et 48,50%.

Srinivas (1986) a déterminé la composition chimique de l'huile essentielle d'Ajowan. Le T thymol est le composé majoritaire avec une teneur de 36,88%. D'autres composés sont présents dans cette huile en quantités appréciables: le p-cymène (21,38%), le carvacrol (16,42%) et le 7-terpinène (14,63%).

D'autre part, l'analyse chimique (Tableau 6) des huiles essentielles d'Ajowan extraite par CO2 supercritique à différentes températures et par hydrodistillation, révèle des pourcentages élevés en thymol (**Kumar** et **al., 1992**).

Tableau (6): Comparaison de la composition chimique de l'huile essentielle d'Ajowan extraite par co2 supercritique et par hydrodistillation (Kumar et al., 1992)

Composés	Extraction par CO2 supercritique			Extraction par hydrodistillation
	10°C	15°C	25°C	
ct-pinène	0,23	0,27	0,10	0,49
3-pinène	0,80	0,24	0,15	2,39
myrcène	0,24	0,29	0,17	0,26
limonène	0,22	0,19	0,13	0,33
y-terpinène	7,67	9,45	5,56	18,94
p-cymène	15,07	12,25	8,11	21,00
Thymol	71,39	74,10	80,21	53,75
Carvacrol	0,24	0,36	0,30	-

Les teneurs sont données en pourcentage

En 1993, Chialva et **al** ont pu identifié 26 composés dans l'huile essentielle d'Ajowan provenant de Turquie, avec une prédominance du thymol, suivi de 7-terpinène et de p-cymène (Tableau 7).

Tableau (7): Composition chimique de l'huile essentielle de *Trachyspermum* conticum (L.) Link (Chialva et al. 1993)

Composés	(%)	Composés (suite)	(%)	Composés (suite)	(%)
a-pinène	0,32	f3-phellandrène	0,18	a-terpinèol	0,19
ct-thujéne	0,20	1,8-cinèole	t	3-selinène	t
Camphène	t	7-terpinène	11,86	Carvone	t
-pinène	3,31	p-cymène	15,57	Cumin aldehyde	t
Sabinène	t	Terpinolène	t	(E)-anéthole	t
6-3-carène	t	<i>Trans-</i> hydrate de sabinène	0,19	Méthyl eugènol	t
Myrcène	0,56	Cis- hydrate de sabinène	0,29	Thymol	61,31
a-terpinène	t	Terpinène-4-ol	1,13	Carvacrol	0.60
Limonène	2,08	Méthyl chavicol	t		

t = Trace

En 1998, une étude de la composition chimique de l'huile essentielle des graines d'Ajowan provenant d'Inde, a permis à **Choudhury** et **al.**, de mettre en évidence une forte teneur en limonène (38,1%) et en carvone (46,2%). Ce type chimique a été signalé que par ces auteurs. Ils avancent également l'existence d'autres composés qui n'ont pas été identifiés

précédemment: le a-phellandrène (0,5%), le cis-dihydrocarvone (1,1%), le *trans*-hydrocarvone (2,5%), le myristicine (2,4%) et le dillapiole (8,9%).

En **2002**, **Gersbach** et **Reddy** ont analysé l'huile essentielle de *Carum copticum* provenant d'Australie, ce qui leur a permis d'identifier les composés suivants: le thymol (45,60%), le y-terpinène (23,8%), le p-cymène (21,25%), le 3-pinène (3,44%), le a-pinène (1,40%), le carvacrol (1,20%), le camphène (0,88%), le -myrcène (0,65%) et le limonène (0,51%).

En **1999**, **Singh** et **Tripathi** confirment que l'huile essentielle de *Trachyspermum ammi* est très riche en composés phénoliques (thymol), suivi dup-cymène.

En **2004, Khajeh** et **al.**, rapportent que l'huile essentielle de *Carum copticum* provenant d'Inde renferme les composants suivants: le thymol (49%), le y-terpinène (30,8%), le p-cymène (15,7%), le 3-pinène (2,1%), le limonène (0,7%), le a-thujène (0,4%), le myrcène (0,8%), le a-terpinène (0,5%).

Enfin, L'analyse chimique des huiles essentielles d'Ammoïdes verticillata d'Algérie a fait l'objet de deux travaux. Les premiers ont été réalisés par Kambouche et El-Abed en 2003, qui ont hydrodistillé les parties aériennes de cette plante, récolté dans la région d'Oran. L'huile essentielle obtenue a été analysée par CPG-Ir, CPG-SM et par RPvfl\T C et RMN 'H, ce qui a permis l'identification de 20 composés (Tableau 8) représentant 99,9% de la composition globale. L'isothymol est le composé majoritaire avec une teneur de 51,20%. Plus récemment, Bendahou (2007) a décrit l'analyse par CPG et CPG-SM de l'huile essentielle de cette même espèce poussant spontanément dans la région de Terni (Tlemcen) qui a révélé une forte teneur en thymol (50,1%) (Tableau 8).

Tableau (8) Principaux composés des huiles essentielles d'Ammoïdes verticillata

Composés identifiés	Kambouche et El-Abed (2003)	Bendahou et al. (2007)
a-thujène	0,08	0,3
a-pinène	0,62	1,0
Sabinène	0,13	t
3-pinène	0,16	0,1
Myrcéne	0,40	0,6
p-cyméne	14,08	15,6
limonène	11,89	15,0
y-terpinène	6,79	6,6
Linalol	t	0,1
terpinène-4-ol	0,79	0,2
u-terpinéol	0,08	0,1
Isothymol	51,20	-
Thymol	12,96	50,1
Carvacrol	-	8,8

t :Trace; -: Composé non identifié; Les teneurs sont données en pourcentage.

1.5 Mentha pulegium:

1.5.1 Présentation de la plante:

Mentha pulegium (L.) est une plante odorante qui appartient à la famille des lamiacées. Sa saveur est fortement aromatique et son odeur est intense, fraîche et pénétrante. Le nom de «pouliot» vient du latin pulegium, qui dérive de pulex, la puce car la plante a la propriété d'éloigner les puces. La menthe est utilisée dans les produits cosmétiques et dans les préparations culinaires pour aromatiser les sauces, les desserts et les boissons. Elle est considérée également bénéfique poir la santé (Sivropoulou et al., 1995; Padrini et Lucheroni, 1996).

Photo V Menthapulegium (Anonyme III)

Noms vernaculaires:

- En Français:
 - Menthe pouliot (Fourment e Roques, 1941, Fournier, 1947-1948; Lemordant et al., 1977)
- En Arabe
 - Fliou (**Trabut**, 1935; **Fourment** et **Roques**, 1941; **Lemordant** et al., 1977; **Bellakhdar**, 1978)
 - Feliou (Quezel et Santa, 1963)

Nom scientifique:

- Menthapulegium (L.) (Quezel et Santa, 1963)

1.5.2. Description botanique:

1.5.2.1. Caractères botaniques:

Le genre Mentha appartenant à la famille des lamiacées, est très répandu dans le nord de l'Europe, dans la région méditerranéenne et dans l'Asie (Quezel et Sauta, 1963; Marrotti et al., 1994).

En Algérie, le genre Mentha regroupe 5 espèces qui sont: *Mentha rotundifolia (L.), Mentha ion gfoiia* (L.) **Huds.,** *Mentha spicata* (L.) **cm. Huds.,** *Mentha aquatica* (L.), et *Mentha pulegium* (L.).

L'espèce *Mentha pulegium* (L.) est très abondante et pousse spontanément en Algérie surtout dans le Tell (**Quezel** et **Santa**, **1963**).

Elle se répand dans les terres inondées en hiver, au bord des ruisseaux et des marécages. On la trouve en Algérie et en général dans tout le nord de l'Afrique, dans l'Europe ainsi que dans les régions d'Asie et d'Amérique (Quezel et Sauta, 1963 : Panetta, 1985).

C'est une plante glabre de 10 - 30cm à inflorescences formées de nombreux verticillatres denses, feuillés et distants. Le calice est presque bilabié (**Quezel** et **Sauta**, **1963**).

Mentha pulegium est une plante à tiges dressées. Le calice est à cinq dents pileux, à gorge obstruée de poils à la maturation. La corolle est à gorge pileuse, bossée d'un côté à la gorge. Les feuilles sont pétiolées (Raybaud, 1985).

1.5.2.2. Systématique de *Mentha pulegium*:

Selon **Quezel** et **Santa (1963)**; **Guignard** et **Dupont (2004),** la classification qu'occupe *Menthapulegium* dans la systématique est la suivante:

Embranchement: Phanérogames ou Spermaphytes

Sous-embranchement: Angiospermes

Classe: Eudicots

Sous-classe: Astéridées

Ordre: Lamiales

Famille: Lamiacées

Genre: Mentha (Tourn.) L.

Espèce: Menthapulegium (L.)

1.5.3. Propriétés thérapeutiques de cette plante:

Connue depuis l'antiquité, la menthe pouliot figure parmi les plantes les plus communément utilisées en médecine traditionnelle (**Boullard**, **2001**). En fait, une infusion de feuilles et/ou de sommités fleuries est recommandée contre la toux, l'asthme (**Garnier**, **1961**; **Debuigue**, **1984**; **Sijelmassi**, **1991**), le diabète (Ziyyat et al., **1997**), la fièvre, les brûlures, l'eczéma, les démangeaisons ou bien pour arrêter la sécrétion lactée (**Garnier**,

1961 ; Sijelmassi, 1991) et a des propriétés insecticide, cholagogue, antiseptique, antispasmodique (Fourment et Roques, 1941; Fournier, 1947 – 1948; Lemordant et al., 1977; Raybaud, 1985; Bellakhdar, 1987; Bellakhdar et al., 1991; Sijelmassi, 1993; Lorenzi et Matos, 2002), antitussive, conseillée pour l'hygiène buccale, contre les maux de tête, les frissons et les infections broncho-pulmonaires (Bellakhdar et al., 1991; Sijelmassi, 1993; Lorenzi et Matos, 2002). Par ailleurs, une infusion, un cataplasme ou une inhalation de la plante fraîche est conseillée dans le cas d'une bronchite, d'une cataracte, d'un rhume et d'une infection de la gorge. En outre, une infusion de sommités fleuries a un effet expectorant, désinfectant (Fourment et Roques, 1941; Fournier, 1947 - 1948; Lemordant et al., 1977; Bellakhdar, 1987) et est utilisée pour le traitement des peaux grasses. Enfin, une infusion de la partie aérienne a également un effet tonique, digestive et carminative (Bellakhdar et al., 1991; Sijelmassi, 1993).

Concernant l'activité antimicrobienne de l'huile essentielle de *Me ni'ha pulegium*, **Sivropoulou** et **al** en 1995, ont testé le pouvoir antimicrobien des produits naturels de cette espèce, par la méthode de diffusion sur disques, contre les bactéries suivantes: *E. cou*, *P. aeruginosa*, *S. aureus*. *Ils* ont constaté que cette huile présente une faible activité contre l'ensemble des souches testées. Par ailleurs, **Daferera** et **al.** en 2003 avancent également une faible activité antifongique de l'huile essentielle de cette même plante.

De même, en **2005, Teixeira Duarte** et **al.** ont déterminé le pouvoir antifongique de cette huile contre *C. albicans* qui se révèle moyennement sensible. Cette faible activité antifongique de l'huile essentielle de *Mentha pulegium* a déjà été confirmé par Arras et Usai en **2001.**

Franzios et al. (1997) ont testé l'activité insecticide de l'huile essentielle de *Menthapulegium* sur *Drosophila melanogaster* et ils ont trouvé que cette huile causait la mort d'un grand nombre de larves due à la présence de la pulégone. Lamiri et al. (2001) ont étudié également le pouvoir insecticide de l'huile essentielle de cette même plante sur *Mayetiola destructor* (Say). Ils ont constaté que cette huile est très toxique pour les adultes et les oeufs de cette espèce (100% de mortalité).

1.5.4. Composition chimique:

Т

Т

Les diverses études effectuées sur la caractérisation de l'huile essentielle de *Mentha pulegium* ont permis d'avancer l'existence d'une variabilité chimique de cette huile essentielle

La première étude effectuée sur la détermination de la composition chimique de l'huile Tessentielle de *Mentha pulegium* est celle de **Zwaving** et **Smith** en 1971, qui ont identifié les composés suivants: la pipéritone (70%), le limonène (11%), le menthone (8%) et l'isomenthone (7%), l'octanol-3 (1%) et l'octyl-3-acétate (0,8%), à partir de pieds récoltés en Australie.

Skrubis (1972) rapporte que *Mentha pulegium* poussant à l'état spontané en Grèce, contient les constituants suivants: le a-pinène (1,2%), le camphène (0,7%), le limonène (0,1%), le menthol (0,7%), l'eugénol (1,6%) et lapulégone (61,9%).

Proença Da Cunha et **al.** (1976), ont étudié la composition chimique de l'huile essentielle de *Mentha pulegium* récolté en Angola. Ils ont trouvé que cette huile a la composition chimique suivante: le a-pinène (2,60%), le -pinène (1,44%), le camphène (1,06%), le limonène (1,45%), le p-cymène (3,05%), l'isomenthone (5,02%), l'isopulégone (6,80%), le *cis/trans*-isopulégone (10,07%), le menthol (16,24%) et la pulégone (42%).

Lawrence en 1978, a comparé la composition chimique des huiles essentielles de plusieurs échantillons de *Mentha pulegium* récolté en Espagne. Les composés identifiés sont rapportés dans le tableau (9).

Tableau (9) : Composition de l'huile essentielle de *Mentha pulegium* (Lawrence. 1978

Composés identifiés	(%)	Composés (suite)	(%)
a-pinène	0,2 - 0,3	Isomenthone	1,4 - 8,6
j3-pinène	0,3 - 0,4	Acétate de néo-isomenthyl	t = 0.5
Sabinène	t = 0.3	cis-isopulégone	0,5 - 0,8
Myrcène	t = 0,1	trans-isopulégone	0,2 - 1,6
Limonène	0,1 - 0,7	J3-caryophyllène	t = 0.3
1 ,8-cinèole	0,1 - 0,4	Néo-isomenthone	t = 0,9
Cis/trans-ocimène	t	D-germacrène	t _ 0,4
p-cymène	t _ 0,2	Pipéritone	0,1 - 0,2
3-octyl-acétate	t - 1,0	Isopipériténone	t = 0,1
Octan-3-ôl	0,6-1,2	Pipériténone	0,8 - 2,5
1-octan-3 -o!	t _ 0,2	Menthone	10,0 - 16,0
Menthofurane	t = 0,3	Pulégone	67,6 - 79,4

t: trace

Bigo De Grosso et **Moyna** (1985) rapportent que l'huile essentielle de *Mentha pulegium* provenant d'Uraguay contient les composants suivants: a-pinène (t - 0,4%), 3-pinène (t), *u*-

phellandrène (t), limonène (0,2%), 1,8-cinéole (t-0,1%), 3-octanol (0,2-1,5%), menthone (4,2-5,6%), néo-menthol (1,6-4,2%), f3-caryophyllène (0,9-1,4%), menthol (0,3-3,6%), isomenthone (35,6-40,6%) et pulégone (26,8-41,1%).

Montes et **al.** En **1986**, avancent que l'huile essentielle de *Mentha pulegium* a la composition chimique suivante: a-pinène, camphène, 3-pinène, limonène, u-phellandrène, p-cymène, 1-méthylcyclohexanol, 3 -octanol, menthone, menthofurane, méthyl acétate, néo-menthol, menthol, isomenthol et la pulégone avec un pourcentage de 92,6%.

En 1995, les travaux réalisés par **Sivropoulou** et **al.**, sur l'huile essentielle *Menthapulegium* provenant de trois régions différentes de Grèce, ont montré l'existence de trois types chimiques différents à savoir; Pulégone / piperitone; Pulégone / isomenthone ; Isomenthone *I* menthone. Le tableau (10) fait état des composés identifiés dans ces huiles essentielles, et de leurs teneurs.

Tableau (10): Composition chimique de l'huile essentielle *Mentha pulegium* (Sivronoulou et al., 1995

Régions	Station	Station	Station
Composés	(1)	(2)	(3)
Menthol	t	0,4	0,1
Isomenthol	0,2	1,3	0,1
Néomenthol	0,6	0,6	t
Menthone	1,7	1,0	10,3
Isomenthone	0,2	4,5	77,5
Pulégone	50,6	44,7	1,0
Isopulégol	0,2	0,4	0,3
piperitone	13,4	1,9	0,3

t ;Trace; Les teneurs sont données en pourcentage.

Une étude de la composition chimique de l'huile essentielle de *Mentha pulegium*, poussant à l'état spontané au Maroc, a permis à **Lamiri** et **al.** en **2001**, de mettre en évidence une forte teneur en pulégone (61,9%), en eucarvone (5,8%) et en caryophyllène (3,9%).

Enfin, en **2003**, **Chebli** et **al.** ont déterminé la composition chimique de l'huile essentielle de *Mentha pulegium* provenant du Maroc. Les composés identifiés représentent un pourcentage de 97,1% de la composition globale: a-thujène (0,3%), a-pinène (0,5%), octen-3-ol (2,4%), camphène (0,2%), -pinène (0,4%), myrcène (0,7%), 1,8-cinéole (0,3%), limonène (0,6%), menthadiène-3,8 (5,3%), pulégone (85,4%) et pipéiiténone (1,0%).

Т

Daferera et al. (2003) avancent que les composés majoritaires présents dans l'huile essentielle de cette même espèce sont: *trans-menthone* (1,2%), cis-menthone (15,0%) et la pulégone (76,5%).

Selon, l'ensemble des travaux réalisés dans le monde sur la caractérisation de l'huile essentielle de *Mentha pulegium*, nous pouvons conclure que cette huile est très riche en pulégone, suivi de menthol, ou de pipéritone, ou de menthone et/ou d'isomenthone.

1.6 Satureja calamintha subsp. nepeta:

1.6.1 Présentation de la plante:

Т

Т

Satureja calamintha est une plante odorante, à l'arôme suave du type menthe, qui appartient à la famille des lamiacées. Son odeur est frais et herbeux (Adzet et Passet, 1972; Padrini et Lucheroni, 1996).

C'est une herbe aromatique, très utilisée dans les préparations culinaires (soupes, sauces, etc.) et entrent dans la composition de plusieurs recettes des festins religieux grâce à ses propriétés digestives et antitoxiques (Simonpoli, 1993; Padrini et Lucheroni, 1996). En effet, elle facilite la digestion en stimulant la production de la bile et prévient la fermentation intestinale (Padrini et Lucheroni, 1996).

' J

Photo VI: Satureja calamintha subsp. nepeta (Anonyme I\)

Noms vernaculaires:

- En Français:
 - Sarriette (Adzet et Passet, 1972)
 - Poulio des montagnes (Baba Aïssa, 1999)

. En Arabe:

- Meuta, Nabta (Quezel et Santa, 1963)

Noms scientifiques:

- Satureia calamintha (Adzet et Passet, 1972)
- Satureja calamintha (L.) Scheele (Syn. Calamintha officinalis Moench) subsp. nepeta (L.) Briq. (Quezel et Santa, 1963 : Gamisans et Jeanmonod, 1993)
- Calamintha nepeta (L.) Savi subsp. nepeta (Pignatti, 1982; Gamisans et Jeanmonod, 1993)

1.6.2. Description botanique:

1.6.2.1. Caractères botaniques:

Le genre Satureja appartient \hat{a} la famille des lamiacées. Il regroupe plus de 30 espèces qui se distribuent dans le pourtour méditerranéen et se développent dans des régions arides, chaudes et rocheuses (Silic, 1979 : Slavkovska et al., 2001).

Satureja calamintha est une espèce très répandue autour de la région méditerranéenne, c'est également une espèce eurasiatique qui pousse spontanément en Italie et en Corse (Ristorcelli et al., 1996 ; Fraternale et ai., 1998; Baldovini et al., 2000).

En Algérie, ce genre comporte 4 sous-genres qui sont: *Micromeria, Acinos, Clinopodium* et *Calamintha* qui regroupe 5 espèces qui sont: *S. baborensis* (Batt.) Briq., *S. candidissima* (Munby) Briq., *S. pomelii* Briq., *S. hispidula* (Boiss. et Reut.) Maire et S. calamintha Scheele (Quezel et Santa, 1963).

Satureja calamintha est une plante vivace qui se trouve dans le Tell et surtout en montagnes (Quezel et Santa, 1963; Baba Aïssa, 1999). Les inflorescences sont en cymes lâches et pédonculées. Le calice reste tubuleux à maturité. Les corolles roses ou violacées sont bien plus longues que le calice. Elle pousse sur les pelouses, sur les broussailles et dans les forêts.

Cette espèce regroupe 3 subespèces qui sont : Satureja calamintha Scheele subsp. nepeta (L.) Briq., S. calamintha Scheele subsp. adscendens (Jord.), S. calamintha Scheele subsp. silvatica Briq. (Quezel et Santa, 1963).

Par contre, **Pignatti** en 1982, subdivise cette espèce en 2 subespèces qui sont: *Calamintha nepeta (L.)* **Savi** subsp. *nepeta* et *Calamintha nepeta* (L.) **Savi** subsp. *glandulosa* (**Req.) P.** W. **Bali.**

Satureja calamintha Scheele subsp. nepeta (L.) Briq. a un calice de 6 - 7mm, à dents subégales, les inférieures à peine plus longues que les supérieures. La corolle est violet pâle et celle des fleurs hermaphrodites, est longue de 7 - 10mm (Quezel et Santa, 1963).

1.6.2.2. Systématique de Satureja calamintha:

D'après **Quezel** et **Santa (1963)** et **Guignard** et **Dupont (2004),** la classification qu'occupe *Satureja calamintha* dans la systématique est la suivante:

Embranchement: Phanérogames ou Spermaphytes

Sous-embranchement: Angiospermes

Classe: Eudicots

Sous-classe : Astéridées

Ordre: Lamiales

Famille: Lamiacées

Genre: Satureja (L.)

Espèce: Satureja calamintha Scheele

Subespèce: *nepeta* (L.) **Briq.**

1.6.3. Propriétés thérapeutiques de cette plante:

Plusieurs espèces du genre *Satureja* sont utilisées dans les préparations alimentaires comme épices et dans le domaine médical, comme antiseptique, antispasmodique, stimulante, diurétique, carminative et tonique (Bandini et Pacchiani, 1981; Bellomaria et Delta Mora, 1985; Souleles et al., 1987; Kokkalou et Stefanou, 1990; Tucker et Maciarello, 1991). Par ailleurs, *Satureja* est une plante considérablement utilisée en phytothérapie. En effet, une infusion des extrémités fleuries de cette plante est indiquée en cas de douleurs gastriques d'origine nerveuse, de diarrhée, de crampes abdominales, de parasites intestinaux et de toux (Padrini et Lucheroni, 1996). On l'emploi aussi comme antifongique, antibactérien et

antiviral quelques fois. Ainsi, elle possède des propriétés antiseptique et convient également dans l'anémie, et dans l'atonie intestinale avec fermentation, c'est un bon spasmodique

(Garnier et al., 1961)

En outre, certains auteurs avancent que *Satureja calamintha* est une plante aromatique, utilisée comme stimulante, antiseptique (**Perrucci** et **al., 1994**), tonique, antispasmodique (**Perrucci** et **al., 1994**; **Baba Aïssa, 1999**), stomachique, carminatif, fébrifuge, sudorifique et expectorante (**Baba Aïssa, 1999**).

Enfin, il a été démontré que l'huile essentielle de cette plante a une activité antibactérienne (Panizzi et al., 1993) et antifongique (Panizzi et al., 1993 : Perrucci et al. 1994).

1.6.4. Composition chimique:

La détermination de la composition chimique de l'huile essentielle de *Satureja* calamintha a fait l'objet de plusieurs travaux dont lesquels, les auteurs avancent l'existence de différents types chimiques au sein de cette espèce

Les premiers travaux ont été réalisés par Adzet et **Passet** en 1972, qui rapportent que l'huile essentielle de *Satureja calamintha* subsp. *nepeta* est riche en pulégone, menthone et menthol.

En **1986, De Pooter** et **Schamp,** avancent que l'huile essentielle de *Satureja calamintha* subsp. *nepeta* contient une forte teneur en pulégone et en isomenthone.

En **1987**, **De Pooter** et **al.**, ont étudié la variabilité de la composition chimique de l'huile de *Satureja calamintha* subsp. *nepeta* sur plusieurs échantillons provenant de la Belgique (Tableau 11). Ils ont trouvé que l'huile essentielle de cette plante est riche en oxyde de pipériténone, suivi de pulégone et d'oxyde de pipéritone.

Tableau (11) : Composition chimique de l'huile essentielle de *Satureja* calamintha subsn. neneta (De Pooter et al.. 1987

Composés identifiés	(%)	Composés (suite)	(%)
a-pinène	0,2 - 0,6	trans-hydrate de sabinène	0,1 - 2,4
3-pinène	0,2 - 0,8	cis- hydrate de sabinène	t = 0,1
Sabinêne	0,1-0,5	Menthone	6,3-8,9
Myrcène	0,3 - 1,1	Isomenthone	t = 6.7
Limonène	0,7 - 4,6	Menthol	1,4 - 7,5
Gis- F3-ocimène	0,1 - 0,9	Pipériténone	0,4 - 3,8
trans- 13-ocimène	t _ 0,5	f3-caryophyllène	1,4 - 6,2
3-octanol	0,1-0,3	GermacrèneD	0,4-1,6
a-terpinène	t _ 0,5	Oxyde de pipéritone	8,4 - 17,0
y-terpinène	0,2 - 0,9	Pulégone	11,5-33,2
Terpinolène	t - 0,3	Oxyde de pipériténone	5,9 - 37,8

t:Trace.

En 1993, une étude de la composition chimique de l'huile essentielle de cette même plante, a permis à **Perez-Alonso** et **al.**, de mettre en évidence un autre type chimique, soit: carvone / 1,8-cinèole.

En **1996**, **Ristorcelli** et **al.**, ont effectué une analyse de l'huile essentielle de *Satureja* calamintha subsp. nepeta récolté en Corse (France). Les résultats obtenus montrent que l'huile essentielle de cette région est à chimiotype menthone / pulégone. D'autres composés

sont présents en quantités appréciables: le limonène, l'isomenthone, le néo-menthol et le pipéritone.

En **1998, Fraternale** et **al.**, ont étudié la composition de l'huile essentielle de *Satureja* calamintha subsp. nepeta récolté à côté d'Urbino (Italie). Les résultats obtenus sont repportés dans le tableau (12).

Tableau (12): Composition chimique de l'huile essentielle de *Satureia calamintha* (L.) Savi subsn. *neneta* (Fraternale et al.. 1998)

Composés	(%)	Composés	(%)	Composés	(%)
a-pinène	0,2	Linalol	0,4	Thymol	1,2
Sabinène	0,2	Néo-menthol	0,4	4-hydrixypiperitone	0,6
J3-pinène	0,3	(Z)-3-hexenyl-2-	0,1	Diosphénol	0,8
3-octanol	2,0	Méthyl butyrate		Piperitenone	0,1
Myrcène	0,3	Carvone	0,2	Eugénol	0,1
p-cymène	0,2	oxyde de Piperitone	68,0	Piperitenone oxide	3,6
1,8-cinéole	0,2	Piperitone	0,3	a-copaène	0,1
Limonène	2,0	Isopulégyl acétate	2,3	f3-bourbonène	0,3
y-terpinène	0,2	Néo-menthyl acétate	0,1	-caryophylléne	1,3
<i>Trans-hydrate</i> de sabinène	0,2	'I'-diosphénol	0,1	Germacréne-D	1,1
3-nonanol	0,2			Oxyde de Caryophyllène	0,2

Selon la littérature, les études menées sur cette plante, nous amènent à conclure que toutes les huiles essentielles de cette espèce sont caractérisées par une prédominance de monoterpènes possédant un squelette de type p-menthane. Ces travaux nous permettent d'avancer l'existence de trois types chimiques

+ Chimiotype à pulégone (composé majoritaire), associé à d'autres constituants: soit au menthone et/ou isomenthone (De Noter et Schamp, 1986; De Pooter et al., 1987; Velasco-Negueruela et al., 1987; Souleles et al., 1987; Ristorcelli et ai, 1996; arer et Pançali, 1998), soit au menthol et ses isomères (Adzet et Passet, 1972; Velasco-Negueruela et al., 1996), soit au pipériténone (Akgtil et al., 1991), soit encore au pipéritone et oxyde de pipériténone (De Pooter et Schamp, 1986). Par ailleurs, l'étude de la variabilité chimique de l'huile essentielle de Satureja calamintha subsp. nepeta récoltée en Corse (France), montre que certains échantillons sont

caractérisés par une forte teneur en menthone, suivi de pulégone (Ristorcelli et al., 1996).

- + Le deuxième type est caractérisé par une prédominance de l'oxyde de pipéritone et/ou de l'oxyde de pipériténone (**De Pooter** et **Schamp, 1986; kokkalou** et **Stefanou, 1990** : **Kirimer** et al., 1992 · **Fraternale** et al., 1998 · **Mastelic** et al., 1998).
- + Un type chimique (Carvone/l ,8-cinéole) particulier a été signalé uniquement par **Pérez-Alonso** et **al.** en **1993.**

Baldovini et **al.** (2000) ont étudié l'évolution de la composition chimique de l'huile de *Satureja calamintha subsp. nepeta*, au cours du cycle végétatif de la plante afin de déterminer la période propice pour la récolte. Ensuite, ils ont analysé 40 échantillons de l'huile essentielle de cette même espèce récoltée dans différentes régions en Corse, durant la période de pleine floraison, afin de mettre en évidence un éventuel polymorphisme chimique au sein de cette plante.

Ces auteurs ont pu identifié 28 composés dans ces échantillons qui ont été soumis à un traitement statistique des données. Ceci, leur permis de définir trois groupes d'huiles essentielles au sein de la population:

Le premier groupe (16 échantillons) est caractérisé par une prédominance en menthone (teneur moyenne: 43,4%), suivi de la pulégone (18,9%), de l'oxyde de pipéritone (8,3%) et de limonène (5,2%).

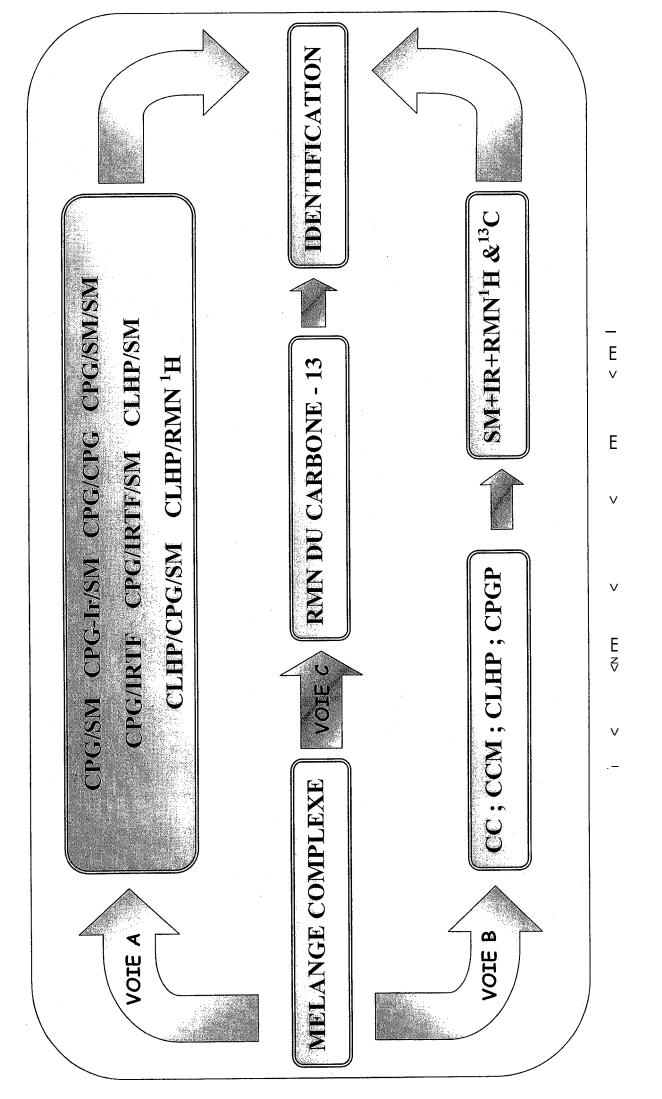
- Les échantillons (11) appartenant au groupe II, sont caractérisés par une forte teneur en oxyde de pipéritone (pourcentage moyen: 30,5%), suivi de l'oxyde de pirériténone (12,5%). Le limonène est également présent en forte proportion (12,4%).
- Dans les échantillons (1 3) du groupe III, le pourcentage moyen de la pulégone est de l'ordre de 55,6%, suivi de menthone (20,0%) et de limonène (6,0%).

Chapitre II: Techniques d'analyse des huiles essentielles:

Les huiles essentielles sont des mélanges plus ou moins complexes dont les constituants appartiennent, de façon quasi exclusive, à deux groupes caractérisés par des origines biogénétiques distinctes: le groupe des terpènoïdes d'une part et le groupe des composés aromatiques dérivés du phénylpropane, beaucoup moins fréquents, d'autre part. Elles peuvent également renfermer divers produits aliphatiques non terpéniques (**Bruneton**, 1999).

Toutefois, la valorisation de ces composés naturels passe nécessairement par une étape de caractérisation (analyse chimique). En effet, la détermination de la composition chimique a intéressée de nombreux chercheurs et les méthodes d'analyse chimique de plus en plus sophistiquées ont permis d'identifier un très grand nombre de constituants des huiles essentielles.

Ainsi, il existe une ou plusieurs techniques chromatographiques (CCM, CPG, CLHP) permettant d'individualiser les constituants et une ou plusieurs techniques spectroscopiques (SM, RIvIN ¹³C) qui permettent de les identifier.


II.! Identification des constituants d'un mélange complexe:

D'une façon générale, l'analyse d'un mélange complexe peut être effectuée selon deux voies A et B schématisées sur la figure (1):

. La voie A met en oeuvre le couplage «en ligne» d'une ou plusieurs techniques chromatographiques, permettant d'individualiser les constituants et d'une ou plusieurs techniques spectroscopiques qui permettent de les identifier. D'une manière générale, cette voie s'avère être fort bien adaptée aux analyses de routine où l'identification des constituants ne présentant pas de difficultés majeures (huiles essentielles déjà étudiées, contrôle de qualité, ...).

• La voie B requiert, dans un premier temps, la purification des constituants du mélange même lorsque ceux-ci sont présents en faible quantité. Dans un deuxième temps, ces composés sont identifiés à l'aide de diverses techniques spectroscopiques (SM, IRFT, RMN du proton ou du carbone-13, à une ou deux dimensions). Cette méthode est forcément indispensable dans le cas de molécules nouvelles. Elle est évidemment d'une grande fiabilité quand les molécules sont déjà décrites dans la littérature mais elle demande beaucoup de temps.

• Une autre approche, la voie C, peut être envisagée. Elle utilise la Résonance Magnétique Nucléaire (RMN) du carbone-13 comme technique d'identification des constituants d'un mélange complexe, sans séparation ni dérivatisation préalables ou éventuellement après une étape de séparation aussi réduite que possible. De plus, cette technique peut être utilisée pour la quantification des composés difficilement quantifiables avec les techniques habituelles.

11.1.1. Méthodes d'analyses par couplage (chromatographie - spectroscopie) : Voie A

On attribue la découverte de la chromatographie en phase gazeuse (CPG) à Archer John Porter Martin et Richard Laurence Millington Synge, qui publient dés 1941 la théorie de la chromatographie de partage (Martin et Synge, 1941 · Arpino et al., 1995).

La CPG est la technique la plus adaptée pour l'analyse des huiles essentielles compte tenu de la volatilité de leurs constituants (**Bruneton**, 1999).

C'est une méthode analytique qui est largement utilisé pour la séparation, l'identification et le dosage des constituants chimiques dans des mélanges complexes. Elle repose sur la distribution différentielle des espèces entre deux phases non miscibles, une phase stationnaire contenue dans une colonne et un gaz vecteur comme phase mobile, qui traverse cette phase stationnaire. Elle est applicable aux substances, ou aux dérivés de substances, qui se volatilisent dans des conditions de températures utilisées (Pharmacopée Européenne, 2002). Les temps de rétention peuvent donner une information sur la nature des molécules et les aires des pics fournissent une quantification relative. L'identification d'une substance peut donc être facilitée par la connaissance de son temps de rétention. Les indices de rétention, plus fiables que les temps de rétention, sont privilégiés dans le cas d'analyse des huiles essentielles. Ils sont calculés à partir d'une gamme étalon d'alcanes linéaires à température constante (Indice de Kovats, 1K) ou en programmation de température (Indices de rétention, IR) (Kovâts, 1965).

Bien que dans la grande majorité des cas, chaque molécule possède des indices de rétention sur colonne apolaire et polaire qui lui sont propres, deùx molécules peuvent co-éluer et présentent fortuitement des indices de rétention identiques.

D'un point de vue analytique, d'importants progrès ont été réalisés en couplant la CPG avec des appareils tels que le spectromètre de masse (SM) ou l'infrarouge (IRTF) qui permettent d'obtenir un spectre de la molécule et rendent possible la comparaison de ce spectre avec des spectres de molécules de référence. Ainsi, divers couplages de la CPG avec les techniques spectroscopiques sont utilisées

- 1. Le couplage CPG-SM
- 2. Le couplage CPG-SM-SM
- 3. Le couplage CPG-IRTF
- 4. Le couplage CPG-CPG
- 5. Le couplage CLHP (Chromatographie Liquide Haute Performance) avec une technique spectroscopique.

Le couplage de la chromatographie en phase gazeuse avec la spectrométrie de masse (CPG-SM) est particulièrement intéressant pour l'identification des substances naturelles.

La SM est essentiellement employée pour déterminer la masse moléculaire des composés. Elle est fondée sur la mesure directe du rapport de la masse au nombre de charges élémentaires (m/z), positives ou négatives, d'ions en phase gazeuse obtenus à partir de la substance à analyser (Fisher et Arnold, 2001, Pharmacopée Européenne, 2002).

Le principe de cette technique de couplage consiste en une séparation des solutés dans le premier appareil (CPG-Ir). Ces derniers pénètrent ensuite dans l'ordre de leur élution dans le spectromètre de masse (SM) où ils vont subir une ionisation, puis une dissociation en fragments chargés positivement pour être analysés qualitativement.

Il existe un très grand nombre de techniques d'ionisation. La plus simple et la plus employée par les chimistes est la méthode de l'impact électronique (JE) qui est une technique d'ionisation forte. Dans la SM-IE, la source d'électton est un filament chauffé, ces électrons sont d'abord accélérés par un passage dans un champ électrique à grande différence de potentiel, avant de bombarder les molécules de l'échantillon en phase gazeuse (**Fisher** et **Arnold, 2001**).

Ainsi, le couplage de la CPG et de la SM en mode Impact Electronique (SM-IE) permet d'obtenir des informations structurales à partir des fragmentations observées et de connaître, dans la majorité des cas, la masse molaire d'un composé. Ce procédé permet donc d'identifier un composé en comparant son spectre à ceux contenus dans des bibliothèques de spectres informatisées commerciales ou élaborées au laboratoire (Adams, 1989; Mc Lafferty et Stauffer, 1994; Joulain et Knig, 1998; National Institute of Standards and Technology, 1999).

L'utilisation conjointe de la spectrométrie de masse et des indices de rétention calculés sur deux colonnes de polarités différentes (CPG), permet, en général, l'identification d'un grand nombre de constituants dans les mélanges complexes dont les huiles essentielles (Bilia et al., 2002; Adio et al., 2004; Chericoni et al., 2004; Senatore et al., 2004). De plus, la mise au point d'un logiciel informatique qui tient compte simultanément des indices de rétention et des spectres de masse des composés, développé par Vernin et al. en 1986 et en 1988, a facilité l'identification des constituants de nombreuses huiles essentielles.

1.1.2. Identification des constituants après purification : Voie B

L'identification de certains composés peut poser problème malgré l'utilisation de ces différentes techniques d'analyse complémentaires. En effet, certains constituants du mélange

peuvent être absents des bibliothèques de spectres commerciales ou construites au laboratoire. Ils doivent être isolés afin d'être identifiés par diverses méthodes spectroscopiques. Ces constituants peuvent être purifiés en utilisant différentes techniques chromatographiques comme la chromatographie sur colonne (CC), la chromatographie sur couche mince (CCM), la CLHP ou la chromatographie en phase gazeuse préparative (CPGP). La distillation fractionnée peut aussi être mise en oeuvre. Après un degré de purification acceptable (supérieur à 95%), l'identification est ensuite effectuée par l'utilisation de plusieurs techniques spectroscopiques telles que l'ultra-violet (UV), l'infrarouge, la spectrométrie de masse, la RMN du proton et du carbone-13.

Bien que la purification suivie de l'identification de chaque constituant du mélange rende cette voie B longue à mettre en oeuvre, celle-ci se révèle être particulièrement fiable et adaptée pour l'étude d'huiles essentielles de composition chimique complexe. D'ailleurs, elle connaît un regain d'intérêt pour l'analyse d'échantillons qui contiennent en particulier de nombreux sesquiterpènes oxygénés.

Ainsi, les nombreux travaux de Weyerstahl et al. menés sur diverses huiles essentielles extrêmement complexes (Weyerstahl et al., 1996; Weyerstahl et al., 1997; Weyerstahl et al., 1999; Weyerstahl et al., 2000 a, b, e) illustrent bien l'intérêt de cette technique. Citons, à titre d'exemple, l'huile essentielle de vétiver d'Haïti qui est séparée en deux parties, une partie acide et une partie neutre. Ensuite, les auteurs ont effectué une séparation poussée de la fraction neutre qui est la plus importante, en combinant différentes techniques (distillation fractionnée, chromatographie sur colonne, transformation des alcools en éthers méthyliques) Au total, près de 150 constituants représentant pratiquement la totalité de la fraction neutre ont été identifiés en utilisant la CPG, la SM ainsi que la RMN ('H et 13 C) (Weyerstahl et al., 2000 a).

11.1.3. Analyse par RMN du carbone-13 sans séparation préalable: Voie C

La voie A est particulièrement bien adaptée aux analyses de routine, à l'opposé de la voie B qui garantit l'identification des composés. Cependant, les diverses étapes de fractionnement et de purification entraînent un investissement en temps très important. La voie B est donc généralement réservée à l'analyse des huiles essentielles complexes ainsi que des extraits. Une troisième voie (Voie C), intermédiaire par rapport aux précédentes, est basée sur l'étude du spectre de RMN du carbone-13 du mélange, sans séparation préalable pour l'identification et parfois pour la quantification des principaux constituants de mélanges

naturels. Cette technique a été développée au laboratoire et a fait l'objet de divers travaux depuis le début des années 1990.

La RMN du carbone-13 est utilisée depuis les années 80 pour confirmer l'identification, réalisée en général par CPG-SM, des constituants des mélanges complexes d'origines diverses : coupes pétrolières, produits agroalimentaires, huiles essentielles. Toutefois, bien qu'ayant donné des résultats intéressants et fiables, cette technique d'analyse n'était pas utilisée en temps que méthode propre d'identification, généralisable à différentes familles chimiques. En effet, au début la RMN servait à confirmer des molécules majoritaires proposées par CPG-IK ou par la CPG-SM. Dans ce contexte, l'équipe «Chimie et Biomasse» de l'Université de Corse a mis au point et développé, depuis les années 90, une méthode d'analyse des mélanges complexes naturels basée sur la RMN du carbone-13, efficace, fiable et complémentaire des techniques conventionnelles (Tomi et al., 1995; Bradesi et al., 1996).

11.1.3.1. Intérêt de la RMN du carbone-13

Malgré sa faible abondance isotopique naturelle (1,1%) et son moment magnétique qui le rend environ 5700 fois moins sensible que le proton (**GfInther**, **1994**), le carbone-13 est malgré tout préféré aux autres noyaux car:

- Le carbone constitue le squelette de toutes les molécules organiques et les différents atomes présents sont, à quelques exceptions près, magnétiquement non- équivalents. Donc, on observe en général dans un spectre de RMN du carbone-13 autant de raies de résonance qu'il y a de carbones dans la molécule.
- Les spectres de RMN du carbone-13 peuvent être simplifiés par irradiation totale des hydrogènes, ce qui permet de n'observer dans le spectre qu'une seule raie de résonance par carbone. Cette irradiation permet d'augmenter l'intensité des signaux par l'effet NOE (Nuclear Overhauser Enhancement) (Wilkiamson et Neuhaus, 1989).
- Les spectres sont réalisés à température ambiante, ce qui évite la dégradation ou la transformation éventuelle des molécules thermosensibles.
- Enfin, la RIVII\T étant une technique non-destructive, l'échantillon peut être récupéré et éventuellement soumis à d'autres analyses.

11.1.3.1.1. Identification des constituants en mélange:

L'identification des constituants d'un mélange par RIVIN du carbone-13 est basée sur la comparaison des déplacements chimiques dans le spectre du mélange avec ceux de composés

de référence contenus dans des bibliothèques de spectres. Avec cette méthode, les composés ne sont pas préalablement purifiés. Il est donc nécessaire que l'enregistrement du spectre du mélange et des spectres des composés de référence soit réalisé avec des conditions expérimentales optimisées et standardisées afin d'éviter des variations importantes de déplacement chimique.

11.1.3.1.2. Observation et individualisation des signaux:

L'observation des raies de résonance des carbones d'une molécule dépend de la sensibilité de l'appareil qui s'exprime par le rapport signal sur bruit (S/B), du nombre d'acquisitions, de la masse de produit disponible, de sa solubilité dans le solvant choisi ainsi que de sa viscosité. L'augmentation du nombre d'açcumulations permet de palier à un manque de sensibilité de l'appareil (pour les spectromètres de routine ou à champs moyen), mais cela entraîne un temps d'utilisation plus important. En effet, le rapport S/B étant proportionnel à la racine carrée du nombre d'acquisition, le temps d'analyse devient rapidement prohibitif.

Grâce au développement des aimants supraconducteurs, la RMN voit sa sensibilité augmenter avec l'intensité du champ magnétique des aimants (la détection dune dizaine de microgrammes de produit est réalisable en proton avec un 300 MHz alors que le seuil du microgramme peut être atteint, dans les mêmes conditions, avec un 400 MHz). D'autre part, plus le champ magnétique est élevé, plus la séparation des signaux de résonance des différents noyaux est importante. Il en résulte une interprétation plus facile des spectres, ce qui est primordial dans le cas des études réalisées sur les composés ayant une masse moléculaire élevée (polymères et protéines par exemple) dont les spectres sont extrêmement complexes.

Tout au long de la chaîne de traitement du signal, un signal indésirable de caractère aléatoire, le bruit, se superpose au signal de la molécule à étudier. Les traitements du signal (FID) peuvent améliorer la résolution, plusieurs techniques sont possibles. Parmi celles-ci nous pouvons citer:

. l'utilisation de fenêtres réduites qui permet d'enregistrer le spectre sur la largeur voulue. Par exemple, en **1989, Alemany** qui, en enregistrant le spectre d'un mélange des deux diastéréoisomères du farnésane (2, 6,10-triméthyldodécane) avec un appareil opérant à *5,8T*, a pu observer 29 signaux sur les 30 attendus, certains d'entre eux n'étant séparés que de 0,003 ppm;

. la méthode du «Zero Filling» ui consiste à faire suivre par des valeurs numériques nulles les valeurs du signal numérisé du signal avant transformée de Fourier. Le zero-filling a pour but d'augmenter artificiellement la résolution numérique puisque la largeur spectrale ne change pas et que le nombre de points qui définit la taille du spectre augmente (Giinther, 1994);

. la transformation de Lorentz-Gauss qui est utilisée pour faciliter la séparation de signaux de fréquences extrêmement voisines. L'utilisateur doit rechercher un compromis entre les différentes options qui lui permettent de modifier la résolution, la forme des raies, le rapport signal sur bruit et ceci en fonction du signal disponible et de la nature des informations recherchées dans le spectre, mais cette multiplication exponentielle entraîne des distorsions dans l'intensité des pics.

11.1.3.2. Attribution des signaux:

L'intérêt de la spectroscopie de RMN réside dans sa capacité à reconnaître un noyau déterminé par rapport à son environnement dans la molécule. En effet, les déplacements chimiques des noyaux de carbone-13 subissent l'effet de l'environnement électronique des noyaux voisins. Ainsi, chaque molécule sera définie par une série de déplacements chimiques qui constituera son spectre. Le déplacement chimique est le paramètre essentiel pour l'identification d'un composé par RMN du carbone-13. De même, l'ensemble des déplacements chimiques des carbones d'une moléôule constitue une série de données particulièrement caractéristiques.

Contrairement à la majorité des autres techniques spectroscopiques, il est très peu probable que deux composés de structure différente présentent des spectres de RMN du ¹³C superposables ou insuffisamment différenciés, dans la mesure où la moindre modification structurale s'accompagne de variations, plus ou moins importantes mais généralement mesurables, des déplacements chimiques de pratiquement tous les carbones de la molécule. De plus, les valeurs de déplacements chimiques d'une molécule sont indépendantes de la valeur du champ magnétique 13₀, des séquences impulsionnelles, des paramètres d'enregistrement des spectres et du traitement du signal. Elles sont aussi peu influencées par la présence d'autres molécules avec les faibles concentrations utilisées pour l'enregistrement des spectres. L'utilisation des spectres décrits dans la littérature comme données de référence pour l'identification des composés en mélange est possible. Néanmoins, la meilleure reproductibilité possible des déplacements chimiques ne sera obtenue qu'avec des conditions

d'analyse (concentration, nature du solvant) rigoureusement identiques. Il apparaît donc qu'un composé peut être identifié par la reconnaissance des déplacements chimiques de ses carbones dans le spectre d'un mélange.

Ainsi, chaque molécule est définie par une série de déplacements chimiques qui lui sont propres. Il est donc possible d'identifier un composé en comparant ses déplacements chimiques avec ceux de produits de référence. Il va sans dire que des résultats plus précis seront obtenus quand les spectres des composés de référence sont enregistrés au laboratoire avec les mêmes conditions analytiques (température, solvant, concentration, appareillage, ...) que celles du mélange inconnu, plutôt qu'en utilisant les données de la littérature (surtout si elles ne sont pas récentes).

On peut citer quelques exemples où la RMN du carbone-13 est utilisée pour identifier les constituants de mélanges complexes.

Formâcek et Kubeczka ont réalisé des travaux sur l'analyse de la composition chimique des huiles essentielles par RMN du carbone-13, en constituant leur propre bibliothèque de spectres et en analysant les huiles essentielles dans les même conditions expérimentales. Ces auteurs ont montré qu' il était possible de confirmer la présence de terpènes dans une huile essentielle, par ailleurs mis en évidence par CPG (Formâcek et Kubeczka, 1982 ; Kubeczka et Formcek, 1984; Kubeczka et al., 1988).

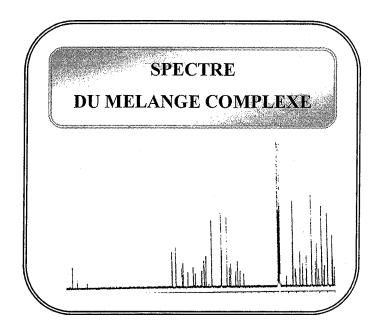
Une méthode d'identification des constituants d'un mélange complexe par RMN du carbone-13 a été développée par **Ferreira** et al. en 2001. Elle est basée sur la comparaison du spectre du mélange avec de mono- et sesquiterpènes décrits dans la littérature. Les valeurs des déplacements chimiques du mélange et la multiplicité de chacun des carbones déterminée par des séquences DEPT sont pris en compte par un logiciel informatique. Il propose une identification après consultation de la banque de spectres décrits dans la littérature.

11.1.3.3. La méthode d'analyse développée au laboratoire par l'équipe « Chimie et Biomasse»:

Depuis plusieurs années, l'équipe «Chimie et Biomasse » utilise la RMIN du carbone-13 comme outil d'analyse des mélanges complexes. Cette méthode a pour but l'identification et éventuellement la quantification, des constituants de mélanges naturels sans une étape préalable de purification.

Elle est basée sur la comparaison des déplacements chimiques présents dans le spectre du mélange complexe avec ceux de composés de référence contenus dans des bibliothèques

de spectres (Figure 2). L'enregistrement des spectres de référence et des mélanges sont réalisés dans les mêmes conditions expérimentales (concentration, nature du solvant, paramètres d'enregistrement des spectres). Un logiciel d'aide à l'identification a été mis au point et développé au laboratoire, il tient compte de plusieurs paramètres:


•Le nombre de pics observés par rapport au nombre de pics attendus pour chaque molécule;

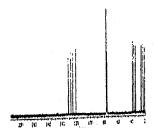
Т

*le nombre de superpositions de pics qui peuvent se produire quand deux carbones de deux molécules différentes ont fortuitement le même déplacement chimique, ou quand les composés présents ont une partie de leur squelette et de leur fonctionnalisation très proche;

*les variations des déplacements chimiques des carbones dans le spectre du mélange par rapport aux valeurs de référence.

De plus, l'intensité des pics permet éventuellement de contrôler l'appartenance du signal d'un carbone à tel ou tel composé.

SUCRES


TRIGLYCERIDES

ACIDES GRAS

PHENOLS

TERPENES

BIBLIOTHEQUES
DE SPECTRES

.LOGICIEL D'AIDE A L'IDENTIFICATJO

NOMBRE DE CARBONES OBSERVES

NOMBRE DE SUPERPOSITIONS

VARIATIONS DES DEPLACEMENTS

CHIMIQUIES

Ilitii I

IDENTIFICATION

Figure (2): Identification des constituants d'un mélange complexe par RMN du carbone - 13

Cette méthode d'analyse, qui allie rapidité et fiabilité, est complémentaire des T techniques conventionnelles exposées précédemment dans les voies A et B. Dans le domaine des huiles essentielles et avec un appareil de routine (4,7 Tesla soit 200 MHz en RMN du proton et 50 MHz en RMN du carbone-13), des résultats très intéressants ont été obtenus. Avec l'expérience acquise par cette équipe,. Ils sont capables d'aboutir aux points suivants:

*Dans un même mélange, jusqu'à 24 composés ont été identifiés simultanément au cours d'une analyse.

. La teneur minimale des composés identifiables avec notre spectromètre est de l'ordre $de\ 0.5\%$.

En général, tous les carbones des molécules identifiées sont observés, à l'exception de certains carbones quaternaires appartenant aux composés minoritaires.

. Le nombre de superpositions est limité et n'empêche pas l'identification d'un composé.

. Les variations des déplacements chimiques (M) sont généralement inférieures à 0,05 ppm pour la très grande majorité des cas. Il y a quelques exceptions, en particulier avec les composés phénoliques (thymol, carvacrol ...) dont certains carbones présentent de plus importantes variations de déplacement chimique selon la polarité et le caractère protique des autres constituants du mélange.

Cette méthode a été appliquée à différentes familles de composés (terpènes, lipides, sucres, phénols) selon un protocole expérimental adapté. Pour cela, différentes bibliothèques de spectre de composés de référence appartenant à différentes familles ont été crées. Ces banques sont continuellement enrichies avec des spectres de produits isolés des mélanges naturels ou encore préparés par hémisynthèse.

A l'heure actuelle, la banque la plus importante enregistrée au laboratoire est celle des terpènes (mono-, sesqui- et diterpènes). Elle contient les données de plus d'un millier de molécules. Par ailleurs, d'autres bibliothèques élaborées à partir de données de la littérature récente ont été conçues. Ces données concernent d'une part les sesquiterpènes et les diterpènes et d'autre part les triterpènes, les sucres les lipides et les phénols.

Les composés volatils identifiés à partir du spectre de RMN du carbone-13, sont ensuite repérés sur le chromatogramme du mélange par comparaison de leurs indices de rétention sur colonnes polaire et apolaire avec ceux des produits de référence, permettant ainsi de les quantifier. Dans le cas de molécules non volatiles ou thermosensibles, la quantification peut

être réalisée par RMN (Castola et al., 1999; Castola et al., 2000a; Baldovini et al., 2001; Rezzi et al., 2002; Rezzi et al., 2005).

L'analyse par RMN du carbone-13 s'est révélée particulièrement efficace dans plusieurs cas. Nous rappelons ici quelques études réalisées au sein du laboratoire.

L'efficacité de la RMN ¹³C a été illustrée par l'identification des stéréoisoméres du farnésol dans l'huile essentielle de néroli (**Bradesi** et **al., 1995**). Elle a permis d'identifier aisément les u- et 3- funébrènes des ct- et 13-cédrènes dans les huiles essentielles de bois de cèdre (**Tomi** et **al., 1995**) et de *CupTessus funebris* (*Hoi* et **al., 1997**). Elle s'est révélée efficace pour l'identification des deux aldéhydes sesquiterpéniques irréguliers possédant un squelette de type lavandulane dans l'huile essentielle de *Santolina corsica* (**Ferrari** et **al., 2005 a,b**). Elle a permis également de distinguer la shyobunone et son épinière dans l'huile essentielle de *Daucus carota* (**Gonny** el **al., 2004**).

La RMN ¹³C a été utilisée somme outil d'analyse dans l'identification et la quantification de molécules thermosenibles telles que le furanodiène dans l'huile essentielle et les extraits au solvant de *Srnyrn1um olusatrum* (Baldovini et al., 2001), ainsi que l'ascaridole dans l'huile essentielle de *Chenopodium ambrosioldes* (Cavalli et al., 2004). En 7 effet, le furanodiène se transpose thermiquement en furanoélémène dès 140°C, en partie dans le détecteur et en partie dans la colonne de chromatographie au cours de l'analyse par CPG. De même, l'ascaridole se réarrange en isoascaridole sous l'effet de la température.

La RMN du carbone-13 s'est aussi avérée particulièrement performante pour l'identification et la quantification de composés «lourds» ou peu volatils comme les triterpènes du liège (Castola et al., 1999; Castola et al., 2002; Castola et al., 2005), et d'un extrait de *Santolina corsica* (Ferrari et al., 2005a), les acides diterpéniques contenus dans les résines de pins (Rezzi et al., 2002; Rezzi et al., 2005), les sucres des miels de Corse (Mazzoni et al., 1997), ainsi que les composés phénoliques et les sucres présents dans les liquides de pyrolyse de la biomasse (Bighelli et al., 1994; Castola et al., 2000a).

T

Pour les huiles essentielles, la RMN ¹³C mise au point et développée au laboratoire, associée ou non au couplage CPG-SM, a permis de caractériser un grand nombre d'huiles essentielles de plantes de Corse, de Sardaigne et du pourtour méditerranéen. Nous pouvons citer quelques exemples.

En association avec la CPG-SM et la CPG-Ir, la RMN ¹³C a permis l'analyse des huiles essentielles de *Myrtus cmmunis* subsp. *communis* de Corse (**Bradesi** et **al., 1997**), de 3

espèces d'Ocimum de Sao Tomé (O. Canum, O. gratissimum, O. minimum) (Martins et al. 1999), de trois espèces de Piper d'Amérique du Sud (P. arboreum, P. fimbriulatum, P. obliquum) (Muselli et al., 1999).

Combinée avec la CPG-Ir, la RMN — C a été mise en oeuvre pour la caractérisation des huiles essentielles de *Calamintha nepeta subsp. nepeta* et subsp. *glandulosa* (**Ristorcelli** et **al., 1996**), *Lavandula stoechas* subsp. *stoechas* (**Ristorcelli** et **al., 1998**), de *Xylopia aethiopica* de la Guiné (**Tomi** et **al., 1996**), de *Illicum grffithii* de Viêt-Nam (**Tam** et **al., 1998**; *Tam* et **al., 2005**) et de *Lavandula dentata* (**Bousmaha** et **al., 2006**) et du *Rosmarinus officinalis* de l'Algérie (**Atik-Bekkara** et **al., 2007**).

De même la RMN ¹³C a été utilisée en complément à la chromatographie sur colonne de silice et à la CPG-Ir pour l'étude de la composition chimique des huiles essentielles de *Cistus ladanferus* (Mariotti et al., 1997), de *Daucus carota* (Mazzoni et al., 1999).

Par ailleurs, la RIv1N ¹³C a été combinée avec la chromatographie sur colonne de silice, la CPG-Ir et la CPG-SM pour la détermination de la composition chimique des huiles essentielles de plusieurs espèces de Corse, à savoir: *Ferula arrigonii* Bocchieri (**Filippini** et **al., 2000**), *Rosmarinus officinalis* de Corse et de Sardaigne (**Pintore** et **al., 2002**) et *Juniperus communis* subsp. *Alpina* (**Gonny** et **al., 2006**), ainsi que de Madagascar: *Cedrelopsis grevei* H. Baillon (**Cavalli** et **al., 2003**), de Viêt-nam: *Acanthopanax trfoliatus* (*L.*) Merr. (**Muselli** et **al., 1999**) et *Fokiena hodginsii* (**Lesueur** et **al., 2006**), de la Côte d'Ivoire : *Isolona cooperi* (**Boti** et **al., 2005**), et *Cymbopogon giganteus* (**Boti** et **al., 2006a**), et de l'Algérie: *Thymus ciliatus* subsp. *eu-ciliatus* (**Bousmaha** et **al., 2007**).

Enfin, la RMN ¹³C s'est aussi avérée particulièrement performante pour l'étude de la variabilité chimique de nombreuses plantes. Ainsi, combinée à la CPG-Ir et à la CPG-SM, elle - a été utilisée pour la caractérisation des huiles essentielles de *Pistacia lentiscus* (Castola et al., 2000b), *Calamintha nepeta* (Baldovini et al., 2000), *Pinus nigra subsp. laricio* (Rezzi et al., 2001a), *Juniperus phoenicia* subsp. *turbina a* (Rezzi et al., 2001b; Cavaleiro et al., 2001), *Baeckeafrutescens* du Viêt-Nam (N'Guyn thi tam et al., 2004), *Juniperus oxycedrus* (Boti et al., 2006b), *d'Abies al la* Mill. (Duquesnoy, 2006) et de *Lavandula dentata* var. *dentata* de l'Algérie (Bousmaha et al., 2005). Par ailleurs, plus de 200 variétés T d'agrumes appartenant au genre *Citrus* (mandarines, clémentines, cédrats, bigaradiers) et cultivées en Corse ont fait l'objet d'une étude globale (Lota et al., 2000; Lota et al., 2001a,b; Lota et al., 2002), visant à proposer une aide à leur classification taxonomique, sur la base de la composition chimique de leurs huiles essentielles de zestes et de feuilles.

Chapitre III: Pouvoir antimicrobien des huiles essentielles

III.!. Activité antibactérienne, Mécanismes d'action et de résistance des antibiotiques:

Avant la découverte des antibiotiques, les pathologies infectieuses bactériennes entraînaient, dans la majorité des cas, la mort: la peste au Moyen Âge, la tuberculose, les blessures infectées sur les champs de bataille en sont des exemples.

Avec la découverte des sulfamides et, plutard, de la pénicilline, on est passé à l'ère antibiotique au cours de laquelle la guérison des pathologies bactériennes est considérée comme habituelle (Alami et al., 2005).

En 1942, Selman Waksman donna le nom d'antibiotique à toutes les substances antibactériennes. Un antibiotique est un dérivé produit par le métabolisme de microorganismes, possédant une activité antibactérienne à faible concentration et. n'ayant pas de toxicité pour l'hôte. Cette notion a été étendue aux molécules obtenues par hémisynthèse. Les antibactériens obtenus par synthèse totale comme les 4-quinolones, les sulfamides, le triméthoprime. .etc, sont des agents antibactériens de synthèse et non des antibiotiques *stricto sensu* (Bergogne-Bérézin et Dellamonica, 1999 : Nauciel et Vildé, 2005).

Les agents antibactériens sont classés selon leurs cibles bactériennes. Il s'agit de cinq mécanismes (Bergogne-Bérézin et Dellamonica, 1999):

- 1. Le blocage de la synthèse de la paroi bactérienne
- 2. L'inhibition de la synthèse des protéines

 \mathbf{T}

 \mathbf{T}

7

T

T

- 3. L'inhibition de la synthèse des acides nucléiques
- 4. L'altération du fonctionnement de la membrane cytoplasmique
- 5. Une inhibition de la synthèse de divers métabolites.

Les antibiotiques ont été très efficaces pour le traitement de nombreuses maladies qui étaient un fléau pour le genre humain. Ils ont été qualifiés de «médicaments miracles» car ils provoquent une spectaculaire guérison pour des maladies autrefois considérées comme incurables (Perry et al., 2004).

Après plus de 50 ans d'utilisation massive des antibiotiques, nous arrivons maintenant à une période plus délicate. Le monde bactérien est capable de s'adapter à une nouvelle situation écologique, y compris à la présence des antibiotiques. En développant des stratégies de résistance vis-à-vis des molécules d'antibiotiques, les bactéries reprennent l'avantage. En effet, l'emploi intensif des antibiotiques, tant en médecine humaine que vétérinaire, mais aussi pour des usages phytosanitaires, est directement relié à l'augmentation des résistances et à la perte d'intérêt d'un grand nombre de molécules (**Alami** et **al., 2005**).

111.1.1. Mécanismes de résistance:

111.1.1.1 Mécanismes génétiques:

Au plan génétique, la résistance aux antibiotiques peut être naturelle ou acquise. La résistance naturelle est présente chez tous les membres d'une même espèce ou d'un même genre bactérien. Elle est liée à son patrimoine génétique (**Bergogne-Bérézin** et **Dellamonica**, 1999).

La résistance acquise affecte seulement quelques souches d'espèces naturellement sensibles, à la suite d'évènements génétiques variés: mutations chromosomiques ou acquisition de gènes. Il peut s'agir d'une mutation qui peut entraîner, par exemple une modification de la cible de l'antibiotique ou bien diminuer sa pénétration. Pour les gènes acquis, le plus souvent, il s'agit de l'acquisition d'ADN étranger pouvant provenir de la même espèce ou d'espèces bactériennes différentes. L'acquisition d'ADN se fait le plus souvent par conjugaison. Elle se fait par l'intermédiaire de plasmides ou de transposons conjugatifs qui peuvent porter un ou plusieurs gènes de résistance (Bergogne-Bérézin et Dellamonica, 1999; Chevalier et al., 2003).

111.1.1.2. Mécanismes biochimiques:

Les trois mécanismes biochimiques principaux de la résistance aux antibiotiques sont le défaut d'accumulation, la détoxification enzymatique de l'antibiotique et l'absence de cible ou d'affinité de(s) cible(s). Ces mécanismes biochimiques sont effecteurs aussi bien des résistances naturelles que des résistances acquises. La résistance acquise par mutation chromosomique est souvent associée à une diminution de l'accumulation de l'antibiotique ou à une altération des cibles, alors que la résistance par acquisition de gènes est généralement liée à la production d'enzymes inactivantes (Chevalier et al., 2003).

Par ailleurs, de nombreuses questions se posent à l'heure actuelle sur la toxicité des substances synthétiques. Or ces produits non seulement enrayent l'infection mais affaiblissent en même temps l'organisme qui par la suite aura des difficultés à recréer son propre système de défense. De plus, la prescription à grande échelle et parfois inappropriée de ces agents antimicrobiens a entraîné la sélection de souches multirésistantes

Enfin, certaines souches « hospitalières» sont résistantes pratiquement à tous les antibiotiques et cela particulièrement dans les services où l'on traite des maladies immunodéprimés et chez qui l'on pratique des gestes invasifs exploratoires et thérapeutiques (réanimation, oncologie sida,...). D'autres part chez ces malades, de nouvelles bactéries commensales ou opportunistes provenant de l'environnement, souvent multirésistantes, sont responsables de syndromes infectieux graves (Bergogne-Bérézin et Dellamonica, 1999).

La résistance aux antibiotiques est devenue un grave problème de santé public touchant la quasi-totalité des agents antibactériens dans tous leurs champs d'action. Les antibiotiques perdent de leur efficacité et les maladies que l'on croyait éradiquées réapparaissent. Des bactéries autrefois sensibles développent donc des résistances à des médicaments jusque-là efficaces. Ces bactéries sont courantes à l'hôpital et parmi elles, les entérobactéries et les souches de *Staphylococcus aureus*. Cette diminution de l'efficacité des moyens de lutte oblige de trouver une alternative à l'utilisation des antibiotiques, en synthétisant de nouveaux composés aux vertus bactéricides. Nous citerons comme exemple, les huiles essentielles, extraites de plantes aromatiques, qui sont utilisées depuis longtemps pour traiter des pathologies, et pour améliorer santé et bien être. En effet, de récentes études ont pu revaloriser les essences et prouver que leur action antibiotique est exempte de toutes réactions secondaires sur les fonctions de l'organisme. En prenant connaissance de ces possibilités inestimables et des résultats positifs obtenus en laboratoire, on devrait être convaincu par ce type de traitement et le préférer à d'autres.

111.2. Les huiles essentielles

111.2.1. Définition:

Chaque fois que, après avoir écrasé un pétale de fleur, une feuille, une branchette, ou une quelconque patie d'une plante, un parfum se dégage, cela signifie qu'une huile essentielle s'est libérée.

Les huiles essentielles, appelées aussi essences, sont des mélanges de substances aromatiques produites par de nombreuses plantes et présentes sous forme de minuscules gouttelettes dans les feuilles, la. peau tes fruits, la résine, les branches, les bois. Elles sont présentes en petites quantités par rapport à la masse du végétal: elles sont odorantes et très volatiles, c'est-à-dire qu'elles s'évaporent 'rapidement dans l'air. (**Padrini** et **Lucheroni**, **1996**).

111.2.2. Domaines d'utilisation des huiles essentielles:

Les plantes aromatiques et leurs huiles essentielles, peuvent avoir d'intéressantes applications dans différents secteurs :

111.2.2.1. En désinfection de l'air: Les systèmes de traitement d'air des bâtiments abritent de nombreux microorganismes susceptibles d'avoir des effets néfastes sur la santé des personnes exposées, en particulier dans le milieu hospitalier. Cependant, les huiles essentielles sont composées d'un grand nombre de molécules volatiles. En diffusion dans

l'atmosphère, ou diluées dans les produits de nettoyage, elles désinfectent, désodorisent et parfument agréablement et naturellement l'air. Elles créent un espace de senteurs agréables et chassent les mauvaises odeurs. En éliminant 90% du niveau bactérien, elles assainissent l'air et constituent une excellente protection contre la pollution. La diffusion atmosphérique est la manière la plus simple d'utiliser les huiles essentielles pures. Leur parfum favorise une ambiance agréable et sont bienfaisantes pour la santé. Cette pratique régulière prévient également des affections niicrobiennes en renforçant les défenses immunitaires.

On peut les utiliser également pour l'assainissement de l'atmosphère des locaux tels que la conservation du patrimoinb bibliographique des musés et des archives (**De Bilierbeck, 2000**; **2002**), ou pour traiter la qialité de l'air dans les bâtiments (Pibiri et al., 2001).

111.2.2.2. En agroalimentaire:

Les effets antimicrobiens de différentes espèces d'herbes et d'épices sont connus depuis longtemps et mis à profit pour augmenter la durée de vie des aliments. Ainsi, les huiles essentielles et leurs composants, actuellement employés comme arômes alimentaires sont également connus pour posséder des activités antioxydantes et antimicrobiennes sur plusieurs bactéries responsable de ila pollution des aliments et pourraient donc servir d'agents de conservation alimentaires (**Kim** et al., 1995; **Dorman**, 1999).

Récemment, **Oussalah** et ail. (2007) rapportent que les huiles essentielles d'origan, de sarriette et de la cannelle sont les plus efficace contre la croissance de quatre bactéries pathogènes (*E. coli 0157:H7, Salmonell (yphimurium, Staphylococcus aureus,* et *Listeria monocytogenes)* les plus couramment responsables de la détérioration des aliments. Ils avancent également que leur ajout en très faibles quantités directement dans les aliments (viandes hachées, légumes hachés, purées de fruit, yaourts...) ou l'application par vaporisation en surface (pièce de viande, charcuterie, poult, fruits et légumes entiers...) contribuent à contrôler la flore microbienne, à préserver l'aliment des phénomènes d'oxydation et n'altère pas les qualités organoleptiques de l'alinLent. En effet, L'application de bio-films contenant des huiles essentielles sur des tranchs de viande contaminée, a permis de réduire très significativement la croissance de bactéries pathogènes au delà d'une semaine d'entreposage.

Les huiles essentielles ont également des propriétés fongicides. Elles sont utilisées en tant que pesticides car elles ne sont pas toxiques pour les plantes et sont facilement biodégradables (Mahadevan, 1982) et sont très efficace contre les moisissures responsables de la détérioration des denrées alimentaires lors de leur stockage (Dwivedi et Singh, 1998 Mejholm et Dalgaard, 2002).

111.2.2.3. En traitement des infections:

 \mathbf{T}

 \mathbf{T}

Т

Les huiles essentielles sont très efficaces sur les germes résistants aux antibiotiques; ce qui leur donne une place parmi les moyens thérapeutiques pour guérir, atténuer ou prévenir les maladies et les infections (Buchbauer et Jirovetz, 1994). Les perspectives d'application sont nombreuses comme, par exemple, le traitement des affections bactériennes et fongiques de la cavité buccale (Shapiro et ai., 1994) et du système respiratoire (Inouye et ai, 2001). Ces auteurs ont montré que les huiles essentielles de thym, d'écorce de cannelle, de lemongrass, de périlla et de menthe poivrée se sont révélées très efficace sur les principaux germes pathogènes responsable des infections respiratoires, notamment Haemophilus influenzae, Streptococcus pneumoneae, Streptococcus pyogenes et Staphylococcus aureus.

111.2.3. Mécanisme d'action des huiles essentielles

Face au problème soulevé depuis plusieurs années par la résistance des bactéries, la seule alternative fiable à l'usage des antibiotiques semble être celle des huiles essentielles. Connue de façon empirique depuis des siècles, leur efficacité anti-infectieuse a été scientifiquement démontrée in vitro (**Dorman** et **Deans, 2000; Oussalah et al., 2007**) et in vivo (**Ohno** et al., 2003 : Chami et ai, 2004).

111.2.3.1. Mode d'action contre les bactéries:

Plusieurs travaux sont menés pour comprendre le mécanisme d'action des huiles essentielles (Chang et al., 2001). Certains auteurs suggèrent que ces produits naturels pénètrent à l'intérieur de la cellule microbienne et sont susceptibles d'interférer avec son métabolisme cellulaire (Marino et al., 2001). D'autres avancent que les huiles essentielles perturbent le bon fonctionnement de la membrane plasmique et réagissent avec les sites actives des enzymes ou servent de transporteur de proton en réduisant la synthèse de. l'ATP (Chang et al., 2001; Ultee et al., 2002). Les huiles essentielles possèdent plusieurs modes d'action sur les différentes souches de bactéries, mais d'une manière générale leur action se déroule en trois phases (Oussalah et al., 2006; Burt, 2004):

attaque de la paroi bactérienne par l'huile essentielle, provoquant une augmentation de la perméabilité puis la perte de constituants cellulaires.

- acidification de l'intérieur de la cellule, bloquant la production de l'énergie cellulaire et la synthèse des composants de structure.
- destructio du matériel génétique, conduisant à la mort de la bactérie.

L'activité biologique d'une huile essentielle est liée à sa composition chimique, aux groupes fonctionnels des composés majoritaires (alcools, phénols, composés terpéniques et cétoniques) et à leurs effets synergiques (Dorman et Deans, 2000; Ultee et al., 2002). Les composés chimiques de plus grande efficacité et à plus large spectre sont les phénols (thymol, carvacrol et eugénol), les alcools (a-terpinéol, terpinène-4-ol et linalol), les aldéhydes, les cétones et plus rarement les terpènes (Cosentino et al., 1999; Dorman et Deans, 2000). Les alcools agissent généralement len dénaturant les protéines, comme solvants ou comme agents de déshydratation (Dorman et Deans, 2000).

Les aldéhydes peuvent induire des réactions de transferts d'électrons et réagir avec des composés nitrés vitaux pour la bactéile: protéines et acides nucléiques (**Dorman** et **Deans**, **2000**).

Les phénols sont responsables de dégâts irréversibles au niveau de la membrane. En effet, la plupart des études avancent que le principal site d'action des huiles essentielles est la membrane plasmique (Shunying et al., 2005), car le caractère hydrophobe des huiles essentielles leur permet de se lier avec les lipides de la membrane plasmique (Burt, 2004) qui perd sa structure et devient plus perméable aux ions potassium et proton. Ceci entraîne une diminution du gradient pH, du potentiel membranaire et une inhibition de la synthèse d'ATP, qui s'ensuis par la mort de la bactérie (Ultee et al., 1999; Ultee et al., 2000 ; Burt, 2004). En outre, Walsh et al. (2003) rapporte' nt que le thymol a un effet inhibiteur et létal sur diverses souches, dont *Escherichia coli* et *Staphyloccocus aureus*, sur lesquelles, il provoque des fuites d'ions potassium K.

111.2.3.2. Mode d'action contre les champignons:

L'étude de l'effet fongicide et fongistatique des huiles essentielles vis-à-vis de champignons pathogènes a fait l'objet de plusieurs travaux (Karaman et al., 2001; Rasooli et Razzaghi Abyaneh, 2004; Teixeira Duarte et al., 2005). L'action antifongique des huiles essentielles est due à une augmentation de la perméabilité de la membrane plasmique suivie d'une rupture de celle-ci entraînant une fuite du contenu cytoplasmique et donc la mort de la levure (Cox et al., 2000). En effet, les composés terpéniques des huiles essentielles et plus précisément leurs groupements fonctionnels tels que les phénols et les aldéhydes réagissent avec les enzymes membranaires et dégradent la membrane plasmique des levures (Knobloch et al., 1989). Ils ont constaté également que les alcools et les lactones sesquiterpéniques avaient une activité antifongique.

fl

Partie E-icpenmentafe ______

I- Introduction:

n

 \mathbf{T}

 \mathbf{T}

T

L'exploration du règne végétal a déjà permis la découverte de molécules importantes dans le domaine médical. Actuellement notre espoir est de trouver des molécules à très grande efficacité anti-bactérienne car la résistance aux antibiotiques est devenue un grave problème de santé publique touchant la quasi-totalité des agents anti-bactériens dans tous leurs champs d'action. Les antibiotiques perdent de leur efficacité et des maladies que l'on croyait éradiquées réapparaissent.

Dans ce contexte, nous nous sommes proposés de valoriser six espèces végétales à savoir: *Thymus fontanesii* (**Boiss.** et **Reut.**), *Origanum glandulosum* (**Desf.**), *Ammoïdes verticillata* (**Desf.**), *Mentha pulegium* (L.), *Satureja calamintha subsp. nepeta* (L.) **Briq.** et Ziziphora hispanica (L.) poussant à l'état spontané dans la région de Tlemcen.

Dans cette partie, nous avons envisagé la partie expérimentale ou nous présenteront les techniques utilisées dans ce travail et qui se déroule en deux axes:

Dans le premier axe, nous avons effectué une analyse chimique dont les étapes sont les suivantes

- . Extraction des huiles essentielles des différentes espèces végétales.
- Caractérisation des huiles essentielles de ces plantes (qui a été réalisée dans le laboratoire de «Chimie et Biomasse» à l'Université de Corse, UMR CNRS 6134) par une application conjointe de plusieurs méthodes chromatographiques et spectroscopiques (chromatographie en phase gazeuse (CPG-Ir), chromatographie sur colonne de silice (CC) effectué uniquement pour l'huile essentielle de *Ziziphora hispanica*, chromatographie en phase gazeuse coùplée à une spectrométrie de masse (CPG-SM) réalisée pour les huiles essentielles de *Ziziphora hispanica* et de *Thymus fontanesii*, une spectroscopie de résonance magnétique du carbone 13 (RMN ¹³C)).

Dans le deuxième axe, nous nous sommes intéressées au pouvoir antibactérien des huiles essentielles de ces espèces végétales vis-à-vis de 18 souches appartenant au Gram (+) et au Gram (-). Pour cela, nous avons procédé à la vérification de la purification des différents germes et à l'identification des souches d'origine hospitalière. Ensuite, nous avons évalué l'activité antibactérienne des huiles essentielles en effectuant quatre méthodes

 Méthode de diffusion sur disque (aromatogramme), qui permet d'évaluer rapidement l'activité antibactérienne des huiles essentielles des différentes plantes (Jacob et al., 1979).

- . Dans l'affirmation, nous avons déterminé la concentration minimale d'inhibition (CMI) par la méthode de contact direct, basée sur l'utilisation sous forme d'émulsion de ces produits non miscibles à l'eau (**Bendjilali** et **al., 1986**)
- Méthode de Maruzuella, permettant de déterminer la concentration minimale bactéricide (CMB) et de tester le pouvoir bactéricide en bouillon après solubilisation de l'huile essentielle dans un émulsifiant. Elle fait agir directement l'huile essentielle sur les microorganismes en suspension dans le bouillon (Beylier-Maurel, 1976);
- Méthode de microatmosphère, qui permet d'évaluer l'activité des substances volatiles et de déterminer la quantité minimale inhibitrice (QMI) (Benjilali et al., 1984).

Les résultats obtenus en testant le pouvoir antibactérien des huiles essentielles de *Thymus* fontanesii, d'Origanum glandulosum et d'Ammoïdes verticillata ont été soumis à un traitement statistique des données.

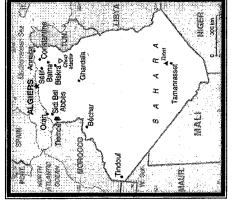
II- Matériel végétal:

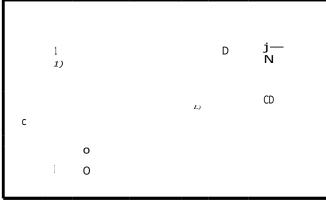
II.!. Situation géographique des stations d'étude:

Les principaux facteurs géographiques qui influent de façon significative sur la végétation en Algérie, comme partout ailleurs, sont le climat (précipitations, températures, vents, radiation solaire), le sol et l'altitude. En outre, c'est surtout l'équilibre délicat de ces facteurs qui joue un rôle primordial à la fois dans le développement individuel des plantes et dans leur distribution (**Béniston**, 1984).

La récolte des différentes espèces a été effectuée dans la région de Tlemcen (l'Ouest de l'Algérie), dans différentes stations, à savoir: Pierre du Chat, Sidi-Snoussi, Remchi, Sebâa-Chioukh, Sebdou, Beni-Mester, Terni et Maghnia (Tableau 13, figure 3).

Les situations géographiques ainsi que les étages bioclimatiques des différentes stations (confirmés par Mr Bouabdellah, membre du laboratoire d'Ecologie et de Gestion des Ecosystèmes Naturels, au département de Biologie et Environnement) sont représentées dans le tableau (13).


 \mathbf{T}


	CI) •u —	ri) c	CI)) O				ci)
-a	o E E	ri)	0) E	0) c E-		cı) 0) E E	°, E	bo
-	o E	<i>о</i>		o E	Ę	c		E
h	CD	ÇD n	<i>S</i> 9	CD	CD		CD	kn
Q	°n			°n	o	o	o	o
Cu Z	_	N	CD	СД			И	N

Q Q

 ${}^{\scriptscriptstyle{\mathsf{M}}}\!O$

```
21
                                                                                                                       r')
                                                                                                                                     Ν
                                                                              j7 1w.
                                                  10
                                      L CI
(]
                                                                                                                      \mathbf{I}
```


1.2. La récolte du matériel végétal:

La cueillette a été faite en période de pleine floraison (mois de Juin) sur 2 années successives pour *Thymus fontanesii* et *Ziziphora hispanica* (2004/2005) et sur 3 années successives pour *Ammoïdes verticillata*, *Me nt ha pulegium*, *Origanum glandulosum* et *Satureja calamintha* subsp. nepeta (2003/2004/2005).

Après la récolte du matériel végétal, on procède à sa dessiccation comme suit: on l'étale sur du papier et on le laisse sécher à l'ombre, à l'abri de l'humidité et à température ambiante. Le séchage est de δ jours en moyenne pour les différentes plantes, puis conservées dans des sacs en papier.

11.3. Identification botanique:

Les différentes espèces identifiées par Monsieur le Professeur **Bouazza M.** (laboratoire d'Ecologie et de Gestion des Ecosystèmes Naturels), ont été classées dans son laboratoire et dans notre laboratoire (Produits Naturels) et ont été enregistrées sous les références suivantes:

- L. 2359 pour Thymus fontanesii (Boiss. et Reut.)
- L. 2421 pour Origanum glandulosum (Desf.)
- A. 1961 pour Ammoïdes verticillata (Desf.)
- L. 2286 pour Menthapulegium (L.)
- s L. 2386 pour Satureja calamintha subsp. nepeta (L.) Briq.
- . L. 2313 pour Ziziphora hispanica (L.)

11.4. Extraction des huiles essentielles par hydrodistillation:

La distillation reste la méthode la plus utilisée pour l'obtention des composés d'arômes du fait qu'elle produit des substances volatiles facilement analysables par chromatographie en phase gazeuse et exigeant une technologie relativement simple, donc un coût plus bas ainsi qu'une reproductibilité facilement contrôlable (**Benjilali**, 2004).

Nous avons utilisé la méthode d'hydrodistillation pour l'extraction des huiles essentielles des différentes plantes. La distillation a été effectuée par un appareil de type Clevenger. Le temps d'extraction est de trois heures.

Seule les parties aériennes (tiges, feuilles et fleurs) des différentes plantes sont utilisées sauf pour *Satureja clamintha subsp. nepeta* pour laquelle, nous avons distillé que les feuilles et les

fleurs. Afin d'éliminer toute trace d'eau, nous avons séchées les huiles essentielles sur du sulfate de sodium (Na2SO4).

Pour éviter toute dégradation de l'huile essentielle due à l'action de l'air et de la lumière, nos échantillons étaient conservés au réfrigérateur (0-4°C) dans des tubes fumés et bien fermés.

Après chaque extraction, nous avons déterminé le rendement en huile essentielle qui est défini comme étant le rapport entre la masse d'huile essentielle obtenue et la masse végétale sèche à traiter (Carré, 1953).

III- Analyse des huiles essentielles:

Les analyses des huiles essentielles des six espèces de plantes par CPG-Ir et par RIvIN ont été effectuées au laboratoire de « Chimie et Biomasse» de l'Université de Corse-CNRS.

III.!. Chromatographie en phase gazeuse (CPG):

La CPG est la technique la plus adaptée pour l'analyse des huiles essentielles compte tenu de la volatilité de leurs constituants (**Bruneton**, 1999).

111.1.1. Conditions opératoires:

Les analyses ont été faites à l'aide d'un chromatographe Perkin-Elmer Autosystem (8500), équipé d'Un détecteur à ionisation de flamme (FID), d'un injecteur diviseur, de deux colonnes capillaires de dimensions 50m x 0,22 mm (épaisseur du film: 0,25 pm):

Une colonne polaire BP20, polyéthylène glycole

- . Une colonne apolaire BPI, diméthylsiloxane
- Le gaz vecteur est l'hélium (0,8m1/min), avec une pression en tête de colonne de 20psi
- La température de l'injecteur est de 250°C, celle du détecteur est de 250°C
- La température linéaire est programmée depuis 60°C jusqu'à 220°C, à raison de 2'C/min, suivie d'un palier de 20 min à 220°C
- Injection automatique : 0,1 jtl en mode Split (1/60).

111.1.2 Identification des constituants

Les constituants ont été identifiés par comparaison de leurs indices de rétention (Ir) calculés par rapport à une série d'alcanes (C8-C28) avec interpolation linéaire sur les deux

colonnes, avec ceux des composés de référence, contenus dans la bibliothèque du laboratoire (Joulain et Knig, 1998).

111.2. Analyse par chromatographie en phase gazeuse couplée à la spectrométrie de masse (CPG-SM) :

Seules les huiles essentielles de *Thymus fontanesii* et de *Ziziphora hispanica* ont été analysées par chromatographie en phase gazeuse couplée à la spectrométrie de masse (CPG-SM), réalisée au laboratoire de « Chimie des Produits Naturels » de l'Université de Corse.

111.2.1. Conditions opératoires:

Les huiles essentielles sont analysés à l'aide d'un chromatographe Perkin Elmer Autosystem XL, doté d'un injecteur automatique et d'une colonne capillaire de silice fondue, BP-l(polydiméthylsiloxane, de dimension 60 m x 0.22 mm, épaisseur du film 0.25 tm) ou Rtx-1(polydiméthyl-siloxane) et Rtx-Wax (polyéthylène glycol), couplé à un détecteur de masse Perkin TURBO MASS. Les molécules sont bombardées dans une source d'ionisation de 150°C par un faisceau électronique de 70eV, la détection se fait par un analyseur quadripolaire constitué d'un assemblage de quatre électrodes parallèles de section cylindrique.

- Le gaz vecteur est l'hélium (lml/min), exerçant une pression en tête de colonne de 43psi.
- La température linéaire est programmée depuis 60°C jusqu'à 230'C, à raison de 2°C/min, suivie d'un palier de 45min à 230'C
- Spectre de masse à ionisation électrique obtenu au-dessus d'un intervalle de 35-350 Da.
- Injection automatique: 0,2d en mode Split (1/80).

111.2.2. Identification des constituants:

La méthode d'identification est basée sur la comparaison du spectre de masse, obtenu pour chacun des composés de l'huile essentielle lors de la fragmentation de nos solutés, avec une banque de spectres de produits de référence (Adams, 1989; Mc Lafferty et Stauffer, 1994; Joulain et K6nig, 1998; National Institute of Standards and Technology, 1999). Actuellement le laboratoire de «Chimie des Produits Naturels », de l'Université de Corse, possède cinq banques de spectres différentes, deux banques propres au laboratoire et trois banques commerciales.

III.3. Analyse par spectroscopie de la résonance magnétique du carbone 13 (RMN ¹³ C):

La RMN du ¹³C selon la méthode mise au point et développée par l'équipe «Chimie et Biomasse » de l'Université de Corse (**Tomi** et **al., 1995**), est basée sur la comparaison des déplacements chimiques des carbones du mélange avec ceux des produits de référence enregistrés dans des conditions expérimentales (solvant, dilution) rigoureusement identiques à celles des huiles essentielles et stockés dans des bibliothèques de spectres propres au laboratoire.

111.3.1. Conditions opératoires:

Les spectres RMN ont été enregistrés dans le chloroforme deutéré, sur spectromètre de marque «Bruker AVANCE 400 », opérant à 100,623 MHz pour le carbone 13, sous les conditions opératoires suivantes: Sonde de 5mm, durée d'impulsion (PW): 4J.Ls (angle 45°), temps d'acquisition: 2,73 s correspondant à une acquisition de 128 K avec une largeur spéciale (SW) de 25000 Hz (250 ppm), résolution digitale: 0,1 83Hz/pt, mode de découplage pulsé (Composite Phase Decoupling), le nombre d'accumulation est compris entre 2000 et 3000 pour chaque enregistrement. Les déplacements chimiques sont des donnés en ppm () (Tétraméthyl Silane) par rapport au TMS pris comme référence interne.

L'analyse d'un mélange est menée sur un échantillon de 40mg dilué dans 0,5 ml de CDC13. Les données du signal de précession libre (FID) sont multipliées avant la transformée de Fourrier par une fonction exponentielle (LB1,OHz).

111.3.2. Identification des constituants:

L'identification est réalisée par la prise en compte du nombre de pics observés par rapport à ceux attendus pour chaque molécule, du nombre de superpositions des signaux et des variations des déplacements chimiques des carbones dans les spectres du mélange par rapport aux valeurs de référence (z\). En plus de ces paramètres qui sont directement accessibles par un logiciel élaborés au laboratoire de «Chimie et Biomasse » à l'Université de Corse (**Tomi** et **al., 1995**), l'intensité des raies de résonance permet de contrôler l'appartenance d'un déplacement chimique à un composé donné. Cette Technique permet l'identification de différents composants à une teneur supérieure ou égale à 0,5% sans purification précédente.

111.4. Fractionnement de l'huile essentielle de Ziziphora hispanica:

Dans l'optique de mener une analyse plus approfondie et donc d'identifier un plus grand nombre de composés pour l'huile essentielle de *Ziziphora hispanica*, *il* était nécessaire de

combiner un fractionnement sur colonne ouverte de silice avec des analyses par CPG-Ir, CPG-SM et RMN du carbone-13 car cette huile contient un pourcentage élevé en pulégone (77,6 - 79,5%) qui nous a empêcher d'identifier les autres composants qui se trouvent en faibles quantités.

Nous avons procédé à une chromatographie «Flash» de 1g d'huile essentielle de *Ziziphora hispanica*, sur une colonne de silice (ICN 200-500 im, 10g), avec un solvant pur de pentane, un mélange de pentane/oxyde de diéthyle (95/5) et un solvant pur (oxyde de diéthyle), respectivement (Tableau 14).

Après humidification de 15g de gel de silice (200-500tm) -soit sur une longueur de 10cm-par du pentane, on a placé 1g d'huile essentielle. Des élutions successives de lOOmI de solvant ont été effectuées pour conduire à des fractions de polarité croissante.

Tableau (14) Fractionnement de l'huile essentielle de Ziziphora hispanica

Numéro de fraction	Pentane / Oxyde de diéthyle (%)	Poids des fractions (mg)
1	100/0	50
2	95/5	828
3	0/100	107

Les fractions ainsi obtenues ont été analysées par CPG-Ir et par RMN C.

Depuis des millénaires, les essences sont exploitées pour leurs propriétés antiseptiques car elles s'opposent au développement des germes et les tuent. Leur pouvoir antiseptique est général bien qu'elles aient des compositions chimiques très différentes et il se vérifie aussi bien en présence de leur vapeur que par contact direct, même si elles sont diluées.

Il y a 500 000 plantes sur terre, 10 000 d'entre elles environ possèdent des propriétés médicinales et sont utilisées de par le monde. Leur champ d'action est vaste et leur puissance varie. Ainsi, la plupart ont des effets spécifiques sur certaines parties de l'organisme et sont reconnues pour pouvoir traiter divers cas. Aujourd'hui, les traitements par les plantes reviennent au premier plan, car l'efficacité des médicaments tels que les antibiotiques (considérées comme la solution quasi universelle aux infections graves) décroît. Les bactéries se sont peu à peu adaptées aux médicaments et leur résistent de plus en plus (Essawi et Srour, 2000; Larousse, 2001).

La nouvelle démarche consiste à s'intéresser à la recherche d'un principe actif dans les produits naturels d'origine végétal, plus particulièrement les métabolites secondaires à savoir les huiles essentielles, issues de plantes aromatiques qui sont utilisées depuis longtemps pour traiter des pathologies et pour améliorer santé et bien être.

Pour cela, nous avons voulu étudier le pouvoir antibactérien des huiles essentielles des différentes plantes vis-à-vis de différentes bactéries de référence et celle d'origine hospitalière. Dans cette partie, nous allons traiter les points suivants:

- Provenance des germes;
- Vérification de la purification et identification des souches d'origine hospitalière;
- Etude du pouvoir antibactérien des huiles essentielles des différentes espèces végétales.

l'VA. Provenance des germes étudiés:

Les souches pathogènes utilisées sont présentées dans le tableau (15). Elles sont parmi ceux qui causent les maladies les plus courantes, se sont des contaminants fréquents, provoquant ainsi des infections importantes.

n

Tableau (15): Provenance des germes étudiés

Souches utilisées

Origine Bactéries à gram négatif Pseudomonas aeruginosa (P2) Laboratoire de microbiologie (département de Biologie, 22102004 université de Tlemcen). Pseudomonas aeruginosa (P₃) ATCC 27853 Laboratoire vétérinaire de Tlemcen (L.V.R.T.) Escherichia Cou (E₄) ATCC 25922 *Klebsiellapneun3oneae* (KL₁) 5215773 *Klebsiellapneumoneae* (KL₂) ATCC 700603 Escherichia Cou (E2) Laboratoire de microbiologie de l'hôpital de Tlemcen 5044552 (C.H.U.) Eseherichia Cou (E₃) 5144572 Escherichia Cou (E₆) 5044552 Entrobacter cloaceae (En) 1305573 Salmonella typhi (SL) 4404540 *Proteus mirabilis* (Pr) 0536040 Laboratoire de microbiologie du centre hospitalier de Citrobacterfreundii (Ci) Saïda(C.H.) 1554512 Escherichia Cou (E₁) Laboratoire de microbiologie de l'hôpital de Sidi Bel-Abes 5044172 (C.H.U.) Bâctéries à gram positif Listeria monocytogenes (L_{11}) Laboratoire de microbiologie (département de Biologie, ATCC 19111 université deTlemcen) *Listeria monocytogenes* (L15) ATCC 19 115 Staphylococcus aureus (Sti) Laboratoire de phytopharmacie, Paris 7 (France) **ATCC 601** Staphylococcus aureus (St₂) Laboratoire de microbiologie de l'hôpital de Sidi Bel-Abés 6736153 (C.H.U.) Staphylococcus aureus (St3) Laboratoire vétérinaire de Tlemcen (L.V.R.T.) ATCC 43866

IV.2. Vérification de la purification des bactéries e identification des souches d'origine **hospitalière:** Avant la détermination du pouvoir antibactérien des huiles essentielles des différentes espèces végétales, nous avons procédé à la vérification de la pureté des bactéries et l'identification des souches d'origine hospitaière en étudiant leurs caractères morphologiques et biochimiques.

IV.2.1. Identification des bactéries:

IV.2.1.1. Caractères étudiés:

- Morphologie et coloration:
 - 1. Aspect des colonies
 - 2. Mobilité examen à l'état frais
 - 3. Coloration de Gram
- Caractères biochimiques:
 - 1. Plaque API 20 E pour les entérobactéries et pour Pseudomonas aeruginosa
 - 2. Plaque API STAPH pour le Staphylococcus aureus

Les galeries API 20 E et API STAPH (Tableau 16) comporte 20 microtubes contenant des substrats déshydratés pour la mise en évidence d'enzymes ou l'utilisation de sucres. Les microtubes sont inoculés avec une suspension bactérienne réalisée avec une culture pure. Les réactions produites pendant la période d'incubation (24h à 48h à 37 \pm 1°C) se traduisent par des virages colorés spontanés ou révélés par l'addition de réactifs.

Tableau (16): Liste des tests étudiés au niveau des plaques API

Tests étudiés	Souche	s	Souches
ONPG: Production de la 3-galactosidase	-	ARA : Dégradation de l'arabinose	-
ADH: Production de l'arginine déhydrolase	- +	OX: Production de l'oxydase	-
LDC : Production de la lysine décarboxylase	-	NO ₂ Production de NO ₂	-
ODC: Production de l'ornithine décarboxylase	-	N ₂ Production de N ₂	-
CIT Dégradation du citrate	-	FRU: Dégradation du fructose	+
11_2 S Production de H ₂ S	-	MNE : Dégradation du mannose	+
URE : Production de l'uréase	- +	MAL: Dégradation du maltose	+
TDA : Production de la tryptophane dés minase	-	LAC : Dégradation du lactose	+
IND : Production d'indole	-	TRE: Dégradation du tréhalose	+
réaction de Vosgers Proskauer	- +	XLT: Dégradation du xylitol	+
GEL: Production de la gélatinase	-	NIT: Réduction des nitrates	+
GLU: Dégradation du glucose	- +	PAL: Production de la phasphatase	+
MAN: Dégradation du mannitol	- +	alcaline	
INO: Dégradation de l'inositol	-	RAF: Dégradation du raffinose	+
SOR: Dégradation du sorbitol	-	XYL: Dégradation du xylose	+
RIIM: Dégradation du rhamnose	-	MDG: Dégradation du méthyl-	+
SAC : Dégradation du Saccharose	- +	a-D-glucopyranoside	
MEL: Dégradation du mélibiose	- +	NAG: Dégradation du N-acétyl-	+
AMY: Dégradation de l'amygdaline	-	glucosamine	

⁺ Testé chez Staphylococcus aureus

^{- :} Testé chez les entérobactéries et chez Pseudomonas aeruginosa

IV.3. Techniques d'étude du pouvoir antibactérien des huiles essentielles des différentes espèces végétales

Lors de cette étude, nous avons testé les huiles essentielles des différentes espèces végétales vis-à-vis de souches de référence et celles d'origine hospitalière qui aujourd'hui sont impliquées dans les infections nosocomiales et dont certaines ont acquises une résistance aux antibiotiques.

Dans un premier temps, nous avons testé l'action de ces huiles essentielles par une méthode rapide (la méthode de diffusion sur disque) et dans l'affirmation, nous avons déterminé la concentration minimale d'inhibition (CMI) en milieu solide, la concentration minimale bactéricide en milieu liquide, puis nous avons évaluer l'activité des substances volatiles sur les mêmes germes utilisés précédemment.

IV.3.1. Méthode de diffusion sur disque (aromatogramme):

 \mathbf{T}

 \mathbf{T}

 \mathbf{T}

T

Nous avons utilisé la méthode de l'aromatogramme par diffusion sur des disques imprégnés d'huile essentielle (Jacob et al., 1979). Des disques de papier filtre de 6irirn de diamètre imprégnés d'huile essentielle pure (3tl) (Janssen et al., 1986; Janssen et al., 1987; Sivropoulou et al., 1995; Soknien et al., 2004) sont déposés à la surface d'un milieu gélosé en boîte de pétri (3 disques de papier filtre par boîte), préalablement ensemencées en surface en nappe avec 1 ml de suspension bactérienne de germes/ml pendant 5 à 10min et l'excédant de l'inoculum est éliminé par aspiration (Shunying et al., 2005).

En parallèle, nous avons utilisé des témoins afin de vérifier la croissance des différentes souches.

Après incubation à 37°±1°C pendant 24 h, la lecture des résultats se fait par la mesure du diamètre de la zone d'inhibition en mm, disque inclus.

IV.3.2. Méthode de contact direct en milieu gélosé: Décrite par Beylier-Maurel en 1976 et modifiée par Bendjilali et al. en 1986.

Elle est basée sur l'utilisation sous forme d'émulsion de ces produits non miscibles à l'eau. L'émulsifiant utilisé est le Tween 80 dilué à 10% dans de l'eau distillée, puis stérilisée à 120 °C pendant 15 minutes. A 9 ml de cette solution, on ajoute, aseptiquement, 1 ml d'huile

essentielle. On obtient ainsi la solution mère « SM », à partir de laquelle, on procédera à des dilutions successives pour obtenir les différentes concentrations voulues.

Dans des tubes à essais contenant chacun 13,5 ml de milieu de culture gélosé et encore en état de fusion, on ajoute aseptiquement 1,5 ml de la solution « SM» ou des diverses dilutions de cette solution (Tableau 17).

Dans le tube témoin, on ajoute 1,5 ml de la solution de Tween 80 dans de l'eau distillée.

On agite les tubes, on coule dans des boîtes de pétri et on laisse refroidir.

Les milieux coulés en boîte de pétri sont ensemencées en surface en nappe avec 1 ml de suspension bactérienne de germes/ml pendant 5 à lOmin et l'excédant de l'inoculum est éliminé par aspiration (**Shunying** et **al., 2005**).

Après une durée d'incubation qui se fait à 37°±1 °C pendant 24 h, on procède à la lecture des résultats par présence ou absence de croissance bactérienne.

Tableau (17) : Gamme de concentration (en *pgIml*) des huiles essentielles utilisées pour l'évaluation de l'activité antibactérienne en milieu gélosé.

Huiles essentielles	S.M		10.2	10
Thymus	9540	954	95,4	9,54
Origanum	9130	913	91,3	9,13
Ammoïdes	9070	907	90,7	9,07

IV.3.2.1 Détermination des concentrations minimales inhibitrices (CMI):

La CMI (concentration minimale inhibitrice) correspond à la plus faible concentration capable d'inhiber toute croissance visible du germe. Elle mesure donc, un effet bactériostatique et ne renseigne pas sur l'état de la population bactérienne, ne permettant notamment pas de préciser si elle a été tuée en partie ou totalement ou si elle a seulement cessé de se multiplier (Bergogne-Bérézin et Brogard, 1999).

Pour déterminer les CMI (Tableau 18), nous avons suivi les mêmes étapes que pour l'évaluation de l'activité antimicrobienne selon la méthode de contact direct, en variant les concentrations de l'huile essentielle dans le milieu gélosé.

Tableau (18) : Gamme de concentration (en Fug/ml) d'huile essentielle utilisées pour la détermination de la concentration minimale inhibitrice en milieu gélosé

Huiles ntielle	SM	1/2	1/3	1/10	1/11	1/12	1/100
	9540	4770	3180	954	870	800	100
	9130	4565	3040	 913	830	760	 95
	9070	4535	3020	907	820	750	90

Remarque: Pour les *Pseudomonas*, on a augmenté la quantité d'H.E. dans la solution mère. On amis 1.75 ml d'H.E. au lieu de 1 ml d'H.E.

IV.3.3. Méthode de contact direct en milieu liquide (Technique de Maruzzella):

Cette méthode, rapporté par **Beylier-Maurel** en 1976 permet d'évaluer le pouvoir bactéricide en bouillon après solubilisation de l'huile essentielle dans de l'éthanol à 95% (**Sivropoulou** et **al., 1995**; **Chaibi** et **al., 1997**). Elle fait agir directement l'huile essentielle sur les microorganismes en suspension dans le bouillon Mueller-Hinton.

A 8,5 ml de la solution d'éthanol, on ajoute, aseptiquement, 1,5 ml d'huile essentielle. On obtient ainsi la solution mère « SM », à partir de laquelle, on procédera à des dilutions successives pour obtenir les différentes concentrations voulues.

Dans des tubes à essais contenant chacun 4 ml de bouillon Mueller-Hinton, on ajoute aseptiquement 0,5 ml de la solution «SM» ou des diverses dilutions de cette solution (Tableau 19).

Dans le tube témoin, on ajoute 1,5 ml d'éthanol au lieu de l'huile essentielle.

Les milieux sont ensemencés avec I ml de suspension bactérienne de germes/ml, soit une concentration finale de cellules d'environ 2. germes/ml (Canillac et Mourey, 2001).

On agite les tubes et on laisse incuber dans un bain-marie en agitation à 37 °C pendant 24h. Au terme de cette durée, on effectue des subcultures dans des boîtes de pétri contenant le milieu Mueller-Hinton.

L'incubation se fait à 37°C pendant 24h puis, on procède à la lecture par présence ou absence de la croissance bactérienne.

Tableau (19) : Gamme de concentration (en tg/ml) des huiles essentielles utilisées pour l'évaluation de l'activité antibactérienne en milieu liquide

Huiles essentielles	S.M	10 ^{.1}	10 ^{.2}
Thymus	13010	1301,0	130,10
Origanum	12450	1245,0	124,50
Ammoïdes	12370	1237,0	123,70

IV.3.2.1 Détermination des concentrations minimales bactéricides (CMB):

La CMB (concentration minimale bactéricide) (Tableau 20) s'est avérée être un bon prédicateur de l'efficacité thérapeutique d'un antibiotique et est donc largement utilisée dans la recherche de nouvelles substances actives (Joffin et **Leyral, 1996).**

Pour déterminer les CMBs, nous avons suivi les mêmes étapes que pour l'évaluation de l'activité antimicrobienne selon la méthode de Maruzzella, en variant les concentrations de l'huile essentielle dans le milieu.

Tableau (20) : Gamme de concentration (en tg/ml) d'huile essentielle utilisées pour la détermination de la concentration minimale bactéricide en milieu liquide

Huiles essentielles	SM	1/2	1/11	1/12	1/100
Thymus Origanum Ammoïdes	13009 12450 12370	6500 6230 6180	 1180 1130 1120	1080 1040 1030	 130 125 120

Remarque: Pour les *Pseudomonas*, on a augmenté la quantité d'H.E. dans la solution mère. On amis 1.75 ml d'H.E. au lieu de *1,5* ml d'H.E.

Généralement, les huiles essentielles sont très peu solubles dans l'eau. Ceci cause beaucoup de problèmes pour étudier leurs propriétés biologiques et pharmacologiques. Cependant, plusieurs auteurs recommandent d'utiliser différents solvants pour une bonne dispersion des huiles essentielles tels que l'acétone, alcool, éthylène glycol, éthanol, méthanol, DMSO, et DMF (Conner et Beuchat, 1984; Lahlou et al., 2000a) ou bien d'utiliser un détergent émulsifiant ou un tènsioactif tel que le Tween 20 ou le Tween 80 à différents pourcentages (Benjilali et al., 1984; 1986; Lahlou et al., 2000b; 2001a, b; Lahlou, 2003). De plus, Chalchat et al. (1991) comparent les résultats obtenus de la CMI en utilisant d'une part, le Tween 80 comme émulsifiant et d'autre part de l'agar comme stabilisant. Ces auteurs concluent que les résultats sont comparables entre les deux méthodes. En outre, Remmal et al. en (1993a, b) et en 2001, démontrent que l'éthanol et le Tween 20 et 80 influent sur l'activité antimicrobienne des huiles essentielles. Ils ont constaté un effet antagoniste entre le milieu solide et le milieu liquide. Ces auteurs avancent que les CMI obtenues pour les différentes espèces de bactéries en présence d'agar sont significativement plus faibles que celles obtenues en présence de Tween ou en présence d'éthanol. Ils démontrent que le fait d'utiliser des solvants ou des détergents qui sont souvent conseillée pour l'étude de l'activité antimicrobienne des huiles essentielles, diminue significativement le pouvoir antimicrobien des huiles essentielles testées. Ceci a déjà été rapporté auparavant par Simeon de Buochberg en 1976 et par Morris et al. en 1978.

En effet, **Remmal** et **al.** (1993b) et **Delespaul** et **al.** (2000), ont démontré que l'usage de détergents, tel que le Tween 80, abaisse considérablement l'activité des huiles essentielles.

Par ailleurs, nous avons utilisé le milieu Mueller-Hinton pour les différentes techniques (EUCAST, 2003).

IV.4. Préparation des inoculums:

Les souches bactériennes conservées dans de la gélose nutritive inclinée à 4°C, sont revivifiées dans du bouillon nutritif à 37°±1°C pendant 24h, puis ensemencées en strie sur boîte contenant de la gélose nutritive pour les Pseudomonas, les Listerias, et la Salmonelle, de la gélose Mac Conkey pour les *E. cou*, le Citrobacter, le Proteus, l'Enterobacter et les Kiebsielles et de la gélose Chapman pour les Staphylocoques, afin de vérifier leur pureté (à 37°±1°C pendant 24h). Ensuite, les souches microbiennes sont ensemencées sur bouillon Mueller Hinton à 37°±1°C pendant 18h.

Pour les différentes techniques, les milieux sont ensemencées avec 1 ml de suspension bactérienne préparée à partir de cultures en milieu liquide de 18 h, diluée dans de l'eau physiologiques de manière à renfermer environ germes/ml, soit à une densité optique entre 0.08 et 0.1 à 625 nm (Joffin et Leyral, 2001; Pessini et al., 2003; Careaga et al., 2003).

V. Etude statistique:

La comparaison des résultats concernant le pouvoir antibactérien des trois huiles essentielles est réalisée à l'aide du logiciel Minitab 15. Pour cela, nous avons effectué une analyse de variance ANOVA, à un facteur et à deux facteurs. Les différences entre les moyennes sont considérées significatives quand P < 0.05.

Partie Xésultats & Discussion

Suave

I. Caractères organoleptiques:

Mentha pulegium

Satureja calamintha

Les huiles essentielles des plantes étudiées sont très aromatiques. Elles sont liquides et de couleur jaune clair à jaune foncé. Les caractères organoleptiques de ces six espèces végétales sont reportés dans le tableau (21).

Plantes	Aspect	Couleur	Odeur	Saveur
Thymus fontanesii			Forte	
	Liquide	Jaune foncé	Balsamique	Piquante
			Fraîche	Epicée
Ammoïdes vertidilata			Forte	
Origanum glandulosum	Liquide	Jaune	Balsamique	Piquante
			Fraîche	Epieée
Zizipphora hispanica			Fraîche	

Jaune pâle

Agréable

Pénétrante

Tableau (21) : Caractéristiques organoleptiques des différentes espèces étudiées

II. Rendements en huiles essentielles des différentes plantes:

Liquide

Les rendements moyens en huile essentielle, qui sont calculés en fonction de la masse du matériel végétal sèche, pour les différentes plantes sont représentés sur la figure (4) (tableau 22, annexe I).

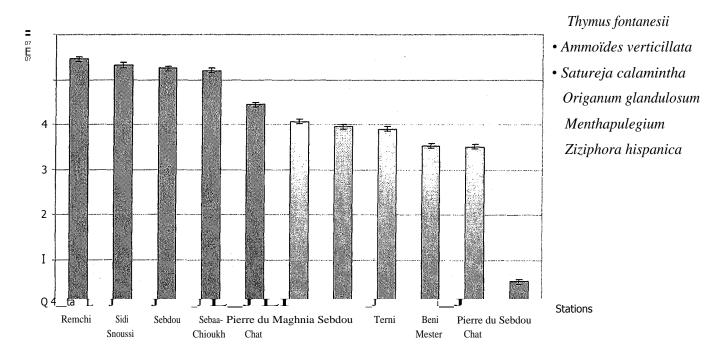


Figure (4): Rendements (%) en huiles essentielles des différentes plantes

Nous avons noté que toutes ces espèces végétales révèlent une richesse en huile essentielle obtenue par hydrodistillation sauf *Zizpphora hispanica* qui a un rendement très faible de l'ordre de 0,53% (Figure 4).

Nous remarquons que les teneurs en huile essentielle de *Thymus fontanesii* et d'*Origanum glandulosum* différent légèrement entre les différentes stations. Ainsi, le climat et l'altitude ne semblent pas avoir une influence sur le rendement (Tableau 23).

La teneur en huile essentielle de *Thymus fontanesii* de provenance de Sétif (Est de l'Algérie), poussant à une altitude de 1000m, est nettement inférieure aux nôtres: 1,9% (wlw) (Ghannadi et al., 2005).

Les rendements en huiles essentielles *d'Origanum glandulosum* récoltée dans différentes stations de la région de Sétif, sont variables allant de 2,3 à 5% (**Ruberto** et **al., 2002**; **Belhattab** et **al., 2005**). En outre, **Bendahou** et **al. (2007)** avancent que la teneur en huile essentielle de cette même espèce poussant à l'état spontané dans la région de Tlemcen (Algérie), à une altitude de 1190m est de l'ordre de 4,5%. Cette valeur est proche de nos résultats.

Tableau (23): Etages bioclimatiques, altitude et rendements en huile essentielles

		Etages	Altitude	Rendements
Plantes	Stations	bioclimatiques	(m)	(%)
	Remchi	Aride, chaud	220	5,46
Thymus	Sidi- Snoussi	Semi-aride, chaud	500	5,32
fontanesii				
	Sebdou	Semi-aride, doux	720	5,25
	Sebâa-			5,20
	Chioukh	Semi-aride, chaud	600	
Origanum				3.95
glandulosum	Sebdou	Semi-aride, doux	720	
	Terni	Semi-aride, à	1100	3.9
		hiver tempéré		2 52
	Beni Mester	Semi-aride, tempéré	670	3.53

Par ailleurs, la détermination quantitative des huiles essentielles dans cette même plante, récolté dans différentes stations de la région Est de l'Algérie, effectué par **Sari** et **al.** (2006), leur a permis d'obtenir des rendements en huiles essentielles allant de 0,8 à 3%. Ces teneurs sont plus faibles par rapport aux nôtres.

En outre les teneurs en huiles essentielles d' *Ammoïdes verticillata* sont proches de celles obtenues par **Ashraf** et **Batty** (197) (3,5 à 5,2%) et par **Kambouche** et **E1-Abed** (2003) (4,97%). Par contre, elles sont largement supérieures aux rendements rapportés par **Chialva** et al. (1993) (3,5% (v/w)), par **Khajeh** et al. (2004) (2,8% (v/w)) et par (Bendahou, 2007) (2.7%).

Les rendements (calculés par rapport à la matière végétale fraîche) en huiles essentielles de *Satureja calamintha* subsp. *nepeta*, récolté dans différentes stations en Corse, sont faibles de l'ordre de 0,17 à 1,2% (**Ristorcelli** et al., 1996; **Baldovini** et al., 2000). Par ailleurs, **Fraternale** et al. en 1998, révèlent que cette espèce végétale est très pauvre en huiles essentielles, avec un rendement de l'ordre de 0,22cc/100g (v/w).

Montes et al. en 1986 rapportent que *Mentha pulegium* de provenance de Chili a un rendement en huile essentielle de 2,3%. Par ailleurs, **Sivropoulou** et al. en 1995 ont obtenu une teneur en huile essentielle de *Mentha pulegium* récoltée dans trois stations en Grèce, de l'ordre de 1,6 à 2% (*vlw*). Par contre **Teixeira Duarte** et al. (2005), avancent que le rendement en huile essentielle de cette même espèce végétale d'origine Brésilienne est très faible, de l'ordre de 0,42% (w/w). Ces valeurs sont nettement inférieures aux nôtres.

Enfin, **Desjobert** et **al.** (1997), avancent que l'étude complète d'une huile essentielle doit passer par la prise en compte des facteurs édaphiques. Ainsi, les résultats obtenus nous permettent de supposer que les différences des teneurs en huiles essentielles des différentes plantes sont étroitement liées aux conditions culturales, tant climatiques; dispersion géographique, altitude, qu'édaphiques, nature du sol.

III. Analyse des huiles essentielles des différentes plantes:

Les analyses des huiles essentielles des différentes espèces végétales ont été réalisées dans le laboratoire «Chimie et Biomasse» (UMR CNRS 6134, Sciences Pour l'Environnement), à l'université de Corse.

III.!. Analyse de l'huile essentielle de Ziziphora hispanica:

L'analyse de deux échantillons de l'huile essentielle de *Ziziphora hispanica*, récoltée dans la station de Sebdou sur 2 années successives, a été menée par combinaison de quatre méthodes d'analyse, deux techniques chromatographiques (CPG-Ir et chromatographie sur colonne ouverte de silice) et deux techniques spectroscopiques (CPG-SM et RMN ¹³C). La caractérisation de ces huiles essentielles a été réalisée par RMIN ¹³C sans séparation préalable des constituants. Des spectres des huiles essentielles sont enregistrés, et les valeurs des déplacements chimiques sont comparées à celles des composés de référence présents dans une bibliothèque de spectre grâce à un logiciel d'aide à l'identification. Elle nous a permis d'identifier sept composés (Tableau 24) dans ces huiles essentielles, qui représentent un pourcentage variant entre *85,5%* et 86,3% de la composition totale. Les constituants identifiés par RJ\4N ¹³C, sont ensuite repérés sur le chromatogramme par leurs indices de référence et peuvent être ainsi quantifiés.

Tableau (24): Composés identifiés par RMN ¹³C dans l'huile essentielle de Zizinhora hisnanica

Composés identifiés	Ma	IRp	RMN	Sup	Z 1 (2004)	Z 1 (2005)
					(%)	(%)
a-pinène	930	1025	9/10	2	0,7	0,2
-pinène	970	1112	7/10	0	0,7	0,4
Li _{mon} è _{ne} *	1019	1202	10/10	3	2,1	1,7
Para menth3en8o1*	1131	1605	9/9	0	3,6	2,4
Menthofurane	1146	1483	8/10	1	1,0	0,6
Pulégone	1219	1654	8/10	2	77,6	79,5
Pipériténone	1314	1916	7/9	2	0,6	0,6
Total (%)					86,3	85,5

Légende: L'ordre d'Iution et les pourcentages donnés sont ceux sur colonne apolaire (BP-I) à l'exception des composés dont les noms sont suivis d'un astérisque * (dont les pourcentages sont ceux sur colonne polaire (BP-20)). IRa et IRp: indices de rétention sur colonnes apolaire et polaire. RMN: nombre de signaux observés sur le spectre de RMN ¹³C du mélange par rapport au nombre de signaux attendus (2004). Sup : nombre de superpositions de signaux (2004).

Nous constatons que les deux échantillons étudiés présentent une composition chimique homogène. Cependant leurs teneurs différent légèrement. La pulégone est le composé majoritaire de cette huile essentielle avec un pourcentage de l'ordre de 77,6 à 79,5%. Six monoterpènes sont présents en faibles teneurs à savoir: limonène (1,7 - 2,2%), 3-pinène (0,4 - 0,7%), a-pinène (0,2 - 0,7%) qui sont des monoterpènes oléfiniques, et *para* menth-3-en-8-ol (2,4 - 3,6%) menthofurane (0,6 - 1,0%) et pipériténone (0,6%) qui sont des monoterpènes oxygénés.

Nous avons présenté sur la figure (5), le spectre RMIN C de cette huile essentielle ainsi que la structure de son composé majoritaire.

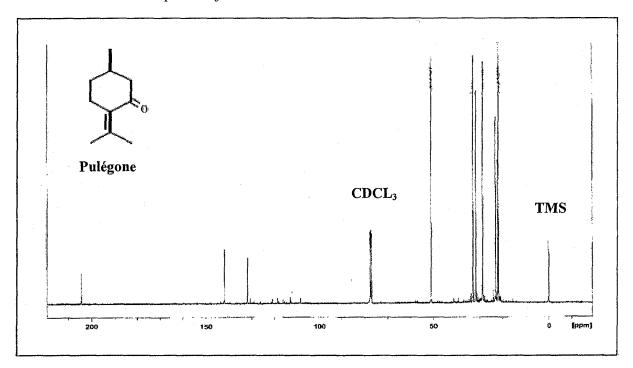


Figure (5): Spectre RMN -- C de l'huile essentielle brute de Ziziphora hispanica (Z 1 2005)

Dans l'optique de mener une analyse plus approfondie et donc d'identifier un plus grand nombre de composés dans l'huile essentielle de *Ziziphora hispanica*, *il* était nécessaire de combiner un fractionnement sur colonne ouverte de silice avec des analyses par CPG-Ir, CPG-SM et RMN du carbone-13 car cette huile contient un pourcentage élevé en pulégone (77,6 - 79,5%) qui nous a empêcher d'identifier les autres composants qui se trouvent en faibles quantités.

Fractionnement de l'huile essentielle de Ziziphora hispanica et analyse des différentes fractions obtenues:

Un gramme de l'huile essentielle de l'échantillon Z i (2005) a été soumis à un fractionnement sur gel de silice (une chromatographie «Flash »). Nous avons élué trois fractions (Tableau 25). La première fraction contient des composés oléfiniques qui sont élués au pentane, alors que les deux autres fractions contiennent des composés oxygénés qui sont obtenues en utilisant un mélange de pentane/oxyde de diéthyle (95/5) et un solvant pur (oxyde de diéthyle), respectivement. Les fractions ainsi obtenues sont analysées par CPG-Ir et par RMN ¹³ C.

Tableau (25) : Fractionnement de l'huile essentielle de Ziziphora hispanica

Numéro de fraction	Pentane / Oxyde de diéthyle (%)	Poids des fractions (en mg)
1	100/0	50
2	95/5	828
3	0/100	107

Le spectre de RMN C de la première fraction est représenté sur la figure (6), ainsi que la structure de son composé majoritaire. Dans le tableau (26), nous décrivons la composition chimique de cette fraction. Nous avons identifié 10 composés qui représentent 91,5% de la composition de cette fraction.

Tableau (26) : Composés identifiés dans la première fraction de l'huile essentielle de Ziziphora hispanica éluée avec le pentane

Echantillons			HE	F 1
Masse (mg)			1000	50
Composés identifiés	IRa	IRp	Pourcentage	Pourcentage
c.t-pinène	930	1025	0,2	5,2
Sabinène	964	1122	0,1	1,6
-pinène	970	1112	0,4	8,1
Myrcène	979	1161	0,1	2,3
p-cymène	1010	1271	0,2	8,0
Limonène*	1019	1202	1,7	38,7
7-terpinène	1047	1245	0,1	4,7
para mentha-3,8-diéne	1058	1257	0,1	2,3
Menthofurane	1146	1483	0,6	19,7
(E)caryophyl1éne	1417	1595	0,1	0,9
Total (%)				91,5

Légende: L'ordre d'élution et les pourcentages donnés sont ceux sur colonne apolaire (BP-1) à l'exception des composés dont les noms sont suivis d'un astérisque * (dont les pourcentages sont ceux sur colonne polaire (BP-20)). IRa et IRp: indices de rétention sur colonnes apolaire et polaire. F 1: fraction de chromatographie dans laquelle les composés sont identifiés. HE: huile essentielle. Les pourcentages en gras : teneurs des composés identifiés par RMN C.

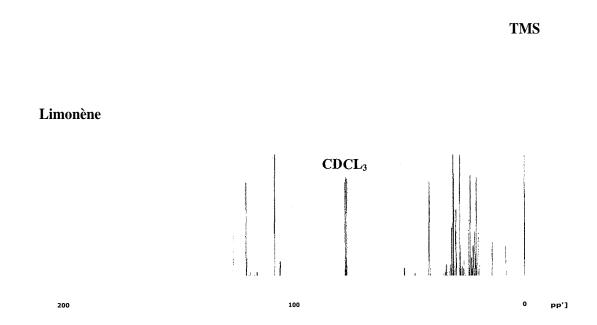


Figure (6): Spectre RMN -- C de la première fraction l'huile essentielle de Ziziphora hispanica

Cette fraction est très riche en monoterpènes (90,6%) avec prédominance de limonène (38,7%). Le f3-pinène, le p-cymène, le a-pinène et le '-terpinène sont présents en quantités appréciables (8,1; 8,0; 5,2 et 4,7%) respectivement). Trois autres monoterpènes sont également identifiés en faibles teneurs lors de l'analyse de cette fraction: le myrcène (2,3%), le *para* mentha-3,8-diéne (2,3%) et le sabinène (1,6%). Un seul sesquiterpène, (E)-3-caryophyllène (0,9%) est également identifié. Paradoxalement, un monoterpène oxygéné est identifié dans cette fraction: le menthofurane (19,7%). Au total, nous avons donc identifié six nouveaux composés lors de l'analyse de cette fraction par rapport à l'analyse de l'huile essentielle avant le fractionnement.

Nous avons reproduit sur la figure (7), la structure des molécules identifiés dans cette première fraction.

a-pinène Sabinène JI-pinèn e Myrcène para-cy mène Limonène

'y-terpinène para-mentli a-3,8-diéne Menthofurane (E)-1-caryophylléne

Figure (7) : Structure des composés identifiés par RMN — C dans la première fraction de l'huile essentielle de Ziziphora hispanica

Le spectre de RMN ¹³ C de la deuxième fraction éluée avec le mélange pentane/oxyde de diéthyle (95/5), est représenté sur la figure (8). Le tableau (27), décrit les composés identifiés dans celle-ci. Nous avons identifié six composés qui représentent 93,2% de la composition de cette fraction.

Tableau (27): Composés identifiés dans la deuxième fraction de l'huile essentielle de *Ziziphora hispanica* éluée avec le mélange pentane/oxyde de diéthyle (95/5)

		· •	·	• , ,
Echantillons			HE	F2
Masse (mg)			1000	828
Composés identifiés	IRa	IRp	Pourcentage	Pourcentage
Trans-isopulégone	1148	1583	0,9	1,1
Cis-isopulégone	1149	1572	0,6	0,8
Pulégone	1219	1654	79,5	89,2
Oxyde de cis-pipéritone	1233	1722	0,2	1,4
Thymol	1263	2186	0,9	2,0
Carvacrol	1272	2217	1,6	1.8
Total (%)				96,3

Légende : L'ordre d'élution et les pourcentages donnés sont ceux sur colonne apolaire (BP-l) à l'exception des composés dont les noms sont suivis d'un astérisque * (dont les pourcentages sont ceux sur colonne polaire (13P-20)). IRa et IRp: indices de rétention sur colonnes apolaire et polaire. F 2: fraction de chromatographie dans laquelle les composés sont identifiés. HE: huile essentielle. Les pourcentages en gras : teneurs des composés identifiés par RIVIN C.

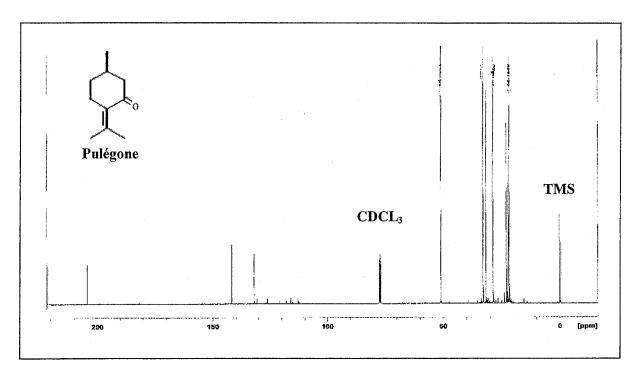


Figure (8): Spectre R1VIN ¹³C de la deuxième fraction de l'huile essentielle *de Ziziphora hispanica*

Lors de l'analyse de cette fraction, nous avons caractérisé 6 monoterpènes oxygénés qui représentent 96,3% de la composition globale. La pulégone (89,2%) est le composé dominant. Cinq monoterpènes sont identifiés en faibles teneurs dans l'huile essentielle par l'analyse de cette fraction: l'oxyde de cis-pipéritone (1,4%), le trans-isopulégone (1,1%) et le *cis*-isopulégone (0,8%). Deux autres monoterpènes oxygénés sont également identifiés soit, le thymol (2,0%) et le carvacrol (1,8%). Au total, nous avons donc identifié cinq nouveaux composés lors de l'analyse de cette fraction par rapport à l'analyse de l'huile essentielle avant le fractionnement. Les structures des molécules identifiées par l'analyse de cette fraction sont représentées sur la figure (9).

Trans- Cis- Pulégone Oxyde de Carvacrol Thymol Isopulégone isopulégone cis-pipéritone

Figure (9) : Structure des composés identifiés par RMN -- C dans la deuxième fraction de l'huile essentielle de Ziziphora hispanica

Le spectre de RIVIN ¹³ C de la troisième fraction éluée avec de l'oxyde de diéthyle, est reproduit sur la figure (10). Dans le tableau (28), nous décrivons la composition chimique de la fraction F 3. Nous avons identifié huit composés qui représentent 60,8% de la composition de cette fraction.

Tableau (28) : Composés identifiés dans la troisième fraction de l'huile essentielle de Ziziphora hispanica éluée avec de l'oxyde de diéthyle

Echantillons			НЕ	F3
Masse (mg)			1000	107
Composés identifiés	IRa	IRp	Pourcentage (%)	Pourcentage (%)
Oct-1-en-3-ol	958	1447	0,1	0,9
Trans-pinocarvéol	1122	1654	0,1	1,0
Trans-verbénol	1126	1669	0,1	0,9
Para-menth-3-en-8-ol	1131	1605	2,4	38,5
cz-terpinéol	1172	1696	0,2	2,5
Trans-carvéol	1196	1834	0,2	2.9
Pipériténone	1314	1916	0,6	13,3
Menthalactone	1450	2220	0,3	3,3
Total (%)				60,8

Légende: L'ordre d'élution et les pourcentages donnés sont ceux sur colonne apolaire (13P-1). IRa et IRp: indices de rétention sur colonnes apolaire et polaire. F 3: fraction de chromatographie dans laquelle les composés sont identifiés. HE: huile essentielle. Les pourcentages en gras : teneurs des composés identifiés par RMN C.

Figure (10) : Suectre RMN "C de la troixième fraction de l'huile essentielle de Ziziphora hispanica

Menthalactone

Lors de l'analyse de la troisième fraction, nous avons caractérisé sept monoterpènes oxygénés avec une prédominance du *para* menth-3-en-8-ol (38,5%). D'autres monoterpènes sont également identifiés en quantités appréciables, à savoir: la pipériténone (13,3%), la menthalactone (3,3%), le trans-carvéol (2,9%) et le a-terpinéol (2,5%). Deux autres monoterpènes oxygénés sont également identifiés en faibles teneurs, soit: le *trans*-pinocarvéol (1,0%), le trans-verbénol (0,9%). Un seul composé linéaire l'oct-1-en-3-ol (0,9%) est identifié dans l'huile essentielle de cette fraction. Au total, nous avons donc identifié six nouveaux composés lors de l'analyse de cette fraction par rapport à l'analyse de l'huile essentielle. Les structures des composés identifiés par l'analyse de cette fraction sont données dans la figure (11).

Т

 \mathbf{T}

 \mathbf{T}

Τ

u-terpinéol

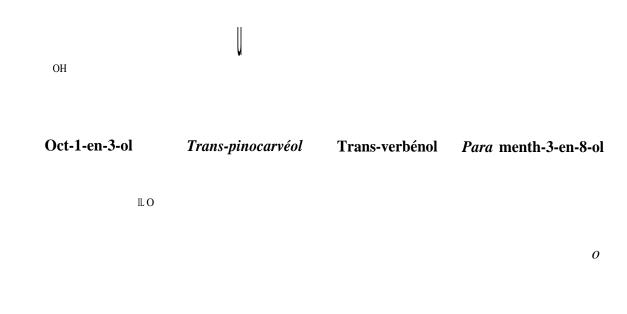


Figure (11) : Structure des composés identifiés par RMN ¹³C dans la troisième fraction de l'huile essentielle de *Ziziphora hispanica*

Pipériténone

Trans-carvéol

L'application de la CPG-SM pour la caractérisation de l'huile essentielle de *Ziziphora hispanica* sans séparation préalable des constituants, nous a permis d'identifier douze autres composés minoritaires de teneurs inférieurs à 0,5% qui ne peuvent pas être identifiés par RMN'³C.

Une fois caractérisés, ces constituants sont aisément repérés sur les chromatogrammes par leurs indices de rétention sur colonnes polaire et apolaire. Dans la figure (12), nous donnons les structures de ces molécules identifiées par CPG-SM en analysant cette huile essentielle.

1,8-cinèole para mentha Terpinoléne Linalol Trans-p-mentha- Cis-p-mentha--3,8-diéne 2,8-diène-1-ol 2,8-diène-1-ol

рН [

Menthone Bornéol Terpinène 4-ol Myrténol Cis-carvéol Oxyde de caryophyllène

Figure (12) : Structure des composés identifiés par CPG-SM dans l'huile essentielle de Ziziphora hispanica

Enfin, l'étude détaillée d'un échantillon de l'huile essentielle de *Ziziphora hispanica* a été réalisée en appliquant quatre méthodes d'analyses, deux techniques chromatographiques (CPG-Ir et chromatographie sur colonne ouverte de silice) et deux techniques spectroscopiques (SM et RMN ¹³C). Les composés des trois fractions de chromatographie sur colonne de silice, sont repérés sur les chromatogrammes par leurs indices de rétention et par les déplacements chimiques de leurs carbones observés dans les différents spectres de RMN ¹³C.

Ces analyses nous ont permis d'identifier trente six composés qui représentent 92,2 à 93,7% de la composition globale de l'huile essentielle de *Ziziphora hispanica* (Tableau 29). Nous avons pu identifiés dix sept autres composés, suite à l'analyse des fractions par rapport à l'analyse directe de l'huile essentielle par RMN ¹³C par laquelle, nous avons identifié que sept composés. Par ailleurs, l'analyse de cette huile essentielle par CPG-SM, nous a permis d'identifier douze autres composés présents en très faibles teneurs.

L'identification des composants dans l'échantillon Z 1 (2004) a été réalisée par comparaison de leurs indices de rétention sur deux colonnes polaires et apolaires à ceux de l'échantillon Zl (2005) (Tableau 29)

Ainsi, l'huile essentielle de *Ziziphora hispanica* est dominée par les monoterpènes oxygénés possédant un squelette du type p-menthane en position C-3, à savoir la pulégone (77,6 - 79,5%) qui est le composé majoritaire, lapara-menth-3-en-8-ol (2,4 - 3,6%), la pipériténone T (0,6%), la cis-isopulégone (0,6%) et la trans-isopulégone (0,7 - 0,9%). Il est important de noter que ces deux derniers monoterpènes sont cités pour la première fois dans le genre Ziziphora D'autres composés sont présents en quantités appréciables soit le limonéne (1,7 - 2,1%), le carvacrol (1,6 - 2,8%) et le thymol (0,6 - 0,9%). Le taux des sesquiterpénes identifiés est très faible de l'ordre de 0,2 à 0,3%. Le (E)-j3-caryophy!lène (t - 0,1%) et son oxyde (0,2%) sont les deux seuls sesquiterpènes identifiés dans cette huile essentielle. Un seul composé aliphatique, l'oct-1-en-3-o! (0,1%) est également identifié dans les huiles essentielles de *Ziziphora hispanica*.

Tableau (29): Composition chimique de l'huile essentielle de Ziziphora hispanica

Composés identifiés	IRa	IRp	Z! (2004) (%)	Z! (2005) (%)	Mode d'identification
a-pinène	930	1025	0,7	0,2	IR, SM, RMN ¹³ C
Sabinène	964	1122	0,1	0,1	IR, SM, RMN ¹³ C
J3-pinène	970	1112	0,7	0,4	IR, SM, RMN - C
Myrcène	979	1161	0,2	0,1	IR, SM, RMN ¹³ C
Oct-1-en-3-ol	958	1447	0,1	0,1	IR, SM, RMN -aC
para-cymène	1010	1271	0,3	0,2	IR, SM, RMN -aC
Li _{mon} è _{ne} *	1019	1202	2,1	1,7	IR, SM, RMN -aC
1,8 cinèole*	1019	1209	0,1	0,2	IR, SM, RMN ¹³ C
7-terpinène	1047	1245	0,2	0,1	IR, SM, RMN -aC
para mentha-3,8-diéne	1058	1257	0,1	0,1	IR, SM, RMN -aC
Terpinoléne	1077	1283	t	t	IR, SM
Linalol	1081	1543	0,1	t	IR, SM
Trans-p-mentha-2,8-diène-1-ol	1101	1626	t	t	IR, SM
tha-2,8-diène-1-ol	1114	1657	0,1	t	IR, SM
ocarvéol	1122	1654	0,1	0,1	IR, SM, RMN ¹³ C
énol	1126	1669	0,1	0,1	IR, SM, RMN -aC
	1130	1463	0,1	0,3	IR,SM,RMN' ³ C
h-3-en-8-ol	1131	1605	3,6	2,4	IR, SM,RIvfN -aC
Lann	1146	1483	0,8	0,6	IR, SM,RMN -aC
ulégone	1148	1583	0,7	0,9	IR, SM, RMN -aC

Cis-isopulégone	1149	1572	0,6	0,6	IR, SM, RMNC
Bornéol	1148	1700	t	t	IR,SM
Terpinène 4-ol	1160	1598	0,1	0,1	IR, SM, RMIN ¹³ C
a-terpinéol	1172	1696	0,2	0,2	IR, SM, RMN -aC
Myrténol	1178	1789	t	t	IR,SM
Trans-carvéol	1196	1834	0,3	0,2	IR, SM, RMN -aC
Cis-carvéol	1213	1866	t	t	IR, SM
Pulégone	1219	1654	77,6	79,5	IR, SM, RMN ¹³ C
Pipéritone	1226	1772	0,1	0,1	IR, SM, RMN ¹³ C
Oxyde de Cis-pipéritone	1233	1722	0,2	0,2	IR, SM, RMN ¹³ C
Thymol	1262	2186	0,6	0,9	IR, SM, RMIN ¹³ C
Carvacrol	1272	2217	2,8	1,6	IR, SM,RMN ¹³ C
Pipériténone	1314	1916	0,6	0,6	IR, SM, RMN ¹³ C
(E)-J-caryophy1Iéne	1417	1595	t	0,1	IR, SM, RMNC
Menthalactone	1450	2220	0,2	0,3	IR, SM, RMN ¹³ C
Oxyde de caryophyllène	1569	1986	0,2	0,2	IR, SM, RMN ¹³ C
Total (%)			93,7	92,2	

Légende: L'ordre d'élution et les nourcentaes donnés sont ceux sur colonne minitre (BP1' l'exception des composés dont les noms sont suivis d'un astérisque * (dont les pourcentages sont ceux sur colonne polaire (BP-20)). IRa et IRp: indices de rétention sur colonnes apolaire et polaire.

La caractérisation de l'huile essentielle de *Ziziphora hispanica* a fait l'objet d'un seul travail effectué par **Velasco Negueruela** et **Mata Rico** en **1986.** L'étude menée par ces auteurs sur l'huile essentielle de cette plante récoltée en Espagne, révèle l'existence de deux composés majoritaires: la pulégone (64,5 et 76,7%) et la pipériténone (11,7 - 16,7%). La comparaison de nos résultats avec ceux obtenus par **Velasco Negueruela** et **Mata Rico** en 1986, nous amènent à constater que notre huile essentielle représente un pourcentage très faible en pipériténone de l'ordre de 0,6%. Ces auteurs avancent également l'existence d'autres composés qui ne sont pas identifiés dans notre échantillon, à savoir: isopulégol, *trans*-isopipériténol, -Cadinène et le cis-nérolidol.

Selon la littérature, les études effectuées sur l'huile essentielle de différentes espèces de Ziziphora, révèlent une richesse en pulégone, soit: *Z. tenuior* (86,3 - 87,1 %) (Sezik et al., 1991), *Z. taurica* subsp. *cleonioides* (81,9%) (Meral et al., 2002) et *Z. persica* (79,3%) (Ozturk et Ercisli, 2006).

D'autre part, **Salehi** et **al.** (2005), rapportent que l'huile essentielle de Z. *clinopodioides* subsp. *rigida*, poussant à l'état spontané en Iran, contient de la pulégone (45,8%) comme composé majoritaire. D'autres composés sont également présents en quantités appréciables: la pipériténone (17,4%), le p-Menth-3-en-8-ol (12,5%), le thymol (8,0%), le 1,8-cinéole (2,7%), le néomenthol (2,1%), la menthone (1,8%), l'isomenthol (1,6%), le pipéritone (1,4%) et le D-germacrène (1,1%).

Enfin, **Ozel** et **Ggil** (**2005**) ont déterminé la composition chimique de l'huile essentielle de *Z. taurica* subsp. *taurica*, récolté en Turquie. La pulégone est également le composé majoritaire avec une teneur de (37,20%). D'autres composés sont également identifiés : le *cis*-carvéol (8,2%), le trans-carvéol (6,9%), la verbénone (4,1%), le bornéol (3,7%), le *cis*-verbénol (3,5%), l'oxyde de limonène (3,2%), le u-pinène (2,5%), le menthofurane (2,5%) et le carvacrol (2,3%).

111.2. Analyse de l'huile essentielle de Thymus fontanesii:

Afin de contribuer à la caractérisation de l'huile essentielle de *Thymus fontanesii* poussant spontanément en Algérie (région de Tlemcen), nous avons procédé en premier lieu, à une analyse de 5 échantillons d'huile essentielle en appliquant conjointement une technique chromatographique (CPG-Ir) et une méthode spectroscopique (RMN ¹³C). Ces échantillons sont récoltés dans quatre stations différentes, à savoir: Sidi-Snoussî, Remchi, Sebdou et Sebâa-Chioukh. Pour cette dernière station, nous avons effectué 2 récoltes sur deux années successives. Nous avons, par la suite, compléter cette étude en appliquant une autre technique spectroscopique (CPG-SM) sur un seul échantillon de provenance de Sebâa-Chioukh récolté durant l'année 2005.

Des spectres des huiles essentielles sont enregistrés, et les valeurs des déplacements chimiques sont comparées à celles des composés de référence présents dans une bibliothèque de spectre grâce à un logiciel d'aide à l'identification. L'interrogation de la bibliothèque «Terpènes » du laboratoire, nous a permis d'identifier onze composés qui représentent un pourcentage variant entre 93,8 et 95,4% de la composition globale de ces huiles essentielles, selon les différentes stations. Les constituants identifiés par RMN ¹³C, sont ensuite repérés sur le chromatogramme par leurs indices de rétention, sur colonnes polaire et apolaire, par comparaison avec ceux des produits de référence et peuvent être ainsi quantifiés (Tableau 30). Nous préciserons également que pour chaque composé, tous les signaux des carbones attendus sont observés, à l'exception de certains signaux des carbones quaternaires de composés minoritaires.

Le spectre RMN ¹³C de l'huile essentielle de *Thymus fontanesii* de la station de Remchi est reproduit sur la figure (13) ainsi que la structure de carvacrol (66,7 - 69,5%), composé majoritaire de ces huiles essentielles.

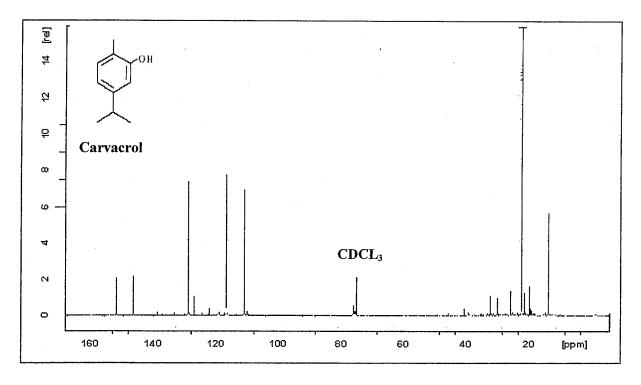


Figure (13) : Spectre RMN - C de l'huile essentielle de *Thymus fontanesii* (échantillon de Remchi)

Les cinq échantillons analysés sont quantitativement et qualitativement très proches. Ces huiles essentielles sont riches en monoterpènes qui représentent entre 92,7 et 94,6% de la composition chimique globale de ces huiles essentielles. Elles contiennent 7 composés oléfiniques avec prédominance du p-cymène (6,1 - 9,1%), suivi du ï-terpinène (5,8 - 9,6%) et contiennent 4 autres oléfines, a-pinène (2,5 - 3,0%), myrcène (1,2— 1,5%), a-thujène (0,6-1,3%) et a-terpinène (1,0 - 1,4%), en quantités appréciables. Le limonène, composé oléfinique, est présent en faible teneur, soit entre 0,5 et 0,6%. Ces huiles essentielles contiennent également 3 monoterpènes oxygénés. Le carvacrol est le composé monoterpènique oxygéné majoritaire (66,7 - 69,5%). Par contre, le thymol est le monoterpène oxygéné en plus faibles teneurs dans ces huiles (0,5 - 0,7%). Le linalol est présent dans ces huiles essentielles en teneurs appréciables, soit entre 2,8 et 4,0%. Un seul sesquiterpène est mis en évidence, le (E)-fcaryophyllène (0,6 - 0,9%). Dans la figure (14), nous donnons les structures des molécules identifiées par RMN ¹³C, en analysant ces huiles essentielles.

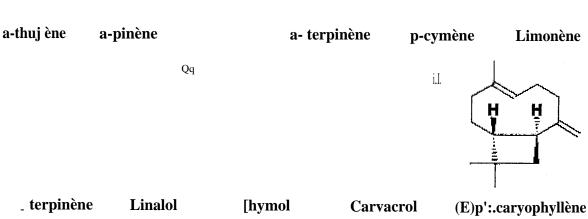


Figure (14) : Structure 4es composés identifiés par RMN ·3C dans l'huile essntielle de *Thymus fontanesii*

L'application de la CPG-SM pour l'ana1yse de l'échantillon SC 5 (échantillon récolté dans la station de Sebâa-Chioukh durant l'année 2005), nous a permis d'identifier 17 autres composés minoritaires de teneurs inférieures à 0,5% qui n'ont pas pu être identifiés par RMN ¹³C. Une fois identifiés, ces constituants sont aisément repérés sur les chromatogrammes par leurs indices de rétention sur colonnes apol aire et polaire, ce qui permet leur quantification.

Sur la figure (15), nous représentons les structures des composés identifiés par CPG-SM, en analysant cette huile essentielle.

ОН

1-octen-3-ol 3-octanone ène 3-octanol

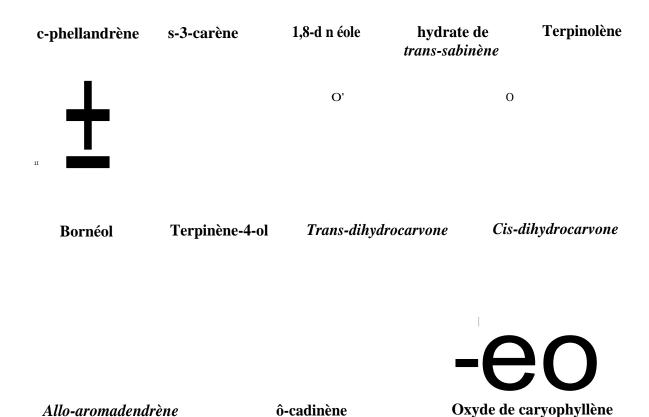


Figure (15) : Structure des composés identifiés par CPG-SM dans l'huile essentielle de Thymus fontanesii

Onze de ces constituants sont des monoterpènes dont six de nature oléfinique (camphène, l-pinène, u-phellandrène, 8-3-carène, *trans-hydrate* de sabinène, terpinolène) et le reste sont de nature oxygénée (1,8-cinéole, bornéol, terpinéne-4-ol, trans-dihydrocarvone, *cis*-dihydrocarvone). Les deux sesquiterpènes identifiés sont de nature hydrocarbonée, soit *l'allo*-aromadendrène et le -cadinéne. L'oxyde de caryophyllène est le seul sesquiterpène oxygéné identifié par CPG-SM dans cette huile essentielle. Enfin, l'huile essentielle de *Thymus fontanesii* contient également trois composés monoterpèniques aliphatiques, soit: le 3-octanol, le 1-octen-3-ol et le 3-octanone.

En conclusion, Nous avons identifié, au total, vingt huit composés dans les huiles essentielles de *Thymus fontanesii* représentant 97,2 à 98,4% de la composition chimique globale (tableau 30).

Tableau (30) : Composition chimique de l'huile essentielle de Thymus fontanesii

Composés identifiés	IRa	IRp	SC 4	SC 5	R	S	SS	Mode
4.15	020	1006	0.6	1.0	1.0	1.0	1.0	d'identification
a-thujène	920	1026	0,6	1,3	1,3	1,3	1,3	IR, SM, RIVIN ¹³ C
œ-pinène	929	1025	2,6	2,9	2,7	2,5	3,0	IR, SM, RMN ¹³ C
Camphène	941	1068	0,1	0,3	0,1	0,2	0,2	IR, SM
1-octen-3-ol	959	1446	0,2	0,2	0,1	0.1	0,1	IR, SM
3-octanone	960	1253	0,2	0,1	0,1	0,1	0,2	IR, SM
fi-pinène	968	1111	0,2	0,3	0,2	0,2	0,2	IR, SM
3-octanol	975	1389	0,1	0,1	0,1	0,1	0,1	IR, SM
Myrcène	978	1161	1,2	1,3	1,5	1,2	1,4	IR, SM, RMIN -aC
c&-phellandrène	994	1164	0,2	0,2	0,2	0,2	0,2	IR, SM
ô-3-carène	1003	1147	0,1	0,1	0,1	0,1	0,1	IR, SM
ct-terpinène	1007	1181	1,1	1,0	1,4	1,1	1,1	IR,SM,RMN ¹³ C
Para-cymène	1011	1272	6,1	8,5	6,6	9,1	7,2	IR, SM, RMN ¹³ C
Li _{mon} è _{ne} *	1020	1202	0,5	0,6	0,6	0,5	0,6	IR, SM, RMN ¹³ C
1,8 cinéo1e*	1020	1210	0,2	0,2	0,2	0,2	0,2	IR, SM
y- terpinène	1047	1246	7,9	5,8	9,6	6,0	6,9	IR, SM, RMN ¹³ C
<i>Trans-hydrate</i> de sabinène	1050	1461	0,2	0,2	0,1	0,2	0,2	IR, SM, RMN ¹³ C
Terpinolène	1076	1281	0,1	0,2	0,1	0,1	0,1	IR, SM
Linalol	1081	1543	4,0	2,8	3,4	3,1	3,0	IR, SM, RMN ¹³ C
Bornéol	1147	1700	0,4	0,7	0,3	0,4	0,4	IR, SM
Terpinène-4-ol	1159	1598	0,3	0,3	0,3	0,3	0,3	IR, SM
Trans-dihydrocarvone	1172	1605	0,3	0,2	0,2	0,2	0,2	IR, SM
Cis-dihydrocarvone	1178	1625	0,2	0,1	0,1	0,2	0,2	IR, SM
Thymol	1263	2187	0,6	0,5	0,7	0,6	0,6	IR, SM, RMN -aC
Carvacrol	1275	2218	69,2	68,3	66,7	68,4	69,5	IR, SM, RMN ¹³ C
(E)-ØT-caryophyllène	1417	1593	0,6	0,8	0,9	0,7	0,8	IR, SM, RMN -C
Allo-aromadendrène	1449	1611	t	t	t	t	t	IR,SM
ô-cadinène	1512	1755	0,1	0,1	0,1	0,1	0,1	IR, SM
Oxyde de caryophyllène	1569	1986	0,2	0,2	0,1	0,1	0,2	IR, SM
Total (%)			97,5	97,3	98,1	97,2	98,4	

Légende: SC 41SC S Sebâa-Chioukh 200412005 R RemchL S SebdolL SS Sidi-Snmssi L'ordre d'élution et les pourcentages donnés sont ceux sur colonne apolaire (BP-1) à l'exception des composés dont les noms sont suivis d'un astérisque * (dont les pourcentages sont ceux sur colonne polaire (BP-20)). IRa et IRp : indices de rétention sur colonnes apolaire et polaire. t trace.

Les cinq échantillons étudiés présentent une composition chimique homogène dominée par le carvacrol (66,7-69,5%). Par contre, la teneur en thymol varie entre 0,5 et 0,7%. Ces huiles essentielles sont très riches en monoterpènes, soit vingt quatre composés qui représentent 96,1 à 97,3%. Par contre, les sesquiterpènes sont présents en faibles teneurs

(quatre constituants, avec un pourcentage variant entre 0,9 et 1,1%). Les monoterpènes présents en quantités appréciables sont: le y-terpinène (5,8 - 9,6%), le *p-cymène* (6,1 - 9,1%), lelinalol (2,8— 4,0%), l'ctpinène (2,5— 3,0%), le myrcène (1,2— 1,5%), l'a-terpinène (1,0 - 1,4%) et 1'(x-thujène (0,6 - 1,3%). Les autres monoterpènes identifiés sont présents en teneurs plus faibles: le bornéol (0,3 - 0,7%), le limonène (0,5 - 0,6%), le camphène (0,1 - 0,3%), le terpinène-4-ol (0,3%), le 3-pinène (0,2 - 0,3%), le a-phellandrène (0,2%), le 1,8-cinéole (0,2%), *Trans-hydrate* de sabinène (0,1 - 0,2%), le terpinolène (0,1 - 0,2%), et la 6-3-carène (0,1%). Les sesquiterpènes oléfiniques identifiés (la 6-cadinène et *l'Allo-*aromadendrène) sont présents en très faibles teneurs (0,1% et trace, respectivement). Le (E)-f-caryophy11ène est le sesquiterpène oxygéné majoritaire (0,6 - 0,9%), accompagné de son oxyde (0,1 - 0,2%). Trois monoterpènes linéaires sont également identifiés en très faibles teneurs, soit: le 1-octen-3-ol (0,1 - 0,2%), le 3-octanone (0,1 - 0,2%) et le 3-octanol (0,1%). En outre, ces résultats nous amènent à conclure que nos huiles essentielles appartiennent à deux groupes chimiques: carvacrol/y-terpinène/p-cymène ; earvacrol/p-cymène /y-terpinène.

L'huile essentielle de *Thymus fontanesii* a fait l'objet d'un seul travail réalisé par **Ghannadi** et **al.**, en **2004.** Ces auteurs ont décrit l'analyse chimique par CPG-SM de l'huile essentielle de cette plante récoltée à Sétif (Algérie), qui a révélé l'existence d'un seul composé majoritaire, le thymol (67,8%) suivi de 'y-terpinène (15,9%) et le p-cymène (13,0%) (Tableau 31). Cette espèce végétale est de type chimique différent des nôtres.

Tableau (31) Teneurs des composés majoritaires identifiés dans les huiles essentielles de Thynius fontunesii

Composés Travaux de identifiés **Ghannadi** et al., (2004) Nos travaux 0,1 0,6-1,3c-thujène 1,2 - 1,50,2 Myrcéne Para-cymène 13,0 6.1 - 9.1 0.5 - 0.6Limonène 0,17-terpinène 15,9 5,8 - 9,6 2,8 - 4,0Linalol 0,3 a —terpinéol 0,10.5 - 0.7Thymol 67,8 66,7-69,5 Carvacrol 1,7

La comparaison de nos résultats, obtenus par l'analyse des huiles essentielles de *Thymus fontanesii* récoltée dans différentes stations de la région de Tlemcen avec ceux de l'étude effectuée précédemment, nous amènent à conclure que nos huiles essentielles appartiennent à deux groupes chimiques: carvacrol/y-terpinène/p-cymène et carvacrol/p-cymène/y-terpinène.

^{-:} Composé non identifié; Les teneurs sont données en pourcentages.

Nous avons constaté également que seize composés constitutifs de nos huiles essentielles n'ont pas été identifiés précédemment. Ces composés sont: le camphène, le 3-octanone, le f3-pinène, le 3-octanol, l'a-phellandrène, la 8-3-carène, le 1,8-cinéole, le bornéol, le *trans*-hydrate de sabinène, le terpinolène, le trans-dihydrocarvone, le cis-dihydrocarvone, *l'allo-*aromadendrène la -cadinène, le (E)-f3caryophyllène et l'Oxyde de caryophyllène.

111.3. Analyse de l'huile essentielle d' Origanum glandulosum:

Т

n

Τ

Les espèces du genre Origanum sont décrites dans différents travaux pour leur grand polymorphisme chimique. Ainsi, selon la composition chimique de leurs huiles essentielles, les différentes espèces de ce genre sont réparties en trois groupes chimiques: Linalol/terpinène-4-ol/hydrate de sabinène; Carvacrol et/ou thymol et le groupe des sesquiterpènes (Kokkini, 1996). Par ailleurs, l'analyse chimique des huiles essentielles *d'Origanum glandulosum*, récolté dans différentes région d'Algérie, révèle l'existence de trois types chimiques: thymol/carvacrol/p-cymène; carvacrol/p-cymène/thymol; carvacrol/y-terpinène/p-cymène (Ruberto et ai, 2002; Belhattab et al., 2005; Bendahou et al., 2007).

Afin de contribuer à la caractérisation de l'huile essentielle *d'Origanum glandulosum* poussant spontanément dans la région de Tlemcen (Algérie), nous avons procédé à une analyse de 4 échantillons d'huile essentielle en appliquant conjointement une technique chromatographique (CPG-Ir) et une méthode spectroscopique (RMN ¹³C). Ces échantillons sont récoltés dans trois stations différentes, à savoir: Sebdou, Beni-Mester et Terni. Pour cette dernière station, nous avons effectué 3 récoltes sur trois années successives.

Des spectres des huiles essentielles sont enregistrés, et les valeurs des déplacements chimiques sont comparées à celles des composés de référence présents dans une bibliothèque de spectre grâce à un logiciel d'aide à l'identification. L'interrogation de la bibliothèque «Terpènes» du laboratoire, nous a permis d'identifier douze composés dans cette huile essentielle. Les constituants identifiés par RIvIN —C, sont ensuite repérés sur le chromatogramme par leurs indices de rétention, sur colonnes polaire et apolaire, par comparaison avec ceux des produits de référence et peuvent être ainsi quantifiés (Tableau 32). Ces composés représentent un pourcentage variant entre 93,5 et 95,4% de la composition globale de ces huiles essentielles, selon les différentes stations étudiées. Nous préciserons également que pour chaque composé, tous les signaux des carbones attendus sont observés, à l'exception de certains signaux des carbones quaternaires de composés minoritaires.

Tableau (32) : Composés identifiés par	RMN C dans l'huile essentielle de
d'Origanum glandulosum	des différentes stations

Composés identifiés	Ma	IRp	TO 1	0G 1	01	ОВМ	OSB
a-thujène	920	1026	1,4	1,1	1,5	1,6	1,6
a-pinène	929	1025	0,6	0,7	0,6	0,7	0,7
-pinène	968	1111	0,2	0,2	0,2	0,2	0,2
Myrcène	978	1161	2,0	1,7	2,0	2,1	2,1
c- terpinène	1007	1181	2,3	1,7	1,8	2,2	2,4
Para-cymène	1011	1272	12,4	18,3	17,7	20,3	15,7
Li _{mon} è _{ne} *	1020	1202	0,6	0,3	0,4	0,4	0,3
y- terpinène	1047	1246	21,0	16,4	20,0	21,4	23,8
Terpinène-4-ol	1159	1598	0,4	0,5	0,4	0,4	0,4
a-terpinéol	1171	1695	0,3	0,3	0,3	0,4	0,2
Thymol	1263	2187	51,3	49,5	45,4	41,0	44,4
Carvacrol	1275	2218	2,9	2,9	3,6	2,9	2,9
Total (%)	1		95,4	93,5	93,9	93,6	7 i

Légende: TO 1/0G 1 /0 1: Terni 2003/2004/2005, OBM: Beni-Mester, OSB: Sebdou. L'ordre d'élution et les pourcentages donnés sont ceux sur colonne apolaire (BP-1) à l'exception des composés dont les noms sont suivis d'un astérisque * (dont les pourcentages sont ceux sur colonne polaire (BP-20)). IRa et IRp: indices de rétention sur colonnes apolaire et polaire.

Le spectre RMN —C de l'huile essentielle *d'Origanum glandulosum* de la station Sebdou est reproduit sur la figure (16) ainsi que la structure du thymol, composé majoritaire de ces HE.

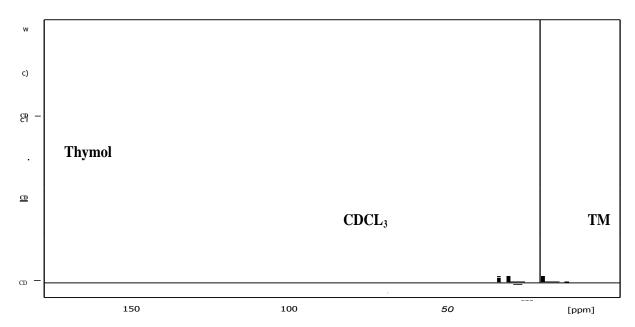


Figure (16): Spectre RMN 1 ³Cde l'huile essentielle d' *Origanum glandulosum* (échantillon de Sebdou)

Dans la figure (17), nous donnons, respectivement, les structures des monoterpènes hydrocarbonés et oxygénés identifiés par RMN — C en analysant ces huiles essentielles.

Œ-thujène a-pinène -pinène Myrcène a- terpinène Para-cymène

NH OH H

Limonène y- terpinène Terpinène-4-ol Œ-terpinéol Thymol Carvacrol

Figure (17): Structure des monoterpènes identifiés par RMN ' ³C dans les huiles essentielles d 'Origanum glandulosum

Les cinq échantillons analysés sont quantitativement et qualitativement très proches. La même observation est faite pour la station de Terni concernant les 3 années successives. Ces huiles essentielles ne contiennent que des monoterpènes dont huit oléfines (40,4 - 48,9%) et quatre monoterpènes oxygénés (44,7 et 54,9%).

Le thymol est le composé majoritaire (41,0 et 51,3%) et les mêmes composés sont identifiés dans tous les échantillons. Par contre le carvacrol est présent en faible teneur (2,9 - 3,6%). Les autres monoterpènes oxygénés identifiés sont également présents en très faibles teneurs le a-terpinéol (0,2 - 0,4%) et le terpinène-4-ol (0,4 - 0,5%).

Ces huiles essentielles renferment également des monoterpènes hydrocarbonés en quantités appréciables à savoir: le 'y-terpinène(16,4 - 23,8%) et lep-cymène (12,4 —20,3%).

Nous constatons également l'existence en moindres quantités d'autres monoterpènes T oléfiniques, qui sont: le a-terpinène (1,7 - 2,4%), le myrcéne (1,7 - 2,1%), le u-thujène (1,1 - 1,6%), le a-pinène (0,6 - 0,7%), le limonène (0,3— 0,6%) et le 3-pinène (0,2%). Par ailleurs, ces résultats nous amènent à supposer que nos huiles essentielles appartiennent, en général à un seul groupe chimique à thymol! y-terpinène!p-cymène.

L'huile essentielle *d'Origanum glandulosum* récolté dans différentes régions en l'Algérie, a fait l'objet de quelques travaux, permettant d'avancer l'existence de différents types chimiques de cette espèce selon les composés majoritaires identifiés lors de l'étude de la variabilité de cette huile essentielle:

- + Les premiers travaux réalisés sont ceux de **Ruberto** et **al.** (2002) qui ont étudié la variabilité de la composition chimique de l'huile essentielle *d'Origanum glandulosum*, récolté dans 4 stations différentes dans la région de Sétif (Algérie). Ils signalent la présence de 2 groupes chimiques, soit: thymol!carvacrol!p-cymène et carvacrol! p-cymène!thymol.
- + Durant la même année, **Houmani** et **al.**, ont étudié la composition de l'huile essentielle d'*Origanum glandulosum* récolté dans la région d'Alger. Ils avancent que les composés majoritaires sont: le thymol (55,6%), le p-cyméne (12,5%), le '-terpinène (11,2%) et le carvacrol (2,7%).
- •• L'étude phytochimique *d'Origanum glandulosum* de la région de Sétif (Algérie) a été effectuée par **Belhattab** et **al.** en 2005. Ils ont mis en évidence 29 composés qui représentent 89,4%. Ils ont trouvé que l'huile essentielle de cette plante extraite par hydrodistillation, présente une forte teneur en carvacrol (47%), suivi de 7-terpinène (13,4%), dep-cymène (11,2%) et de thymol (6,6%).
- •• En **2006**, **Sari** et **al.**, ont effectué une étude de la variabilité chimique de l'huile essentielle d'*Origanum glandulosum* récolté dans différentes régions de l'Est de l'Algérie. Ils ont identifié 30 composés qui représentent un pourcentage variant entre 97,7% et 99,6%. Ils avancent l'existence de 6 groupes chimiques: thymol!carvacrol/p-cymène; carvacrol!thymol; thymol!carvacrol; carvacrol!thymol!-y-terpinène; thymol!p-cymène/carvacrol/y-terpinène ; thymol!carvacrol! 'y-terpinène.
- + En 2007, les travaux réalisés par **Bendahou** et **al.**, sur l'huile essentielle *d'Origanum* glandulosum provenant de la région de Tlemcen, ont montré l'existence d'un seul type chimique à savoir: chimiotype à thymol avec un pourcentage de 55,6%. Elle

renferme également des quantités appréciables en d'autres composés à savoir: le p-cymène (12,5%), le 'y-terpinène (11,2%).

Nous constatons que pour la plupart des travaux qui ont eu pour objet, l'étude de la composition chimique de l'huile essentielle *d'Origanum glandulosum*, ont révélé des teneurs élevées en thymol, en -terpinène et en p-cymène. Ces huiles essentielles font parti du même groupe chimique que le nôtre.

111.4. Analyse de l'huile essentielle d'Ammoïdes verticillata:

L'Ammoïdes est une plante endémique qui appartient à la famille des Apiacées. Cette plante est considérée principalement comme une plante médicinale grâce à son pouvoir antibactérien et antifongique de ses huiles essentielles (Dubey et Mishra, 1990; Srivastava et al., 1999 ; Abdelouahid et Bekhechi, 2002).

Ces activités biologiques des huiles essentielles sont étroitement liées à sa composition chimique, et chaque huile essentielle est un mélange très complexe constitué de plusieurs dizaines de constituants en proportions très variés.

Nous avons choisi cette espèce car elle est très utilisée par la population locale pour ses propriétés antalgiques, anti-infectieuses et antispasmodiques. Ceci est du probablement à sa richesse en thymol. Ainsi, nous avons voulu comparer le pouvoir antibactérien de l'huile essentielle d'Ammoïdes verticillata à celui d'Origanum glandulosum et de Thymus fontanesii qui sont très riches en composés phénoliques.

Pour cela, il était nécessaire d'avoir une connaissance de la composition chimique de l'huile essentielle *d'Ammoïdes verticillata* poussant spontanément dans la région de Tlemcen (Algérie). Nous avons procédé à une analyse de trois échantillons d'huile essentielle en appliquant conjointement une technique chromatographique (CPG-Ir) et une technique spectroscopique (PJVIN ¹³C). Ces échantillons sont récoltés dans une seule station, soit Pierre du Chat et ceci sur trois années successives.

Des spectres de ces huiles essentielles sont enregistrés, et les valeurs des déplacements chimiques sont comparées à celles des composés de référence présents dans une bibliothèque de spectre grâce à un logiciel d'aide à l'identification. L'interrogation de la bibliothèque «Terpènes» du laboratoire, nous a permis d'identifier douze composés dans cette huile essentielle. Les constituants identifiés par RMN ¹³C, sont ensuite repérés sur le chromatogramme par leurs indices de rétention, sur colonnes polaire et apolaire, par comparaison avec ceux des produits de référence et peuvent être ainsi quantifiés (Tableau 33), Ces composés représentent un pourcentage variant entre 93,6 et 96,8% de la composition

globale de ces huiles essentielles. Nous préciserons également que pour chaque composé, tous les signaux des carbones attendus sont observés, à l'exception de certains signaux des carbones quaternaires de composés minoritaires.

 \mathbf{T}

 \mathbf{T}

Tableau (33): Composés identifiés par RMN ¹³C dans l'huile essentielle d'Ammoïdes verticillata

Composés identifiés	Ma	IRp	PN 5	NO	NO 5
a-thujène	921	1025	0,2	0,2	0,3
a-pinène	928	1022	0,7	1,1	0,9
Sabinène	963	1122	0,3	0,5	0,4
Myrcène	978	1160	0,8	0,8	0,6
a-terpinène	1007	1182	0,3	0,5	0,4
Para-cymène	1010	1272	10,4	9,9	10,8
Li _{mon} è _{ne} *	1020	1204	18,2	21,1	19,2
$1.8_{c}i_{n}\acute{e}_{o}l_{e}^{*}$	1020	1211	0,7	0,4	0,4
y-terpinène	1047	1246	11,7	12,4	10,2
Terpinène-4-oI	1159	1597	0,4	0,9	0,7
Thymol	1267	2188	51,6	48,7	49,4
Carvacrol	1273	2216	0,3	0,3	0,3
Total (%)			95,6	96,8	93,6

Légende: PN 5/NO/ NO 5: Pierre du chat 2003/2004/2005. L'ordre d'élution et les pourcentages donnés sont ceux sur colonne apolaire (BP-l) à l'exception des composés dont les noms sont suivis d'un astérisque * (dont les pourcentages sont ceux sur colonne polaire (BP-20)). IRa et IRp: indices de rétention sur colonnes apolaire et polaire.

Nous avons reproduit sur la figure (18), le spectre RMN — C de l'huile essentielle *d'Ammoïdes verticillata*, ainsi que la structure du thymol, composé majoritaire de ces huiles essentielles.

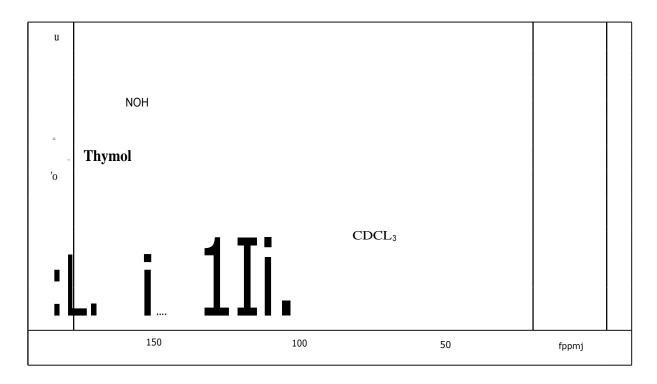
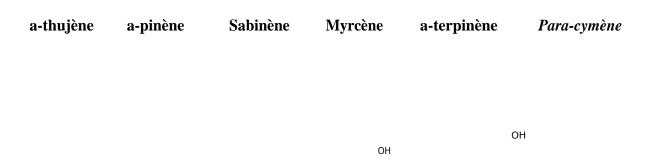



Figure (18): Spectre RMN ³C de l'huile essentielle *d'Ammoïdes vertidilata* (échantillon récolté durant l'année 2004)

Dans la figure (19), nous donnons, respectivement, les structures des monoterpènes hydrocarbonés et oxygénés identifiés par RMN ¹³C en analysant ces huiles essentielles.

Limonène 1,8-cinéole y-terpinène Terpinène-4-ol Thymol Carvacrot Figure (19): Structure des monoterpènes identifiés par RMN - C dans les huiles essentielles d'Ammoïdes verticillata

Les trois échantillons analysés sont quantitativement et qualitativement très proches. Nous pouvons constater que la totalité des constituants identifiés dans ces huiles essentielles, sont des monoterpènes et les mêmes composés.sont identifiés dans les trois échantillons. Le taux des monoterpènes oxygénés identifiés représente environ 50% de la composition globale. Le thymol est le monoterpène oxygéné majoritaire de l'ordre de 48,7 à 51,6%. Par contre le carvacrol est présent en très faible teneur (0,3%). Deux autres monoterpènes oxygénés sont également identifiés : le terpinène-4-ol (0,4 - 0,9%) et le 1 ,8-cinèole (0,4 - 0,7%). Lors de l'analyse de ces huiles essentielles, nous avons caractérisé huit monoterpènes hydrocarbonés qui représentent 42,6 à 46,5% de la composition chimique globale, avec prédominance du limonène (18,2 - 21,1%), suivi de y-terpinène (10,2 - 12,4%) et de p-cymène (9,9 - 10,8%). Cinq autres oléfines sont également identifiés, soit: le a-pinène (0,7 - 1,1%), le myrcéne (0,6 - 0,8%), le sabinène (0,3 - 0,5%), le a-terpinène (0,3 - 0,5%) et le u-thujène (0,2 - 0,3%).

Ces résultats nous amènent à supposer que nos huiles essentielles appartiennent à un seul groupe chimique à thymol/limonène!p-cymène!y-terpinène. Ceci a déjà été confirmé lors de l'étude de la variabilité chimique des huiles essentielles *d'Ammoïdes verticillata*, récoltée dans différentes stations (Pierre du chat, Tégma, Ben-Sakrane, Maghnia, Sabra, Meffrouche et Beni-saf) de la région de Tlemcen (**Bekhechi, 2002**).

Les huiles essentielles *d'Ammoïdes verticillata* ont fait l'objet de plusieurs travaux décrivant leurs compositions chimiques très variés:

- + Les premiers travaux effectués par **Nigram** et **al.** en 1963, rapportent que l'huile essentielle extraite des graines de cette espèce provenant d'Inde est riche en thymol et en y-terpinène
- + L'analyse de l'huile essentielle des graines de cette espèce végétale de provenance de **Pakistan (Ashraf et Batly en 1975)** et celle de provenance de Turquie (**Chialva** et al. en 1993), leur a permis d'obtenir des teneurs élevées en thymol, en p-cymène et en y-terpinène.
- + Une étude de la composition chimique de l'huile essentielle des graines et de la partie aérienne de cette plante, effectuée par **Balbaa** et **al.** en 1973, révèle l'existence de deux groupes chimiques différents, soit: thymol/p-cymène! y-terpinène (graines); y-terpinène!p-cymène! thymol (partie aérienne).
- + L'huile essentielle *d'Ammoïdes verticillata*, de provenance d'Ethiopie, révèle sa richesse en carvacrol (69%) (**Demissew**, **1993**).

- •• D'autre part, l'analyse chimique de huile essentielle de graines de cette même espèce, provenant d'Australie, a permis à **Gersbach** et Reddy en **2002**, de mettre en évidence une forte teneur en thymol (45,6%), en '-terpinène (23,8%) et enp-cymène (2 1,25%).
- **Khajeh** et al. en **2004** rapportent également que l'huile essentielle des graines de cette plante, récoltée en Inde, est riche en thymol (49,0%), en y-terpinène (30,8%) et enp-cymène (15,7%).
- + Par contre, la caractérisation de l'huile essentielle des graines d'Ammoïdes verticillata, récolté en Inde, montre que les huiles essentielles de cette plante présentent de fortes teneurs de carvone (46,2%) et de limonène (38,1). Ce type chimique a été signalé uniquement par **Choudhury** et al. en 1998.

L'huile essentielle *d'Ammoïdes verticillata* d'Algérie a fait l'objet de deux études. **Kambouche** et **El-Abed** (2003) ont déterminé la composition chimique de l'huile essentielle *d'Ammoïdes verticillata*, récolté dans la région d'Oran. L'analyse de cette huile par CPG-Ir, CPG-SM et par RMN — C et RMN 'H leur a permis la mise en évidence de 20 composés représentant 99,9% de la composition globale. L'isothymol est le composé majoritaire avec une teneur de 51,20%. D'autres composés sont également identifiés en quantités appréciables: le p-cymène (14,08%), le thymol (12,96%), le limonène (11,89%) et le y-terpinène (6,79%). Par contre, la teneur en carvacrol est très faible, de l'ordre de 0,25%. Ces auteurs ont trouvé de l'isothymol comme composé majoritaire.

Plus récemment, **Bendahou** (2007) a décrit l'analyse par CPG et par CPG-SM de l'huile essentielle de cette même plante récoltée à Terni (région de Tlemcen). Les composés majoritaires sont: thymol (50,1%), suivi de p-cymène (15,6%), de limonène (15,0%), de carvacrol (8,8%) et de y-terpinène (6,6%).

Ces études réalisées sur la détermination de la composition de l'huile essentielle *d'Ammoïdes verticillata*, ont démontré que le type chimique (thymol/limonène/p-cymène/y-terpinène) obtenu pour nos huiles essentielles n'a pas été cité précédemment. De plus, les huiles essentielles de cette espèce sont caractérisées par une variabilité de la composition chimique, du probablement au stade du développement de cette espèce. Certains travaux montrent que le y-terpinène prédomine au début du cycle végétatif de la plante, ensuite, durant la floraison, une grande quantité de p-cymène et une certaine teneur en thymol apparaissent. Par contre, à la maturité de la plante, les composés phénoliques dont principalement le thymol se trouvent en abondance (Choïdhury et al., 1998).

La variabilité de la composition chimique de cette huile essentielle est également influencé par l'origine et la duré de stockage des graines de cette plante (*Ashraf* et *Bhatty*, 1975). En effet, il a été démontré que les teneurs en thymol et en carvacrol diminuent alors que les proportions en y-terpinène et en p-cymène augmentent après un stockage prolongé des graines de cette espèce (*Georgiev* et Khadzhiiski, 1969).

111.5. Analyse des huiles essentielles de Mentha pulegium et de Satureja calamintha subsp. nepeta:

Appartenant à la famille des lamiacées, les espèces *Mentha pulegium* et *Satureja calamintha* subsp. *nepeta* sont des plantes aromatiques très riches en substances volatiles. Elles figurent parmi les plantes les plus communément utilisées en médecine traditionnelle. Les huiles essentielles de ces espèces sont caractérisées par une abondance en pulégone. Ainsi, nous avons choisi ces espèces pour pouvoir comparer le pouvoir antibactérien de leurs huiles essentielles à celui de huile essentielle de *Ziziphora hispanica*, qui révèle également une richesse en pulégone.

Pour cela, il était nécessaire d'avoir une connaissance de la composition chimique des huiles essentielles de ces espèces, poussant spontanément dans la région de Tlemcen (Algérie). Nous avons procédé à une analyse de trois échantillons pour chaque huile essentielle en appliquant conjointement une technique chromatographique (CPG-Ir) et une technique spectroscopique (RMN ¹³C). Ces échantillons sont récoltés dans une seule station, soit Pierre du Chat pour *Menthapulegium* et Maghnia pour *Satureja calamintha* subsp. *nepeta*, et ceci sur trois années successives.

Des spectres de ces huiles essentielles sont enregistrés, et les valeurs des déplacements chimiques sont comparées à celles des composés de référence présents dans une bibliothèque de spectre grâce à un logiciel d'aide à l'identification.

> Analyse de l'huile essentielle de Mentha pulegium

L'analyse de l'huile essentielle de *Mentha pulegium* par CPG-Ir et par RMIN C, nous a permis d'identifier seize composés, représentant au total entre 94,9 et 98,6% de la composition globale de l'huile essentielle. Les constituants identifiés par RMN ¹³C, sont ensuite repérés sur le chromatogramme par leurs indices de rétention, sur colonnes polaire et apolaire, par comparaison avec ceux des produits de référence et peuvent être ainsi quantifiés (Tableau 34). Nous préciserons également que pour chaque composé, tous les signaux des

carbones attendus sont observés, à l'exception de certains signaux des carbones quaternaires de composés minoritaires.

Tableau (34): Composés identifiés par RMN ' ³C dans l'huile essentielle *de Mentha pulegium*

Composés identifiés	Ma	IRp	PM	F!	PM 5
a-pinène	929	1025	0,3	0,4	0,3
fI-pinène	969	1112	0,3	0,3	0,2
Octan-3-ol	976	1390	0,9	0,9	1,2
Myrcène	979	1161	0,2	0,1	-
Para-cymène	1010	1272	0,1	0,1	0,1
Li _{mon} è _{ne} *	1020	1202	0,9	1,0	0,7
$1.8_{c}i_{n}\acute{e}_{o}l_{e}^{*}$	1020	1210	0,1	0,1	0,2
Menthone	1135	1467	7,7	23,1	10,9
Isomenthone	1141	1492	0,3	0,7	0,4
Ci _{s_} i _{so} p _u lé _{gone} *	1149	1572	0,9	0,7	0,7
Trans_isopulégone*	1149	1583	0,9	0,7	0,6
Né _{o-men} th _o l*	1149	1593	1,0	0,6	0,2
Pulégone	1219	1653	78,0	62,7	75,8
Pipéritone	1226	1729	0,5	0,9	0,5
Pipériténone	1308	1926	6,4	2,4	3,9
Oxyde de caryophyllène	1569	1986	0,1	0,2	0,1
Total (%)			98,6	94,9	95,9

Légemle: PM/PM 5/ F 1: Pierre du chat 2003/2004/2005.

L'ordre d'élution et les pourcentages donnés sont ceux sur colonne apolaire (BP-1) à l'exception des composés dont les noms sont suivis d'un astérisque * (dont les pourcentages sont ceux sur colonne polaire (BP-20)). IRa et lRp: indices de rétention sur colonnes apolaire et polaire.

Le spectre RMN —C de l'huile essentielle de *Menthapulegium* est reproduit sur la figure (20), ainsi que la structure de la pulégone, composé majoritaire de ces huiles essentielles.

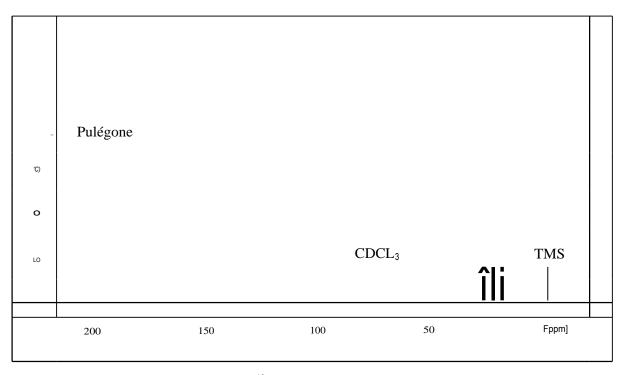


Figure (20): Spectre RMN ¹³C de l'huile essentielle de *Mentha pulegium* (échantillon récolté durant l'année 2004)

Dans la figure (21), nous donnons, respectivement, les structures des molécules identifiées par RMN $^{^{13}}$ en analysant ces huiles essentielles.

o

1,8-cinéole Menthone Isomenthone Gis-i s

C)

Néo-menthol Pulégone Pipéritone Pipériténone Oxyde de caryophyllène Figure (21) : Structure des molécules identifiés par RMN ¹³C dans les huiles essentielles de *Mentha pulegium*

Les trois échantillons analysés sont qualitativement très proches. En consultant le tableau (34), nous pouvons constater que la quasi-totalité des constituants identifiés sont des monoterpènes, avec notamment une forte prépondérance des monoterpènes oxygénés (91,9 - 95,8%). Cette fraction est dominée par des composés oxygénés possédant un squelette de type p-menthane en position 3. Nous pouvons noter, parmi eux la forte abondance de la pulégone et du menthone. En effet, ces derniers représentent respectivement (62,7 - 78,0%) et (7,7 - 23,1%), soit entre 85,7 et 86,7% au total.

Le reste des monoterpènes oxygénés ne représentent que 6,0 à 10%, et leurs teneurs sont faibles: le 1,8-cinéole (0,1-0,2%), l'isomenthone (0,3-0,7%), le cis-isopulégone (0,7-0,9%), le trans-isopulégone (0,6-0,9%), le néo-menthol (0,2-1,0%), la pipéritone (0,5-0,9%) et la pipériténone (2,4-6,4%).

Le taux des monoterpènes hydrocarbonés identifiés ne représente que 1,3 à 1,9% de la composition globale. Ces oléfines sont présents en proportions très faibles : le limonène (0,7 - 1,0%), le a-pinène (0,3 - 0,4%), le 3-pinène (0,2 - 0,3%), le myrcéne (0,1 - 0,2%) et le p-cymène (0,1%).

Un seul composé linéaire, l'octan-3-ol (0,9 - 1,2%) est également identifié. L'oxyde de caryophyllène (0,1 - 0,2%) est le seul sesquiterpène identifié lors de l'analyse de l'huile essentielle de Mentha pulegium.

Les diverses études effectuées sur la caractérisation de l'huile essentielle de *Me ntha pulegium* ont permis d'avancer l'existence d'une variabilité chimique de cette huile essentielle:

+ La première étude effectuée sur la détermination de la composition chimique de l'huile essentielle de *Menthapulegium* est celle de **Zwaving** et **Smith** en 1971, qui ont identifiés les composés majoritaires suivants : la pipéritone (70%), le limonène (11%), le menthone (8%) et l'isomenthone (7%), à partir de pieds récoltés en Australie.

- •. **Proença Da Cunha et al. (1976),** ont identifié la pulégone (42%), le menthol (16,24%), l'isopulégone (6,80%) et l'isomenthone (5,02%) dans l'huile essentielle de cette espèce récoltée en Angola.
- + L'analyse chimique de l'huile essentielle de *Mentha pulegium* de provenance d'Espagne (**Lawrence**, **1978**) celle de provenance du Maroc (**Chebli** et **al.**, **2003**) et celle de provenance de Grèce (**Daferera** et **al.**, **2003**), leur a permis d'obtenir des teneurs élevées en pulégone (67,6 85,4%).
- + L'huile essentielle de *Mentha pulegium* provenant d'Uruguay, contient de la pulégone (26,8 41,1%) et de l'isomenthone (35,6 40,6%) (**Bigo De Grosso** et **Moyna**, 1985).
- •• En 1995, les travaux réalisés par **Sivropoulou** et **al.**, sur l'huile essentielle *Me ntha pulegium* provenant de 3 provinces de Grèce, ont montré l'existence de 3 races chimiques différentes à savoir: pulégone/piperitone, pulégone/isomenthone et isomenthone/menthone.
- + Une étude de la composition chimique de l'huile essentielle de *Mentha pulegium*, poussant à l'état spontané en Grèce, a permis à **Skrubis** en 1972, de mettre en évidence une forte teneur en pulégone (61,9%).
- + Enfin, Lamiri et al. en 2001, avancent que l'huile essentielle de cette espèce végétale récoltée au Maroc, est caractérisé par une forte abondance en pulégone (66,5%).

Selon, l'ensemble des travaux réalisés sur la caractérisation de l'huile essentielle de *Mentha pulegium*, nous pouvons conclure que cette huile est très riche en pulégone, suivi de menthol, ou de piperitone, ou de menthone et/ou d'isomenthone.

Analyse de l'huile essentielle de Satureja calamintha subsp. nepeta

L'analyse de l'huile essentielle de *Satureja calamintha* par CPG-Ir et par RMN —C, nous a permis d'identifier dix sept composés, représentant au total 82,2 à 96,2% de la composition globale de l'huile essentielle. Un spectre pour chaque huile essentielle est enregistré, et les valeurs des déplacements chimiques sont comparées à celles des composés de référence présents dans une bibliothèque de spectre grâce à un logiciel d'aide à l'identification. Les constituants identifiés par RMN ¹³C, sont ensuite aisément repérés sur le chromatogramme par leurs indices de rétention, sur colonnes polaire et apolaire, par comparaison avec ceux des produits de référence et peuvent être ainsi quantifiés (Tableau 35). Nous préciserons également que pour chaque composé, tous les signaux des carbones attendus sont observés, à l'exception de certains signaux des carbones quaternaires de composés minoritaires.

Tableau (35): Composés identifiés par RMN ' ³C dans l'huile essentielle de Satureja calamintha subsp. nepeta

Composés identifiés	IRa	IRp	MN	SC 3	Ne 1
a-pinène	929	1025	0,7	0,4	0,8
Camphène	942	1069	0,2	0,3	0,2
Sabinène	964	1122	0,7	0,2	0,6
-pinène	969	1112	1,2	0,4	1,1
Li mon è ne *	1019	1202	2,1	0,7	1,7
$1.8 ci_n \acute{e}_o l_e$ *	1019	1212	8,2	10,3	6,6
Linalol	1081	1543	0,2	0,1	0,2
Menthone	1133	1465	9,6	9,3	8,5
Isomenthone	1144	1495	17,2	27,1	24,1
$N\acute{e}_{o_men}th_{o}l^*$	1150	1594	7,1	5,5	5,6
Cis_isopulégone*	1150	1572	0,6	0,5	0,5
Trans_isopulégone*	1150	1583	0,5	0,3	0,4
Néo-iso-menthol	1169	1630	10,0	5,9	9,6
a-terpinéol	1172	1701	0,9	0,7	0,7
Pulégone	1218	1651	35,5	20,4	33,3
Trans-caryophyllène	1418	1593	0,7	0,1	0,8
D-germacrène	1475	1709	0,8	0,1	1,0
Total (%)			96,2	82,2	95,7

Légende: MN/SC 3/Ne 1: Maghnia 2003/2004/2005.

L'ordre d'élution et les pourcentages donnés sont ceux sur colonne apolaire (BP-1) à l'exception des composés dont les noms sont suivis d'un astérisque * (dont les pourcentages sont ceux sur colonne polaire (13P-20)). IRa et IRp: indices de rétention sur colonnes apolaire et polaire.

Le spectre RMIN C de l'huile essentielle de *Satureja calamintha* est représenté sur la figure (22), ainsi que la structure de la pulégone, composé majoritaire dans l'huile essentielle de *Satureja calamintha*, récoltée durant l'année 2005.

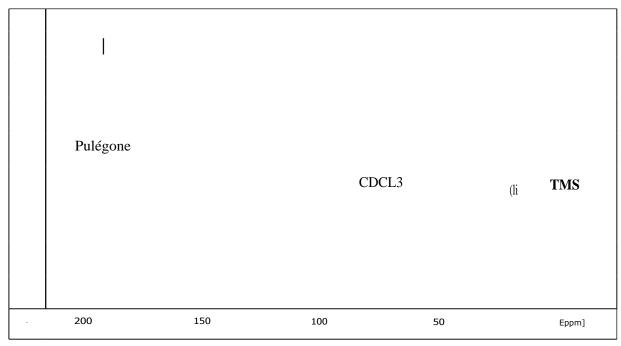


Figure (22) : Spectre RMN —C de l'huile essentielle de *Satureja calamintha* subsp. *nepeta* (échantillon récolté durant l'année 2005)

Dans la figure (23), nous donnons, respectivement, les structures des molécules identifiées par RIVIN ¹³C en analysant ces huiles essentielles.

a-pinène Camphène Sabinêne J-pinène Limonène 1,8-cinéole

Linalol Menthone Isomenthone Néo-menthol Cis-isopulégone Trans-isopulégone

ОН

Néo-iso-menthol cL-terpinéol Pulégone *Trans-caryophyllène D-germacrène*Figure (23) : Structures des molécules identifiés par RMN C dans les *huiles*essentielles de *Satureja calamintha subsp. nepeta*

Les trois échantillons analysés sont qualitativement très proches. En consultant le tableau (35), nous pouvons constater que sur dix sept composés identifiés, quinze sont des monoterpènes, avec notamment une forte prépondérance des monoterpènes oxygénés (80 - 89,8%) dont la plupart sont des composés possédant un squelette du type p-menthane en position 3. Nous pouvons noter pour les échantillons MN et Ne 1, une forte abondance de la pulégone (33,3 - 35,5%), suivi de l'isomenthone (17,2 - 24,1%). Quatre autres monoterpènes oxygénés sont également identifiés en quantités appréciables: le néo-isomenthol (96 - 10,0%), le menthone (8,5 - 9,6%), le 1,8-cinéole (6,6— 8,2%) et le néo-menthol (5,6— 7,1%). Les monoterpènes oxygénés de l'échantillon SC 3 sont dominés par l'isomenthone (27,1%), suivi par la pulégone (20,4½). Les composés présents en quantités appréciables, cités précédemment, sont également identifiés dans cet échantillon, soit le 1,8-cinéole (10,3%), le menthone (9,3%), le néo-menthol (5,5%) et le néo-isomenthol (5,9%).

Par ailleurs, lors de l'analyse de ces huiles essentielles, nous avons caractérisée 5 autres monoterpènes de nature oléfiniques qui sont présents en faibles teneurs: le a-pinène (0,4 - 0,8%), le camphène (0,2 - 0,3%), le sabinène (0,2 - 0,7%), le -pinène (0,4 - 1,2%) et le limonène (0,7 - 2,1%).

Un seul sesquiterpène hydrocarboné, le D-germacrène est également identifié (0,1 - 1,0%). Le trans-caryophyllène (0,1 - 0,8%) est le seul sesquiterpène oxygéné identifié lors de l'analyse de l'huile essentielle de *Satureja calamintha*.

La détermination de la composition chimique de l'huile essentielle de *Satureja calamintha* a fait l'objet de plusieurs travaux dont lesquels, les auteurs avancent l'existence de différents types chimiques au sein de cette espèce.

Selon la littérature, les études menées sur cette plante, nous amènent à conclure que toutes les huiles essentielles de cette espèce sont caractérisées par une prédominance de monoterpènes possédant un squelette de type p-menthane. Cependant, la comparaison de tous les résultats

obtenus lors de l'analyse de ces huiles essentielles, nous amènent à supposer la présence de trois types chimiques:

- + Chimiotype à pulégone (composé majoritaire), associé à d'autres constituants: soit au menthone et/ou isomenthone (De Pooter et Schamp, 1986; De Pooter et al., 1987; Velasco-Negueruela et al., 1987; Souleles et al., 1987; Ristorcelli et al., 1996; Sarer et Pançali, 1998), soit au menthol et ses isomères (Adzet et Passet, 1972; Velasco-Negueruela et al., 1996), soit au pipériténone (Akgtil et al., 1991), soit encore au pipéritone et oxydes de pipériténone (De Pooter et Schamp, 1986). Ainsi, la plupart des études effectuées sur la caractérisation de l'huile essentielle de *Satureja calamintha*, nous permettent de conclure que les huiles essentielles de cette espèce font parti de ce groupe chimique. Il en est de même pour nos échantillons. Par ailleurs, Ristorcelli et al. (1996), ont effectué une étude sur la variabilité chimique de l'huile essentielle de *Satureja calamintha* subsp. *nepeta* récoltée en Corse (France). Ces auteurs avancent que certains échantillons sont caractérisés par une forte teneur en menthone, suivi de la pulégone.
- •• Le deuxième type est caractérisé par une prédominance de l'oxyde de pipéritone et/ou de l'oxyde de pipériténone (**De Pooter** et **Schamp, 1986; kokkalou** et **Stefanou, 1990** : **Kirimer** et al., 1992 · **Fraternale** et al., 1998 : Mastelic et al., 1998).
- •• Un type chimique (Carvone/1,8-cinéole) particulier a été signalé uniquement par **Pérez-Alonso** et **al.** en **1993**.

Enfin, en **2000**, **Baldovini** et **al.**, ont étudié l'évolution de la composition chimique de l'huile de *Satureja calamintha subsp. nepeta*, au cours du cycle végétatif de la plante afin de déterminer la période propice pour la récolte. Ensuite, ils ont analysé 40 échantillons de l'huile essentielle de cette même espèce récoltée dans différentes régions en Corse, durant la période de pleine floraison, afin de mettre en évidence un éventuel polymorphisme chimique au sein de cette plante.

Ces auteurs ont pu identifié 28 composés dans ces échantillons qui ont été soumis à un traitement statistique des données. Ceci, leur permis de définir trois groupes d'huiles essentielles au sein de la population:

Le premier groupe (16 échantillons) est caractérisé par une prédominance en menthone (teneur moyenne: 43,4%), suivi de la pulégone (18,9%), de l'oxyde de pipéritone (8,3%) et de limonène (5,2%).

- Les échantillons (11) appartenant au groupe II, sont caractérisés par une forte teneur en oxyde de pipéritone (pourcentage moyen: 30,5%), suivi de l'oxyde de pirériténone (12,5%) et de limonène (12,4%).
- Dans les échantillons (1 3) du groupe III, le pourcentage moyen de la pulégone est de l'ordre de 55,6%, suivi de menthone (20,0%) et de limonène (6,0%).

Nous pouvons constaté que chaque type chimique signalé dans la littérature, figure dans un des trois groupes définis par **Baldovini** et **al.** (2000) lors de l'étude de la variabilité de l'huile essentielle de *Satureja calamintha* subsp. *nepeta*. Le chimiotype (carvone/1,8-cinéole), signalé par **Pérez-Alonso** et **al.** (1993) et le notre (Isomenthone /pulégone), n'ont pas été rapporté dans aucune analyse de l'huile essentielle de *Satureja calamintha* subsp. *nepeta*. Cependant, ces travaux nous permettent de conclure que l'origine de cette plante ne semble pas avoir une influence sur la composition de l'huile essentielle de *Satureja calamintha* subsp. *nepeta*.

Enfin, comme *Mentha pulegium*, cette espèce est caractérisée par une variabilité de la composition chimique au cours du cycle de développement de cette plante.

IV. Etude du pouvoir antibactérien des huiles essentielles des différentes plantes:

L'OMS estime qu'en moyenne 190 millions de personnes sont hospitalisées chaque année dans le monde et que 9 millions d'entre elles contractent une infection à cette occasion (Borrel, 2000). Les infections liées à l'hospitalisation sont appelées infections nosocomiales. Elles sont soit liées à un soin (ou une intervention) ou simplement dues à l'environnement hospitalier. Ces infections se présentent sous diverses formes: infections urinaires, respiratoires, digestives ou post-opératoires. Elles peuvent aussi être dues à la contamination du matériel: cathéters et tubes trachéaux (Borrel, 2000). Les microorganismes présents dans l'univers hospitalier sont extrêmement variés et peuvent appartenir aussi bien aux espèces opportunistes qu'aux espèces habituellement pathogènes pour l'homme.

Pour cela, nous avons jugé intéressant d'étudier la sensibilité des huiles essentielles des différentes espèces végétales étudiées vis-à-vis de 18 bactéries pathogènes (Tableau 36), dont 7 sont des souches de référence et 11 sont des bactéries d'origine hospitalières qui sont préalablement identifiées.

Tableau (36): Liste des bactéries utilisées pour l'étude de pouvoir antibactérien des huiles essentielles des différentes plantes

Bactéries de référence	Codes	Bactéries d'origine hospitalières	Biotypes
Pseudomonas aeruginosa(P3)	ATCC 27853	Pseudomonas aeruginosa(P2)	2212004
Kiebsiella pneumoneae (KL2)	ATCC 700603	Kiebsiella pneumoneae (KL1)	5215773
	. = = = = = = = = = = = = = = = = = = =	Escherichia Cou (E1)	5044172
Escherichia Cou (E4)	ATCC 25922	Escherichia Cou (E2)	5044552
Listeria monocytogenes (Li,)	ATCC 19111	Escherichia Cou (E3)	5144572
Listeria monocytogenes (L1 ₅ ,	ATCC 19115	Escherichia Cou (E6)	5044552
Staphylococcus aureus (Sti)	ATCC 601	Citrobacterfreundii (Ci)	1554512
		Entrobacter cloaceae (En)	1305573
Staphylococcus aureus (St3)	ATCC 43866	Salmonella typhi (SL)	4404540
		Proteus mirabilis (Pr)	0536040
		Staphylococcus aureus (St2)	6736153

Les bactéries à Gram négatif sont responsables de plus de 50% des infections nosocomiales. Leur réservoir est le plus souvent le tube digestif (entérobactéries), mais il peut être environnemental (*Pseudomonas aeruginosa..*). Les infections urinaires, les infections de plaies opératoires, les pneumonies et les bactériémies nosocomiales représentent plus de 80% des infections rapportées (Gayraud et Lortholary, 2003). Les entérobactéries (Proteus, Klebsiella, Enterobacter, Citrobacter ...) se comportent généralement comme des bactéries opportunistes souvent impliquées dans les infections nosocomiales (Nauciel et Vildé, 2005).

Le micro-organisme le plus important dans les infections nosocomiales est *Escherichia cou*, un habitant normal des intestins de l'homme. Les infections du tractus urinaire sont les infections le plus souvent rencontrées dans l'environnement hospitalier. Parmi, ces infections, *un tiers est provoqué par E. cou*, un autre tiers par *Pseudomonas aeruginosa*, *Enterobacter* cloacae..etc. La plupart des infections restantes sont provoquées par d'autres bactéries à Gram négatif. L'infection est généralement une conséquence du cathétérisme urinaire des patients immobilisés (Perry et al., 2004).

Historiquement, *Pseudomonas aeruginosa* représente 11% des infections nosocomiales (**Régnier**, 2005) sous forme d'infection urinaire, du sang, des plaies et de l'appareil respiratoire (**De Billerbeck**, 2005). Il a été un des agents principaux de suppurations après les interventions chirurgicales. Il peut également être responsable de bactériémie chez les cancéreux ou les leucémiques sous chimiothérapie et de thrombophlébites sur cathéter veineux (Perry et al., 2004).

Les infections respiratoires qui apparaissent comme une forme de pneumonie sont souvent rencontrées et peuvent être provoquées par Pseudomonas aeruginosa, Staphylococcus aureus, ou Kiebsiella sp.. Ces infections pulmonaires rencontrées chez les patients de réanimation sous ventilation assistée, peuvent entraîner la mort et sont dues à des appareils respiratoires et à l'incapacité du patient à dégager ses poumons (Perry et al., 2004).

Staphylococcus aureus tient une place très importante aussi bien dans les infections communautaires que dans les infections nosocomiales (Nauciel et Vildé, 2005). C'est un souci important également pour les patients de chirurgie. Il est estimé que 7% de l'ensemble des malades de chirurgie ont des problèmes d'infections post-opératoires. Il est responsable d'infections suppuratives de la peau et des muqueuses, suite à des plaies traumatiques ou chirurgicales (Lowy, 1998, De Bilierbeck, 2005). Il peut également occasionner des infections de la sphère ORL, des infections oculaires, des infections urogénitales, ostéo-

articulaires, cardiaques, méningées et une proportion importante de septicémies pouvant être mortelles (Gayraud et Lortholary, 2003).

Il développe rapidement des résistances aux antibiotiques et les souches hospitalières ne sont souvent sensibles qu'aux glycopeptides (Lowy, 1998).

Listeria monocytogenes est une bactérie ubiquitaire pouvant parfois provoquer des infections graves (méningites, septicémies). Ces infections sont généralement d'origine alimentaire (Vazquez-Boland et al., 2001).

Les salmonelles sont des bactéries de l'intestin. Chez de nombreux sujets, elles peuvent être présentes sans entraîner de symptômes. En outre, la fièvre typhoïde est une septicémie à point de départ due entre autre à *Salmonella typhi*. La contamination se fait habituellement par l'ingestion d'eau ou d'aliments contaminés. Ces derniers, sont le plus souvent d'origine animale (coquillage, viande hachée, oeufs). La contamination des aliments peut aussi être d'origine humaine et liée à des manipulations par un personnel porteur de salmonelles (Nauciel et Vildé, 2005).

Par ailleurs, plusieurs bactéries pathogènes telles que: *Escherichia cou, Staphylococcus aureus, Kiebsiella pneumoniae, Listeria monocytogenes*, sont responsables d'intoxications alimentaires, de la détérioration des aliments et entraînent des maladies après ingestion des préparations alimentaires contaminées par ces agents (**Deak** et **Beuchat, 1996**).

IV.!. Identification des bactéries d'origine hospitalière:

Nous avons vérifié la purification et l'identification des souches bactériennes d'origine hospitalière en étudiant leurs caractères morphologiques et biochimiques. Pour cela, nous avons utilisé en premier lieu des milieux sélectifs:

- Milieu Mac Conkey pour les entérobactéries, qui apparaissent sous forme de colonies variables selon les différentes espèces et de couleur rouge à rose sur ce milieu;
- Gélose nutritive pour les Pseudomonas, leurs colonies sont de grande taille, opaque à centre foncé, et à périphérie claire et déchiquetée. Ces colonies colorent la gélose en vert;
- Milieu Chapman pour le *Staphylococcus aureus*, qui apparaît sous forme de petites colonies rondes, lisses et colorées en jaune d'or, sur ce milieu.

Ensuite, nous avons étudié leur type respiratoire ainsi que leurs caractères morphologiques (Tableau 37):

Aspect et mobilité des colonies, déterminés par un examen microscopique à l'état frais

• Coloration de Gram

Tableau (37): Caractères morphologiques et type respiratoire des différentes souches

Souches	I'orme	Gram	Mobilité	Type respiratoire
Pseudomonas aeruginosa (P2)	Coco-bacille	-	+	Aérobie strict
Kiebsiella pneumoneae (KL ₁ ,	Bacille	-	-	Aéro-anaérobie
Esclierichia Coli (E1)	Bacille	-	+	Aéro-anaérobie
Escherichia Coli (E2)	Bacille	-	+	Aéro-anaérobie
Escherichia Coli (E3)	Bacille	-	+	Aéro-anaérobie
Escherichia Cou (E6)	Bacille	-	+	Aéro-anaérobie
Citrobacterfreundii (Ci)	Bacille	-	+	Aéro-anaérobie
Entrobacter cloaceae (En)	Bacille	-	+	Aéro-anaérobie
Salmonella typhi (SL)	Bacille	-	+	Aéro-anaérobie
Proteus mirabilis (Pr)	Bacille	-	+	Aéro-anaérobie
Staphylococcus aureus (St ₂ ,	Cocci	+	-	Aéro-anaérobie

Enfin, nous avons déterminé les cartctéristiques biochimiques en utilisant les plaques d'identification API 20E (pour *Pseudomonas aeruginosa* et pour les entérobactéries, Tableau 38), et API Staph (pour *Staphylococcus aureus*, Tableau 39). L'identification des différentes souches est faite selon le catalogue analytique.

	t() q) 'r	rl Lfl
	+ 1 1 1 1 1 1 1	2
tOM	++++ +++	IIISI
хО	+ 1 1 1 1 1 1 1 1 1	'JUfi →
\r11y	++++++	3011
AIIV	1 + 1 1 1 1 1 + 1	wEV +
r p _j		9VN +
DVS	' ++'+	91AJ
		DVS +
VHH	++++++	rIAX
108	+ +++++	JVM
ONI	-f. 1 1 1 1 1 1	0 122
MV1iI	++++++	dA →
fY19	' +++++++	rp _j →
· rl 9	+ 1 1 +	IIN →
dA	+ 1 1 1 1 + + 1	rI'JJ _j ∖I □
awi		IIX
		MV1'I →
vai	1 + +	− flh1 →
aufl	1 1 1 1 1 1 1 1	DVI +
SZH	++,	IV1%I →
		e 'JNIAI +
113		flll1 🕂 -Ī
xio	. 1 1 1 + 1 ++++	f119 +
D1I		\mathbf{O} $\mathbf{i}_{\mathcal{C}_{j}}^{\mathbf{i}_{\mathcal{C}_{j}}}$
IIIL [,] T		0
9dNIO	' ++++++	<u>g)</u>
	-	

IV.2. Etude du pouvoir antibactérien des huiles essentielles des différentes plantes:

Lors de cette étude, nous avons testé les huiles essentielles des différentes espèces végétales vis-à-vis de souches bactériennes citées précédemment, en appliquant quatre méthodes.

Dans un premier temps, nous avons testé l'activité de ces huiles essentielles par une méthode rapide (la méthode de diffusion sur disque) et dans l'affirmation, nous avons déterminé:

- la concentration minimale d'inhibition (CMI) en utilisant la méthode de contact direct en milieu gélosé
- la concentration minimale bactéricide (CMB) en appliquant la méthode de contact direct en milieu liquide

La quantité minimale inhibitrice (QMI) en utilisant la méthode de microatmosphére.

Nous avons testé l'activité antibactérienne d'un seul échantillon d'huile essentielle pour chaque plante.

IV.2.1. Détermination de l'activité antibactérienne des huile essentielles par la méthode de diffusion par disque (aromatogramme):

L' aromatogramme est une méthode qualitative, simple, appliquée en routine à toute bactérie considérée comme pathogène. Cette méthode permet d'explorer un grand nombre d'huiles essentielles vis-à-vis de chaque souche.

Huiles essentielles à composé majoritaire: la pulégone

Nous rapportons dans le tableau (40) les diamètres des zones d'inhibition des huiles essentielles de Satureja calamintha, de Ziziphora hispanica et de Mentha pulegium relatives aux souches bactériennes testées.

Tableau (40) : Aromatogramme : Moyennes des diamètres des zones d'inhibition (en mm) des huiles essentielles à composé majoritaire à pulégone relatives aux différentes souches selon la méthode de Vincent

Souches bactériennes	Satureja calamintha (MN)	Mentha pulegium (PM 5)	Ziziphora hispanica (Z 1)	Témoin
P ₂	7,4	6,0	6,0	6,0
P ₃	7,8	6,0	6,0	6,0
\mathbf{KL}_1	11,2	9,2	8,0	6,0
KL_2	11,4	9,6	8,0	6,0
L11	12,0	9,8	8,4	6,0
L1 ₅	12,2	9,8	8,3	6,0
Pr	12,6	10,0	9,0	6,0
E6	13,0	10,0	9,0	6,0
$\mathbf{E_2}$	13,4	10,8	9,4	6,0
E ₃	13,4	11,0	9,4	6,0
Ci	13,8	11,8	9,7	6,0
\mathbf{E}_1	14,0	12,0	10,3	6,0
En	14,2	12,4	10,4	6,0
\mathbf{St}_2	15,4	13,4	12,0	6,0
E4	15,8	13,8	12,4	6,0
St,	16,4	15,0	12,7	6,0
St ₃	16,8	15,4	13,0	6,0
SL	17,0	15,8	13,3	6,0

Légende: MN: HE de *Satureja calamintha* (2003), *PM* 5 HE de *Menthapulegium* (2004), Z 1: HE de *Ziziphora hispanica* (2004). Le diamètre des disques est compris dans le diamètre du halo d'inhibition

Comme cela a été rapporté dans la littérature, nous avons considéré qu'une huile essentielle a une action bactériostatique si son diamètre d'inhibition est supérieur à 12 mm (Baudoux, / 2001 : Sagdaç, 2003) ou à ISmm (Rossi, 2003).

Ainsi, l'huile essentielle de *Satureja calamintha* agit de façon active sur la majorité des bactéries testées à l'exception des genres Pseudomonas, Klebsiella et Listeria qui sont

'T

particulièrement très résistantes. Ces bactéries sont généralement sensibles aux huiles essentielles riches en phénols (**Svoboda** et **Deans, 1995**).

Les souches de *Pseudomonas aeruginosa* ont toujours présenté une résistance vis-à-vis de des huiles essentielles, à composé majoritaire, la pulégone (**Sivropoulou** et al., 1995; **Mimica-Dukié et al.**, 2003 : Salehi et al., 2005).

Par contre, l'huile essentielle de *Mentha pulegium* et celle de *Ziziphora hispanica* révèlent une faible activité vis-à-vis de la majorité des souches testées.

Par ailleurs, on remarque que les trois espèces de *Staphylococcus aureus* sont très sensibles à l'ensemble des huiles essentielles. En effet, la plupart des études rapportent que les bactéries à Gram (+) sont généralement plus sensible que celle à Gram (-) (**Mimica-Dukié** et **al., 2003**).

Il est intéressant également de noter que l'ensemble des huiles essentielles testées est très efficace contre *Salmonella typhi*. *I* a été démontré que cette espèce microbienne manifeste une très grande résistance aux agents antimicrobiens (**Mimica-Dukié** et al., 2003).

L'huile essentielle de Satureja calamintha (pulégone: 3 5,5%) est nettement plus active que celles de Mentha pulegium et de Ziziphora hispanica qui révèlent une richesse en pulégone (75,8 et 77,6%, respectivement). En effet, il a été démontré que la pulégone présente une faible, voire une absence activité antimicrobienne lors de l'étude du pouvoir antifongique des huiles essentielles caractérisées par une forte teneur en pulégone, parmi elles, celle de Menthapulegium (Arras et Usai, 2001; Chebli et al., 2003). En outre, Flamini et al. (1999), ont testée l'activité de l'huile essentielle de Calamintha nepeta et de ses constituants majoritaires vis-à-vis de plusieurs bactéries et moisissures. Ils rapportent que seule la pulégone a une activité antimicrobienne en particulier contre toutes les espèces de Salmonella. Ceci a déjà été confirmé par Sivropoulou et al. en 1995, et rapporté récemment par Salehi et al. en 2005. Ces derniers auteurs ont étudié l'effet antibactérien de l'huile essentielle de Ziziphora clinopodioides (pulégone 45,8%), ainsi que celle de son composé majoritaire vis-àvis de sept bactéries par la méthode de diffusion par disque. Ils avancent que les 2 échantillons possèdent un même niveau d'efficacité sur les microorganismes testés, soit entre 9 et 15 mm (selon les différentes bactéries) pour la pulégone et entre 11 à 1 8mm pour huile essentielle, malgré qu'elle contienne une teneur appréciable en thymol (8%). Ils rapportent également que Bacillus subtilis, Staphylococcus aureus et Staphylococcus epidermidis sont les souches les plus sensibles, inhibées à des CMIs très importantes de l'ordre de 3800, 7500, 75 00tg/ml, respectivement.

En outre, l'importante activité de l'huile essentielle de *Saturejci calamintha* est du probablement à d'autres composés présents en quantités appréciables, soient: l'isomenthone (17,2%), le néo-iso-menthol (10,0%), néo-menthol (7,1%) et le 1,8-cinéole (8,2%). Le pouvoir antimicrobien du cinéole et du menthol a été démontré par plusieurs travaux (**Juven** et ai., 1994; Kim et ai, 1995; Mazzanti et ai., 1998; Iscan et ai., 2002; Cimanga et ai., 2002). En effet, il a été rapporté que le menthol et ses dérivés inhibent la réplication de l'ADN plasmique (**Scheiz** et al., 2006). Carson et ai. (2002) avancent que le 1,8-cinéole réduit significativement la tolérance de *Staphylococcus aureus* au NaCl et peut compromettre la membrane plasmique, ce qui confirme également l'importante sensibilité des staphylocoques. La forte activité de l'huile essentielle de *Satureja calamintha* est du également à la présence du D-germacrène (0,8%). En effet, il a été démontré récemment que ce composé possède aussi une activité antimicrobienne (**Ngassapa** et ai., 2003).

Par contre 1' isomenthone a révélé, une très faible activité vis-à-vis de huit bactéries appartenant au Gram (+) et au Gram (-), lors de l'étude du pouvoir antibactérien de l'huile essentielle de *Mentha pulegium* à composé majoritaire: l'isomenthone (77,5%) (**Sivropouiou** et **ai., 1995**).

Enfin, bien que l'activité antimicrobienne d'une huile essentielle est attribuée principalement à son composé majoritaire, l'effet synergique ou antagoniste de chacun de ses constituants présents en faible teneur est également considéré (Paster et ai., 1995; Chang et al., 2001).

Daferera et al., 2003).

> Huiles essentielles à composé majoritaire, thymol ou carvacrol

Les diamètres des zones d'inhibition des huiles essentielles de *Thymus fontanesii*, d'*Origanum glandulosum* et *d'Ammoïdes verticillata* spécifiques à chacune des bactéries testées sont donnés sur la figure (24) (Tableau (41), annexe II).

Les différentes souches bactériennes réagissent de la même manière à l'ensemble des huiles essentielles testées.

Nous pouvons noter qu'elles sont très efficaces sur la quasi-totalité des bactéries testées. Cependant, elles sont inactives sur les deux espèces de *Pseudomonas aeruginosa*, qui se révèlent très résistantes.

Ces différentes souches : Klebsiellas, Listerias, Proteus, *E. cou* (E6, E3, E2) et citrobacter ont sensiblement le même diamètre d'inhibition vis-à-vis de toutes ces huiles essentielles.

Nous constatons également que la souche d 'Escherichia cou (E_4) de référence reste la plus sensible parmi les souches E. cou.

De même, Les souches de *Staphylococcus aureus* et de *Salmonella typhi* sont les plus sensibles, ayant des zones d'inhibition les plus importantes.

Piccaglia et al. (1993) ont déterminé le pouvoir antimicrobien de l'huile essentielle de Satureja montana riche en carvacrol (26 et 41%), sur plusieurs souches notamment Pseudomonas aeruginosa, Kiebsielle pneumoneae, E. cou, Citobacter frundii et Staphylococcus aureus. Nous avons obtenus les mêmes résultats pour Ps. aeruginosa (7.lmm) et pour Ki. pneumoneae (18.9 mm), par contre, ils ont enregistré une faible activité pour Ci. freundii (11.2 mm), E. cou (10.5 mm) et St. aureus (15.4 mm) par rapport à nos résultats, ceci est du au fait que leurs souches sont plus résistantes que les nôtres.

 d^{1}

Photo VII

Т

 ${f T}$

Photo VIII

Photo VII : Aromatogramme: E. cou (E6) (huile essentielle d'Origanum glandulosum)

Photo VIII : Aromatogramme: Staphylococcus aureus (St3) (huile essentielle de Thymus fontanesii)

IV.2.2. Activité antibactérienne des huiles essentielles par la méthode de contact direct en milieu gélosé et détermination des concentrations minimales inhibitrices (CMIs):

Dans un deuxième temps, nous avons déterminé le pouvoir antibactérien des huiles essentielles par la méthode de contact direct en milieu gélosé. Pour cela, nous avons sélectionné les trois huiles essentielles (Thymus fontanesii, Origanum glangulosum et Ammoïdes verticilata) possédant, comme nous l'avons vu précédemment, une forte capacité antibactérienne, pour lesquelles nous avons déterminé les concentrations minimales inhibitrices (CMIs). L'activité de ces huiles essentielles sur l'ensemble des souches bactériennes testées est considérable sauf sur les *Pseudomonas aeruginosa* qui se révèlent très résistantes même à la solution mère (Tableau 42, 43, 44).

													-			_		_	_	_]
Q	_	e)	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Q	_	Si n	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	a
		, C"	+	+	+	+	+	+	+	+	+	+	+	+	+	I	I	I	I	I	
Ι α																					
		C"	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
·-è	cī	Q !	ps												_						
·																					s
	_		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	'I 6
Q Q	_	:.	+	+	+	+	+	+	-LI-	+	+	+	+	+	+	+	+	+	+	+	('\ -I
Q Q		C'																			
È	_	C'																			

+ + +

+

+

+

+ +

Q ;-è ct

C'

Q

+

+

+

+

+

+ + + + +

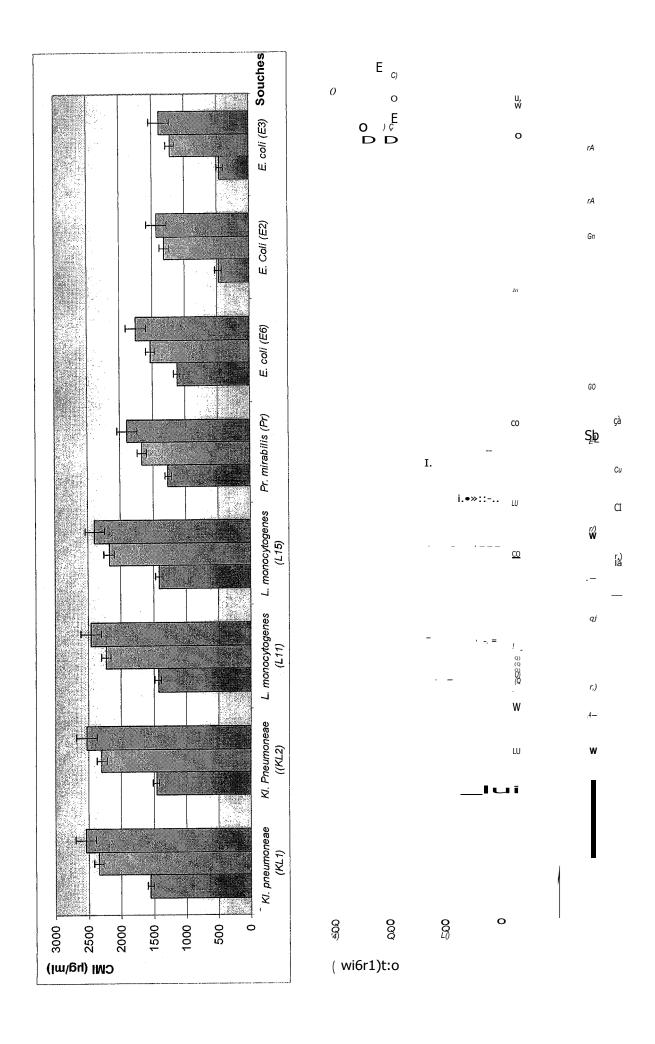
<u>.a</u> .–

Q Q Q

Q 'Q -

ci Q

Tableau (44): Pouvoir antibactérien de l'huile essentielle d'Ammoïdes verticillata selon la méthode de contact direct


Souches	Témoin	Solution mère	10'	10 ²	io
bactériennes		9070 tg/ml	907 tg/ml	90,7 Fug/ml	9,07 tg/ml
P2	+	+	+	+	+
Р3	+	+	+	+	+
KL1	+	-	+	+	+
KL2	+	-	+	+	+
L1,	+	-	+	+	+
L15	+	-	+	+	+
Pr	+	-	+	+	+
E6	+	-	+	+	+
E2	+	-	+	+	+
E3	+	-	+	+	+
Ci	+	-	+	+	+
E1	+	-	+	+	+
En	+	-	+	+	+
St2	+	-	-	+	+
E4	+	-	-	+	+
St ₁	+	-	-	+	+
St ₃	+	-	-	+	+
SL	+		-	+	+

Légende: - : pas de croissance + : croissance

L'huile essentielle de *Thymus fontanesil* s'est avérée la plus efficace, car la quasi-totalité des bactéries testées est inhibée à partir de *954tgIml*, sauf les Kiebsielles, les Listerias, *Proteus* mirabilis et *E. cou* (E6) qui ne révèlent une sensibilité qu'à partir d'une concentration plus importante, soit 9540tg/ml.

Les souches *Escherichia coli* de référence (E4), les Staphylocoques et la Salmonelle restent également les plus sensibles vis-à-vis des huiles essentielles de deux autres plantes, soit à partir d'une dilution de 10'

Nous rapportons sur la figure (25) (Tableau (45), annexe II) les concentrations minimales inhibitrices (CMIs) des huiles essentielles des trois plantes, relatives aux bactéries testées.

Par la détermination des CMIs, nous pouvons noter que toutes les bactéries testées réagissent exactement de la même manière vis-à-vis des huiles des trois plantes. Ces CMIs sont inversement proportionnelles aux diamètres des zones d'inhibition, obtenus avec la méthode de 1' aromato gramme.

On remarque également, que l'appartenance des souches bactériennes à Gram (+) ou à Gram (-) n'influe pas sur leur sensibilité. La susceptibilité des bactérties est en effet indépendante du Gram (**Ouattara** et **al., 1997; Dorman** et **Deans, 2000**).

Ainsi, les trois huiles essentielles sont sans réserve très actives sur l'ensemble des souches testées, et ceci malgré l'utilisation du Tween 80 qui abaisse considérablement l'activité antimicrobienne des huiles essentielles (**Remmal, 1993b; Delespaul, 2000**). Par contre les souches de *Pseudomonas aeruginosa*, très connue pour leurs insensibilités aux agents antimicrobiens, sont très résistantes aux huiles essentielles des trois plantes

Aligiannis et **al.** en 2001 ont proposé une classification du matériel végétal sur la base des résultats des CMIs, comme suit:

e Forte inhibition: CMI inférieure à 500J.Lg/ml

T

e Inhibition modérée: CMI varie de 600.tg/ml à 1 500 jg/ml

Par ailleurs, **Teixeira Duarte** et **al. en 2005**, avancent que toute huile essentielle qui présente des CMIs inférieures à 2000 jg/ml, est considérée avoir un potentiel antimicrobien.

Ainsi, l'huile essentielle de *Thymus fontanesii*, est très active sur l'ensemble des bactéries testées, sauf les Pseudomonas qui se révèlent les moins sensibles, ayant des CMIs très élevées: 1 6700tg/ml pour les deux souches.

Nous constatons également que la Salmonelle, les trois Staphylocoques et *L'E. coli* de référence (E4) sont les plus sensibles à toutes les huiles essentielles.

On peut déduire également que ces résultats nous permettent quand même, de qualifier les huiles essentielles d' *Origanum glandulosum* et d'Ammoïdes verticillata, d'être efficace sur les bactéries suivantes: *Proteus mirabilis*, les cinq *Escherichia colt*, *Citrobacter Freundil*, *Enterobacter cloacae*, les trois *Staphylococcus aureus* et *Salmonella typhi*.

La comparaison de nos résultats obtenus avec l'huile essentielle de *Thymus fontanesii* (contenant 68,3% de composés phénoliques), avec ceux de **Bousmaha-Marroki** et **al.** (2007), qui ont déterminé les CMIs de l'huile essentielle de *Thymus ciliatus ssp. eu-ciliatus* (contenant 75% de composés phénoliques), sur plusieurs souches bactériennes, notamment

Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli et Enterobacter cloacae, révèle que notre huile essentielle est plus active: CMIs de l'ordre de 420pg/m1 et 380jtg/ml pour Enterobacter et *E. cou* (E4) contre 960 et 980 j.tg/ml, respectivement, CMIs allant de 330 à 390tg/m1 pour les Staphylocoques contre 920ig/m1. Les souches *Pseudomonas aeruginosa* restent les moins sensibles.

Τ

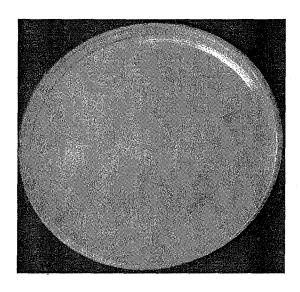


Photo IX Photo X

Photo IX Contact direct : E. à la dilution 1/6 (huile essentielle d'Origanum glandulosum)

Photo X: Contact direct : E. à la dilution 1/5 (huile essentielle d'Origanum glandulosum)

IV.2.3. Activité antibactérienne des uiles essentielles par la méthode de contact direct en milieu liquide et détermination des concentrations minimales bactéricides (CMBs):

L'évaluation de l'activité antimicrobienne d'un produit en milieu liquide est une méthode incontournable, si on veut déterminer secondairement la concentration minimale bactéricide (CMB) (Chevalier, 2003). Pour cela, nous avons également déterminé le pouvoir antibactérien de ces trois huiles essentielles par la méthode de contact direct en milieu liquide (Tableau 46, 47). Ensuite, nous avons déterminé les concentrations minimales bactéricides (CMBs).

Dans un premier temps, nous avons déterminé les CMBs de l'huile essentielle *d'Ammoïdes verticillata* en utilisant trois émulsifiants: l'éthanol (à *95%)*, le Tween 80 (à 10%) et l'agar (on est passé *de 0,2%* à 0,3%). Ensuite, nous avons déterminé les CMBs *de* l'huile essentielle

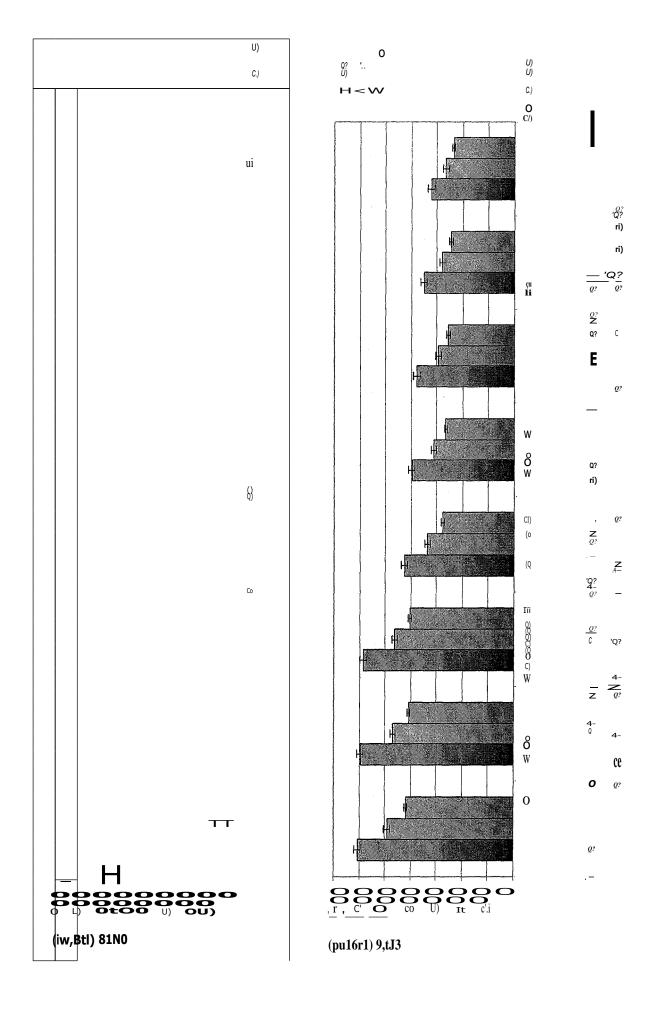
des deux autres plantes en utilisant du Tween 80. Nous avons choisi cet émulsifiant car nous avons obtenu des solutions stables et on voulait comparer ces résultats avec ceux de la méthode de contact direct en milieu gélosé.

Tableau (46) : Pouvoir antibactérien de l'huile essentielle d'Ammoïdes verticillata selon la méthode de Maruzzella

Souches	Témoin	Témoin	Témoin	Solution mère	10 ¹	10 ²
bactériennes	Alcool	Agar	Tween 80	12370ig/ml	1237 pg/ml	123,7 tg/ml
					AL Ag Tw	
P2	+	++	++	+	+++++	++
Р3	+	++	++	+	+++++	++
KL ₁	+	++	++	-	++ ++ ++	++
KL2	+	++	++	-	++ ++ ++	++
L11	+	++	++	-	++ ++ ++	++
L15	+	++	++	-	++ ++ ++	++
Pr	+	++	++	-	+ + +	++
E6	+	++	++	-	- + +	++
E2	+	++	++	-	- + +	++
E3	+	++	++	-	+	++
Ci	+	++	++	-	+	++
E1	+	++	++	-		++
En	+	++	++	-		++
St2	+	++	++	-		++
E4	+	++	++	-		++
St,	+	++	++	-		++
St3	+	++	++	-		++
SL	+	++	++	-		++

Légende: __ pas de croissance, +: croissance faible, ++ : bonne croissance, AI: alcool, Ag: agar,

Tw: Tween


Tableau (47) : Pouvoir antibactérien de l'huile essentielle de Thymus fontanesii et d'Origanum glandulosum selon la méthode de Maruzzella

		Thymus	Thymus	Thymus	Origanum	Origanum	Origanum
	T	Solution mère 13010 tg/ml	1W' 1301 tg/ml	1W ² 130 Fig/mi	Solution mère 12450 tg/ml	10 1245 pg/ml	1W ² 124,5 tg/ml
P2	+	+	+	+	+	+	+
	+	+	+	+	+	+	+
	+	-	+	+	-	+	+
KL2	+	-	+	+		+	+
L11	+	-	+	+	-	+	+
L15	+	-	+	+	-	+	+
Pr	+	-	+	+	-	+	+
E6	+	-	-	+	-	+	+
E2	+	-	-	+	-	+	+
E3	+	-	-	+	-	+	+
Ci	+	-	-	+	-	-	+
E,	+	-	-	+	-	-	+
En	+	-	-	+	-		+
St2	+	-	-	+	-	-	+
E4	+	-	-	+	-	-	+
st,	+	-	-	+	-	-	+
St3	+	-	-	+	-	-	+
SL Lágardes 1 122	+	-	-	+			

Légende: - : pas de croissance, +: croissance, '1' : témoin

L'activité de ces huiles essentielles sur l'ensemble des souches bactériennes testées est considérable sauf sur les *Pseudomonas aeruginosa* qui se révèlent très résistantes même à la solution mère. Nous constatons également que la Salmonelle, les trois Staphylocoques et *l'E.* cou de référence (E4) restent les plus sensibles à toutes ces huiles essentielles.

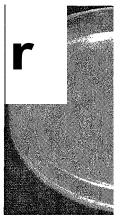
Les concentrations minimales bactéricides (CMBs) de l'huile essentielle *d'Ammoïdes* verticillata (en présence des trois émulsifiants: Agar, Tween et éthanol), vis-à-vis de chacune des bactéries testées sont rapportées sur la figure (26) (Tableau (48), annexe II).

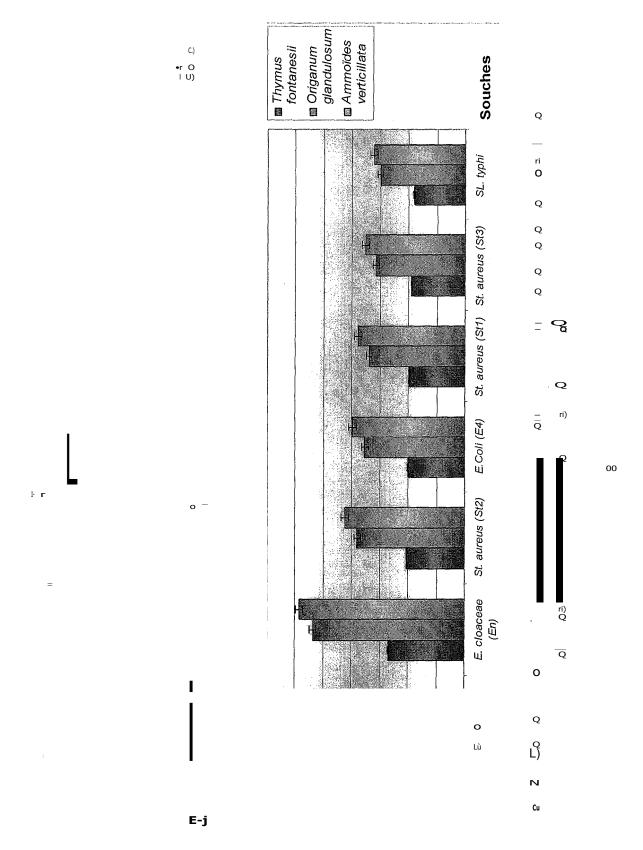

L'huile essentielle *d'Ammoïdes verticillata* présente une action bactéricide vis-à-vis de toutes les bactéries testées (en présence des trois émulsifiants), excepté les *Pseudomonas aeruginosa* qui présente une sensibilité uniquement en présence de l'éthanol (7000 et 71 80pgImI).

die

Photo XI: Milieu liquide (huile essentielle d'Ammoïdes verticillata) : Pseudomonas aerugin osa

Légende: Les trois premiers tubes: Témoin en présence d'éthanol, de Tween et de l'agar respectivement; les trois seconds tubes (en présence de Tween): P2 à la dilution 111,5.., P2 à la dilution 1/2 et P3 à la dilution 1/2 respectivement; Les quatres derniers tubes (en présence d'agar) : P2 à la dilution 1/2, 111,5 et P3 à la dilution 1/2, 1/1,5 respectivement.




Photo XII

Milieu liquide: Pseudononas aeruginosa (P2) à la dilution 1/2

Photo XII: Milieu liquide: Pseudononas aeruginosa (P₂) à la dilution 1/1,8 (huile essentielle d'Ammoïdes verticillata en présence d'ethanol)

Photo XIII: Milieu liquide: *Pseudononas aeruginosa* (P2) à la *dilution 1/1,7* (huile essentielle *d'Ammoïdes vertidilata* en présence d'éthanol)

Nous rapportons sur la figure (27) (Tableau 48, annexe II) les concentrations minimales bactéricides (CMBs) des huiles essentielles de *Thymus fontanesii*, d'*Origanum glandulosum* et *d'Ammoïdes verticillata* relatives aux souches bactériennes testées (en présence de Tween 80).

(wj6rI) 91A13 (i**w,6r**1)

Par la détermination des CMBs, nous pouvons noter que toutes les bactéries testées réagissent exactement de la même manière vis-à-vis des huiles essentielles des trois plantes.

Ces huiles essentielles présentent une action bactéricide vis-à-vis de toutes les bactéries testées, excepté les *Pseudomonas aeruginosa. Nous* avons constaté également que les Listerias se sont révélés plus résistantes que les Klebsielles en milieu liquide.

Nous constatons également que la Salmonelle, les trois Staphylocoques et L'E. *coli* de référence (E4) sont les plus sensibles à toutes ces huiles essentielles.

L'huile essentielle de *Thymus fontanesii* reste la plus efficace, car elle demande des quantités nettement inférieures d'huile essentielle pour une meilleure efficacité bactéricide.

Nous avons comparé nos résultats à ceux de **Simeon de Bouchberg** et **al.** (1976), qui ont déterminé les CMBs de l'huile essentielle de *Thymus vulgaris* à chimiotype à carvacrol avec un pourcentage de 80 % sur plusieurs souches notamment des St. *aureus* (250-1 000 jtg/ml), des *E. cou* (500-1000ig/ml) des *Ki. pneumoneae* (1000tg/ml) et des *Ps. aeruginosa* (4000-8000jig/ml). Ces valeurs concordent avec nos résultats sauf pour Pseudomonas, ceci s'explique probablement par le fait que notre souche est très pathogène.

Т

Photo XIV

Т

Photo XV

Photo XIV: Milieu liquide: *Enterobacter cloaceae* à la dilution 1/25 (huile essentielle de *Thymus fontanesii*)

Photo XV: Milieu liquide: Enterobacter cloaceae à la dilution 1/24 (huile essentielle de Thymus fontanesii)

IV.2.4. Activité antibactérienne de la phase volatile des huiles essentielles et détermination des quantités minimales inhibitrices (QMIs):

Par cette méthode, nous avons évalué l'activité des substances volatiles des huiles essentielles sur les mêmes germes utilisés précédemment (Tableau 49).

		-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
			- -	- -				I	t	I	Ī	t	I	I	I	I	I	t	t	t
		Q	+	+	I	I	I	I	I	I	I	I	t	t	I	I	I	I	I	ı
r,)			-1-	-F		t	I	I	I	t	t	I		I	I	I	t	I	I	t
Q	_		+	+	+	+	t	I	t	I	t	I	I	I	t	I	t	t	t	I
r,) Q																				
a Z							t	t	t	t	t	t	I	t	t	t	I	I	t	I
Z Q	_		+	+	+	+														
	,	Q	+	+	+	+		t	t		ı	t	t	t	t	t		ı		
r,) Z Cu			+	+	+	+	+	+	I	I	t	I	I	I	I	I	t	t	t	I
Z									t	I	J	I	I	I	I	I	t	I	t	I
.4— r,) Q			+	+	+	+	+	+		•	,	•								
r,) Q Q .4-			+ +	+	+	I	+	+	+	1	+	I +	+	t +	t .	t	1 +	I	I t	I I
	_		Т	+	+	+									+	+	, 			
<u>න</u> දුර දුර		Q	+	+	+	+	+	+	+	+	+	+	+	+						
7			+	+	+	+	+	+	+	+	+	I	I	I	I	I .	I .	I	I	I
Z Q <u>Q</u>			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
_				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Q r,)			+	+	+	+	+	+	+	+	1+	+	+	+	+	+	+	+	+	1 1
Q		.e1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
<u> </u>				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
			+	+	+	+	+	+-	+	+	+	+	+	+	+	+	+	+	+	+
	r.		'	1	-	'	'			'	'	'	'	'	•		· ·	<u> </u>	•	
	r, C	i				ri		Rn												
l l										_			_							

Cette méthode a aboutie aux mêmes observations générales faites par l'application de la technique de contact direct en milieu liquide et en milieu gélosé et de l'aromatogramme:

- L'huile essentielle de *Thymus fontanesii* reste la plus efficace;
- La résistance des *Pseudomonas aeruginosa* aux trois huiles essentielles;
- Les souches de Staphylococcus aureus, de Salmonella typhi et d'E. coli de référence E4 sont les plus sensibles

Nous rapportons sur la figure (28) (Tableau (50), annexell) les quantités minimales inhibitrices (QMIs) des huiles essentielles des trois plantes vis-à-vis de chacune des bactéries testées.

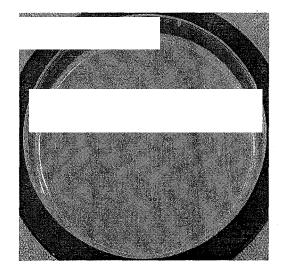
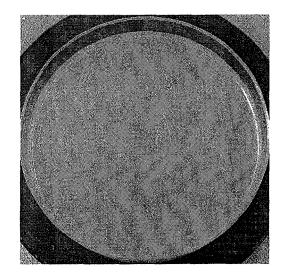



Photo XVI: Microatmosphére:

essentielle de Thymus fontanesil)

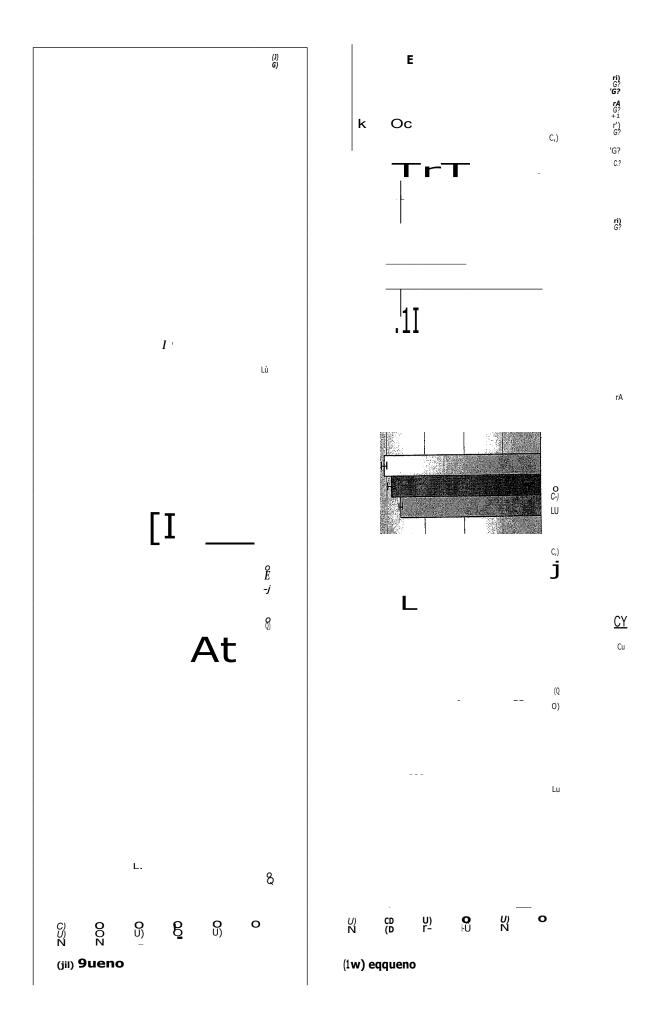

Photo XVII: Microatmosphére:

Photo XVII

monocytogenes (L_{11}) à la QMI 1201tl (huile

monocytogenes (L11) au niveau du témoin

Par la détermination des QMIs, nous pouvons noter que toutes les bactéries testées réagissent exactement de la même manière vis-à-vis des huiles essentielles des trois plantes.

On remarque également que cette méthode ne confirme pas certains résultats obtenus avec la méthode de contact direct en milieu gélosé et en milieu liquide et celle de l'aromatogramme. En effet Enterobacter cloacae, Escherichia cou (E_2) et Staphylococcus aureus (St_3) se sont révélé plus résistantes à la phase vapeur.

Nous notons une forte activité antibactérienne de la phase vapeur de ces huiles essentielles sur la Salmonelle, le Staphylocoque de référence (St₁) et *L'E. coli* de référence (E4)

Nous constatons également que l'huile essentielle de *Thymus fontanesii* reste la plus efficace, car elle demande des quantités nettement inférieures d'huile essentielle pour une meilleure efficacité bactériostatique. Mais ces résultats nous permettent quand même, de conclure que nos huiles essentielles affectent la croissance de toutes les bactéries, jusqu'à leur inhibition totale en présence de faibles quantités d'huile essentielle, sauf les souches de *Pseudomonas* qui sont très résistantes même à des quantités très importantes de l'ordre de 800111.

On remarque également que les Kiebsielles et les Listerias restent toujours les souches les plus résistantes après les Pseudomonas, puisqu'elles sont inhibées à des QMIs très élevées par rapport aux autres bactéries.

Bousmaha-Marroki (2007), a déterminé les QMIs de l'huile essentielle de *Thymus ciliatus* ssp. *eu-ciliatus* (contenant 75% de composés phénoliques), sur plusieurs souches bactériennes, notamment *Pseudomonas aeruginosa, Staphylococcus aureus, Citrobacter freundii, Proteus mirabilis, Enterobacter cloacae* et *Escherichia cou*. Elle a noté une forte activité antibactérienne de la phase vapeur de cette huile sur l'ensemble des bactéries testées sauf la souche *Pseudomonas aeruginosa* qui s'est révélé la moins sensible: QMIs de l'ordre de 20 à *25j.tl* pour les Staphylocoques, QMIs allant de 30 à 40J11 pour les entérobactéries et QMIs de 200tl pour Pseudomonas. Nous avons constaté que cette huile essentielle est plus active que la nôtre (huile essentielle de *Thymus fontanesii* contenant 68,3% de composés phénoliques), ceci est probablement lié soit à sa richesse en phénols, soit à l'inoculum de l'ordre de UFC/ml (contre 108 UFC/ml).

Enfin, nous avons voulu évaluer également l'activité antibactérienne de la phase vapeur de l'huile essentielle de *Mentha pulegium* et de *Satureja calamintha* vis-à-vis des bactéries

testées précédemment. Cependant, l'huile essentielle de *Me ni'ha pulegium* s'est avérée inactive sur l'ensemble des souches, même à des quantités de l'ordre de 240tl. Par contre les trois *Staphylococcus aureus* et la *Salmonella lyphi* se sont révélés sensibles à l'huile essentielle de *Satureja calamintha: QMIs* de l'ordre de 215ji1 pour *SL. typhi, 215tl, 220*pl et 240 pJ pour les staphylocoques St3, St1 et St2 respectivement.

Cette étape n'a pas pu être effectué avec l'huile essentielle de *Ziziphora hispanica*, en raison de son trop faible rendement de l'ordre de 0,53%.

> Conclusion:

L'importante activité des huiles essentielles de ces trois plantes est du à leur richesse en composés phénoliques. Les composés les plus antimicrobiens sont les phénols (carvacrol, thymol, eugénol), viennent ensuite les alcools (cinéole, linalol...) et dans une faible mesure les alcènes (p-cymène, pinène, terpinène...) (Cosentino et al., 1999; Dorman et Deans, 2000; Uitee et ai, 2002; Burt., 2004). En effet, plusieurs travaux ont démontré que le pouvoir antimicrobien élevé des huiles essentielles de plusieurs espèces de thym et d'origan, est attribué à leur richesse en composés phénoliques (carvacrol et thymol) (Juliano et al., 2000; Karaman et al., 2001; Arras et al., 2001; Friedman et al., 2002; Sokmen et al., 2004; Neyas et al., 2004; Kabouche et al., 2005; Bousmaha-Marroki et ai., 2007; Oussaiah et ai., 2007).

La plupart des travaux qui ont eu pour objet l'étude du mécanisme d'action des composés phénoliques, avancent que leur principal site d'action est la membrane plasmique bactérienne (Shunying et ai., 2005).

Ils sont aptes à désintégrer la membrane cellulaire des bactéries (Ultee et al., 1999). La membrane perd sa structure et devient plus perméable aux ions (Lambert et ai, 2001) et peut également permettre la dissipation du gradient pH, la diminution du potentiel membranaire et inhibition de la synthèse de l'ATP (Ultee et al., 1999; Ultee et al., 2000).

Actuellement, ces composés monoterpéniques oxygénés attaquent non seulement la paroi et la membrane cellulaire en détruisant sa perméabilité et libérant ses constituants intracellulaire (ribosome, glutamate de Na), mais aussi, ils sont susceptibles d'interférer avec différentes fonctions cellulaires: transport d'électron, synthèse des protéines et des acides nucléiques, réactions enzymatiques (Shunying et al., 2005).

La variabilité de l'activité antibactérienne de ces plantes est étroitement liée à la composition chimique de leurs huiles essentielles. Ainsi, l'huile essentielle de *Thymus fontanesii* s'est avérée nettement plus active que celles d' Origanum glandulosum et d'Ammoïdes verticillata. Ceci s'explique par le fait que la première est plus riche en composés phénoliques (carvacrol et thymol: 68,8%) par rapport aux autres huiles ess ell 4hymol et carvacrol: 49% pour Origanum et iHiiiT et carvacrol? ,7% pour Ammoides)jEn effet, plus les teneurs en phénols sont élevées, plus les huiles essentielles sont efficaces (Cosentino et ai., 1999). Le thymol et le carvacrol ont un effet synergique (Didry et al., 1993).

Par ailleurs, l'activité antibactérienne plus ou moins importante de l'huile essentielle *d'Origanum glandulosum* par rapport à celle *d'Ammoïdes verticillata* est étroitement liée à leur teneur en monoterpènes hydrocarbonés.

Certains travaux ont démontré que les huiles essentielles qui sont riches en composés oléfiniques ont un pouvoir antibactérien considérable (Lis-Baichin et Deans, 1998; Rasooli et Mirmostafa, 2002). Or, ces deux huiles essentielles contiennent environ le même pourcentage en monoterpènes hydrocarbonés (44,2%, dans l'huile essentielle d'Origanum et 42,8%, dans l'huile essentielle d'Ammoïdes). La seule différence concernant la composition chimique de ces deux huiles essentielles réside au niveau de la teneur en ces différentes oléfines. En effet, l'huile essentielle d'Origanum est plus riche en p-cymène et en y-terpinène (17,7% contre 10,8% et 20,0% contre 10,2%, respectivement). Par ailleurs, l'action inhibitrice du p-cymène vis-à-vis de plusieurs bactéries a été rapporté par divers études (Kim et ai., 1995; Cosentino et ai, 1999; Rasooli et Mirmostafa, 2002; Cimanga et al., 2002). En outre, Ultee et al. en 2002, avancent que ce monoterpène facilite le transport des composés phénoliques, ainsi un effet synergique s'exerce en présence de ces deux composés.

Ainsi, bien que l'activité antimicrobienne d'une huile essentielle est attribuée principalement à son composé majoritaire, l'effet synergique ou antagoniste de chacun de ses constituants présents en faible teneur est également considéré (Paster et al., 1995; Chang et ai., 2001; Daferera et al., 2003).

Les espèces bactériennes *Pseudomonas aeruginosa* sont les plus résistantes aux trois huiles essentielles. Ceci peut être lié, soit à l'inoculum lourd qu'on a utilisé, soit à sa grande capacité de développer des résistances vis-à-vis de nombreux agents antimicrobiens d'où son implication fréquente dans les infections hospitalières. La pathogénicité de cette bactérie est due à la production de plusieurs facteurs de virulence intra et extracellulaires (**Rumbaugh** et

al., 1999). Par ailleurs, plusieurs auteurs rapportent la faible voire l'absence activité des souches de *Pseudomonas aeruginosa vis-à-vis* des huiles essentielles de divers espèces de thym et d'origan (Janssen et al., 1986; Biondi et al., 1993; Ruberto et Baratta, 2000; Karaman et al., 2001; Pintore et al., 2002; Wilkinson et al., 2003; Hersch-Martinez et al., 2005). En outre, Walsh et al. (2003) rapportent que le thymol n'est pas active sur *Pseudomonas aeruginosa*.

Les huiles essentielles des trois plantes présentent une forte activité sur les souches *Staphylococcus aureus*, ce qui serait lié à la positivité de leur Gram. En effet, la plupart des études rapportent souvent que les bactéries à Gram négatif sont plus résistants aux huiles essentielles (**Smith-Palmer** et al., 1998, **Oussalah** et al., 2007), car la paroi de ces bactéries est constituée essentiellement de lipopolysaccharides qui limitent la diffusion des composés hydrophobes et évitent l'accumulation des huiles essentielles dans la membrane cellulaire (**Bezié** et al., 2003). L'importante sensibilité du *Staphylococcus aureus* à l'huile essentielle d'origan a été rapportée également par **Lambert** et al. en 2001.

Par contre, les souches *Listeria monocytogenes* qui sont des bactéries à Gram positif se sont révélées plus résistantes que la plupart des bactéries à Gram négatif. Cette constatation est en accord avec les travaux de **Kim** et **al.** en 1995, menés sur le pouvoir antimicrobien de plusieurs composants des huiles essentielles contre cinq contaminants pathogènes des préparations alimentaires.

Ces espèces se sont montrées également plus résistantes que les Kiebsielles en milieu liquide.

Il est important de noter que les trois huiles essentielles présentent une activité considérable vis-à-vis de la souche *Salmonella typhi. II* a été démontré que cette espèce microbienne manifeste une très grande résistance aux agents antimicrobiens (**Mimica-Dukié** et al., 2003).

L'activité de la phase vapeur de ces trois huiles essentielles ne confirme pas certains résultats obtenus avec la méthode de contact direct en milieu gélosé et en milieu liquide et celle de l'aromatogramme. En effet *Enterobacter cloacae*, *Escherichia cou* (E2) et *Staphylococcus aureus* (St3) se sont révélés plus résistantes à la phase vapeur. Ceci est du probablement au fait qu'un composé volatil donné, responsable de l'inhibition d'un microorganisme par contact direct, ne réagit pas de la même manière que dans la phase vapeur (**Delespaul**, **2000**). En outre, les trois huiles essentielles se sont avérées très actives sur l'ensemble des souches testées, excepté les Pseudomonas.

Ainsi, ces résultats nous permettent de conclure, que les propriétés antimicrobiennes des huiles essentielles sont en relation avec leur composition chimique qui varie entre les différentes espèces, entre les différentes espèces du même genre et même entre les échantillons d'une même espèce. Plusieurs facteurs sont responsables de la variabilité de la composition chimique : l'espèce, le chemotype, l'origine du matériel végétal, le moment de la récolte, les conditions climatiques, la procédure de séchage et la technique d'extraction des huiles essentielles (Shu et Lawrence, 1997; Salgueiro et ai, 1997).

V. Etude statistique: Les résultats obtenus concernant le pouvoir antibactérien des huiles essentielles de *Thymus fontanesii*, *d'Origanum glandulosum* et *d'Ammoïdes verticillata* au niveau des différentes méthodes, ont été soumis un traitement statistique des données.

V.!. Méthode de l'aromatogramme:

fl

Nous avons utilisé l'analyse de variance à deux facteurs (effet huile et effet bactérie combinés) et à un facteur (effet huile) pour comparer les moyennes des zones d'inhibition relatives aux différentes bactéries entre les trois huiles essentielles

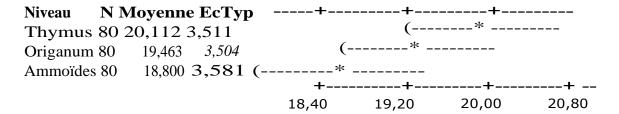
+ ANOVA à deux entrées : Comparaison des moyennes des diamètres des zones d'inhibition des trois huiles essentielles (effet huile et effet bactérie combinés)

Source		\mathbf{DL}	S. carrés	\mathbf{CM}	\mathbf{F}	P
Huile essen	tielle	2	68,91	34,454	26,25	0,000
Bactérie		15	2696,12	179,741	136,95	0,000
Interaction		30	8,56	0,285	0,22	1,000
Erreur		192	252,00	1,313		
Total		239	3025,58			
Huile Huile	$\mathbf{Moyenne}$	95 % aisti		•		cart type regroupé ++
Thymus	20,1125					
Origanum	19,4625			(*)	
Ammoïdes	18,8000					
			+ .	+		-++
			19.00) 19,5	0 20	20.50

Il y a un effet huile (P0,000), et un effet bactérie (P0,000) sans interaction.

Limites de c	onfiance = 95 %	distinctes pour la moyenne en fonction de l'écart type regroupé
Bactéries	Moyenne	+++
KL 1	16,2000	
Ki 2	16,2667	
Lii	16,4667	
LiS	16,6667	
Pr	17,0667	
E6	17,2000	
E2	17,4000	(*)
E3	17,6667	
Ci	18,2667	
El	18,6667	(*.)
En	19,0000	
St2	21,8667	
E4	22,4000	
Sti	24,5333	
St3	25,5333	
SL	26,1333	
		+
		18,0 21,0 24,0 27,0

Nous pouvons classer ces souches en trois groupes en fonction de leur degré de sensibilité:

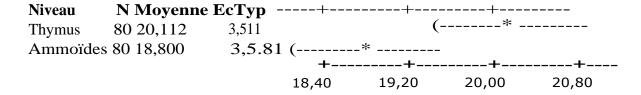

- . Les souches KL1, KL₂, L₁₁, L15, Pr, E6, E2, E3, Ci, E1 et En sont faiblement sensibles;
- . Les souches St₂ et E4 sont moyennement sensibles;

Enfin, les souches St₁, St3 et SL sont très sensibles.

•• ANOVA à un facteur contrôlé : Comparaison des moyennes des diamètres des zones d'inhibition des trois huiles essentielles

Source	\mathbf{DL}	S. carrés	ÇM	${f F}$	P
Huile essentielle	2	68,9	34,5	2,76	0,065
Erreur	237	2956,7	12,5		
Total	239	3025,6			

Limites de confiance = 95 % distinctes pour la moyenne en fonction de l'écart type regroupé



La variation des moyennes des zones d'inhibition relatives aux trois huiles n'est pas significative (P0,065). On constate également une opposition des moyennes des zones d'inhibition entre les huiles essentielles de *Thymus fontanesii* et *d'Ammoïdes verticillata*, qu'on vérifie par:

+ ANOVA à un facteur contrôlé : Comparaison des moyennes des diamètres des zones d'inhibition des huiles essentielles de Thymus et d'Ammoïdes

Source	\mathbf{DL}	S. carrés	\mathbf{CM}	\mathbf{F}	P
Huile essentielle	1	68,9	68,9	5,48	0,020
Erreur	158	1986,8	12,6		
Total	159	2055,7			

Limites de confiance = 95 % distinctes pour la moyenne en fonction de l'écart type regroupé

Effectivement à u5%, le test est significative (P=0,020).

Cette évaluation nous a permis de conclure que les différences entre les valeurs relatives à l'activité antibactérienne des trois huiles essentielles ne sont pas significatives (P=0,065), par contre ces variations sont hautement significatives si on prend en considération l'effet bactérie (P=0,000). De même, nous pouvons constater que l'analyse de variance à un facteur contrôlé a permis de mettre en évidence une différence très significative des diamètres des zones d'inhibition entre les huiles essentielles de *Thymus fontanesii* et *d'Ammoïdes verticillata*.

En outre, nous avons comparé les moyennes des diamètres des zones d'inhibition des trois huiles essentielles relatives à seule une bactérie (*Kiebsiella pneumoneae* (KL₁)), par une analyse de variance à un facteur:

+ ANOVA à un facteur contrôlé comnaraison des moyennes des diamètres des zones d'inhibition des trois huiles essentielles relatives à Kiebsiella vneumoneae

Source		DL	S.	carrés	CM	F	P
Huile essen	tiel	le 2	8	40	4,20	2,52	0,122
Erreur		12	20	,00	1,67		
Total		14	28	40			
Niveau		nance = 95 % Moyenne	6 distincte EcTyp	_	noyenne en fon		écart type regroupé +
Thymus		17,000	0,707		(*
Origanum			1,140		(*	
Ammoïdes	5	15,200	1,789	(*		
				+_	+	+	·+
				14,4	15,6	16,8	18,0

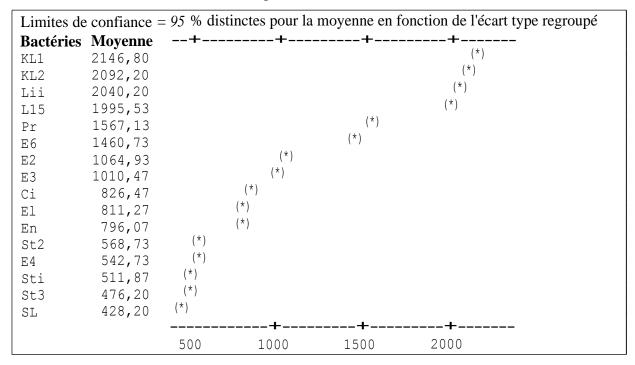
Le test est également non significatif (P=0,122>0,05) si on prend en considération une seule bactérie.

Par ailleurs, Les tailles des échantillons par bactérie étant très réduites (n=5), l'hypothèse de normalité (utilisé dans le cadre de l'ANOVA) peut être relativement forte. Dans ce cas, nous avons voulu vérifier ces résultats par un test non paramétrique, celui de Kruskal-Wallis:

4• Test de Kruskal-Wallis : Comnaraison des moyennes des diamètres des zones d'inhibition des trois huiles essentielles relatives à une bactérie

Huile essentielle	N	Médiane	Rang moyen	Z	
Thymus	5	17,00	10,4	1,47	
Origanum	5	16,00	8,1	0,06	
Ammoïdes	5	15,00	5,5	-1,53	
Global	15		8,0		
BH=3,0	D1	DL=2	P=	=0,223	

Les résultats obtenus par le test de Kruskal-Wallis confirment ceux obtenus par l'analyse de variance à un facteur, en notant que le degré de non significativité est plus fort (pour ANOVA I P=O, 122, alors que pour ce test P=0,223).


V.2. Méthode de contact direct en milieu gélosé:

Nous avons utilisé également l'analyse de variance à deux facteurs (effet huile et effet bactérie combinés) et à un facteur (effet huile) pour comparer les CMIs relatives aux différentes bactéries entre les trois huiles essentielles

+ ANOVA à deux entrées : Comparaison des CMIs des trois huiles essentielles (effet huile et effet bactérie combinés)

Source	\mathbf{DL}	S. car	rés	\mathbf{CM}	${f F}$	P
Huile essent	ielle 2	185837	752	9291876	1115,21	0,000
Bactérie	15	917896	535	6119309	734,44	0,000
Interaction	30	43672	235	145574	17,47	0,000
Erreur	192	15997	733	8332		
Total	239	1163403	355			
Limites de co	onfiance = 95 % di	stinctes pour l	a moyenr	ne en fonction o	de l'écart type	regroupé
		-	•		• •	
Huile	Moyenne	+	•	ne en fonction o	• •	
Huile Thymus	Moyenne 759,08	-	•	+	+	
Huile Thymus Origanum	Moyenne 759,08 1278,66	+	•	+	(*)	
Huile Thymus	Moyenne 759,08	+	+	+	(*)	
Huile Thymus Origanum	Moyenne 759,08 1278,66	+	+	+	(*)	

Il y a un effet huile (P0,000), un effet bactérie (P=0,000) et un effet interactif. La moyenne des CMIs de *Thymus fontanesii* relatives aux différentes bactéries est largement inférieure à celle des huiles essentielles des autres plantes.

On peut classer ces souches bactériennes en quatre groupes, selon leur degré de sensibilité:

- Les souches KL1, KL2, L11 et L15 sont très faiblement sensibles;
- Les souches Pr et E6 sont faiblement sensibles;
- Les souches E2, E3, Ci, E1 et En sont moyennement sensibles;
- Enfin, les souches St2, E4 Sti, St3 et SL sont très sensibles.
- •' ANOVA à un facteur contrôlé (effet huile): Comparaison des CMIs des tro huiles essentielles

Source		DL		S. carrés	\mathbf{CM}	\mathbf{F}	P
Huile essen	tielle	2		18583752	9291870	6 22,53	0,000
Erreur		237		97756603	412475		
Total		239		116340355			
Limites de de Niveau	confia N	nce = 95 % Moyenne	distincte EcTyp	es pour la moye	enne en fonctio		• • •
Thymus	80	759,1	487,2				
Origanum	80	1278,7	668,3			(* -	
Ammoïdes	80	1400,9	743,9			(*
				+	+	+	
				750	1000	1250	1500

On remarque également que le test est très significatif (P=0,000). L'huile esentielle de *Thymus fontanesii* est également caractérisée par un fort potentiel antibactérien. Par contre, on constate que les moyennes des CMIs des huiles essentielles d'Origanum et d'Ammoïdes relatives aux différentes bactéries sont très proches. Pour cela, nous avons voulu comparer leurs CMIs

•. ANOVA à un facteur contrôlé : comparaison des CMIs des huiles essentielles d'Origanum et d'Ammoïdes

Source		\mathbf{DL}		S. carrés	CM	${f F}$	P
Huile essent	ielle	1		498195	498195	1,00	0,320
Erreur		158		79103884	500657		
Total		159		79602078			
Limites de co	onfia	nce = 95 %	distincte	s pour la moyer	nne en fonction	de l'écart typ	e regroupé
				-	nne en fonction	• •	
Niveau	N	Moyenne	ЕсТур	-		+	
	N 80	Moyenne 1283,3	EcTyp 671,3	-	+	+	
Niveau Origanum	N	Moyenne	ЕсТур	-	+	+	

Le test révèle une non significativité (P=0,320).

Nous pouvons constater que les CMIs relatives aux différentes bactéries entre les huiles essentielles de ces trois plantes sont très variables en présence (P=0,000) ou en absence de

l'effet bactérie (P0,000). La détermination des concentrations minimales inhibitrices, nous a permis de mettre en évidence le fort potentiel antibactérien de l'huile essentielle de *Thymus fontanesii* car la moyenne des CMIs en fonction de l'écart type regroupé est de l'ordre de 760tg/ml, largement inférieure à celles obtenues avec les huiles essentielles des autres plantes. Par contre, On peut voir une certaine concordance des résultats entre l'huile *essentielle d'Origanum glandulosum* et *d'Ammoïdes verticillata*, puisque les différences entre les CMIs des deux huiles essentielles relatives aux différentes souches bactériennes ne sont pas significatives (P=0,320).

Comme précédemment, nous avons analysé la variation des CMIs des trois huiles essentielles relatives à seule une bactérie (*Kiebsiella pneumoneae* (KL1)), par une analyse de variance à un facteur et vérifier nos résultats par un test non paramétrique, de Kruskal-Wallis qui confirme celui de l'ANOVA I:

+ ANOVA à un facteur contrôlé Comnaraison des CMIs des troi relatives à *Klebs*

Source		DL		S. carrés	CM	F	P
Huile essen	tiell	le 2		2819636	1409818	33,06	0,000
Erreur		12		511676	42640		
Total		14		3331312			
T 1	C	. 05.0	/ 1 : .: .	1	c .·	1 117	
Limites de d	conf	1ance = 95 %	6 distincte		enne en fonction	• •	e regroupe
Niveau	N	Moyenne	EcTyp	+	+	+	
Thymus	5	1544,6	101,5				
Origanum	5	2348,0	145,3				
Ammoïdes	5	2547,8	310,6				
				+	+	+	+
				1600	2000	2400	2800

On note également une différence hautement significative entre les moyennes des CMIs des trois huiles si on prend en considération une seule bactérie.

•• Test de Kruskal-Wallis : Comparaison des: CMIs des trois huiles essentielles relatives à Kiebsiella pneumoneae (I(L

Huile essentielle	N	Médiane	R. moyen	Z
Thymus	5	1590	3,0	-3,06
Origanum	5	2283	10,4	1,47
Ammoïdes	5	2590	10,6	1,59
Global	15		8,0	
BH=9,3	8	DL=2		P=O,009

Ce test (P0,009) confirme celui de 1'ANOVA I (P=0,000).

V.3 Méthode de contact direct en milieu liquide:

Nous avons jugé intéressant de comparer les CMBs de l'huile essentielles *d'Ammoïdes verticillata* en présence des trois émulsifiants (Tween 80, Agar, Ethanol) par une analyse de variance à un facteur (effet émulsifiant):

+ ANOVA à un facteur contrôlé : Comparaison des CMBs de l'huile essentielle d'Ainmoïdes vertidilata (en présence d'agar et du Tween 80)

Source		DL		S. carrés	CM	_	-
Emulsifia	ınt	1		3172506	31725	706 4,2	8 0,040
Erreur		158		117062223	740	900	
Total		159		120234729			
Limites de Niveau	e confi N	iance = 95 % Moyenne	6 distincte EcTyp	•		ction de l'éca	rt type regroupé
Agar	80	1359,5	799,8	(_ *	_	
Tween	80	1641,1	917,6	•	(*	
					+	+	+
				1200	1400	1600	1800

Il \mathbf{y} a un effet émulsifiant car les différences entre les moyennes des CMBs de l'huile essentielle *d'A inmoïdes verticillata* relatives aux différentes souches bactériennes sont significatives (P0,040).

+ ANOVA à un facteur contrôlé : Comparaison des CMBs de l'huile essentielle d'Am, noïdes vertidilata (en présence d'agar et de l'éthanol)

Source		DI	L	S. carrés	CN	1	F	P
Emulsif	iant	1		1 987845		845	1,64	0,202
Erreur		15	8	94887826	600	<i>9556</i>		
Total		159)	95875670				
Limites	de co	nfiance = 95	% distinct	es pour la moy	venne en for	nction de	l'écart ty	pe regroupé
				-		nction de	l'écart ty	pe regroupé
Niveau	N	Moyenne	ЕсТур	es pour la moy -+		nction de +- * -	l'écart ty	pe regroupé -+
		Moyenne 1359,5	EcTyp 799,8	-		nction de +- * -	l'écart ty	pe regroupé -+
Niveau	N	Moyenne	ЕсТур	-		nction de * - 	l'écart ty	pe regroupé -+
Niveau Agar	N 80	Moyenne 1359,5	EcTyp 799,8	-		nction de +- * - 	l'écart ty	rpe regroupé -+

Par contre, l'éthanol n'influe pas sur l'activité antibactérienne de l'huile essentielle *d'Ammoïdes verticillata* car le test de l'ANOVA I prouve une non significativité (P=0,202).

En comparant les CMBs obtenues avec l'huile essentielle *d'Ammoïdes verticillata* pour les trois émulsifiants utilisés, on peut avancer que le Tween 80 influe sur l'activité antibactériene de cette huile essentielle. En effet, Les CMBs obtenues en présence d'agar sont largement inférieures que celles obtenues en présence du Tween 80. Ces différences sont significatives (P=0,040). En outre, en présence d'éthanol, les concentrations minimales bactéricides sont les plus faibles. La comparaison de ces valeurs avec celles en présence d'agar n'est pas significative (P0,202). Ces résultats nous permettent de conclure que le Tween 80 diminue l'activité des huiles essentielles. En effet, **Remmal** et al. (1993b) et **Delespaul** et al. (2000), ont démontré que l'usage de détergents, ou de solvants qui sont souvent utilisées pour l'étude de l'activité antimicrobienne des huiles essentielles, abaisse considérablement l'activité des huiles essentielles. **Crémieux** et al. en 1981, avancent que le Tween 80 entraîne la neutralisation des composés phénoliques, ainsi, ils deviennent moins actifs. Par contre, l'éthanol contribue à l'activité antimicrobienne de l'huile essentielle puisqu'on a obtenu des CMBs moins importantes.

En outre, nous avons analysé la variation des CMBs de l'huile essentielle d'Ammo"ides verticillata relatives à seule une bactérie $(Kiebsiella\ pneumoneae\ (KL\ i))$, par une analyse de variance à un facteur et vérifier nos résultats par un test non paramétrique (nombre d'essai par bactérie est faible, n5), celui de Mann-Whitney:

+ ANOVA à un facteur contrôlé: Comparaison des CMBs de l'huile essentielle d'Ammoïdes vertidilata relatives à Kiebsiella pneumoneae (KL) (en présence d'agar et du Tween 80)

Source	DL		S. carrés	CM	F	P
Emulsifiant	1		483120	483120	20,92	0,002
Erreur	8		184760	23095		
Total	9		667880			
Limites de con Niveau N	Moyenne	ЕсТур	+	+		
Tween 80 5	2583,6	150,1	(* -			
Agar 5	3023,2	153,8			(*	
			+	+-	+-	+
			2600	2800	3000	320

Il y a un effet émulsifiant (P=0,002), même si on prend en considération une seule bactérie.

Н

+ Test de Mann-Whitney : Comparaison des CMBsde l'huile essentielle d'Ammoïdes verticillata relatives à Kiebsiella pneumoneae (KL₁, en présence d'agar et du Tween 80)

	N	Médiane
Huile essentielle		
Agar	5	2474,0
Tween 8	5	3092.0

L'estimation ponctuelle de ETA1-ETA2 est -344,0

 \mathbf{T}

Le pourcentage IC (96,3) pour ETA1-ETA2 est (-618,1; -274,0) W = 16,0

Le test de ETA1 = ETA2 contre ETA1 différent de ETA2 est significatif sur 0,0216

Effectivement, il y a un effet émulsifiant. Ce test (P=0,0216) confirme celui de I'ANOVA I (P=0,02).

> Comparaison des CMBs des huiles essentielles des trois plantes (en présence de Tween 80) :

Nous avons également comparé les CMBs des huiles essentielles des trois plantes en présence d'un même émulsifiant (Tween 80) par une analyse de variance à deux facteurs (effet huile et effet bactérie combinés) et à un facteur (effet huile):

+ ANOVA à deux entrées : Comparaison des CMBs des trois huiles essentielles (effet huile et effet bactérie combinés) (en présence du Tween 80)

Source	\mathbf{DL}	S. carrés	\mathbf{CM}	${f F}$	P
Huile essentie	lle 2	23296255	11648127	1745,94	0,000
Bactérie	15	142485101	9499007	1423,81	0,000
Interaction	30	5631154	187705	28,14	0,000
Erreur	192	1280936	6672		,
Total	239	172693446			
Limites de con	fiance = 95 % dis	tinctes pour la moye	enne en fonction	de l'écart typ	e regroupé
Limites de con Huile		•	enne en fonction	• 1	0 1
Huile	fiance = 95 % dis Moyenne 925,39	•		• 1	0 1
Huile Thymus	Moyenne	+		+	0 1
Huile	Moyenne 925,39	+		+	
Huile Thymus Origanum	Moyenne 925,39 1512,64	+		+	(*)

On remarque qu'il y a un effet huile (P=0,000), un effet bactérie (P=0,000) et un effet interactif (P0,000). On note également que l'huile essentielle de *Thymus fontanesii* est également la plus efficace car la moyenne des CMBs relatives aux différentes souches

bactériennes est largement inférieure à celle des CMBs des huiles essentielles des autres plantes.

Limites de d	confiance = 95%	6 distinctes	pour la moye	nne en fonctior	de l'éèart type regroupé	
Bactéries	Moyenne	+	+		+	
Kil	2488,13				(*)	
KL2	2407,33				(*)	
Lii	2729 , 07				(*)	
L15	2667,00				(*)	
Pr	1638,13			(*)		
E6	1559 , 87			(*)		
E2	1218,33		(*)			
E3	1183,80		(*)			
Ci	966,00		(*)			
E1	948,87		(*)			
En	927 , 07		(*)			
St2	673 , 13	(*)				
E4	635,13	(*)				
Sti	608,07	(*)				
St3	570,27	(*)				
SL	535,13	(*)				
		+	+	+		
		600	1200	1800	2400	

On peut également classer ces bactéries en trois groupes selon leur degré de sensibilité:

- . Les bactéries KL_1 , KL_2 , L_{11} et L_{15} sont faiblement sensibles;
- . Les bactéries Pr, E6, E2, E3, Ci, E1 et En sont moyennement sensibles,
- . Les bactéries St2, E4, St1, St3 et SL sont très sensibles.

Nous avons analysé également ces résultats par une ANOVA I (effet huile), sans prendre en considération l'effet bactérie.

+ ANOVA à un facteur contrôlé : Comparaison des CMBs des trois huiles essentielles (en présence du Tween 80)

Source		DL	,	S. carrés	CM	F	P
Huile essen	Huile essentielle 2		23296255		116481	27 18,48	0,000
Erreur		237		149397191	63036	58	
Total		239		172693446			
Limites de d Niveau Thymus Origanum Ammoïdes	NN	ance = 95 9 Moyenne 925,4 1512,6 1641,1	% distincte EcTyp 597,4 832,0 917,6			tion de l'écart	t type regroupé* 1800

Les différences entre les moyennes des CMBs des trois huiles essentielles relatives aux différentes bactéries sont hautement significatives. Par contre il y a une certaine concordance entre les moyennes des CMBs des huiles essentielles d'Origanum glandulosum et d'Ammoïdes verticillata, qu'on peut vérifier par une ANOVA I:

+ ANOVA à un facteur contrôlé : Comparaison des CMBs des huiles essentielles d'Origanum et d'Ammoïdes (en présence du Tween 80)

Source		DL		S. carrés	(CM	F	P
Huile essen	tielle	1		660105	66	50105	0,86	0,355
Erreur		158		121202248	7	67103		
Total		159		121862352				
Niveau	N	Moyenne	EcTyp					+
		•						+
Origanum	80	1512,6	•	(
Ammoïdes	80	1641,1	917,6		(* _		
Allillolues	00	10.11,1	,-		\			
Ammondes	00	1011,1	, _ , , ,		+	+-		+

Effectivement ce test confirme une non significativité (P0,3 55) entre les moyennes des CMBs de ces deux huiles esentielles.

Ces résultats nous permettent de confirmer ceux obtenus par contact direct en milieu gélosé car les CMBs (en présence du Tween 80) relatives aux différentes souches bactériennes varient d'une manière hautement significative entre les trois huiles essentielles en présence (P=0,00) ou en absence de l'effet bactérie (P=0,00). Par contre les huiles essentielles $d'Origanum\ glandulosum\ et\ d'Ammoïdes\ verticillata\ présentent un même niveau d'efficacité puisque l'analyse de variance à un facteur contrôlé ne prouve aucune variation entre les CMB,s de ces huiles essentielles (<math>P=0,355$).

Comme précédemment, nous avons analysé la variation des CMBs des trois huiles essentielles relatives à une seule bactérie (*Kiebsiella pneumoneae* (KL1)), par une analyse de variance à un facteur et vérifier nos résultats par un test non paramétrique (faible échantillon, n=5), de Kruskal-Wallis:

•• ANOVA à un facteur contrôlé: Comparaison des CMBs (en présence du Tween 80) des trois huiles essentielles relatives à *Klebsiella pneumoneae* (KL1

Source		DL		S. carrés	CM	F	P
Huile essen	tiel	le 2		4279815	2139907	151,74	0,000
Erreur		12		169229	14102		,
Total		14		4449044			
Limites de o Niveau	conf N	iance = 95 9 Moyenne	6 distincte EcTyp	s pour la moyen	nne en fonction	• •	
Thymus	5	1758,8	55,5				
Origanum	5	2682,4	124,8			(*)	
AmmoY des	5	3023,2	153,8				
				+-	•	+	+
				2000	2400	2800	3200

Il y a également un effet huile (P=0,000) si on prend en considération une seule bactérie.

+ Test de Kruskal-Wallis : Comparaison des CMIs (en présence du Tween 80) des trois huiles essentielles relatives *Kiebsiella pneumoneae* (KL1

Huile essentielle	N	Médiane	Rang moyen	Z	
Thymus	5	1734	3,0	-3,06.	
Origanum	5	2767	8,6	0,37	
Ammoïdes	5	3092	12,4	2,69	
Global	15		8,0		
BH=11,18		DL = 2	P=0,00	4	

Ce test (P0,004) confirme également celui de 1'ANOVA I (P=0,000).

> Comparaison entre les moyennes des CMIs et des CMBs (en présence du Tween 80) relatives aux différentes bactéries:

Nous avons voulu comparer les moyennes des CMIs et des CMBs (en présence du Tween 80) des huiles essentielles des trois plantes relatives aux différentes bactéries. Pour cela, nous avons analysé ces résultats par une ANOVA à deux facteurs contrôlés (effet milieu (liquide et solide) et effet huile):

+ ANOVA à deux entrées : Comparaison entre les CMIs et les CMBs des trois huiles essentielles (effet huile et effet milieu combinés)

Source	DL	S. car	rés	CM	F	P
Milieu			230	5469230	10,49	0,001
Huile essent	tielle 2	41745710		20872855	40,03	0,000
Interaction	2	1342	98	67149	0,13	0,879
Erreur	474 247153794 521422					
Total	479	29450	294503030			
	onfiance = 95 % Moyenne 1146,22 1359,71	+	=	e en fonction	de l'écart type *	regroupé
		+	+	- +	+	_
		1100	1200	1300	1400	
Limites de co	onfiance = 95 %	distinctes pour	la moyenn	e en fonction	de l'écart type	regroupé
Huile	Moyenne	-+	+	+	+	
Thymus	842,23					
Origanum	1395,65					
Ammoïdes	1521,01					
	,		+	+	+	
		750	1000	1250	1500	

II y a un effet milieu (P=0,000) et un effet huile (P=0,001) sans interaction (P=0,879). L'huile essentielle de *Thym us fontanesli* est également la plus efficace.

Nous avons également comparé les CMIs et les CMBs (en présence du Tween comme émulsifiant) de chaque huile essentielle par une analyse de variance à deux facteurs contrôlés (effet milieu (solide, liquide) et effet bactérie combinés)

+ ANOVA à deux entrées : Comparaison entre les CMIs et les CMBs de l'huile essentielle d'Ammoïdes vertidilata (effet milieu et effet bactérie combinés)

Source	DL	S. carrés	\mathbf{CM}	${f F}$	P
Milieu	1	2307361	2307361	177,24	0,000
Bactérie	15	106316207	7087747	544,46	0,000
Interaction	15	2257637	150509	11,56	0,000
Erreur	128	1666309	13018		
Total	159	112547514			
Limitas da	configures - 05 % dis	stinatas nour la maya	ana an fonction a	la l'ácart typa	ragrauná
	confiance = 95 % dis	stinctes pour la moyer		• •	regroupé
MiLieu	confiance = 95 % dis Moyenne	÷ •		• •	regroupé
Limites de MiLieu CMI CMB	Moyenne	÷ •		• •	regroupé
MiLieu CMI	Moyenne 1400,93	÷ •		• •	regroupé ⊦ _

Il y a un effet milieu (Pr=0,000), un effet bactérie (P0,000) et un effet interractif (P=0,000), en prenant en considération l'effet des différentes souches bactériennes.

Limites de confiance = 95 % distinctes pour la moyenne en fonction de l'écart type regroupé								
Bactéries	Moyenne	+		+		+	+	
KL1	2785,5						(*)	
1KL2	2705,6						(*)	
Lii	2865,0						(*)	
L15	2788,6						(*)	
Pr	1801,2				(*)			
E6	1733,9				(*)			
E2	1473,1			(*)				
E3	1442,4			(*)				
Ci	1148,8		(*)					
El	1124,8		(*)					
En	1100,8		(*)					
St2	748 , 9	(*)						
E4	720 , 9	(*)						
Sti	684 , 7	(*)						
St3	635 , 2	(*)						
SL	576 , 8	(*)						
				+		+	+	
		700	1	400		2100	2800	

Là aussi, on peut classer ces bactéries en trois groupes selon leur degré de sensibilité:

- Les bactéries faiblement sensibles sont: KL₁, KL₂, L₁₁ et L₁₅
- Les bactéries moyennement sensibles sont: Pr, E6, E2, E3, Ci, E1 et En;
- Les bactéries très sensibles sont: St2, E4, St1, St3, SL.

Il est à noter que ces mêmes résultats ont été obtenus avec les huiles esentielles de *Thymus* fontanesii et d'Origanum glandulosum.

(En outre, nous avons jugé plus intéressant de comparer les moyennes des CMIs et des CMBs de chaque huile essentielle relatives aux souches bactériennes par une ANOVA I (effet milieu):

+ ANOVA à un facteur contrôlé : Comparaison des CMIs et des CMBs de l'huile essentielle de Thymus fontanesli

Source		DI		S. carrés	CM	F	P
Milieu		1		1106394	1106394	3,72	0,055
Erreur		158	3	46947393	297135		
Total		159)	48053786			
Niveau	N	Moyenne	EcTyp	+	enne en fonction *		
CMI CMB	80 80	759,1 925,4	487,2 597,4	((*	
CIVID	80	723,4	377,4	+) +	 ·+	+
				720	840	960	1080

On note une différence non significative (P=0,055) entre les moyennes des CMIs et des CMBs de l'huile essentielle de *Thym us fontanesii*.

+ ANOVA à un facteur contrôlé: Comparaison des CMIs et des CMBs de l'huile essentielle d'Origanum j4andulosum

Source		DI		S. carrés	CM	F	P
Milieu		1		2189772	2189772	3,85	0,052
Erreur		158	3	89966248	569407		
Total		159)	92156020			
Limites of Niveau	de cor N	ofiance = 95 Moyenne	% distinct EcTyp	•	enne en fonctio	+	pe regroupé
CMI	80	1278,7	668,3	(_ *	_	
CMB	80	1512,6	832,0	((*	
				+	+	+	+
				1200	1350	1500	1650

La variation des moyennes entre les CMIs et les CMBs de l'huile essentielle d'Origanum glandulosum est également non significative (P=0,052).

•. ANOVA à un facteur contrôlé: Comparaison des CMIs et des CMBs de l'huile

Source Milieu	DL	,	S. carrés	CM	177	- n
Milion	1			CIVI	${f F}$	P
Milleu	1		2307361	2307361	3,31	0,071
Erreur	158		110240153	697722		
Total	159		112547514			
Niveau II CMI 8	e confiance = 95 9 N Moyenne 80 1400,9 80 1641,1	% distinctes EcTyp 743,9 917,6		·+ * (+	· 1

Il n'y a aucune influence (P0,071) du milieu sur l'activité de l'huile essentielle *d'Ammoïdes* verticillata.

Ces résultats nous permettent de conclure que les différences entre les CMIs et les CMBs des huiles essentielles des différentes plantes ne sont pas significatives (P>0,05). Ils concordent avec ceux obtenus par Canillac et Moury (2001) lors de leur l'étude de l'activité antibactérienne de l'huile essentielle de *Picea excelsa* sur plusieurs germes pathogènes, notamment Listeria, *Staphylococcus aureus* et les coliformes. Courvalin et al. (1990) confirment également nos résultats (Tableau (51), annexell) en rapportant qu'une souche est considérée sensible si le rapport CMB / CMI est inférieure à 4. En outre, Cosentino et al. (1999) ont déterminé les CMIs et les CMBs des huiles essentielles de quatre variétés de thym sur quatorze souches bactériennes. Ils avancent que dans la majorité des cas les valeurs des CMIs sont très proches de celles des CMBs. Ceci indique que les huiles essentielles incriminées sont bactéricides.

Par ailleurs, nous avons effectué une ANOVA I pour comparer les CMIs et les CMBs de l'huile essentielle d'Ammoïdes verticillata relatives à une seule souche bactérienne (Kiebsièlla pneumoneae (KL₁)) et vérifié ces résultats par un test non paramétrique (n=5), celui de Mann-Whitney:

+ ANOVA à un facteur contrôlé: Comparaison des CMIs et des CMBs de l'huile essentielle d'Ammoïdes vertidilata relatives à Kiebsiella yneumoneae (KL

Source		DI	_	S. carrés	\mathbf{CM}	${f F}$	P
Milieu		1		565013	565013	9,40	0,015
Erreur		8		480622	60078		
Total		9		1045634			
Limites of	de co	nfiance = 95	% distincte	es pour la moyer	nne en fonction o	de l'écart type	e regroupé
				es pour la moyer		• •	e regroupé
Niveau	N	Moyenne	ЕсТур	+-		de l'écart type	e regroupé
Niveau CMI	N 5	Moyenne 2547,8	ЕсТур 310,6	+-	+_	• •	e regroupé
Niveau	N	Moyenne	ЕсТур	+-	+_	• •	e regroupé
Niveau CMI	N 5	Moyenne 2547,8	ЕсТур 310,6	+-	+_	• •	e regroupé

On constate une différence significative entre les CMIs et les CMBs de l'huile essentielle d'Ammoïdes verticillata relatives à Klebsiellapneumoneae (KL1).

•• Test de Mann-Whitney: Comparaison des CMIs et des CMBs de l'huile essentielle d'Ammoïdes verticillata relatives à Kiebsiella pneumoneae (KL

	${f N}$	Médiane
KL1 CMI	5	2590 , 0
KL1 CMB	5	3092,0

L'estimation ponctuelle de ETA1-ETA2 est -502,0

Le pourcentage IC (96,3) pour ETA1-ETA2 est (-824,2;-69,1) W = 16,0

Le test de ETA1 = ETA2 contre ETA1 différent de ETA2 est significatif sur 0,0216

On note le même résultat que celui de 1'ANOVA I (P0,015) concernant la souche bactérienne *Kiebsiella pneumoneae* (KL1).

Ces résultats nous permettent de conclure que les différences entre les CMIs et les CMBs de l'huile essentielle *d'Ammoïdes verticillata* ne sont pas significatives (P=0,071) si on prend en considération l'ensemble des bactéries testées. Par contre, elles sont très significatives si en prend en considération que *Kiebsiella pneumoneae* (KL1). Pour cela, nous avons voulu confirmer ces résultats en prenant une autre souche bactérienne, la plus sensible: *Salmonella typhi(S1)*:

+ ANOVA à un facteur contrôlé: Comparaison des CMIs et des CMBs de l'huile essentielle d'Ammoïdes vertidilata relatives à Salmonella typhi (SL)

Source		\mathbf{DL}		S. carrés	\mathbf{CM}	${f F}$	P
Milieu		1		45698	45698	222 , 92	0,000
Erreur		8		1640	205		
Total		9		47338			
				es pour la moye			
	e coni	fiance = 95 % Moyenne	% distincte EcTyp	= -	enne en fonctio		
		Moyenne		= -			
Niveau	\mathbf{N}	Moyenne 509,20	ЕсТур	= -			
Niveau CMI	N 5	Moyenne 509,20	EcTyp 13,86	= -			

On note également une différence significative entre les moyennes des CMIs et des CMBs de l'huile essentielle *d'Ammoïdes verticillata* relatives à *Salmonella typhi* (SL).

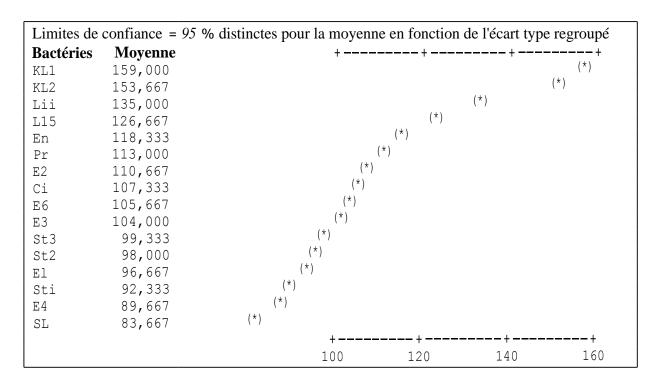
+ Test de Mann-Whitney: Comparaison des CMIs et des CMBs de l'huile essentielle d'Ammoïdes verticillata relatives à Salmonella typhi (SL)

	${f N}$	Médiane
SL CMI	5	503,00
SL CMB	5	651,00

L'estimation ponctuelle de ETA1-ETA2 est -148,00 Le pourcentage IC (96,3) pour ETA1-ETA2 est (-148,01;-115,01) W = 15,0Le test de ETA1 = ETA2 contre ETA1 différent de ETA2 est significatif sur **0,0122**

Ce test (P=0,0122) confirme celui de 1'ANOVA I (P=0,000).

Les résultats obtenus pour la souche bactérienne *Salmonella typhi* (SL) confirment ceux obtenus pour la bactérie *Klebsiellapneumoneae* (KL₁).


V.4. Méthode de microatniosphère:

Les QMIs des différentes huiles essentielles sont analysées par une ANOVA à deux facteurs (effet huile et effet bactérie combinés) et à un facteur (effet huile):

•• ANOVA à deux entrées Comparaison des OMIs des trois huiles essentielles (effet huile et effet bactérie combinés)

Source	DL	S. car	rés	CM	F	P
Huile essenti	elle 2	1726	59	8634,69	657,88	0,000
Bactérie	15	10706	57	7137,83	543,83	0,000
Interaction	30	1164	7	388,24	29,58	0,000
Erreur	192	2520)	13,13		
Total	239	13850	04			
	Moyenne	-	•	+	• •	
	nfiance = 95 % di	-	•		• •	regroupe
Thymus	101,375	(*)				
Origanum	112,688			(_*)		
Ammoïdes	122,125				(;	*)
	,		+	·+	+	
		102,0	108,0	114,0	120,0	

Il y a un efffet huile (P0,000), un effet bactérie (P=0,000) et un effet interactif (P=0,000). Par ailleurs, l'huile essentielle de *Thym us fontanesii* reste toujours la plus efficace.

On peut également classer ces souches bactériennes en quatre groupes selon leur degré de sensibilité:

- Les souches KL₁ et KL2 sont très faiblement sensibles;
- Les souches L,, et L1 5 sont faiblement sensibles;
- Les souches En, Pr, E₂, Ci, E6 et E₃ sont moyennement sensibles;
- Les souches St3, St2, E₁, St1, E4 et SL sont très sensibles.

+ ANOVA à un facteur contrôlé : Comparaison des OMIs des trois huiles essentielles

Source Huile essentielle	DL 2		S. carrés 17269	3	CM 8635	F 16,88	P 0,000
Erreur	237		121235		512	,	3,222
Total	239		138504				
Limites de confi Niveau N Thymus 80	ance = 95 % Moyenne 101,38	6 distincte EcTyp 14,69	+		+-		• • • •
Origanum 80	112,69	21,54			(*		
Ammoïdes 80	122,13	29,24			•	(*
			+ 96,0	104,0	+- 112	2,0	120,0

La variation des moyennes des QMIs des trois huiles essentielles relatives aux différentes souches bactériennes est également hautement significative.

Nous avons vérifié s'il y a une certaine concordance des résultats entre les huiles essentielles de *Thymus fontanesii* et *d'Origanum glandulosum* puis entre les huiles essentielles de cette dernière avec celle *d'Ammoïdes verticillata*:

+ ANOVA à un facteur contrôlé: Comparaison des OMIs des huiles essentielles de Thymus et d'Origanum

Source		DL		S. carrés	CM	F	P
Huile esser	ntielle	e 1		5119	5119	15,06	0,000
Erreur		158		53696	340		
Total		159		58815			
™ T•	TA T	N #					pe regroupé
Niveau	N on	Moyenne	• -	+*	+ 	+	
Thymus	80	101,38	14,69	· · · · · · · · · · · · · · · · · · ·		(
		•	• -			(
Thymus	80	101,38	14,69			(110,0	

Les différences entre les moyennes des QMIs des deux huiles essentielles sont hautement significatives (P0,000).

+ ANOVA à un facteur contrôlé Comparaison des QMIs des huiles essentielles d'Origanum et d'Ammoïdes

Source	\mathbf{DL}	S. carrés	\mathbf{CM}	\mathbf{F}	P
Huile essentielle	1	3563	3563	5,40	0,021
Erreur	158	104186	659		
Total	159	107749			

Là aussi, la variation des moyennes des QMIs des deux huiles essentielles est significative.

Nous pouvons conclure que les différences entre les moyennes des QMIs des huiles essentielles des trois plantes sont hautement significatives (P=0,000). Il en est de même si on prend en considération que l'effet de l'huile. Par ailleurs, on note également une différence significative entre les moyennes des QMIs des huiles essentielles de *Thymus fontanesii* et *d'Origanum glandulosum* et celles entre *Origanum glandulosum* et *Ammoïdes verticillata*. On peut avancer que la phase vapeur de l'huile essentielle de *Thymus fontanesii* reste également la plus efficace.

Comme précédemment, nous avons analysé la variation des QMIs des trois huiles essentielles relatives à seule une bactérie (*Kiebsiella pneumoneae* (KL1)), par une analyse de variance à un facteur et vérifier nos résultats par un test non paramétrique (n5), de Kruskal-Wallis:

+ ANOVA à un facteur contrôlé : Comparaison des OMIs des trois huiles essentielles relatives à Kiebsiella pneumoneae (KL 1)

Source		DL		S. carrés	\mathbf{CM}	${f F}$	P
Huile essen	tiel	le 2		10920,00	5460,00	728,00	0,000
Erreur		12		90,00	7,50		
Total		14		11010,00			
				-	nne en fonction	• •	regroupé
Niveau	coni N	Moyenne	ЕсТур	+-		de l'ecart type	regroupé
Niveau				-	+	• •	e regroupé
Niveau	N 5	Moyenne	ЕсТур	+-		• •	e regroupé
Niveau Thymus	N 5 5	Moyenne 127,00	EcTyp 2,74	+-	+	• •	e regroupé
Niveau Thymus Origanum	N 5 5	Moyenne 127,00 157,00	EcTyp 2,74 2,74	+-	+	• •	

Il y a également un effet huile (P=0,000) si on prend en considération une seule bactérie.

+ Test de Kruskal-Wallis : Comparaison des OMIs des trois huiles essentielles relatives à *Klebsiella pneumoneae* (KL 1)

Huile essentielle	N	Médiane	Rang moyen	Z	
Thymus	5	125,0	3,0	-3,06	
Origanum	5	155,0	8,0	0,00	
Ammoïdes	5	195,0	13,0	3,06	
Global	15		8,0		
B H = 12,50		DL =2		P = 0.002	

Ce test (P=0,002) confirme également celui de l'ANOVA I (P=0,000).

> Conclusion:

L'ensemble des résultats obtenus en testant le pouvoir antibactérien des huiles essentielles de *Thymus fontanesii*, *d'Origanum glandulosum* et *d'Ammoïdes verticillalata*, soumis à un traitement statistique, nous amène à avancer les conclusions suivantes:

- L'huile essentiele de *Thymus fontanesii* a le plus fort potentiel antibactérien;
- Il y a une certaine concordance des résultats entre l'huile essentielle d' *Origanum* glandulosum et celle d'Ammoïdes vertivcillata, sauf au niveau de la phase vapeur ou les différences entre les moyennes des QMIs des huiles essentielles de ces deux plantes relatives aux différentes souches bactériennes sont significatives;
- La variation des moyennes entre les CMIs et les CMBs des huiles essentielles des différentes plantes relatives à l'ensemble des bactéries testées n'est pas significative;
- La méthode de l'aromatogramme ne permet pas d'avancer les conclusions citées cidessus car les différences des moyennes des diamètres des zones d'inhibition des huiles essentielles entre les trois plantes relatives aux différentes espèces bactériennes ne sont pas significatives;
- Les CMBs de l'huile essentielle *d'Ammoïdes verticillalata* obtenus en présence du Tween 80 sont largement supérieures à celles obtenus en présence de l'Agar. Ces différeces sont significatives. Par contre, la variation des moyennes entre les CMBs de cette même huile en présence d'éthanol et celles en présence d'agar n'est pas significative.

Par ailleurs, les souches bactériennes testées ont réagit de la même manière au niveau des différentes méthodes utilisés sauf pour la phase vapeur ou certaines bactéries se sont révélées plus résistantes par rapport au contact direct. Ainsi, nous pouvons les classer en trois groupes selon le degré de leur sensibilité, comme suit:

- . Les souches les plus sensibles sont: les trois *Staphylococcus aureus* (St2, St1, St3), *l'E. coli* de référence (E4) et la *Salmonella lyphi (SL)*;
- Les souches moyennement sensibles sont: *Proteus mirabilis* (Pr), les *E. cou* (E6, E₂, E3, El), *Enterobacter cloaceae* (En) et *Citrobacterfreundii* (Ci)
- Les souches faiblement sensibles sont: *Kiebsiella pneumoneae* (KL1, KL2) et *Listeria rnonocytogenes* (L_{11} , L_{15}).

Conclusion

'J

L'emploi intensif des antibiotiques est lié à l'augmentation des résistances et à la perte d'intérêt d'un grand nombre de molécules, qualifiées de «médicaments miracles» car elles provoquent une spectaculaire guérison pour des maladies autrefois considérées comme incurables. Cette diminution de l'efficacité des moyens de lutte oblige donc à explorer de nouvelles pistes, en synthétisant de nouveaux composés aux vertus bactéricides. La nouvelle démarche consiste à s'intéresser à la recherche d'un principe actif dans les produits naturels d'origine végétal, plus particulièrement les métabolites secondaires à savoir les huiles essentielles, issues de plantes aromatiques qui sont utilisées depuis longtemps pour traiter des pathologies et pour améliorer santé et bien être.

Ainsi, nous avons contribué à la mise en valeur de six espèces végétales, poussant à l'état spontané dans la région de Tlemcen et très utilisées en médecine traditionnelle par la population locale: Thymus fontanesil (Boiss. et Reut.), Origanum glandulosum (Desf.), Ammoïdes verticillata (Desf.), Mentha pulegium (L.), Satureja calamintha subsp. nepeta (L.) Briq. et Ziziphora hispanica (L.), en déterminant la composition chimique et l'activité antibactérienne de leurs huiles essentielles.

Ces différentes plantes sont très riches en huile essentielle excepté, l'espèce *Ziziphora hispanicci* qui est caractérisée par un faible rendement de l'ordre de 0,53%.

Pour la caractérisation de ces produits naturels complexes, nous avons utilisé la Résonance Magnétique du Carbone 13, méthode mise au point et développée par le laboratoire d'accueil «Chimie et Biomasse» de l'Université de Corse, depuis les années 90. C'est une méthode d'analyse efficace, fiable et complémentaire des techniques conventionnelles, basée sur la comparaison des déplacements chimiques présents dans le spectre du mélange complexe avec ceux de composés de référence contenus dans des bibliothèques de spectres élaborés au laboratoire.

L'étude détaillée de l'huile essentielle de *Ziziphora hispanica*, par combinaison de quatre méthodes d'analyse, deux techniques chromatographiques (CPG-Ir et chromatographie sur colonne ouverte de silice) et deux techniques spectroscopiques (CPG-SM et RMN ¹³C), nous a permis d'identifier 36 composés qui représentent 92,2 à 93,7% de la composition globale de l'huile essentielle. Elle est dominée par les monoterpènes oxygénés possédant un squelette du type p-menthane en position C-3, à savoir la pulégone (77,6 - 79,5%) qui est le composé majoritaire, la para-menth-3-en-8-ol (2,4 - 3,6%), la cis-isopulégone (0,6%), la trans-isopulégone (0,7 - 0,9%) et la pipériténone (0,6%). Néanmoins, il est important de noter que le *cis*- et *le* trans-isopulégones sont cités pour la première fois dans le genre Ziziphora.

D'autres composés sont présents en quantités appréciables soit le limonène (1,7 - 2,1%), le carvacrol (1,6 - 2,8%) et le thymol (0,6 - 0,9%). Le taux des sesquiterpénes identifiés est très faible de l'ordre de 0,2 à 0,3%. Le (E)--caryophyllène (t - 0,1%) et son oxyde (0,2%) sont les deux seuls sesquiterpènes identifiés dans cette huile essentielle. Un seul composé aliphatique, l'oct-1-en-3-o! (0,1%) est également identifié dans les huiles essentielles de *Ziziphora hispanica*.

L'analyse des huiles essentielles des plantes suivantes: *Origanum glandulosum*, *Ammoïdes verticillata*, *Me ntha pulegium* et *Satureja calamintha* subsp. *nepeta*, a été effectué en combinant deux méthodes d'analyse (une technique chromatographique (CPG-Ir) et une technique spectroscopique (RMN ¹³C)).

Au total, seize composés ont été identifiés dans l'huile essentielle de *Mentha pulegium* représentant 94,9 et 98,6% de la composition globale de l'huile essentielle. Les trois échantillons analysés (récoltés dans la même station sur trois années successives) sont qualitativement très proches. Cette huile ,essentielle est riche en monoterpènes, avec notamment une forte prépondérance des monoterpènes oxygénés ((91,9 - 95,8%). Cette fraction est dominée par des composés possédant un squelette de type p-menthane en position C-3. Nous pouvons noter, parmi eux la forte abondance de la pulégone et du menthone. En effet, ces derniers représentent respectivement (62,7 - 78,0%) et (7,7 - 23,1%), soit entre 85,7 et 86,7% au total. Le taux des monoterpènes hydrocarbonés identifiés ne représente que 1,3 à 1,9% de la composition globale. Un seul composé linéaire, l'octan-3-o! (0,9 - 1,2%) est également identifié. L'oxyde de caryophyllène (0,1 - 0,2%) est le seul sesquiterpène identifié lors de l'analyse de l'huile essentielle de *Menthapulegium*.

L'analyse chimique des huiles essentielles de *Satureja calamintha subsp. nepeta*, a permis d'identifier dix sept constituants représentant au total 82,2 à 96,2% de la composition globale de l'huile essentielle. Nous avons constaté que pour les trois échantillons analysés (récoltés dans la même station sur trois années successives), la nature des constituants est la même. Cependant leurs teneurs différent. Sur les dix sept composés identifiés, quinze sont des monoterpènes, avec notamment une forte teneur des monoterpènes oxygénés (80 - 89,8%) dont la plupart sont des composés possédant un squelette du type p-menthane en position C-3. Deux échantillons sont caractérisés par une forte abondance de la pulégone (33,3 - 35,5%), suivi de l'isomenthone (17,2 - 24,1%). Quatre autres monoterpènes oxygénés sont également identifiés en quantités appréciables, soit: le néo-isomenthol (9,6 - 10,0%), le menthone (8,5 - 9,6%), le 1,8-cinéole (6,6 - 8,2%) et le néo-menthol (5,6 - 7,1%).

Les monoterpènes oxygénés du troisième échantillon sont dominés par l'isomenthone (27,1%), suivi par la pulégone (20,4%). Les composés présents en quantités appréciables, cités précédemment, sont également identifiés dans cet échantillon, soit le 1,8-cinéole (10,2%), le menthone (9,3%), le néo-menthol (5,5%) et le néo-isomenthol (5,9%).

Un seul sesquiterpène hydrocarboné, le D-germacrène est également identifié (0,1 - 1,0%). Le trans-caryophyllène (0,1 - 1,0%) est le seul sesquiterpène oxygéné identifié lors de l'analyse de l'huile essentielle de *Satureja calamintha*.

La richesse des huiles essentielles de *Ziziphora hispanica*, de *Mentha pulegium* et de *Satureja calamintha* subsp. nepeta en pulégone confère à ces plantes un intérêt industriel. En effet, par réduction de la pulégone, on obtient du menthol. Ce dernier est largement consommé par l'industrie des tabacs (principalement aux Etats-Unis). En pharmacie, il entre dans la formulation de crèmes antiprurigineuses et de préparations destinées à «décongestionner» les voies aériennes supérieures en cas de rhinite; c'est également un aromatisant. Il est incorporé dans des produits d'hygiène buccale (pâtes dentifrices), les produits de rasage. Les industries agroalimentaires, principalement la confiserie (chewing-gums), l'utilisent également (**Bruneton, 1999**).

La caractérisation des huiles essentielles d' *Origanum glandulosum*, a permis l'identification de douze composés représentant un pourcentage variant entre 93,5 et 95,4% de la composition globale de ces huiles essentielles, selon les différentes stations étudiées. Les cinq échantillons analysés sont quantitativement et qualitativement très proches avec le thymol comme composé majoritaire (41,0 et 51,3%). Par contre le carvacrol est présent en faible teneur (2,9 - 3,6%). Ces huiles essentielles ne contiennent que des monoterpènes dont huit oléfines (40,1 - 48,9%) et quatre monoterpènes oxygénés (44,7 et 54,9%). La variation des teneurs des monoterpènes hydrocarbonés en quantités appréciables, à savoir: le y-terpinène (16,4-23,8%) et lep-cymène (12,4-20,3%) n'est pas importante.

Т

Pour *Ammoïdes verticillata*, l'analyse de ses huiles essentielles a permis d'identifier douze composés représentant 93,6 à 96,8% de la composition chimique globale. Les trois échantillons (récoltés dans la même station sur trois années successives) analysés sont quantitativement et qualitativement très proches. Le taux des monoterpènes oxygénés identifiés représente environ 50% de la composition globale. Le thymol est le monoterpène oxygéné majoritaire de l'ordre de 48,7 à 51,6%. Par contre le carvacrol est présent en très faible teneur (0,3%). Nous avons caractérisé également huit monoterpènes hydrocarbonés qui

représentent 42,6 à 46,5% de la composition chimique globale, avec prédominance du limonène (18,2 - 21,1%), suivi de 'y-terpinène (10,2 - 12,4%) et dep-cymène (9,9 - 10,8%).

L'étude détaillée de cinq échantillons de l'huile essentielle de *Thymus fontanesii* par application conjointe d'une technique chromatographique (CPG-Ir) et deux techniques spectroscopiques (RMN—C et CPG-SM), nous a permis d'identifier vingt huit composés représentant 97,2 à 98,4% de la composition chimique globale de l'huile essentielle. Les cinq échantillons étudiés présentent une composition chimique homogène dominée par le carvacrol (66,7-69,5%). Par contre, la teneur en thymol varie entre 0,5 et 0,7%. Ces huiles essentielles sont très riches en monoterpènes, soit vingt quatre composés qui représentent 96,1 à 97,3%. Par contre, les sesquiterpènes sont présents en faibles teneurs (quatre constituants, avec un pourcentage variant entre 0,9 et 1,1%). Les monoterpènes présents en quantités appréciables sont: le y-terpinène (5,8 - 9,6%), le p-cymène (6,1 - 9,1%), le linalol (2,8 - 4,0%), et l'apinène (2,5 - 3,0%). Les sesquiterpènes oléfiniques identifiés (la -cadinène et *l'Allo*-aromadendrène) sont présents en très faibles teneurs (0,1% et trace, respectivement). Le (E)-3lcaryophyllène est le sesquiterpène oxygéné majoritaire (0,6 - 0,9%), accompagné de son oxyde (0,1 - 0,2%). Trois monoterpènes linéaires sont également identifiés en très faibles teneurs, soit: le 1-octen-3-ol (0,1 - 0,2%), le 3-octanone (0,1 - 0,2%) et le 3-octanol (0,1%).

L'analyse chimique des huiles essentielles de *Thymus fontanesii*, d'Origanum glandulosum et d'Ammoïdes verticillata récoltée dans différentes stations de la région de Tlemcen, nous a permis de constaté que l'origine et l'année de récolte du matériel végétal n'influent pas sur la composition chimique de ces produits naturels. Nous pouvons conclure que ces espèces végétales sont susceptibles d'avoir un intérêt industriel compte tenu de leur richesse en huile essentielle et de leur composition chimique stable et homogène. Elles peuvent également être recommandée comme une source potentielle de carvacrol et de thymol. En effet les huiles essentielles riches en phénols et leur principes actifs (thymol et carvacrol) entrent dans la formulation de diverses préparations pharmaceutiques: pommades antiseptiques et cicatrisantes, sirops pour le traitement des affections des voies respiratoires et préparations pour inhalation et l'hygiène buccale, Ces huiles essentielles sont largement utilisées -comme antiseptique- par l'aromathérapie (Bruneton , 1999).

Vu l'intérêt économique directement lié à la composition qualitative et quantitative des huiles de ces plantes, il est souhaitable d'envisager la plantation de ces espèces végétales en déterminant des conditions et des zones favorables à leur développement.

Après la détermination de la composition chimique, nous avons étudié le pouvoir antibactérien de ces produits naturels sur des souches d'origine hospitalière et sur celles de référence.

Dans un premier temps, nous avons testé si ces huiles essentielles avaient une activité antibactérienne en appliquant une méthode rapide, celle de diffusion sur disque.

Les résultats obtenus concernant l'activité des huiles essentielles de *Ziziphora hispanica*, de *Me ntha pulegium* et de *Satureja calamintha* subsp. *nepeta*, nous amène à avancer les conclusions suivantes:

- L'huile essentielle de *Satureja calamintha* subsp. *nepeta*, est nettement plus active que celle de *Ziziphora hispanica* et de *Mentha pulegium*, et ceci vis-à-vis de la majorité des bactéries testées, à l'exception des genres Pseudomonas, Kiebsiella et Listeria qui se sont révélés particulièrement très résistantes.
- Les huiles essentielles des trois plantes présentent une très bonne activité sur les souches de Staphylococcus aureus, d'Escherichia coli de référence et de Salmonella lyphi,

Les résultats obtenus concernant l'activité des huiles essentielles de *Thymus fontanesii*, d'*Origanum glandulosum* et d'*Ammoïdes verticillata*, nous amène à conclure que:

- Comme précédemment, les différentes souches bactériennes réagissent de la même manière à l'ensemble des huiles essentielles testées.
- Ces substances sont très actives sur la quasi-totalité des bactéries testées. Cependant, elles sont inactives sur les deux espèces de *Pseudomonas aeruginosa*, qui se révèlent très résistantes.
- Les *Staphylococcus aureus*, *l'Escherichia coli* de référence et la *Salmonella typhi* sont les plus sensibles à l'action des huiles essentielles de ces trois plantes.

Ensuite, nous avons étudié le pouvoir antibactérien des huiles essentielles de ces trois dernières plantes qui se sont montrées les plus efficaces, en définissant les paramètres suivants: CMI, CMB et QMI. D'une façon générale, nous pouvons avancer que:

• L'huile essentielle de *Thymus fontanesii* s'est avérée nettement plus active que celles *d'Origanum glandulosum* et *d'Ammoïdes* verticillata, néanmoins, il y a une certaine concordance des résultats entre les huiles essentielles des ces deux espèces végétales, sauf au niveau de la phase vapeur ou les différences entre les moyennes des QMIs des huiles

- essentielles de ces deux plantes relatives aux différentes souches bactériennes sont significatives
- L'aromatogramme ne permet pas d'avancer que telle ou telle huile essentielle est efficace car les différences des moyennes des diamètres des zones d'inhibition des huiles essentielles entre les trois plantes relatives aux différentes espèces bactériennes ne sont pas significatives;
- Les CMBs obtenues avec l'huile essentielle *d'Ammoïdes verticillata* pour les trois émulsifiants utilisés, nous a permis d'avancer que l'éthanol et le Tween 80 influent sur l'activité antimicrobienne des huiles essentielles. En effet, Les CMBs obtenues en présence d'agar sont largement inférieures que celles obtenues en présence du Tween 80. En outre, en présence d'éthanol, les concentrations minimales bactéricides sont les, plus faibles, mais ne varient pas d'une manière significative par rapport à celles obtenues en présence de l'agar;
- Il y a une certaine concordance entre les CMIs et les CMBs des huiles essentielles des différentes plantes car les différences ne sont pas significatives;
- Contrairement aux phases vapeurs, les résultats obtenus par contact direct en milieu gélosé et en milieu liquide confirment les résultats obtenus avec l'aromatogramme. En effet, *l'Enterobacter cloacae, l'Escherichia colt*(E₂, et le *Staphylococcus aureus* (St3) se sont révélés plus résistantes à la phase vapeur.
- Les espèces bactériennes *Pseudomonas aeruginosa* se sont montrées très résistantes aux trois huiles essentielles
- Les huiles essentielles des trois plantes présentent une forte activité sur les souches de Staphylococcus aureus, d'Escherichia coli de référence et de Salmonella typhi;

L'étude du pouvoir antibactérien des huiles essentielles de ces trois plantes, nous permet d'avancer qu'elles sont très actives contre la quasi-totalité des bactéries testées. Cette efficacité leur confère un intérêt certain en tant qu'agents antimicrobiens dans plusieurs domaines:

 Dans le milieu hospitalier, nous pouvons proposé l'application des huiles essentielles contre les infections ou bien pour désinfecter: les mains, les chambres des malades, les plaies et les muqueuses, le matériel de soins et les instruments. En effet, l'utilisation des désinfectants fait partie des moyens de lutte contre l'infection. Elle intervient dans de nombreux protocoles et mesures d'hygiène qui ont pour objectif de limiter les possibilités de transmission des microorganismes. . Dans le domaine agroalimentaire, nous pouvons utiliser les huiles essentielles pour prévenir la détérioration des produits alimentaires qui est du à diverses bactéries.

De plus, l'utilisation des huiles essentielles comme agents antimicrobiens présente deux caractéristiques principales : leur origine naturel (se sont des substances naturelles) qui est un moyen de sécurité pour l'être humain et pour l'environnement. De plus, elles n'entraînent ni résistance des germes, ni sélectivité des flores saprophytes et pathogènes, ni altération des systèmes de défense. Cependant, avant d'envisager l'utilisation de ces métabolites à forte valeur ajoutée, il est nécessaire de voir l'effet de ces huiles essentielles in vivo et d'entreprendre des études toxicologiques et pharmacologiques. Il est souhaitable également de faire des fractionnements et sélectionner les fractions caractérisées par un potentiel antimicrobien considérable.

Enfin, la connaissance des plantes médicinales fait partie de l'héritage culturel des peuples, notamment en milieu rural, mais il est menacé par l'évolution rapide du mode de vie. C'est l'appauvrissement culturel qui conduit à l'anéantissement d'un héritage biocénotique avec toutes les conséquences que cela implique engendrant les situations irréversibles que subissent les écosystèmes. Ainsi, il est nécessaire de préserver ces plantes médicinales car elles constituent une composante fondamentale du système de santé dans le monde et peuvent fournir des remèdes de qualité et de coût raisonnable.

Xéférences Bi6fiiographiques

Abdelouahid D. E., Bekhechi C. (2002). Pouvoir antimicrobien de l'huile essentielle *d'Ammoïdes verticillata* (Nûnkha). *Biologie et Santé*, *4*: 91 - 100.

Adams R. P. (1989). Identification of essential oils by Ion Trap Mass Spectroscopy. *Academic Press,* Inc., San Diego.

Adio A. M., Paul C., Kloth P., Konig W. A. (2004). Sesquiterpenes of the liverwort *Scapania undulata. Phytochemistry, 65:* 199 - 206.

Adzet T., Passet J. (1972). Chemotaxonomie du genre *Satureia-Calamintha. Rivista Italiana ERROS*, 54: 482 - 486.

Agrawala J. N., Pant M. C. (1986). Effect of feeding *Carum copticum* seeds on serum iipids, high density lipoproteins (HDL) and serum cholesterol binding reserve in the albino rabbits. *Indian J ofMedical Reearch*, 83: 93 —95.

Akgfll A., De Pooter H. L., De Buyck L. F. (1991). The essential oils of *Calamintha nepeta* subsp. *glandulosa* and *Ziziphora clinopodioides* from Turkey. *J ofEssential oil* Research, 3: 7-10.

Alami M., Barret R., Brion J. D., Enguehard-Gueiffier C., Foliot P., Gaudy C., Gerondeau N., Gueiffier A., Lanotte P., Leconte-Astruc V., Mereghetti L., Peyrat J. F., Ratsimbazafy V., Tandé D. (2005). Antibiotiques: pharmacologie et thérapeutique. *Elsevier,pp* 14.

Alemany L.B. (1989). Exceptionai Resolution and New Signais Detected in the CNMR Spectra of Aikanes. *Magn. Res. Chem.*, 27: 1965 - 1073.

Aligiannis N., Kalpotzakis E., Mitaku S., Chinon I. B. (2001). Composition and antimicrobiai activity of the essential oils of two Origanum species . *j. ofAgricultural and Food Chemistry*, 40: 4168-4170.

Allegrini J. Simeon de Buohberg M. (1972). Une technique d'étude du pouvoir antibactérien des huiles essentielles. *Production et Problèmes Pharmaceutiques*, 27: 891 - **897.**

Ambasta S. P., Ramachandran K., Kashyapa K., Chand R., Edits (1986). The usefui plants of India. *Publications and Information Directorate, CSIR*, New Delhi, India, pp 643

Anonyme I: http://images.google.com

n

Anonyme II: http://fr.wikipedia.org/wiki/origanum

Anonyme Ill: http://www.passionbassin.com/photo.php

Anonyme IV: http://www.wikipedia.org/wiki/Menthe_pouliot

Arpino P., Prévôt A., Serpinet J. Tranchant J., Vergnol A., Wittier P. (1995). Manuel pratique de chromatographie en phase gazeuse. *Ed. Masson*, Paris.

Arras G., Usai M. (2001). Fungitoxic activity oftwelve essential oils against four postharvest *Citrus* pathogens: Chemical analysis of *Thymus capitatus (L.)* Hoffing. Oil a dits effect in subatmospheric pressure conditions. *J ofFood Protection*, 64: 1025 - 1029.

Ashraf M., Bhatty M. K. (1975). Studies on the essential oils of Pakistani species Of the family umbelliferae. Part I. *Trachyspermum ammi (L.)* Sprague (ajowan) seed ou. *Pakistan J. Sci. md. Res.*, 18: 232-235.

Association Française de normalisation (AFNOR) (1992). Recueil des normes françaises Huiles essentielles.

Atik-Bekkara F., Bousmaha L., Taleb Bendiab S. A., Boti J. B., Casanova J. (2007). Composition chimique de l'huile essentielle de *Rosmarinus officinalis* L. poussant à l'état spontané et cultivé dans la region de Tlemcen. *Biologie et Santé*, 7 : 6 - il.

Avesina A. (1985). Law in medecine. Second éd. Soroush Press, Tehran, 2, pp 187.

Aviana A., Edadi R., Tahmasebi G. (2002). Laboratory evaluation of some plants essences of control *Varroa destructor* experimental and applied. *Acarology*, 27: 319 - 327.

Baba Aïssa F. (1991). Les plantes médicinales en Algérie. Bouchéne and Diwan.

Baba Aïssa F. (1999). Encyclopédie des plantes utiles: Flore d'Algérie et du Maghreb. *Ed. Librairie Moderne-Rouiba, pp 46 —47 - 194 - 195 —231.*

Balbaa I., Huai S. H., Haggag M. Y. (1973). The volatile oil from herb and fruits of *Carum copticum* at différent stages of growth. *Planta Medica*, 23: 301 - 307.

Baldovini N., Ristorcelli D., Tomi F., Casanova J. (2000). Intraspecific variability of the *essential oil of Calamintha nepeta* from Corsica (France). *Flavour and Fragance J., 15 : 50 - 54.*

Baldovini N., Tomi F., Casanova J. (2001). Identification and quantitative determination of furanodiene, a heat-sensitive compound, in essential oil by ¹³C-NMR. *Phytochem. Anal.*, 12: 58-63.

Bandini P., Pacchiani M. (1981). Costituenti, proprietà e Usi di *Calamintha nepeta. Essenze Deriv. Agrum., 51: 325 —330.*

Baser K. H. C., Ozek T., Tumen G., Sesik E. (1993). Composition of essential oil of *Origanuin sipyleum* of Turkish Origin. *J. of Essential Oil Reearch*, 4: 139 - 142.

Baser K. H. C. (2002). Aromatic biodiversity among the flowering plant taxa from Turkey. *Pure Appi. Chem.*, 74: 527—545.

Baudoux D. (2001). Aromathérapie, se soigner par les huiles essentielles. 2 éd. Atlantica, pp2S-26-34-35.

Baytop T., Sfltltipinar N. (1986). Characteristics of « Nanahan» cultivated in Anatolia an *dits volatile ou. J Fac. Pharm. Istanbul, 22: 73 - 76.*

Baytop T. (1999). Therapy with medicinal plants in Turkey (Past and present).

Description Nobel Médical Publishers.**

Bekhechi C. (2002). Analyse de l'huile essentielle *d'Ammoïdes verticillata* (Nûnkha) de la région de Tlemcen et étude de son pouvoir antimicrobien. *Mémoire de Magister*, option Biologie Moléculaire et Cellulaire, université Abou Bah Belkaïd.

Belhattab R., Larous L., Kalantzakis, Boskou D., Exarchou V. (2004). Antifungal properties of origanum glandulosum Desf. extracts. J. of Food, Agriculture & Environment, 2:69-73.

Belhattab R., Larous L., Figueiredo A. C., Santos P. A. G., Barroso J. G., Pedro L. G. (2005). *Origanum glandulosum* Desf. Grown Wild in Algeria: Essential oil composition and glycosidic bound volatiles. *Flavour and Fragrance J*,20: 209-212.

Bellakhdar J. (1978). Médecine traditionnelle et toxicologique Ouest Saharienne, contribution à l'étude de la pharmacopée marocaine. *Ed. Techniques Nord-africaines*, Rabat.

Bellakhdar J., Chasse R., Fleurentin J., Younos C. (1991). Repertory of standard herbal drugs in the Moroccan pharmacopeae. *J of Ethnopharmacoloy*, *15*: 123 - 143.

Bellakhdar J. (1997). La pharmacopée marocaine traditionnelle : Médecine arabe ancienne et savoirs populaires. *Editions Ibis presse*, Paris, pp: 764.

Bellomaria B., Della Mora L. (1985). Novità nell'uso di piante officinali per la zona di Matelica (Macerata), anche in confronto con altre zone delle Marche. *Arch Bot Biogeograf* Ital., 61: 51-80.

Beloued A. (2001). Plantes médicinales d'Algérie. Ed. Office des publications universitaires.

Bendahou M., Benyoucef M., Benkada D., Soussa Elisa M. B. D., Galvao E. L., Marques M. M. O., Muselli A., Desjobert J. M. Bernardini A. F., Costa J. (2007). Influence of the processes extraction on essential oil of Origanum glandulosum. J of Applied Sciences, 8: 1152-1157.

Bendahou M. (2007). Composition chimique et propriétés bilogiques des extraits de quelques plantes aromatiques et médicinales de l'Ouest Algérien. *Thèse de Doctorat d'Etat*, option Biochimie, université Abou Bah Belkaïd.

Béniston Ws. Nt. (1984). Fleurs d'Algérie. Ed. Entreprise Nationale du livre.

Benjilali B., Tantaoui-Elaraki A., Ayadi A., Ihial M. (1984). Method to study antimicrobial effects of essential oils- Application to the antifungal activity of six Morroccan essences. *J of Food Protection*, 47: 748 - 752.

Benjilali B., Tataoui-Elaraki A., Ismaïli-Alaoui M., Ayadi A. (1986). Méthode d'étude des propriétés antiseptiques des huiles essentielles par contact direct en milieu gélosé. *Plantes Médicinales et Phytothérapie*, 20 : 155-167.

Benjilali B. (2004). Extraction des plantes aromatiques et médicinales: Cas particulier de l'entraînement à la vapeur d'eau et ses équipements. *Le pharmacien du Maghreb*.

Bergogne-Bérézin E., Brognard J. M. (1999). Bases biologiques de l'antibiothérapie. *Ed. Masson, pp* 27.

ème.

Bergogne-Bérézin E., Dellamonica P. (1999). Antibiothérapie en pratique clinique. Ed. *Masson, pp* 3.

Beylier-Maurel M. F. (1976). Activité bactériostatique des matières premières de *parfumerie. Rivista Italiana EPPOS*, 58: 253-256.

Bezié N., Skoibuié M., Dunkié V., Radonié A. (2003). Composition and antimicrobial activity of Achillea clavennae L. essential Ou. *Phytotherapy Research*, 17: 1037- 1040.

Bhargava, HaKsar (1961) in **Mehta R. L., Zayas J. F. (1995).** Anoxidative effect of Ajowan in a model system. *JAOCS*, 72:1215 - 1218.

Bighelli A., Tomi F., Casanova J. (1994). Computer-aided carbon-13 NMR Study of phenols contained in liquids produced by pyrolysis of biomass. *Biomass and Bioenergy*, 6: 461-464.

Bigo De Grosso M., Moyna P. (1985). Composicion quimica de las esencias de *Mentha* del *Uruguay. An. RealAcadFarm., 51:* 333 -338.

Bilia A. R., Flamini G., Taglioli V., Morelli I., Vincieri F. F. (2002). GC-MS analysis of essential oil of some commercial Fennel teas. *Food Chemistry*, 76: 307 - 310.

Blondi D., Cianci P., Geraci C., Ruberto G. (1993). Antimicrobial activity and chemical composition of essential oils from Sicilian aromatic plants. *Flavour and Fragrance J*, 8:331 -337.

Borrel (200). Les infection nosocomiales, cours maladie. *L'homme et L'environnement*. Université Lumière Lyon II.

Boskabady M. H., Shaikhi J. (2000). Inhibitory effect of *Carum copticum* on histamine (H1) receptors of isolated guinea-pig. Tracheal chains. *J of Ethnopharmacology*, 69: 217-227.

Boti J.B., Koukoua G., N'Guessan T.Y., Muselli A., Bernardini A.F., Casanova J. (2005). Composition *of* leaf, stem bark and root bark oils from *Isolona cooperi* investigated by *GCIRI*, GC/MS and ¹³C-NMR spectroscopy. *Phytochem. Anal.*, 16: 357 - 363.

Boti J.B., Bighelli A., Cavaleiro C., Salgueiro L., Casanova J. (2006). Chemical variability of *Juniperus oxycedrus ssp. oxycedrus* berry and leaf oils from Corsica, analysed by combination of GC, GC/MS and C-NMR. *Flavour and Fragrance J*, 9:164-168.

Boti J.B., Bighelli A., Cavaleiro C., Salgueiro L., Casanova J. (2006). Chemical variability of *Juniperus oxycedrus ssp. oxycedrus* berry and leaf oils from Corsica, analysed by combination of GC, GC/MS and ¹³C-NMR. *Flavour and Fragance J*,21: 268 - 273.

Boullard B. (2001). Dictionnaire: plantes médicinales du monde. (*Réalités et Croyances*) *Ed,ESTEM,pp 348*.

Boulos L. (1983). Medicinal plants of North Africa. *Reference Publication: Algonac, MI, pp* 109-175.

Bousmaha L., Atik Bekkara F., Tomi F., Casanova J. (2005). Advances in the chemical composition of Lavandula dentata L. essential oil from Algeria. J. of Essential Oil Research, 17:292-295.

Bousmaha L., Boti J. B., Atik Bekkara F., Castola V., Casanova J. (2006). Intraspecific chemical variability of the essential oil of *Lavandula dentata* L. from Algeria. *Flavour Fragr. J.*, 21:268-272.

Bousmaha-Marroki L. (2007). Contribution à la valorisation d'espèces végétales aromatiques des genres Lavandula et Thymus d'Algérie: Analyse des huiles essentielles par CPG, CPG-SM et RIVIN — C et étude de leur pouvoir antimicrobien sur des germes d'origine hospitalière. *Thèse de Doctorat*, option Microbiologie & Phytochimie, Université Djilali Liabes de Sidi Bel-Abbés.

Bousmaha-Marroki L., Atik-Bekkara F., Tomi F., Casanova J. (2007). Chemical composition and antibacterial activity of the essential oil of *Thymus ciliatus* (Desf.) Benth. Subsp. eu-ciliatus Maire from Algeria. *J ofEssential 011 Reearch*, 19: 401—404.

Bradesi P., Tomi F., Casanova J. (1995). Carbon-13 NMR study of farnesol, famesyl acetate and farnesal stereoisomers: chemical shift assignment using lanthanide induced shifts. *Canadian J. Appi. Spectrosc.*, 40: 76 - 81.

Bradesi P., Bighelli A., Tomi F., Casanova J. (1996). L'analyse des mélanges complexes par RMN du carbone-13. Canadian J. Appi. Spectrosc., Partie 1, 4:15—24, Partie 2, 4:41-50.

Bradesi P., Tomi F., Casanova J., Costa J., Bernardini A. F. (1997). Chemical composition of Myrtle essential oil from Corsica (France). *J. of Essenial 01! Research*, 9: 283—288.

Buchbauer G., Jirovetz L. (1994). Aromatherapy- Use of fragrances and essential oils as medicaments. *Flavour and Fragrance J*, 9:217—222.

Bruneton J. (1999). Pharmacognosie, phytochimie, plantes médicinales. Éd. Tec & Doc Lavoisier, Paris.

Burt S. A. (2004). Essential oils: their antibacterial properties and potential applications in *foods-a rewiew. International J offoodMicrobiology*, 94: 223 - 253.

Canillac N., Mourey A. (2001). Antibacterial activity of the essential oil of *Picea excelsa* on *Listeria, Staphylococcus aureus* and coliform bacteria. J. of *Food Microbiology*, 18: 261 - 268.

 \mathbf{T}

Cantino P. D., Harley R. M. Wagstaff S. J. (1992). Genera of labiatae; status and classification. In: Harley M. R. Reynolds T.(Eds) Advences in labiatae science, *Royal Btanic Gardens*, pp 511—522.

Careaga M, Fernândez E., Dorantes L., Mota L., Jaramillo M. E., Hernandez-Sanchez H. (2003). Antibacterial activity of *Capsicum* extract against *Salmonella typhimurium* and

Pseudomonas aeruginosa inoculated in raw beef meat. *International I ofFood Microbiology*, 83:331-335.

T

T

 \mathbf{T}

- Carrée P. (1953). Précis de technologie et de chimie industrielle. Tome II. *Ed. Balliére J. B. et fils*.
- Carson C. F., Mee B. J., Riley T. V. (2002). Mechanism of action of *Melaleuca alternUlora* (Tea Tree) oil on *Staphylococcus aurus* determined by Time-kiil, Lysis, Leakage and sait tolerance assays and electron microscopy. *Antimicrobial Agent and Chemotherapy*, 46: 1914 1920.
- Castola V., Bighelli A., Casanova J. (1999). Direct Qualitative and Quantitative Analysis of Triterpenes using C NMR Spectroscopy Exempiified by Dichioromethanic Extracts of Cork. *Appi. Spectro.*, 53: 344 350.
- Castola V., Bighelli A., Casanova J. (2000). Intraspecific chemical variability of the essential oil of Pistacia lentiscus L. from Corsica. Biochem, Syst. Ecol., 28: 79 88.
- Castola V., Bighelli A., Conti L., Scano G., Mascia S., Casanova J. (2000). Identification and quantification of anhydrosugars in biomass pyroiytic oîls using carbon-13 NMR *spectroscopy. Canadian J. Anal. Sci. Spectrosc.*, 45: 102 106.
- Castola V., Bighelli A., Rezzi S., Melloni G., Gladiali S., Desjobert J.M., Casanova J. (2002). Compostion and chemical variability of the triterpene fraction of dichioromethane extracts of cork. *md. Crops Prod.*, 15: 15 22.
- Castola V., Marongiu B., Bighelli A., Fions C., Laï A., Casanova J. (2005). Extractives of Cork (*Quercus suber L.*): Chemical composition of dichioromethane and supercritical CO ₂ extracts. md. Crops Prod., 21: 65 69.
- Cavaleiro C., Rezzi S., Saigueiro L., Bigheiii A., Casanova J., Proença da Cunha A. (2001). Intraspecific chemical variability of the leaf essential oil of *Juniperus phoenicea* var. *turbinata* from Portugal. *Biochem. Syst. Ecol.*, 29: 1175 1183.
- **Cavalli J.F., Tomi F., Bernardini A.F., Casanova J. (2003).** Composition and chemical variability of the bark oil of *Cedrelopsis grevei H.* Baillon from Madagascar. *Flavour and Fragrance J.*, 18: 532 538.
- **Cavalli J.F., Tomi F., Bernardini A.F., Casanova J. (2004).** Combined analysis of the essential oil of *Chemopodium ambrosioides* by GC, GC-MS and ¹³C-NMR: quantitative determination of aséaridole, a heat-sensitive compound. *Phytochem. Anal., 15:* 275 279.
- **Chaibi A., Ababouch L. H., Beiasri K., Boucetta S., Busta F. F. (1997).** Inhibition of germination and vegetative growth of *Bacillus cereus T* and *Clostridium botulinum* 62A spores by essentiai oils. *J. ofFood Microbiology*, 14: 161 174.
- Chaichat J. C., Garry R. P., Bastide P., Fabre F., Maihuret R. (1991). Corrélation composition chimique/ activité antimicrobienne: V- Contribution à la comparaison de 2 méthodes de détermination des CMI. *Plantes Médecinales et Phytothérapie*, 25: 184 193.

Chami N., Chami F., Bennis S., Trouillas J., Remmal A. (2004). Antifungal treatment with carvacrol and eugenol of oral candidiasis in immunosuppressed rats. *Brazilian J Infectious Disease*, 8: 217 - 226.

 \mathbf{T}

- **Chang S. T., Chen P. F., Chang S. C. (2001).** Antibacterial activity of leaf essential oils and their constituants from Cinnamomum osmophloeum. J of Ethnopharmacology, 77: 123 127.
- **Chebli B., Achouri M., Idrissi Hassani L. M., Hmamouchi M. (2003).** Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against *Botrytis cinerea* Pers: Fr. *JofEthnopharmacology*, 89: 165 169.
- Chericoni S., Flamini G., Campeol E., Cioni P. L., Morelli I. (2004). GC-MS analysis of the essential oil from the aerial parts of *Artemesia verlotiorum:* Variability during the year. *Biochem. Syst. Ecol.*, 32: 423 429.
- Chevalier j., Choisy C., Crémieux A., Darbord J. C., Davin-Régli A., Dubreuil L., Finance C., Linxe C., Quentin-noury C., Quero A. M., Reynaud A. (2003). Microbiologie générale et Santé. ESKA, Paris, pp 290 292.
- ,> hiaIva F., Monguzzi F., Manitto P., Akgul A. (1993). Essential oil constituents of *Trachyspermum copticum* (L.) fruits. *J ofEssential Oil Research*, 5: 105 106.
 - **Chiej R.** (1984). Macdonald encyclopedia of medicinal plants. *Ed. Macdonald*, London, pp 212-217.
 - **Choudhury S., Ahmed R., Kanjilal P. B., Leclercq P. A.** (1998). Composition of the seed *oil of Trachyspermum ammi (L.)* Sprague from Northeast India. *J ofEssential 011 Research*, 10: 588 590.
 - Cimanga K., Kambu K., Tona L., Apers S., De Bruyne T., Hermans N., Totté J., Pieters L., Vlietinck A. J. (2002). Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants in the Democratic republic of *Congo. J ofEthnopharmacology*, 79: 213—220.
 - **Conner D. E., Beuchat L. R.** (1984). Sensitivity of heat-stressed yeast's to essential oils of plants. Applied Environment Microbiology, 47: 229 233.
 - **Cosentino S., Palmas F. (1999).** In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. *Letters in Applied Microbiology*, 29: 130—135.
- Courvalin P., Drugeon H., Flandrois J. P., Goldstein F. (1990). Bactéricidie: aspects théoriques et thérapeutiques. *Maloine*, pp 374.
- Cox S. D., Mann C. M., Markham J. L., Bell H. C., Gustafson J. E., Warmington J. R., Wyllie S. G. (2000). The mode of antimicrobial action of essential oil of *Melaleuca alternfiora* (tea tree oil). *J ofAppliedMicrobiology*, 88: 170 175.
- Crémieux A., Guiraud-Dauriac H, Dumenil G. (1981). Neutralisation des antiseptiques et désinfectants. *J ofpharm. Belg.*, 36: 223 226.

- **Daferera D. J., Ziogas B. N., Polissiou** M. G. (2003). The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarum sp. and Clavibacter michiganensis. Crop Protection, 22: 39 44.
- Deak T., Beuchat L. R. (1996). Handbook of food spoilage. New York, USA: CRC Press.
- De Bilierbeck V. G. (2000). Actvité fongique de l'huile essentielle de *Cymbopogon nardus* T Sur l'Aspergillus figer! Evaluation d'un bioréacteur pour l'étude de l'effet des substances volatiles en phase vapeur. Faculté des Sciences pharmaceutiques, Institut national polytechnique de Toulouse, pp 236.
 - **De Bilierbeck** V. G. (2002). Essais d'utilisation d'huiles essentielles en traitement de l'air, les contaminants biologiques des biens culturels. *Museum National d'histoire Naturelle et éd. Scientifiques et médicales, pp 345 358.*
 - **De Bilierbeck** V. G. (2005). Huiles essentielles et maladies nosocomiales. *La phytothérapie Européenne*, pp 17 20.
 - **De Pooter H. L., Schamp** N. (1986). Comparaison of the volatile composition of some *Calamintha / Satureja* species. In: Progress in essential oil Research. *Ed. E-J Brunke*, Walter De Gruyter, Berlin, pp *139*—*150*.
 - **De Pooter H. L., Goetghebeur P., Schamp** N. (1987). Variability in composition of the essential oil of Calamintha nepeta. J of Phytochemistry, 26: 3355 3356.
 - Debuigue G. (1984). Larousse des plantes qui guérissent. Librairie Larousse.
 - **Delespaul Q., De Billerbeck** V. G., Roques **C. G., Mihe1** G. (2000). The antifungal activity of essential oils as determined by différent screening methods. *J of Essential Oil Research*, 12:256-266.
 - **Demissew S.** (1993). A description of some essential oil bearing plants in Ethiopia and their *indigeous uses. J ofEssential OilRresearch*, 5: 465—479.
 - **Didry N., Dubreuil L., Pinkas** M. (1993). Activité antibactérienne du thymol, du carvacrol et de l'aldehyde cinnamique seuls ou associés. *Pharmacize*, 48 : 301 304.
 - **Dorman H. J. D. (1999).** Phytochemistry and bioactive properties of plant volatile oils: antibacterial, antifungal and antioxidant activities. *PhD Thesis*, University of Strathclyde, Glasgow.
 - **Dorman H. J. D., Deans S.** G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. *J ofApplied Microbiology*, 88: 308 316.
 - **Dragland S., Senoo H., Wake K., Blomhoff R. (2003).** Several culinary and medicinal herbs are important sources of dietary antioxidants. *The journal of Nutrition, 133: 1286—1289.*
 - **Dubey** N. K., **Mishra A.** K. (1990). Evaluation of some essential oils against dermatophytes. *Indian Drugs*, 27:529-531.

Т

Dusquenoy E. (2006). Caractérisation chimique d'huiles essentielles et d'extraits de trois espèces de Corse en vue de leur valorisation: *Pinus nigra* subsp. *laricio*, *Abies alba* et *Taxus baccara*. *Thèse de Doctorat de l'université de Corse*.

Dwivedi S. K., Singh K.P. (1998). Fungitoxicity of some higher plant products against *Macrophomina phaseolina* (Tassi) Goid. *Flavour and Fragrance J., 13: 397 - 399.*

Economou K. D., Oreopoulou V., Thomoupoulos C. D. (1991). Antioxidant properties of some plant extract of the Labiatae family. *J Am. 011 Chem. Soc.*, 68: 109—113.

Essawi T., Srour M. (2000). Screening of some Palestinian medicinal antibacterial activity of plant volatile oils. *J of Applied Microbiology*, 70: 343 - 349.

European Committe for Antimicrobial Susceptibility Testing (EUCAST) (2003). Détermination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. European Society of Clinical Microbiology and Infections Diseases, 9: 1 - 7.

Ferrari B., Tomi F., Casanova J. (2005). Terpenes and acetylene derivatives from the roots of Santolina corsica (Asteraceae) Biochem. System. Ecol., 33: 445 - 449.

Ferrari B., Tomi F., Richomme P., Casanova J. (2005). Two new irregular acyclic sesquiterpenes aldehydes from *Santolina Corsica* essential ou. *Magn. Reson. Chem.*, 43: 73 - 74.

Ferreira M.J.P., Costantin M.B., Sartorelli P., Rodrigues G.V., Limberger **R., Henriques A.T., Kato M.J., Emerenciano V.P. (2001).** Computer-Aided Method for Identification of Components in Essential Oils by —C NMR Spectroscopy. *Anal. Chim. Acta, 447: 125 - 134.*

Filippini M.H., Tomi F., Casanova J. (2000). Composition *of* the leaf oil of *Ferula arrigonii* Bocehieri. *Flavour and Fragrance J., 15: 195 - 198.*

Fisher J., Arnold J. R. P. (2001). Chimie pour biologistes. Ed. BERTI, pp 265 - 268.

Formâcek V., Kubeczka K.H. (1982). C NMR Analysis of Essential Oils in Aromatic *Plants: Basic* and Applied Aspects. *Margaris N, Koedam A., Vokou D., Ed., Martinus Nhoff,* La Haye, 177-181.

Fourment P., Roques H. (1941). Répertoire des plantes médicinales et aromatiques d'Algérie. Documents et Renseignements Agricoles, Bull. 61, Alger.

Fournier P. (1947 – 1948). Le livre des plantes médicinales et vénéneuses de France. *3 vols. Lechevalier*, Paris.

Franzios G., Mirotsou M., Hatzi Apostolou E., Karl J., Scouras Z. G., Mavargani-Tsapidou P. (1997). Insecticidal and genotoxic activities of mint essential oils. J. Agric. *Food Chem.*, 45: 2690-2694.

Fraternale D., Giamperi L., Ricci D., Manuta A. (1998). Composition of essential oil as *taxonomic Marker for Calamintha nepeta* (*L.*) Savi ssp. *nepeta. J. ofEssential Oil Research*, 10: 568-570.

Friedman M., Henika P. R., Mandreli R. E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against *Campylobacter jejuni, Escherichia cou, Listeria monocytogenes* and *Salmonella enterica. J ofFood Protection, 65: 1545 - 1560.*

Gamisans J., Jeanmonod D. (1993). Catalogue des plantes vasculaires de la Corse. *Ed. D. Jeanmonod, H M Burdet*, Genève.

Garland S. (1980). Le livre des herbes et des épices. Ed. Fernand Nathasn., Paris, pp 228.

Garnier G., Bezanger-Beauquesne I.., Debraux G. (1961). Ressources médicinales de la flore française. Tome II, *Ed. Vigot Frères*, Paris.

Gayraud M., Lortholary 0. (2003). Soins infirmiers aux personnes atteintes de maladies infectieuses *I* de l'infection par le VIH. *Ed. Masson, pp 31, 65.*

Georgiev E. V., Khadzhiiski T. T. (1969). Changes in essential and glyceride oils during storage of raw materials: changes in oils during storage of Carum ajowan fruits. *Nauch. Tr., Vissh Inst. Khranit. Vkusova Prom., Plovdiv, 16: 155 - 163.*

Gersbach P. V., Reddy N. (2002). Non-invasive localization of thymol accumulation in *Carum copticum* (Apiaceae) fruits by chemical shift selective magnetic resonance imaging. *Annals ofBotany*, 90: 253 - 257.

Ghannadi A., Sajjadi S. E., Kabouche A., Kabouche Z. (2004). Thymus fontanesii Boiss. & Reut. —A potential source of thymol-rich essential oil in North Africa. *Verlag der Zeitschrflflr Naturforschung, 59: 187 - 189.*

Gilani A. H., Jabeen Q., Ghayur M. N., Janbaz K. H., Akhtar M. S. (2005). Studies on the antihypertensive, antispasmodic, bronchodilator and hepatoprotective activities of the *Carum copticum* seed extract. *J ofEthnopharmacology, 98: 127 - 135.*

Gonny M., Bradesi P., Casanova J. (2004). Identification of the Components of the Essential Oil from Wild Corsican *Daucus carota* L., Using ¹³C-NMR Spectroscopy. *Flavour andFragance J*,19:424 433.

Gonny M., Cavaleiro C., Salgueiro L., Casanova J. (2006). Analysis of Juniperus communis susp. Alpine needle, berry, wood end root oils by combination of GC, GC/MS and ¹³CNMR. *Flavour and Fragrance J*, 21: 99—106.

Greuter W., Burdet H. M., Long G. (1986). Med-checklist. In Editions de Conservatoire de Jardin Botanique de la ville de Genève, pp 3.

Grosjean N. (2004). Huiles essentielles: Se soigner par l'aromathérapie. Ed. Eyrolles, pp 98.

Guignard J. L., Dupont F. (2004). Botanique: Systématique moléculaire. éd. Masson, pp237.

Guillen M. D., Manzanos M. J. (1998). Study of composition of différent parts of Spanish *Thymus vulgaris L.* plant. *Food Chemistry, 3: 373 - 383.*

- **Gunther H. (1994).** La spectroscopie de RMN. Principes de base, concepts et applications de la spectroscopie de résonance magnétique nucléaire du proton et du carbone-13 en chimie. *Masson*, Paris.
- **Hersch-Martinez P., Leanos-Miranda B. E., Santos** S. (2005). Antibacterial effects *of* commercial essential oils over locally prevalent pathogenic strains in Mexico. *Fitoterapia*, 76: 453-457.
- **loi T.M., Moi L.D., Muselli A., Bighelli** A., Casanova **J. (1997).** Analyşe de l'huile essentielle de *Cupressus funebris* du Viêt-nam par RMN du carbone-13. 15 Journées Internationales des Huiles Essentielles, Digne-les-Bains 5-7/09/1996, Actes, *Rivista Ital. EPPOS*, numéro spécial, 633 637.
- Houmani Z., Azzoudj S., Naxakis G., Skoula (2002). The essential oil composition of Algerian Zaâter: Origanum ssp. and Thymus ssp.. J ofHerbs, Spices & Médicinal Plants, 9: 275-280.
- **Ietswaart J. H.** (1980), A taxonomic revision *of* the genus Origanum (Labiateae), chemical composition and antioxidant activity *of* essential oils from Algerian *Origanum glandulosum* Desf.. *In Leiden Botanical series 4*, Leiden University Press: Le Hague.
- **Inouye S. et al., (2001).** Screening of the antibacterial effect of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J Infect. Chemother., 7: 251-254.
- **Iscan** G., **Kirimer N., Kurkcuoglu M., Baser K. H. C., Demiri F. (2002).** Antimicrobial screening of Mentha piperita essential oils. *J of Agricultural and Food Chemistry*, 50: 3943—3946.
- **Jacob M., Pellecuer J., Tomei R. (1979).** Centre régional d'étude et de développement des plantes à usage pharmaceutique. *Rivista Italiana EPPOS*, 11: 26-3 0.
- **Janssen A. M., Scheffer J. J. C.** (1985). Acetoxychavicol acetate, an antifungal component of Alpinia galanga. Planta Medica, 507-511.
- **Janssen A. M., Chin N. L. J., Scheffer J. J. C., Baerheim Svendsen** A. (1986). Screening for antimicrobial activity of some essential oil by the agar overlay technique. *Parmaceutisch WeekbladScientflcEd.*, 8:289-292.
- **Janssen A. M., Scheffer J. J. C., Baerheim Svendsen** A. (1987). Antimicrobial activity of essential oils: A 1976 1986 Literature Review. Aspects *of* the test methods. *Planta Medica*, 53:395-398.
- **Joffin J. N., Leyral** G. (1996). Microbiologie technique: dictionnaire des techniques. *Centre régional de Documentation Pédagogique d'Aquitaine, pp 131.*
- *Joffin* J. N., Leyral G. (2001). Microbiologie technique 1 dictionnaire des techniques. *Biologie Technique*, pp 58.

- **Joshi B. S., Ramanujam S., Sahena M. B. L.** (1963),Improvement of some essential oll bearing spice plants. *Bull. Regional Res. Lab. Ja.*, 1: 94—100.
- **Joulain D., Knig W. A.** (1998). The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. *E. B. Verlag, Hamburg.*
- **Juliano** C., **Mattana A., Usai** M. (2000). Composition and in vitro antimicrobial activity of the essential oil of *Thymus herba-barona* Loisel growing wold in Sardinia. *Journal of Essential oil Research*, 12: 516-522.
- **Juven B. J., Kanner J., Schved F., Weiss!owicz H.** (1994). Factors that interact with the antibacterial action of thyme essential oil an dits active constituents. *J. of applied Bacteriology*, 76: 626—631.
- **Kabouche Z., Boutaghane N., Laggoune** S., **Kabouche A., Ait-Kaki Z., Benlabed K.** (2005). Comparative antibacterial activity of five Lamiaceae essential oils from Algeria. *The international of Aromatherapy*, 15: 129—133.
- **Kambouche N., E1-Abed D. (2003).** Composition of the volatile oil from the aerial parts of *Trachyspermum ammi* (L.) Sprague from Oran (Algeria). *J ofEssential 011 Research*, 15: 10—11.
- **Karaman S., Digrak M., Ravid U., Ilcim A. (2001).** Antibacterial and antifungal activity of the essential oils of *Thymus revolutus* Celak from Turkey. J. of *Ethnopharmacology*, 76: 183 186.
- **Karawya M. S., Hifnawy M. S. (1974).** Flavors and Nonalcoholic Beverages, Analytical study of the volatile oil of *Thymus vulgaris 1*. growing in Egypt. *J of the AOAC, 47: 997* 1001.
- **Kellner W., Kober** W. (1954). Môglichkeiten der verwendung âthericher 61e zur *raumdeinfekton. Arzneimittelforsch, 4 : 319 325.*
- **Khajeh** M., **Yamini Y., Sefidkon F., Bahramifar** N. (**2004**). Comparison of essential 00 composition of *Carum copticum* obtained by supercritical carbon dioxide extraction and hydrodistillation methods. *Food Chemistry*, 86: 587 591.
- Kim J., Marshall M. R., Vei C. (1995). Antibacterial activity of some essential outcomponents against five foodborne pathogens. *J ofAgricultural and Food Chemistry*, 43: 2839-2845.
- Kirimer N., Baser K. H. C., Ôzek T., Kiirkçtioglu M. (1992). Composition of the essential oil of Calamintha nepeta subsp. glandulosa. J of Essential oil Research, 4: 189 190.
- Knobtoch K., Pauli A., Iberi B., Weigand H., Weis N. (1989). Antibacterial and antifungal properties of essential oils components. *J ofEssential Oil Research*, 1: 119 128.
- **Kokkalou E., Stefanou E. (1990).** The volatile oil of *Calamintha nepeta (L.)* Savi subsp. *glandulosa* (Req.) P. W. Bail. endemic to Greece. *Flavour and Fragrance J*, 5: 23 26.

Kokkini S. (1996). Taxonomy, diversity and distribution of *Origanum* species. In proceedings of the IPGRI International workshop on Oregano, 8—12 May 1996, Padulosi S (ed.). CIHEAM:• Valenzano, pp 2—12.

Kovâts E. (1965). Gas chromatographic characterization of organic substances in the retention index system. *Adv., Chromatogr., 1: 229 — 247.*

Kubeczka K.H., Formâcek V. (1984). Application of Direct Carbon-13 NMR Spectroscopy in the Analysis of Volatiles. *Schreir P. Ed., Walter de Gruyter & Co*, Berlin, 219 - 230.

Kubeczka K.H., Schultze W., Formâcek V., Herres W. (**1988**). New Developments in Essential Oils Analysis by Fourier-Transform Spectroscopy. 10th International Congress of Essential Oils, Fragrances and Flavours, Washington, *16-20* Nov. *1986, Proceedings, Elsevier Science*, *931 - 950*.

Kumar A., Naik S. N., Maheshwari R. C., Gupta A. K. (1992). Optimization of process conditions from Ajowan seeds using carbon dioxide. *Indian Perfum.*, 36: 206 — 212.

Lahlou M., Berrada R., Agoumi A., Hmamouchi M. (2000). The potential effectiveness of essential oils in the control of human head lice in Morocco. *International J. ofAromatherapy*, 10:108-123.

Lahlou S., Leal-Cardoso J. H., Magalhàes P. J. C. (2000). Essential oil of *Croton nepetaefolius* decreases blood pressure through an action upon vascular smooth muscle: Studies in DOCA-Salt hypertensive rats. *Planta Medica*, 66: 138 — 143.

Lahlou M., Berrada R. (2001). Potential of essential oils in schistosomiasis control in Morocco. *Int. J Aromather.*, 11: 87 — 96.

Lahlou M., Berrada R., Hmamouchi M. (2001). Molluscicidal activity of thirty essential oils on *Bulinus truncatus*. *Thérapie*, 56 : 71 — 72.

Lahlou M., Berrada R. (2003). Composition and niticidal activity of essential oils of three chemotypes of *Rosmarinus officinalis L.* acclimatised in Morocco. *Flavour and Fragrance J.*, 18:124-127.

Lambert R. J. W., Skandamis P. N., Coote P., Nychas G. J. E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. *J. of Applied Microbiology*, 91: 453 — 462.

Lamiri A., Lhaloui S., Benjilali B., Berrada M. (2001). Insecticidal effects of essential oils against Hessian fly *Mayetiola destructor* (Say). *Field Crops Research*, 71:9—15.

Larousse (2001). Encyclopédie des plantes médicinales: identification, préparations, soins.

Lattaoui N., Tantaoui-Elaraki A. (1994). Individual and combined antibacterial activity of the main components of three thyme essential oils. *Rivista Italiana*, 13: 13—19.

Lawrence B. M. (1980). The existence of intraspecific différences in specific genera in the Labiatae family. *Paper presented at Ville international congress of essential oils*, Cannes, pp 118-123.

Т

Т

Lawrence M. (1978). A study of the monoterpene interrelation ships of the genus *Mentha* with special reference to the origin of pulegone and menthofuran. *Thèse de Doctorat*, Netherlands.

Lemordant D., Boukef K., Bensalem M. (1977). Plantes utiles et toxiques de Tunisie. *Fitoterapia*, 48 : 191 —214.

Lesueur D., Ban N. K., Bighelli A., **MUuselli** A., **Casanova J. (2006).** Analysis of the root oil of fofiena hodginsii (Dunn) Henry et Thomas (Cupressaceae) by GC, GC-MS and ¹³ CNMR. Flavour and Fragrance J., 21: 171 - 174.

Lis-Baichim M., Deans S. G., Eaglesham E. (1998). Relationship between bioactivity and chemical composition of commercial essential oils. *Flavour and Fragrance J.*, 13: 98—104.

Lorenzi H., Matos F. J. A. (2002). Plantas medicinais do Brasil: Nativas e exoticas *cultivadas. Instituto Plantarum, pp 512.*

Lota M.L., de Rocca Serra D., Tomi F., Casanova J. (2000). Chemical variability of peel and leaf essential oils of mandarins from *Citrus reticulata* Blanco. *Biochem. Syst. Ecol., 28: 61-78.*

Lota M.L., de Rocca Serra D., Jacquemond C., Tomi F., Casanova J. (2001). Chemical variability of peel and leaf essential oils of sour orange. *Flavour and Fragrance J., 16: 89-96.*

Lota M.L., de Rocca Serra D., Tomi F., Casanova J. (2001). Chemical variability of peel and leaf essential oils of 15 species of mandarins. *Biochem. Syst. Ecol.*, 29: 77 - 104.

Lota M.L., de Rocca Serra D., Tomi F., Jacquemond C., Casanova J. (2002). Volatile components of peel and leaf oils of lemon and lime species. *J. Agric. Food Chem.*, 50: 796 - 805.

Lowy F. D. (1998). Staphylococcus aureus infection. N Engi. J. Med., 339: 520—532.

Lozeine K., Vauciunine J., Venskutonis P. (1998). Chemical composition of the essential oil of creeping thyme (*Thymus serpyllum* L.) growing wild in Lithuania. *Planta Medica*, 64: 772-773.

Lust J. (1983). The herb book. Bantam Books, pp 660.

Mahadevan (1982). Biochemical aspects of plant disease resistance. Part I: Performed inhibitory substances. *Today and Tomorrow Printers and Publishers*, New Delhi, India, pp 425-431.

Mahmoudi Y. (1990). La thérapeutique par les plantes communes en Algérie. *Palais du livre*, Blida.

- **Marino M.,** *Bersani* C., Comi G. (2001). Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. *International J. of Food Microbilogy*, 67: 185 187.
- Mariotti J. P., Tomi F., Casanova J., Costa J., Bernardini A. F. (1997). Composition of the essential oil of *Cistus ladanjferus* L. cultivated in Corsica (France). *Flavour and Fragrance J.*, 12: 147-151.
- **Marotti M., Piccaglia R., Giovanelli E. (1994).** Effects of planting time and minerai fertilization on Peppermint (*Mentha x piperita* L.) essential oil composition and its biological activity. Flavour and Fragrance J., 9: 125 129.

T

Τ

Т

- Martin A. J. P., Synge R. L. M. (1941). A new form of chromatogram employing two liquide phases. 1. A therory of chromatography. 2. Application of the microdetermination of higher monoaminoacids in proteins. *Biochem. J.*, 35: 1358 1368.
- Martins A.P., Salgueiro L., Vila R., Tomi F., Cafiigueral S., Casanova J., Proença da Cunha A., Adzet T. (1999). Composition of the essential oils of *Ocimum canum*, O. gratissimum and O. minimum. Planta Medica, 65: 187 189.
- Mastelic J., Milos M., Kustrak D., Radonic A. (1998). The essential oil and glucosidically bound volatile compounds of Calamintha nepeta (L.) Savi.. *Croatica Chemica Acta*, 71: 147 154.
- Mazzanti G., Battinelli L., Salvatore G. (1998). Antimicrobial properties of the linolool-rich essential oil of *Hyssopus officinalis* L. var. *decumbens* (Lamiaceae). *Flavour and Fragrance* .1,13:289-294.
- Mazzoni V., Bradesi P., Tomi F., Casanova J. (1997). Direct qualitative and quantitative analysis of carbohydrate mixtures using C NMR spectroscopy: application to honeys. *Magn. Res. Chem.*, 35: 81 90.
- **Mazzoni V., Tomi F., Casanova J. (1999).** Adaucane type sesquiterpene from *Daucus carota* seed 00. *Flavour and Fragrance J, 14: 268 272*.
- Mc Lafferty F. W., Stauffer D. B. (1994). Wiley Registry of Mass Data. éd. Mass spectrometry library search system BenchTop/PBM, version 3.1 Od. Palasade Co., Newfield.
- **Mehta R. L., Zayas J. F.** (1995). Anoxidative effect of Ajowan in a model system. *JAOCS*, 72: 1215—1218.
- **Mehta R. L., Zayas J. F., Yang S. S. (1994).** Ajowan as a source of natural lipid antioxidant. *J ofAgricultural and Food Chemistry*, 42: 1420 1422.
- **Mejholm O., Dalgaard P. (2002).** Antimicrobial effects of essential oils on the seafood spoilage microorganism *Photobacterium phosphoreum* in liquid media and fish products. *Letters in Applied Microbiology, 34: 27 31.*

Merad R. (1973). Contribution à la connaissance de la pharmacopée traditionnelle Algérienne: Les inventaires du grand Alger. Thèse d'Etat, Institut des Sciences Médicales, université d'Alger, tome II, pp *312*.

 \mathbf{T}

Т

 \mathbf{T}

 \mathbf{T}

- Meral G. E., Konyalioglu S., Ozturk B. (2002). Essential oil composition and antioxidant of endemic *Ziziphora taurica* subsp. *cleonioides*. *Fitoterapia*, 73: 716—718.
- **Marino M., Bersani C., Comi** G. (2001). Impedance measurements to study the antimicrobial activity of essential oils from lamiaceae and compositae. *International J. of FoodMicrobiology*, 67: 185 187.
- Meyer A., Deiana J., Leclerc H. (1994). Cours de microbiologie générale. Ed. Dom,
- Mimica-Dukié N., Boin B., Sokovié M., Mihajiovié B., Matavulj M. (2003). Antimicrobial and antioxidant activities of three Mentha species essentials oils. *Planta Medica*, 69: 413-419.
 - Miri R., Ramezani M., Javidnia K., Ahmadi L. (2002). Composition of the volatile oil of *Thymus transcaspicus* Klokov from Iran. *Flavour and Fragrance* .1., 17: 245 246.
 - Montes M., Valenzuela L., Wilkomirsky T., Niedmann C. (1986). Détermination de la pulégone dans l'huile essentielle de *Mentha pulegium* L. originaire de Chili. *Ann. Pharmaceutiques français*, 44: 133 136.
 - **Morales R.** (1997). Synopsis of the genus Thymus L. in the mediterranean area. *Logascalia*, 19:249-262.
 - **Morris J. A., Khetty A., Seitz E.** W. (1978). Antimicrobial activity of aroma and essential *oils. J Amer. Oils Chem. Soc.*, *56*: *595 603*.
 - Muselli A., Hoi T.M., Cu L.D., Moi L.D., Bessière J.M., Bighelli A., Casanova J. (1999). Composition of the essential oil of *Acanthopanax trfoliatus* (L.) Merr. (*Araliaceae*) from Vietnam. *Flavour and Fragrance J.*, 14: 41 44.
 - N'Guyen Thi Tam, Duong Thi Thuam, Bighelli A., Castola V., Muselli A., Richomme P., Casanova J. (2004). *Beackea frutescens* leaf oil from Viêt-nam: Composition and chemical variability. *Flavour and Fragrance J*, 19: 217—220.
 - Narayana C., Somayajulu B. A. R., Thirumala S. D. (1967). Recovery of fatty oil from spent seeds of Ajowan (Trachyspermum ammi Linn.). Indian J of Technology, 5: 268 269.
 - **National Institute of Standards and Technology (1999).** PC Version 1.7 of The NIST/EPA/NIH Mass Spectral Library. The Perkin Elmer Corporation.
 - **Nauciel C., Vildé J. L. (2005).** Bactériologie médicale: Connaissances et pratique. Ed. *Masson, pp 45*.
 - Neyas M., Korhonen A. R., Lindstrom M., Turkki P., Korkela H. (2004). Antibacterial efficieny of Finnish spice essential oils against pathogenic and spoilage bacteria. *J of Food Protection*, 67: 199—202.

Ngassapa O., Runyoro D. K. B., Harvala E., Chinon I. B. (2003). Composition and antimicrobial activity of essential eus of two populations of Tanzanian *Lippia javanica* (Burm. F.) Spreng (Verbenaceae). *Flavour and Fragrance J*, 18: 221 - 224.

 \mathbf{T}

 \mathbf{T}

- **Nigram C., Shakum W., Levi L. (1963).** Determination of trace constituents of oil of *Ajowan. Perfumery Essential Oil Record*, *54*: 25 28.
- **Ohno T. et al.,** (2003). Antimicrobial activity of essential oils against *Helicobacter pylori*. *Helicobacter*, 8: 207 215.
- Ouattara B., Simard R. E., Holley A. R., Piette G. J. P., Bégin R. (1997). Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. *International J ofFood Microbiology*, 37: 155-162.
- Oussalah M., Caillet S., Lacroix. M. (2006). Mechanism of Action of Spanish oregano, Chinese cinnamon and savory essential oils on *Escherichia coli* 0157:H7 and *Listeria monocytogenes*. **J** of food Protection, 69: 1046 1055.
- **Oussalah M., Caillet S., Saucier L., Lacroix M. (2007).** Inhibitory effect of selected plant essential oils on the growth of four pathogenic bacteria: *E. coli* 0157: H7, *Salmonella typhimurium, Staphylococcus aureus* and *Listeria monocytogenes. Food Control*, 18: 414 420,
- **Ôzel M. Z., Gôgü5 F., Hamilton J. F., Lewis A. C.** (2005). Analysis of volatile components from *Ziziphora taurica* subsp. *taurica* by steam distillation, superheated-water extraction, and direct thermal desorption with GCXGC-TOFMS. *Anal. Bioanal. Chem.*, 382: 115 119.
- Ozturk Y., Aydin S., Tecik B., Baser K. H. C. (1995). Effects of essential oils from certain Ziziphora species on swimming performance in mice. *Phytotherapy Research*, 9: 225 227.
- Ozturk Y., Ercisli S. (2006). The chemical composition of the essential oil and in vitro antibacterial activities of essential oil and methanol extracts of *Ziziphora persica* Bunge. *J of Ethnopharmacology*, 106: 372 376.
- **Ozturk S., Ercisli S. (2007).** Antibacterial activity and chemical constitutions of *Ziziphora* :clinopodioides. Food Control, 18: 535—540.
- **Padrini F., Lucheroni M. T. (1996).** Le grand livre des huiles essentielles: Guide pratique pour retrouver vitalité, bien-être et beauté avec les essences et l'aromomassage énergétique avec plus de 100 photographies. *Ed. De Vecchi, pp* 15.
- **Panetta F. D. (1985).** Population study on pennyroyal mint (*Me ntha pulegium* L.) I: Germination and seeding establischement. *Weed Research U. K.*, 4: 301 309.
- **Panizzi L., Flamini G., Cioni P. L., Mordu I.** (1993). Composition and antimicrobial properties of essential oils of four mediterranean lamiaceae. *J of Ethnopharmacology, 39:* 167-170.
- **Papageorgio V. (1980).** GLC-MS Computer Analysis of the Essential oil of *Thymus cap itatus. Planta Medica Supplement*, 29 33.

- **Paster M., Menashera M., Ravid U., Juven B.** (1995). Antifungal activity of Oregano and Thyme essential oils applied as fumigants against fungi attacking stored grain. *J Food Protection*, 58: 84 85.
- **Paster N., Menasherov M., Ravid** U., **Juven B.** (1995). Antifungal activity of oregano and thyme essential oils applied as fumigants against fungi attacking stored grain. *J of Food Protection*, 58: 81 85.
- **Pedersen J. A. (2000).** Distribution and taxonomie implications of some phenolics in the family Lamiaceae determined by ESR speetroscopy. *Biochem. Syst. Ecol.*, 28: 229 253.
- **Pérez-Alonso M. J., Velasco-Negueruela A., Lopez Saez J. A. (1993).** The volatiles of two *Calamintha* species growing in Spain, *Calamintha sylvatica* Bromf. and *Calamintha nepeta* (L.) Savi. *Acta Horticulturae*, 333: 255 260.
- **Perrucci S., Mancianti F., Cioni P. L., Flamini G., Morelli I., Macchioni** G. (1994). In vitro antifugal activity of essential oils against some isolated of *Microsporum canis* and *Microsporum gypseum. Planta Medica, 60: 184 187*.
- Perry J. J., Staley J. T., Lory S. (2004). Microbiologie. Dunod, pp 164, 779 780.
- Pessini G. L., Prado Dias Fiiho Celso B., Nakamura V., Cortez D. A. G. (2003). Antibacterial activity of Extracts and neolignans from Piper Regnellii (Miq.) C. DC. Var. pallescens (C. DC.) yunk. Memorias do Instituto Oswaldo Cruz, 98.
- Pharmacopée Européenne (2002). Méthodes physiques et physico-chimiques. Pp 48.
- **Pibiri M. C., Seigniez C. et al. (2001).** Assainissement microbiologique de l'air et des systèmes de ventillation au moyen d'huiles essentielles et leurs effets sur le bien-être des occupants. *CISBAT*, Lausanne, LESO, EPFL.
- **Piccaglia R., Marotti M., Giovanelli E., Deans S. G., Eaglesham E. (1993).** Antibacterial and antioxidant properties of Mediterranean aromatic plants. *Industrial crops and Products*, 2: 47-50.
- Pignatti S. (1982). Flora d'Italia. Vol. II, Edagricole.

 \mathbf{T}

Eff1

Т

- Pintore G., Usai M., Bradesi P., Juliano C., Boatto G., Tomi F., Chessa M., Cerri R., Casanova J. (2002). Chemical composition and antimicrobial activity of *Rosmarinus officinalis* L. oils from Sardinia and Corsica. *Flavour and Fragrance*. *J*, 17: 15 19.
- **Pizzale L., Bortolomeazzi R., Vichi S., Uberegger E., Conte L. S. (2002).** Antioxidant activity of sage (Salvia officinalis and Salvia fruticosa) and oregano (Origanum onites and Origanum indercedens) extracts related to their phenolic compound content. J. Science of FoodandAgriulture., 82: 1645—1651.
- Proença Da Cunha A., Roques O. R., Cardso Do Vale J. (1976). Estudo cromatografico e quimico do oleo essencial de Mentha pulegium L. de Angola. Bol. Fac. Farm. Coimbra, 1: 23—36.

- **Quezel P., Santa** S. (1963). Nouvelle flore de l'Algérie et des régions désertiques méridoniales. Tome II. *Ed. CNRS*, Paris.
- **Rasooli I., Mirmostafa** S. A. (2002). Antibacterial properties of *Thymus pubescens* and *Thymus serpyllum* essential oils. *Fitoterapia*, 73: 244 250.
- **Rasooli I., Abyaneh M. R. (2004).** Jnhibitory effects of thyme oils on growth and aflatoxin production by Aspergillus parasiticus. *Food Control*, 15: 479 483.
- Raybaud E. (1985). Critique de la systématique des menthes. *Thèse de Doctorat d'état*, faculté de pharmacie, Marseille.
- **Rechinger K. H. (1982).** Flora Iranica. *Ed. By Rechinger K H, Akademische Druck-u. Verlagsanstalt,* Graz Austria, vol. *150, pp 483—485.*
- **Reddy M. V. B., Angers P., Gosselin** A., **Ami J. (1998).** Characterisation and use of essential oil from Thymus vulgaris against Botrytis cinereae and Rhizopus stolonfer in strawberry fruits. Phytochemistry, 47: 1515 1520.
- **Regnier B.** (2005). Les nfections à l'hôpital. *Pour la Science*, pp 74 80.
- **Remmal A., Bouchikhi T., Rhayour K., Ettayebi R., Tantaoui-Elaraki** A. (1993). Improved method for determination of antimicrobial activity of essential oils in agar medium. *J ofEssential 011 Research*, 5: 179 184.
- **Remmal A., Bouchikhi T., Tantaoui-Elaraki A., Ettayebi R. (1993).** Inhibition of antibacterial activity of essential oils by Tween 80 and ethanol in liquid medium. *J Pharm. Belg.*, 48:352-356.
- Remmal A., Rhayour K., Bouchikhi T., Tantaoui-Eiaraki A. (2001). Dispersion des huiles essentielles en milieux aqueux sans détergent: Application à l'activité antibactérienne. *Premier congrés de Z 'AMPEPM: Plantes Médicinales: Biologie et Santé*, Kenitra: Morocco.
- **Rezzi S., Bighelli A., Mouillot D., Casanova J. (2001).** Chemical variability of the needle *essential oil of Pinus nigra* subsp. *laricio* from Corsica. *Flavour and Fragrance J., 16: 379 383.*
- Rezzi S., Cavaleiro C., Bighelli A., Salgueiro L., Proença da Cunha A., Casanova J. (2001). Intraspecific Chemical variability of the leaf essential oil of *Juniperus phoenicea* subsp. *turbinata* from Corsica. *Biochem. Syst. Ecol.*, 29: 179 188.
- **Rezzi S., Bighelli A., Castola V., Casanova J.** (2002). Direct identification and quantitative determination of acidic and neutral diterpenes using ¹³C NMR spectroscopy: application to the analysis of oleoresin of *Pinus nigra. Appi. Spectro.*, 56: 312 317.
- Rezzi S., Bighelli A., Castola V., Casanova J. (2005). Composition and chemical variability of the oleoresin of *Pinus nigra ssp laricio* from Corsica. *md Crops Production*, 21: 65 69. Richard H. (1974). Quelques espèces et aromates et leurs huiles essentielles. *Serie synthèse bibliographiques*, C. D. U P. A., pp 2.

Richard H., Benjilali B., Banquour N., Baritaux 0. (1985). Etude de diverses huiles essentielles de thym de Maroc. *Lebensm. Wiss. U. Technol.*, 18: 105 - 110.

 \mathbf{T}

 \mathbf{T}

Η

- **Ristorcelli D., Tomi F., Casanova J. (1996).** Essential oils of *Calamintha nepeta* subsp. *nepeta* and subsp. *glandulosa* from Corsica (France). *J ofEssential Oil Research*, 8: 363 366.
- **Ristorcelli D., Tomi F., Casanova J. (1998).** ¹³NMR as a tool for identification and enantiomeric differentiation of major terpenes exemplified by the essential oil of *Lavandula stoechas L. ssp. stoechas. Flavour and Fragrance J., 13: 154—158.*
- Rossi P. G. (2003). Caractérisation et valorisation des produits issus de la biomasse: activité biologique des huiles essentielles. *Université de Corse*, 2.
- **Ruberto G., Biondi D., Ciana P., Geraci (1993).** Antimicrobial activity and chemical composition of essential oils from Sicilian aromatic plants. *Flavour and Fragrance J, 8: 331* —337.
- **Ruberto G., Baratta M. T (2000).** Afitioxidant activity of selected essential oil components in two lipids model systems. *Food Chmistry*, 69: 167 174.
- Ruberto G., Barratta M. T., Sari 1VI., Kaâbeche M. (2002). Chemical composition and antioxidant activity of essential oils from Algerian *Origanum glandulosum Desf. Flavour and Fragrance J, 17: 251-254*.
- **Rumbaugh K. P., Griswoldt R. T., Hamood N. (1999),** *Pseudomonas aeruginosa* strains obtained from patterns with tracheal uJiny tract and infection variation in virulence factors and virulence. *J of Hôspital Infection.* 43: 211—218.
- Rustaiyan A., Lajevardi T., RabEani M., Yari M., Masoudi Sh. (1999). Chemical constituents of the essential où of *Thynus kotschyanus* Boiss. & Hohen. From Iran. *Daru*, 7: 27-28.
- **Rustaiyan A., Jamzad M., Masoudi S., Amen N.** (2006). Volatile constituents of *Nepeta heliotropfolia* Lam., *Mentha mozaffirianii* Jamzad and *Ziziphora persica* Bunge. three Labiateae herbs growing wild in Iran. J. *ofEssential Oil Research*, 18: 348 351.
- **Saez F.** (1998). Variability in essential oils from populations of *Thymus hyemalis* Lange in southeasten Spain. J ofHerbs, Spices & Médicinal Plants, 5: 65 76.
- **Sagdaç 0. (2003).** Sensitivity of four pathogenic bacteria to Turkish thyme and oregano *hydrosols. Lebensm.-Wiss. U-Technol.*, *36*: *467 473*.
- **Sajjadi S. E.** (2003). Aromatic biodiversity among three endemic Thymus species of Iran. In: Biodiversity-Biomolecular aspects of biodiversity and Innovative utilization (Sener B., ed.). *Kiuwer Academic/Plenum Pub.*, New York, pp *315 317*.
- **Sajjadi S. E., Khatamsaz** M. (2003). Composition of the essential oil of *Thymus daenensis* Celak. ssp. _{Lancfolius} (Celak) Jalas. *J. of Essential Oil Research*, 15: 34 34.

Salehi P., Sonboli A., Eftekhar F., Nejad-Ebrahimi S., Yousefzadi M. (2005). Essential 01 composition, antibacterial and antioxidant activity of the oil and various extracts of *Ziziphora clinipodioides* subsp. *rigida* (Boiss.) Rech. F. from *Iran .Biol. Pharm. Bull.*, 28: 1892 - 1896.

T

I

- Salgueiro L. R., Vila R., Tomi F., Figueiredo A. C., Barroso J. G., Caîiigueral S., Casanova J., Proença Da Cunha A., Adzet T. (1997). Variability of essential oils of *Thymus caespititius* from Portugal. *J ofPhytochemistry*, 45: 307 311.
 - **Sarer E., Solakel Pançali S. (1998).** Composition of the essential oil from *Calamintha nepeta (L.) Sâvi ssp. glandulosa* (Req) P. W. Bail. *Flavour and Fragrance J., 13 : 31 —32.*
 - **Sari** M. (1999). Etude éthnobotanique et pharmacopée traditionnelle dans le Tel! Sétifien (Algérie). *Thèse de Magister*, université de Sétif
 - Sari M., Biondi M. D., Kaâbeche M., Mandalari G., D'Arrigo M. D., Bisignano G., Saija A., Daquino C, Ruberto G. (2006). Chemical composition, antimicrobial and antioxidant activities of the essential oil of several populations of Aigerian *Origanum glandulosum* Desf.. *Flavour and Fragrance 1,21:* 890-898.
 - **Scheiz Z., Moinar J., Hohmann J. (2006).** Antimicrobial and antiplasmid activities of essential oils. *Fitoterapia*, 77: 279 285.
 - **Schirner** M. (2004). Huiles essentielles: Description de plus de 200 huiles essentielles et huiles végétales. *Guy Trédaniel, pp 23*.
 - **Schuiz H., Ôzkan G., Baranska M., Krflger H., Ôzcan** M. (2005). Characterisation of essential oils plants front Turkey by IR and Raman spectroscopy. *Vibrational spectroscopy*, 39:249—256.
 - **Schwartz K., Ernst** M., **Ternes W. (1996).** Evaluation of antioxidant constituents from thyme. *J Sei. FoodAgric.*, 70: 217-223.
 - **Senatore F., Arnold N. A., Piozzi F. (2004).** Chemical composition of the essential oil of *Salvia multicaulis* Vahl. Var. *simplicfolia* Boiss. Growing wild in Lebanon. *J. Chromatogr.*, 1052:237-240.
 - Sezik E., Tiimen G. (1986) in ÔzeI M. Z., G6gti F., Hamilton J. F., Lewis A. C. (2005). Analysis of volatile components from *Ziziphora taurica subsp. taurica* by steam distillation, superheated-water extraction, and direct thermal desorption with GCXGC-TOFMS. *Anal. Bioanal. Chem.*, 382: 115-119.
 - **Sezik E., Ttimen G., Baser K. H. C. (1991).** *Ziziphora tenuior L.*, a new source of pulegone. *Flavour and Fragrance J.*, 6: 101 103.
 - **Shapiro S., Meier A., Guggenheim B. (1994).** The antimicrobial activity of essential oi!s and essential oil components towards or al bacteria. *Oral Microbiology Jmmunology*, 9: 202 208.
 - **Shu C. K, Lawrence B.** M. (1997). Reasons for the variation in composition of some commercial essential oils. *In S. J Risch & C. T. HO (Eds.)*, ACS symposium series: vol. *660*. Spices, flavor chemistry and antioxidant properties, pp. *138 159*.

Shunying Z., Yang Y., Huaidong Y., Yue Y., Guolin Z. (2005). Chemical composition and antimicrobial activity of the essential oils of *Chrysanthemum indicum. J of Ethnopharmacology, 96: 151 - 158.*

2éme

Sijelmassi A. (1991). Les plantes médicinales du Maroc. éd. Le fennec.

Sijelmassi A. (1993). Les plantes médicinales du Maroc. ^{3émeEd.} Le Fennec, Casablanca.

Silic C. (1979). Monographie der gattungen *Satureja* L., *Calamintha* Miller., Micromeria Bentham, *Acinos* Miller. und *Clinopodium* L. in der Flora Jugoslaviens. *Zemaljski Muzej Bih*, Sarajevo.

Simeon de Buochberg M. (1976), Etude de l'activité antimicrobienne de l'huile essentielle de *Thymus vulgaris* L. et de ses contituants. *Thèse de Doctorat*, Montpellier, France.

Simonpoli P. (1993). In: Arburi, arbce, arbigliule: Savoirs populaires sur les plantes de *Corse. Ed. Parc Naturel Régional de la Corse*, Ajaccio, pp 72 - 74.

Singh J., Tripathi N. N. (1999). Inhibition of storage fungi of blackgram (*Vigna mungo* L.) by some essential oils. *Flavour and Fragrance J, 14: 1 - 4.*

Sivropoulou A., Kokkini S., Lanaras T., Arsenakis M. (1995). Antimicrobial activity of mint essential oils. *J Agric. Food Chem.*, 43: 2384 - 2388.

Skoula M., Gotsiou P., Naxakis G., Johnson C. B. (1999). A chemosystematic investigation on the mono and sesquiterpenoids in the genus *Origanum* (Labiatae). *J of Phytochemistry*, 52:649-657.

Skrubs G. (1972). Seven wild aromatic plants growing in Greece and their essential oils. *Flavour Id.*, *3:* 566—571.

Slavkovska V., Jancic R., Bojovic S., Milosavijevic S., Djokovic D. (2001). Variability of essential oils of *Satureja motana* L. and *Satureja kitaibelii* Wierzb. Ex. Heuff. From the central part of the Balkan peninsula. *J ofPhytochemistry, 57: 71 - 76.*

Smith-Palmer A., Stewart J., Fyfe L. (1998). Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. *Letters in Applied Microbiology*, 26: 118-122.

Sokmen A., Gulluce M., Akpulat H. A., Daferera D., Tepe B., Polissiou M., Sokinen M., Sahin F. (2004). The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extract of endemic Thymus spathulfolius. Food Control, 15: 627—634.

Souleles C., Argyriadou N., Philianos S. (1987). Constituents of essential oil of *Calamintha nepeta. J Nat. Prod.*, *50: 510—522.*

Srinivas R. (1986). Atlas of essential oils. Published by author Bronx, New york.

Srivastava M., Saxena A., Baby P. (1999). GC-MS investigation and antimicrobial activity of the essential oil of *Carum copticum* Benth & look. *Acta Alimentaria*, 28: 29 1-295.

T

T

T

- **Stahl-Biskup E. (1991).** The chemical composition of Thymus oils: A review of the literature 1960—1989. *J of Essential Oil Research*, 3: 61 82.
- **Stahl-Biskup E.** (2002). Essential oil chemistry of the genus Thymus a global view. In: Thyme The genus Thymus.(Stahl-Biskup E. and Saez F., eds.), *Taylor & Francis Publishers*, London, pp 75 124.
- **Svoboda K. P., Deans** S. G. (1995). Biological activities of essential oils from selected aromatic plants. *Acta Horticuit.*, 390: 203 209.
- Tarn N.T., An H.L., Bighelli A., Casanova J. (1998). Identification of the Components of *ihicium graffithii* look. F. et Thoms. Essential oil from vietnam using carbon-13 NMR spectroscopy. *J. ofEssential Oil Research*, 10: 433 435.
- Tam N.T., An H.L., Bighelli A., Muselli A., Casanova J. (2005). Advances in the chemical composition of essential oils from *Illicium grffithii* look. F. et Thoms. from Vietnam. *J of Essential Oil Research*, 17:79-81.
- **Teixeira Duarte M. C., Mara Figueira G., Sartoratto A., Rehder V. L. G., Delarmelina** *C.* (2005). Anti-candida activity of Brazilian medicinal plants. *J ofEthnopharmacology*, 97: 305-311.
- **Ternes** W., **Gronemeyer H., Schwarz K.** (1995). Determination of p-cymene-2,3-diol, thymol and carvacrol in différent food stuffs. *Z. Lebnsm. Unters. Forsch.*, 201: 544 547.
- **Tomi F., Bradesi P., Bighelli A., Casanova J.(1995).** Computer-aided identification of individual components of essential oils using carbon-13 NMR spectroscopy. *J Magn. Reson. Anal.*, 1:25-34.
- **Tomi F., Casanova J., Nianga** M. (1996). Identification of the components of the seed Oil of *Xylopia aethiopica* from Guinea using ¹³C-NMR spectroscopy. .1 of Essential Ou Research, 8: 429 431.
- **Trabut L. (1935).** Flore du Nord de l'Afrique: Répertoire des noms indigènes des plantes spontanées, cultivées et utilisées dans le Nord de l'Afrique. *Collection du Centenaire de l'Algérie*, Alger.
- **Tucker A. O., Maciarello M. J. (1991).** The essential oil of *Calamintha arkansana (Nutt.)* Shinners. *J. ofEssential Oil Research*, 3: 125 126.
- **Tumen G., Baser K. H. C., Demirci B., Ermin** N. (**1998**). The essential oils of *Satureja coerulea* Janka and *Thymus aznavourili* Velen. *Flavour and Fragrance J.*,13: 65 67.
- **Tutin T. G. (2001).** Flora europaea website. *Jardin Botanique Royal Edimbourg*.

Tzakou O., Verykokidou E., Roussis V., Chinon I. (1998). Chemical composition and antibacterial properties of *Thymus longicaulis* subsp. *Chaoubardii oils:* Three chemotypes in the same population. *J of Essential Oil Research, 10: 97 - 99.*

Ultee A., Kets E. P. W., Smid E., J. (1999). Mechanisms of action of carvacrol on the Foodborne pathogen Bacillus cereus. Applied and Environmental Microbiology, 65: 4606—4610.

Ultee A., Bennik M. H. J., Moezelaar R. (2002) Is essential for action against the 1îoodborne *Environmental Microbiology*, 68: 161 1568.

pheno lic hydroxyl group of carvacrol gen Bacillus cereus. Applied and

Vazquez-Boland J. A., Kuhn M, Brche P., Goebel W., Gonzalez-Zorn B., Wehland J., molecular virulence determinants. *clin. Microbiol.*

Listenia pathogenesis and *14:* 584-640.

Velasco-Neguerela A., Mata Rico M. (1986). Flavour and Fragrance J., 1: 111—113.

volatile oil of Ziziphora hispanica L..

Velasco-Negueruela A, Perez-Alonso M., Es A., Guznian C. A, Ariza-Espinar L. (1996). *Mentha* aff. *suaveolens* Ehrh. grown in Cordol —84.

J. L., Garcia Vallejo M. C., Zygadlo J. tial oils of *Calamintha nepeta* (L.) Savi. *entina. J ofEssential oil Research*, 8: 81

Velasco-Negueruela A, Perez-Alonso M., Mata 'Rico M. (1987). Esssential oils of Iberian labiatae having pulégone as a fundamental constituent. *Anal. Bromatol, 39: 357 - 372.*

Vernin G., Boniface C., Metzger J., Ghiglione C., Hammoud A., Suon K. N., Fraisse D., Pârkânyi C. (1888). GC-MS-SPECMA Bank Analysis of *Juniperus communis* Needles and Bernes. *Jofphytochemistry*, 27: 1061 - 1064.

Vernin G., Petitjean M., Poite J. C., Metzger J., Fraisse D., Suon K. N. (1986). Mass Spectra and Kovts Indices Databank of volatile Aroma Compounds. *Chap. VII in Computer Aids to Chemistry, Vernin G. and Chanon M ed.*, Horwood E., Pub., Chiichester, pp 294 - 333.

Vila R., Freixa B., Canigueral S., Adzet T., Tom; as X., Molins J. (1995). Composition and study of the variability of the essential oil of *Thyriusfunkii* Cosson. *Flavour and Fragrance J*, 10:379-383.

Vokou D., Kokkini S., Bessiere J. M. (1993). Geognaphic variation of Greek Oregano (*O. vulgare ssp. hirtum*) essential oils. *Biochem. System. Ecol.*, 21: 287—295.

Walsh S. E., Maillard J. Y., Russell A. D., Catrenich C. E., Charbonneau D. L., Bartolo R. G. (2003). Activity and mechanisms of action of selected biocidal agents on Gram-positive and —negative bacteria. *J ofAppliedMicrobiology*, 94: 240—247.

Wehiner C. (1931). Die pflanzenstoffe: Botanisch-systematisch bearbeitet. *Verlag Von Gustav Fisher, pp 879 - 880.*

Weyerstahl P., Marschall H., Splittgerber U., Wolf D. (1996). New Sesquiterpene Ethers from Vetiver Ou, *LiebigsAnn.*, 1195-1199.

Weyerstahl P., Marschall H., Splittgerber U., **Wolf D. (1997).** New cis-Eudesm-6-ene Derivatives from Vetiver Ou. *Liebigs Ann.*, 1783 - 1787.

Weyerstahl P., Schlicht V. (1997). Synthesis of rac-Bisabola-3(15), 10-dien-7-ol. *Liebigs Ann.*, 1789 - 1790.

Weyerstahl P., Marschall H., Degenkolb P., Lebada P. (1999). Synthesis ofrac-Opposita-4(15),7(1 1)-dien- 1 2-al. *Eur. J Org. Chem.*, 675 - 678.

Weyerstahl P., Marschall H., Splittgerber U., **Wolf D.** (2000). 1,7-Cyclogermacra-1(10),4-dien-15-ai, a Sesquiterpene with a Nove! Skeleton, and Other Sesquiterpenes from Haitian Vetiver Ou. *Flavour and Fragrance J*, 15:61 - 83.

Weyerstahl P., Marschall H., Splittgerber U., **Wolf D. (2000).** Analysis of the Polar Fraction of Haitian Vetiver Ou. *Flavour and Fragrance J*, 15:153 - 173.

Weyerstahl P., Marschall H., Splittgerber U., **Wolf D., Surburg H. (2000).** Constituents of Haitian Vetiver Ou. *Flavour and Fragrance J*,15: 395 - 412.

Wichtl M., Anton R. (1999). Plantes thérapeutiques: Tradition, pratique, officinale, science et thérapeutique. *Ed. Tee & Doc.*

Wilkiamson M., Neuhaus D. (1989). The Nuclear Overhauser Effect in Structura! and Confoniiational Ana!ysis. *VCH*, New York.

Wilkinson J. M., Hipwell M. Ryan T., Cavanagh H. M. A. (2003). Bioactivity of Backhousia citriodora: antibacteriai and antifungal activity. *J of Agricultural and Food Chemistry, 51: 76 — 81.*

Zargari A. (1995). Iranian Medicinal Plants. *Tehran University Press*, Tehran, vol. 4, pp 103—104.

Ziyyat A., Legssyer A., Mekhfi H. Dassouli A., Serhrouchni M., Benjelloun W. (1997). Phytotherapy of hypertension and diabetes in orientai Morocco. *J. ofEthnopharmacology*, 58: 45-54.

Zwaving J. H., Smith D. (1971). Composition of the essential oil of Austrian *Mentha pulegium. J. ofPhytochemistry, 10:* 1951 - 1953.

4nne.Xes

	•	0	~	00	С		
				00			
rI				00			
ri. J-		• – C Cu	cq	cn	N		
rA r,, =		r')	t	%o	ô		00
r,) r,) • —			'Q	00	~	00	C oc cn
z E	· ,		C1)	Lr	00.	Z	00 cfl
-	,		00 V	J	// fl	N (f	le kf)
•		o r.f		kf)			00
	"w	' rd		kf) kf	N (f)		/ (f)
		 C			00 (f)	en	J

Annexe II: Pouvoir antimicrobien des huiles essentielles de *Thymus* fontanesii, d'Origanum glandulosum et d'Ammoïdes vertidilata

Tableau (41) : Aromatogramme: Moyennes des diamètres des zones d'inhibition (en mm) des huiles essentielles riches en phénols (thymol ou carvacrol) sur différentes souches selon la méthode de Vincent

Souches bactériennes	Thymus fontanesii (SC 5)	Origanum glandulosum (0 1)	Ammoïdes vertidilata (NO 5)	Témoin
P2	08,0	08,0	08,0	6,0
P3	08,0	08,0	08,0	6,0
\mathbf{KL}_1	17,0	16,4	15,2	6,0
KL_2	17,0	16,4	15,4	6,0
L1 ₁	17,2	16,6	15,6	6,0
L ₁₅	17,4	16,8	15,8	6,0
Pr	17,6	17,0	16,6	6,0
E6	17,6	17,2	16,8	6,0
E2	17,8	17,4	17,0	6,0
E3	18,0	17,6	17,4	6,0
Ci	19,0	18,0	17,8	6,0
E1	19,6	18,4	18,0	6,0
En	20,0	18,8	18,2	6,0
St ₂	22,6	22,0	21,0	6,0
E4	23,0	22,6	22,0	6,0
st,	25,0	24,6	24,0	6,0
St ₃	26,0	25,6	25,0	6,0
SL	27,0	26,0	25,4	6,0

Légende: SC 5 : HE de *Thymus fontanesil* (Station de Sebâa-Chioukh, 2005), 0 1: HE *d'Origanum glandulosum* (Station de Terni, 2005), NO 5: HE *d'Ammoïdes verticillata* (2005). Le diamètre des disques est compris dans le diamètre du halo d'inhibition

Tableau (45) : Concentrations minimales inhibitrices (CMI5) en jtg/m1 des huiles essentielles des trois plantes relatives aux bactéries testées

Souches bactériennes	Thymus fontanesii	Origanum glandulosum	Ammoïdes vertidilata
\mathbf{P}_2	16700	> 15980	>15830
P ₃	16700	>15980	>15830
KL1	1540	2350	2550
KL2	1450	2300	2530
L11	1430	2230	2460
1,15	1410	2180	2400
Pr	1260	1660	1780
E 6	1110	1510	1650
$\mathbf{E_2}$	470	1300	1420
E3	450	1210	1380
Ci	420	970	1080
\mathbf{E}_1	420	950	1060
En	420	930	1030
St2	390	660	710
E4	380	600	650
St1	340	580	620
St ₃	330	530	570
SL	300	480	510

Tableau (48) Concentrations minimales bactéricides (CMBs) en .tg/ml des huiles essentielles des trois plantes relatives aux bactéries testées

Souches	Ammoïdes	Ammoïdes	Ammoïdes	Origanum	Thymus
bactériennes	(Alcool)	(Agar)	(Tween)	(Tween)	(Tween)
P2	7180	> 14430	> 14430	> 14525	> 15120
P3	7000	> 14430	> 14430	> 14525	> 15120
KL1	2340	2580	2950	2680	1760
KL_2	2290	2470	2890	2620	1710
L11	2580	2760	3270	2970	1940
L15	2430	2690	3180	2910	1920
Pr	1320	1550	1930	1780	1310
E6	1210	1440	1820	1680	1270
E2	1050	1260	1610	1500	640
E3	1020	1190	1550	1420	630
Ci	840	980	1240	1110	570
E1	820	940	1220	1090	560
En	800	920	1170	1070	540
St2	550	670	850	760	410
E4	530	630	790	710	400
St1	510	590	760	670	390
St ₃	490	560	700	630	380
SL	470	530	640	600	360

Tableau (50) : Quantité minimales inhibitrices (QMI5) en pi des huiles essentielles des trois plantes relatives aux bactéries testées

Souches bactériennes	Thymus fontanesii	Origanum glandulosum	Ammoïdes vertidilata
P2	R	R	R
P ₃	R	R	R
KL ₁	127	157	193
KL_2	123	153	185
L11	120	140	145
L15	115	130	135
En	110	120	125
Pr	107	112	120
E2	105	110	117
Ci	100	107	115
E6	97	105	115
E3	95	105	112
St3	93	100	105
St2	90	100	103
\mathbf{E}_1	90	97	102
St1	87	93	97
E 4	85	90	95
SL	75	85	90

Légende: R: résistant

Tableau (51) : Rapport CMB/CMI des huiles essentielles des trois plantes relatives aux bactéries testées

Souches bactériennes	Thymus	Origanum glandulosum	Ammoïdes verticillata
P2	R	R	R
P ₃	R	R	R
KL1	1,14	1,14	1,16
KL_2	1,18	1,13	1,14
L11	1,36	1,33	1,33
L1 ₅	1,36	1,33	1,32
Pr	1,04	1,07	1,08
$\mathbf{E_6}$	1,14	1,11	1,10
E2	1,36	1,15	1,13
$\mathbf{E_3}$	1,40	1,17	1,12
Ci	1,35	1,14	1,15
E1	1,33	1,15	1,15
En	1,28	1,15	1,14
St2	1,05	1,15	1,20
E4	1,05	1,18	1,22
St1	1,15	1,16	1,23
St3	1,15	1,19	1,23
SL	1,20	1,25	1,25

Légende: R: Résistant

Annexe III: Chromatogrammes enregistré par CPG sur colonnes apolaire et polaire des huiles essentielles des plantes étudiées

Figure (29) : Chromatogramme en registré par CPU sur colonne apolaire de l'huile essentielle *de Ziziphora hispanica* de la station de Sebdou durant l'année 2005

Figure (30) : Chromatogramme enregietré par CPG sur colonne polaire de l'huile essentielle de *Ziziphora hispanica* de la station de Sebdou durant l'année 2005

Figure (31): Chromatogramme enre gistré par CPU sur colonne apolaire de l'huile essentielle *de Thymus fontanesii* de la station de Sebâa-Chioukh durant l'année 2005

Figure (32): Chromatogramme enre gistré par CPG sur colonne polaire de l'huile essentielle *de Thymus fontanesii* de la station d Sebâa-Chioukh durant l'année 2005

Figure (33) : Chromatogramme enregstré par CPà sur colonne apolaire de l'huile essentielle d' *Origanum glandulosumde* la station de Terni durant l'année 2004

Figure (34) : Chromatogramme enregstré par CPJI sur colonne polaire de l'huile essentielle *d'Origanum glandulosum* de la station de Terni du ant l'année 2004

Figure (35) : Chromatogramme enregistré par CPU sur colonne apolaire de l'huile essentielle *d'Ammoïdes verticillata* de la stationlde Pierre du Chat durant l'année 2004

Figure (36) : Chromatogramme enregistré par CPU sur colonne polaire de l'huile essentielle *d'Ammoïdes verticillata* de la station de Pierre du Chat durant l'année 2004

Figure (37) : Chromatogramme enregistré par CPU sur colonne apolaire de l'huile essentielle de *Menthapulegium* de la station de Pierre du Chat durant l'année 2005

Figure (38) : Chromatogramme enregistré par CPU sur colonne polaire de l'huile essentielle de *Menthapulegium* de la station de Pierre du Chat durant l'année 2005

Figure (39) : Chromatogramme enregistré par CPU sur colonne apolaire de l'huile essentielle de *Satureja calamintha* subsp. *nepeta* de la station de Maghnia durant l'année 2005

Figure (40) : Chromatogramme enregistré par CPU sur colonne polaire de l'huile essentielle de *Satureja calamintha* subsp. *nepeta* de la station de Maghnia durant l'année 2005

\$ample Najas 11
FileName C:\TC4\APOL\LK25497A.RAW

Nethod

Start Time: 0.01 min End Time: 99.99 min
:scale Factor: 0.0 Plot Offset: 4 mV

Sajaple #: Page J. of 1
Date: 09/09/2005 23:54
Time of Injection: 07/09/2005
Low Point: 4.00 mV
Plot Scale: 50.0 mV
Page J. of 1
17:26
High Point: 54.00 mV

Response [mV]

ample Name Zi
fileName C:\TC4\POL\LK25497P,RAW

Method

method
-\$tart Time 0.01 min End Time : 99.99 min caie Factor: 0.0 PlotOffaot: 4 mV

Sample #: Page 1 of 1
Date 10/09/2005 00:43
Time Of Injection: 07/09/2005 17:26
Low Point 4.00 mV High Point: 54.00 mV
Plot Scele: 50.0 mV

Responso [rnV]

N) N)

 impie Name
 TF3

 FiieName
 : C:\TC4\APOL\LK25484A.R1W

 Method
 Tart Time : 0.01 min ale Factor: 0.0
 End Time Plot Off

Plot Offset: 4 mv

End Time : 99.99 min

Sampio: P
Date: 09/09/2005 23:36
Tirne of Injection: 06/09/2005 15:45
Low Point: 4.00 mV
Plot Scale: 50.0 mv Page 1 of 1

High Point: 54.00 mV

Response [rnV]

Chrornatogram

\$ample Name TF3
'ileName C:\TC4\POL\LK25484P.RAW

Method

Method
—Start Time: 0.01 min End Time: 99.99 min caie Factor: 0.0 Plot Offset: 4 mV

Sample 4: Page 1 cf 1
Date: 10/09/2005 00:34
Time cf Injection: 06/09/2005 15:45
Low Point 4.00 mV Fligh Point: 54.00 mY
Plot Scale: 50.0 mV

Response[mV]

N) N)

N)

'ample Naine e'ileNanie Nethod

O Gi $C:\ \ C:\ \ LK25491A.P.AW$

0.01 min —Start Turne ,cale Factor

End Turne 99.99 min Plot Offset 4 mV

Sample #: P
Date: 09/09/2005 23:44
Time of Injection: 07/09/2005 04:36
Low Point: 4.00 mV High P
Plot Scale: 50.0 rnV High Point: 54.00 nOJ

Page 1 of 1

Response [rnV]

ample Name : 0 01
fileName : C: \TC4\POL\LK25491P.RAW. Sample #: Page 1 Of I

Response [mV]

C)

ample Name no C:\TC4\APOL\LK25489A.RAW

Method

-.Start Time 0.01 min End Time 99.99 min , cale Factor: 0.0 Plot Offset $4\,\mathrm{mV}$

Page 1 of 1 Sample 9:

Date: 09/09/2005 23:41

Time of Injection: 07/09/2005 00:55

Low Point: 4.00 mV

Plot Scale: 50.0 mV

Response [mV]

N) U (.4 4. N)

Q

 $\stackrel{\text{N}}{Q}$

ample Name no

ileName C:\TC4\POL\LK25499P.RAW

Motbod

-tart Time 0.01 min End Time 99.99 min cale Factor: 0.0 Plot Offset: 4 mV

Sample #: Page 1 cf 1
Date: 10/09/2005 00:37
Time of Injection: 07/09/2005 00:55
Low Point: 4,00 mV High Point 54.00 mV
Plot Scale: 50.0 mV

Response [mV]

C)

C)

Sample #: Pa
Date: 09/09/2005 23:58
Time of Injection: 09/09/2005 09:47
Low Point e 4.00 eV High Poi
Plot Scaiec 50.0 eV ample Name e Fi Page 1 of 1 FileNarno e C:\TC4\APOL\LK25516A.RAW tart Time e 0.01 min cale Factor: 0.0 End Time e 99,09 min Plot Offset: 4 mv High Point e 54.00 enV Response [mV] C) 10.45 C C -32.39 -39.48 4,-

C)

\$ample Naine : nel
FileName : C: \TC4\APOL\LK25474A. RAN
4ethod

Samplo #: Page 1 0f 1
Date 09/09/2005 20:50
Timo of Injection: 13/07/2005 22:41
.Low Point: 4.00 mv High Point: 54.00 mv Plot Scale: 500 mV 'Start Time 0.01 min End Tiine : 99.99 min cale Factor; 0.0 Plot Offset: 4 mV

Response [mV]

N) C)

ample Nanie : nel

t'iieName : c:\TC4\POL\LK25474P.RAW

Method

.'"'tart Time 0.01 min End Time : 99.99 min cale Factor: 0,0 Plot' offset; 4 mV

Sample 8: Page 1 0f 1
Date 10/09/2005 00:18
Tjme of Injection: 13/07/2005 22:41
Low Point 4.00 mV High Point: 54.00 mV
Plot Scale: 50.0 eV

Response [mV]

(J

Pü6fications

Composition and Antibacterial Activity of the Essential 011 of Thymus fontanesîl Boiss. et Reut. from Algeria.

Chahrazed Bekhechi, Fewzia Atik Bekkara and Djamel Eddine Abdelouahid,

Laboratoire des produits naturels, Département de Biologie, Université Abou Bekr Belkaid, BP 119, Imma Tlemcen.

Félix Tomi* and Joseph Casanova, Université de Corse, UMR CNRS 6134, Equipe Chimie et Biomasse, Boute des Sanguinaires, 20000 Ajaccio, France.

Abstract

The composition of the essentiel oil isolated by hydrodistillatiori from the aerial parts of *Thynrusfontanesii Boiss*. et Reut., growing wild in Algeria (Tlemcen province) was determined hv GC(Rr), CC/MS and 13C-NMR, The ou was characterized have e high content of carvacrol (67-69%) and its antibacterial activity was tested against nine bacteria! strains.

Key Word Index

Thymus fontanesui, essentiel oil composition, carvacrol, antimicrobial activity.

Introduction

The genus Thpisus (Lamiaceae family) US constituted by more than 100 species, most ofthens having heen extensively investigated (1). Several .species growwild in Aigeria: Thymus. algeriensfs Boiss. et Reut., T capitatus L., T ciliatus (Desf.) Benth., T commutatus Bali., T dreaten.sis Batt., T. glandulosus Lag., T guyonii de Noé, T hirtus Wiilci., T lanceolatus Desf., T numidicus Poiret, T pallidus Coss. and Tfontanesii Boiss. et Reut. (2).

Thijinusfontanesi.i Boiss. et Reut., endemic to Algeria and Tunisia, spontaneously grows on scrublands, giving du ring bios-Som white flowers (2). The aeriai parts of plants harvested in Setif and Constantine provinces, produced byhydrodistullation an essential oil whose composition was ciominated by thymol, y -terpinene and p-cynsene (3,4).

As part of our on-going work on the characterizatiois of arornatic plants from Aigeria through the composition oftheir essentiel oils (5,6), we investigated T fontanesui. Five oil sainpies were analyzed by combination of chromatographie and spectroscopie techniques, GC (Retention Indices), GC/MS and C-NMR spectroscopy and its antihacterial activitytesteci against Gram (+) nid Gram (-) hacteria.

Experimental

Plant material and essential oil isolation: A specimen has heen deposited in the Herbarium of the Laboratory of Phytoecoiogy and Botany, University Abou Bekr Beikaid, Tlemcen, Algeria. Aerial parts of T. fontanesuu were collected ciuringJune 2004, in full blossom, in the Province of Tlemcen in four locations: Sidi-snoussi, Remchi, Sehdou et Sehâa-chiouki and again, during June 2005, in the lest location. Fresh aerial parts (200 g) were submitted to water-distillation, during 3 h, using a Clevenger-type apparatus. The oil was drieci over anhydrous Na₀SO₄ and stored in the dark, at 4°C. Ail the ou samples were analyzed h>' CC (Retention Indices) and °C-NMR spectroscopy, sampie Sebaa-chiouki 2005was submitted to GC/MS analysis.

GC anal ysis: CC analyses were carried out using a Perkin-Elmer Autosystem apparatus equippeci with two Marne Ionization Detectors (FID), and fused capillary columns (50 m z 0.22 min, film thickness 0.25 lm), BP-i (polydimethyisiloxane) and B P-20 (poiyethyieiseglycoi). Tise oven temperature was programmed from 60°-220°C ai 2°C/min and then held isotherme! (20 min), injector temperature: 250°C (infection mode: spiit 1/60): detector temperature: 250°C; carrier gas: He (0.8 mL/min). The relative proportions of the essentiel 0U constituents were exrressec1 as percentage obtained by peak arec normalization, witisout using correcting factors. Reteistion indices (RI) were det.rmined relative to the retention bines of e series of n-aikanes with !inear interpolation (< Target Compouncis » software from Perkin Elmer).

GC/MS anal ysis: The essentiai oiis were analyzed with a Perkin-E!mer Turbo Mass cletector (quadrupoie), directiy coupied to a Perkin-Elmer Autosystem XL, equipped with fused-silica capiiiary co!umns (6(1 ni x 022 min, film thick-

*Address for correspondence

Received: July 2006 Revised: October 2006 Accopted: November2006

Table I. Percentage composition of Thymus fonfanesli oit samples from Algeria

Components/samples	Ria	Rip	SC5	SC4	R	S	SS	Identification mode
c-thujene	920	1026	1.3	0.6	1.3	1.3	1.3	RI, MS, ¹³ C-NMR
a-pinene	929	1025	2.9	2.6	2.7	2.5	3.0	RI, MS, 13C-NMR
camphene	941	1066	0.3	0.1	0.1	0.2	0.2	RI, MS
1-octen-3-0I	959	1446	0.2	0.2	0.1	0.1	0.1	RI, MS
3-octanone	960	1253	0.1	0.2	0.1	0.1	0.2	RI, MS
-pinene	968	1111	0.3	0.2	0.2	0.2	0.2	RI, MS
3-octanol	975	1389	0.1	0.1	0.1	0.1	0.1	RI, MS
myrcene	978	1161	1.3	1.2	1.5	1.2	1.4	RI, MS, 13 C-NMR
cr-phellandrene	994	1164	0.2	0.2	0.2	0.2	0.2	RI, MS
6-3-carene	1003	1147	0.1	0.1	0.1	0.1	0.1	RI, MS
co-terpinene	1007	1181	1.0	1.1	1.4	1.1	1.1	RI, MS, 3C-NMR
p-cymene	1011	1272	8.5	6.1	6.6	9.1	7.2	RI, MS, 13C-NMR
li monene*	1020	1202	0.6	0.5	0.6	0.5	0.6	RI, MS, 13C-NMR
1.8.cineole*	1020	1210	0.2	0.2	0.2	0.2	0.2	RI, MS
-terpinene	1047	1246	5.8	7.9	9.6	6.0	6.9	RI, MS, 13C-NMR
trans-sabinene hydrate	1050	1461	0.2	0.2	0.1	0.2	0.2	SM, IR
terpinolene	1076	1281	0.2	0.1	0.1	0.1	0.1	SM, IR
linalool	1081	1543	2.8	4.0	3.4	3.1	3.0	RI, MS, 13C-NMR
borneol	1147	1700	0.7	0.4	0.3	0.4	0.4	RI, MS
terpinen-4-ol	1159	1598	0.3	0.3	0.3'	0.3	0.3	RI, MS
trans-dihydrocarvone	1172	1605	0.2	0.3	0.2	0.2	0.2	RI, MS
cis-dihydrocarvone	1178	1625	0.1	0.2	0.1	0.2	0.2	RI, MS
thymol	1263	2187	0.5	0.6	0.7	0.6	0.6	RI, MS, 3C-NMR
carvacrol	1275	2218	68.3	69.2	66.7	68.4	69.5	RI, MS, 13 C-NMR
Ç3-caryophyllene	1417	1593	0.8	0.6	0.9	0.7	8.0	RI, MS, C-NMR
al/o-aromadendrene	1449	1611	tr	tr	tr	tr	tr	RI, MS
6-cadinene	1512	1755	0.1	0.1	0.1	0.1	0.1	RI, MS
caryophyllene oxide	1569	1986	0.2	0.2	0.1	0.1	0.2	RI, MS
total (%)			97.3	97.5	98.1	97.2	98.4	
Yield (% w:w)			5.20	5.25	5.46	5.25	5.32	

SC5 / SC4 = Sebâa-chiouki 2005/2004. FI = Remchi. S = Sebdou. SS = Sidi-snoussi; Ria RI on apolar column; Rip RI on polar column; Order of elution and percentages are given on apolar column (BP-1) except for compounds witti an asterisk for which percentages are given on polar column (BP-20).

ness 0.25 }irn), Rtx-1 (polydimethylsiloxane). Carrier gas, He at 1 mL/min; split, 1/80; injection volume, 0.2 jiL; injector temperature. 250°C oven temperature programmed from 60°-230°C at 2°*C/min* and then held isothermai (45 mm); Ion source temperature, 150°C; energy ionisation, 70 eV; electron ionization mass spectra were acquireci over the mass range 35-350 Da.

C-NMR analysis: Ail NMR spectra were recorded on a Bruker AVANCE 400 Fourier Transform spectrometer, equipped with a5 mm probe, in deuterated chloroform, with ail shifts referred to internai tetramethyisilane (TMS). °C-NMR spectra were recordeci with the following parameters: puise width = 4 us (flip angle 45°); acquisition time = 2.7 s for 128 K data table with a spectral width of 25000 Hz (250 ppm); CPD mode decoupling; digital resolution = 0.183 H7Ipt. The number ofaccumuiated scans was 3000 for each sample (around 40 mg of the oil in 0.5 mL ofCDCl $_3$).

Identification of components: identification of the individual components was hased i) on comparison of their GC retention indices (RI) on apolar and polar columns, determined relative to the retention tin e of series of n.-aikanes with linear interpolation, with those ofauthentic compounds and literature

data (7); (ii) on computer matching vith mass spectral libraries (8-9) and comparison with spectra of authentic samples or hterature data (7,10), iii) on comparison of the chernical shifts ofcarhons in the °CN MR spectrum of the mixture with those of reference spectra compiled in our spectral hbrary with the heip of a laboratoiy produced software (11). This technique allows the identification of individual components to a content of 0.5% without any previous purification.

Microbial strains: The oil was tested against fine bacteria: - seven Gram-negative bacteria: Pseudorrfonas cieruginosa ATCC 27853, Kiebstella. pneumotteae ATCC 700603, Enterohacter cloaceac, Salmonella typhii, Proteus nl,irabilis, Escherichia cou, ATCC 25922 and Citrohacterfreun.dii - two Gram-positive hacteria: Listai-la monocytogenes ATCC 19115, Staphylococcus aureus ATCC 43866. Soi ne strains were supplied hy the Veterinaty Centre of Tlemcen (P. aerugtnosa, K. pneurnoneae. L. monocytogenes, E. colt and S. aureus) Others were isolated frein ciinicai sittings and their identification was achieved with API 20 test strips (Biomerieux).

Anti,nicrobial activity: Antimicrobiai tests were carried out using the dise diffusion method (12). The sterile dishes were inoculated using 1000 pL of a suspension containing

108 CFU/mLof bacteria. Discs of mm in diameterwere also impregnated with 3 .tL of the oil and placecl on the inoculated agar medium. In addition, reference dises without any oil were usecl for comparison. The inoculated plates were incubated at 37°C for 24 h. At the end of the period, the developing inhibition zones were measureci and reported (sensitives > 15mm) on the Table II. Studies were performed in triplicate.

Minimal Inhibitory Concentrations (MIC) were determined using direct contact technique in agar medium (12). Serial dilutions of the cils were carrieci out in Mucher Hinton agar medliuni. Appropriate volumes of every dilution were adcled te this mediuin to produce the required concentration range arida final concentration of Tween 80 ut 10% (v/'). The Minimal Inhibitory Concentrations (MICs) were recorded as foc lowest concentrations and quantities that inhibited any visible organism growth.

Resuits and Discussion

The yield of oil obtained from the aerial parts of Thymus fontanesii harvested in the Province of Tlemcen (Algeria), calculated on dry material basis, (w:w, mean value of three independent water-distillations), varied slightly from station to station: Sebâa-chiouki = 5.20%, Sehdou = 5.25%, Sidisnoussi = 5.32%, Remchi = 5.46%. The composition of the four samples was quite similar, carvacrol (66.7-695%) being by far the main component (Table I). Other con.stituents, present at appreciable contents, were p-cymene (6.1-9.1%), 'y-.terpinene (6.0-96%), linalool (3.0-4.0%), a-pinene (2.5-3.0%), myrcene (1.2-15%), and Œ-terpinene (1.1-1.4%). Conversely, thymol accounted only for 0.6-0.7% of the composition. Moreover, a sample harvested at Sebâa-chiouki, in June 2005, procluced on oil with the same composition (68.3% of carvacrol). Obviously, aerial parts of T. fontanesui from the province of Tlemcen produced an oil whose composition differeci substantially from that of the oil obtained frein the saine species harvested in Setif province and Constantine area (Algeria), clominateci by thymol (67.8% and 68.2%, respectively). However, thymol and carvacrol chemotypes are the most com mon of the genus Thymus (1).

Table II. Microbial inhibitions zones and Minimum Inhibitory Concentrations (MIC) of essential 011 01 Thymus fontanesil

Microorganism	Inhibitions zones (mm)	MIC (sg/mL)
Pseudomonas aeruginosa (-) ATCC 27853	8	16 700
Klebsiella pneumoneae (-) ATCC 700603	17	1 450
Listeria monocytogenes (+) ATCC 19115	18	1 410
Proteus mira biis (-)	17	I 260
Citrobacter freundii (-)	19	420
Enterobacter cloacae (-)	20	420
Escherichia cou (-) ATCC 25922	23	380
Staphylococcus aureus (+) ATCC 43866	26	340
Salmonella typhll (-)	27	300

Using direct contact technique in agar medium, the oil of T. fontanesui exhibiteci siguificant antibacterial activity agaupst ail tested bacteria excepted *Pseudonionas aeruginosa* (Table II). Among Cram-negative bacterial strains, this cil displayed a bette activity against *Salmonella typhii* (M IC = 300 j,ig/mL), *Escherichia cou* (380 pg/mL), *Enteroba.ctercloacae*(420 pg/mL) and *Citrohacter freundii* (420 pg/mL) than agaunst *Proteus mirabilis* (1 260 pg/mL) and *Kiebsiella pneumoneae* (1 450 pg/mL). Concerning Gram positive bacteria, the value ofMIC vas also very low for *Staphylococci.is aureus* (340 pg/mL) and higher for *Listeria moi ocytogenes* (141.0 pg/mL).

The nus Of *T fontanesli* from Algeria have an antimicrohial activity comparable to the one observed for other carvacrol-rich thyme oils (13,14). More precisely, the values of *M ICs* (*P aeruginosa E. coU, St. Aureus, Ki. Pneurnoneae*) were similar to those reported b)' Simeon die Bouchherg et al (15), for a sample of *Thymus vulgaris* containing carvavrol as major component (80%). Our results confirm that flic antimicrohial properties of thyme essential cils are related te their high content of phenolic compounds.

References

- E. Stahl-Biskup and F. Sàez. Thyme, the Genus Thymus, Medicinal and Aromatic Plants - Industrial Profiles. pp. 330 Taylor & Francis, London (2002).
- RQuezel and S.Sanla, Nouvelleflore de l'Algérie et des régions désertiques méridionales, Tome II, pp. 804-806, Ed. CNRS, Paris, (1963).
- A. Ghannadi., S.E. Sajjadi, A. Kabouche and Z. Kabouche, Thymus tonlanesii Boiss. & Reut. - A Potential Source of Thymol-Rich Essentiel 011 in North Africa, Z. Naturtorsch., 59, 187-189 (2004)
- Z. Kabouche, N. Boutaghane, S. Laggoune, Z. Ait-Kaki and K. Bentabed. Comparative antibacterial activity Of five Lamiaceae essential oRs from Algeria. Int. J. Aromatherapy, 15,129-133 (2005).
- L. Bousmaha, F. Atik Bekkara, E Tomi and J. Casanova. Advances in the chemical composition of Lavandula dentata L. essentiel 011 from Algeria. J. Essent. 011 6es., 17, 292-295 (2005).
- L. Bousmaha, J,B.Boti, F. Atik Bekkara, V. Castola and J.Casanova, Intraspecific chemical variability of the essential 011 of Lavandula dendata. L. from Algeria.. Flav. Fragr. J., 21, 368-372 (2006).
- D. Joulain and W.A. Kônig. The atlas of spectral data 0f sesquiterpene hydrocarbons, E.B. Verlag: Hamburg, (1998)
- NIST National Institute of Standards Library, The Perkin Elmercorporation (1997).
- F.W. McLafferty and D.B. Stauffer, Wiley registry of mass spectral dat., E' ed. Mass spectrometry library search system benchtop/PBM, version 3.10d. Palisade Co: Newfield, CA (1994).
- R.P. Adams. Identification Of essential olis by ion trap mass spectroscopy, Academic Press Inc: New York, NY, 1995.
- E Tomi, R Bradesi, A. Bighelli and J. Casanova, Computer-aided identification 0f individual components 0f essential olis using Carbon- 13 NMR spectroscopy. J. Magn. Reson. Anal., 25-34 (1995).
- B. Bendjillali, A. Tataoui-Elaraki and A. Ayadi, Méthodes d'étude des propriétés antiseptiques des huiles essentielles par contact direct en milieu gélosé. Plant. Med. Phytother., 20, 155-167 (1986),
- S. Karaman, M. Digrak, U. Ravid and A. 11dm, Antibacterial and antifungal activity Of the essentiel cils of Thymus revolutus Celak from Turkey. J. Ethnopharmacol., 76, 183-186 (2001).
- I. Rasooli and S.E. Mirmostafa, Antibacterial properties Of Thymus pubescens and Thymus serpyllum essentlai oils. Fitoterapia, 73,244-250 (2002)
- M. Simeon de Bouchberg, J. Auegrini, C. Bessiere, M. Attisso, J. Passet and R. Granger, Propriétés microbiologiques des huiles essentielles de chimiotypes de Thymus vulgaris Linnaeus. Rivista Ital. EPPOS, 58, 527-536 (1976).

4S.

ISSN 0972-060X

0

Composition and Antibacterial Activity of the Essentiaj 011 of *Ziziphora liispanica* (L.) from Algeria

Chahrazed Bekhechi, Fewzia Atik Bekkara and Ojamel Eddine Abdelouahid Laboratoire des produits naturels, Département de Biologie, Université Abou Bekr Belkaid, BP 119, Imma Tlemcen, Algeria

Kai Liu, Joseph Casanova and **Félix Tom** i*
Univerité de Corse-CNRS, UMR CNRS 6134, Equipe Chimie et Biomasse,
Route des Sanguinaires, 20000 Ajaccio, France.

Received IOApril 2007; accepted in revised form 15 June 2007

Abstract: The composition of the essential oil isolated by hydrodistillation from the aerial of Ziziphora hispanica. (L)., growing wild in Algeria (province of Tlemcen) was determined by GC(R1), GC-MS and ¹¹C NMR. The où was characterized by a high content ofpulegone (79.5%) and its antibacterial activity was tested against fine bacteria stains.

Key Words: *Ziziphora hispanica*, ³C NMR, GC-MS, pulegone, antimicrobial activity.

Introduction: The genus *Ziziphora* (Lamiaceae family) is known for its anti-diarrhoeic and antipyretic effects'. Three species grow wi]d in Algeria: *Z. capitata* (L.), *Z. lenuior* (*L.*) and *Z. hispanica* (*L.*)². A literature survey showed that the cssential oil of *Ziziphora* species has to be found to be rich in pulegone: *Z. clinopodioides* (22%)14, *Z. persica* (27.879.3%) 6. *Z. laurica* (37.2-81.9%) *Z. tenuior* (86.3-87.1%). Oils of *Z. hispanica* from Spain exhibited also a high percentage ofpulegone (64.5-76.7%) $\dot{}$

As part of our on-going work on the characterization of aromatic plants from Algeria through the composition of their essential oils' we got interested by *Ziziphora hispanica*, growing wild in the Province of Tlemcen, Algeria. The composition of orle oil sample, isolated from aerial parts, was investigated by chromatographic and spectroscopic techniques, GC in combination with Retention Indices (RI), GC-MS and ³C NMR spectroscopy. Its antibacterial activity tested against Gram (+) and Gram (-) bacteria,

Experimental

Plant material, essential oil extraction and fractionation: The plant was identi-

*C_{orj.}eSponding author (Félix TOMI) E- mail: <fe1ix.torni@univcorse.fr > fied by Pr. Bouazza M. and a voucher specimen (ref. no 2313) is deposited at the laboratory (Department ofBiology, Faculty of Sciences, University Abou Bekr Belkaïd). Aerial parts of *Ziziphora hispanica* were collected during June 2004, at the full blossorn, in Sebdou, Province of Tlemcen, Algeria. They were submitted to water-distillation (3 h), using a Clevenger-type apparatus. The essentiai oil was dried over Na,SO $_4$ and stored in the dark, at 4°C. The $_{00}$ (1 g) was fractionated over SiO, (10 g, 200-500 tm) leading to three fractions, eluted with pentane (Fi = 50 mg), pentane:Et $_7$ 0 = 95:5 (F2 = 828 mg) and Et,O (F3 = 107 mg), respectively. The essential oil was analyzed by GC in combination with Retention Indices (RI), GC-MS and $_{10}$ C NMR spectroscopy. The fractions of chromatography were analyzed by GC(RT), and $_{10}$ C NMR.

GC Analysis: GC analysis was carrifed out using a Perkin-Elmer Autosystem apparatus equipped with two Fiame Ionization Detecturs (FID), and fused capillary columns (50 ni x 0.22 mm i.d., film thickness 0,25 ini), BP-1 (polydimethylsiloxane) and BP-20 (polyethyleneglycoi). The oven temperature was programnied from 60°C W 220°C at 2°C! min and then held isothermai (20 min); injectortemperature: 250°C (injectioniiiode: spiit 1/60); detector temperature: 250°C; carrier gas: helium(0.8 mi/min). The relative proportions of the essential oil constituents were expressed as percentage obtained by peak area riormalization, without using correcting factors. Retention indices (RI) were deterniined relative to the retention times of a series of n-alkanes with linear interpolation (« Target Compounds » software from Perkin Elmer).

GC-MS Analysis: The essential oil was analysed with a Perkin-Elrner TurboMass detector (quadrupole), directly coupled to a Perkin-Elrner Autosystem XL, equipped with fused-silica capillary coiurnns (60 rn x 0.22 min i.d., film thickness 0.25 11m), Rtx-1 (polydin'iethylsiloxane). Carrier gas, helium at I n'il/min; split, 1/80; injection volume. 0.2 ffl; injector temperature, 250°C; oven temperature programmed from 60°C W 230°C at 2°C! min and then held isothermai (45 min); Ion source temperature, 150°C; ionisation energy, 70 eV; electron ionisation mass spectra were acquired over the mass range 35-350 Da.

C NMR Analysis: Ail NMR spectra (essential oil and fractions of chromatography) were recorded on a Bruker AVANCE 400 Fourier Transforni spectromete; equipped with aS mm probe, in deuterated chlorofomi, with ail shifts referred to internai tetrariethylsilane (TMS). ¹³C-NMR spectra were recorded with the following parameters: pulse width = 4 FLs (flip angle 45°); acquisition time = 2.7 s for 128K data table with a spectral width of 25000 Hz (250 ppm); CPD mode decoupling; digital resolution = 0.183 Hz!pt. The number of accumulated scans was 3000 for each sample (around 40 mg of the oil or fraction of chroniatography, in 0.5 ml of CDC1₃).

Identification of coinponents: Identification of the individual components was based j) on comparison of their GC retention indices (RI) on apolar and polar columns, determined relative to the retention time of a series of n-alkanes with linear interpolation, with those of authentic compounds and literature data"; (ii) on computer matching with mass spectral

libraries¹⁴ and comparison with spectra of authentic samples or literature data "-", iii) on comparison of the chemical shifts of carbons in the C NMR spectrum of the mixture with those of reference spectra compiled in our spectral library with the help of a laboratory produced softwar& 7. This technique allows the identification of individual components to a content of 0.5% without any previous purification.

Microbial strains: The essential oil was tested against nine bacteria: seven Gramnegative bacteria: Pseudoinonas aeruginosaATCC 27853, Kiebsiella pneumoneae ATCC 700603, Enterobacter cloaceae, Sal,nonella typhii, Proteus inirabilis, Eseherichia cou. ATCC 25922 and Citrobacter freundii - two Gram-positive bacteria: Ljsterja,nonocytogenes ATCC 19115, Staphylococcus aureus ATCC 601. Some strains were supplied by the Veterinary Centre of Tlemcen (P. aeruginosa, K. pneulnoneae. L. nwnocylogenes, E. coli and S. Aureus) Others were isolated froni clinical sittings and their identification was achieved withAPi 20 test strips (Biornerieux).

Antibacterial activity: Antimicrobial tests were carried out using the dise diffusion method. The sterile dishes were inoculated using 1000 il of a suspension containing 108 CFU/ml ofbacteria. Discs of 6 mm in diameterwere also impregnated with 3 pi ofessential oil and placed on the inoculated agar medium. In addition, reference dises without essential oll were used for comparison. The inoculated plates were incubated at 37°C for 24 h. At the end of the period, the developing inhibition zones were rneasured and reported on the table 2. Studies were performed in triplicate.

Resuits and Discussion: The composition of one oil sample, isolated from aerial parts of *Ziziphora hispanica* harvested in the Province of Tlemcen (Algeria), (yield = 0.53% on dry material basis) was investigated by chromatographie and spectroscopie techniques (GC in combination with Retention Indices, GC-MS and ¹³C NMR spectroscopy), after fractionation on column of chromatography (CC) (Table 1) The oil was doniinated by C-3 oxygenatedp-menthane derivatives: pulegone (79.5%) by far the major component, pmenth-3-en-8-ol (2.4%) cis-isopulegone (0.6%) trans-isopulegone (0.9%) and piperitenone (0.6%). Other constituents, present at appreciable content, were limonene (1,7%), carvacroi (1.6%) and thymol (0.9%). Only two sesquiterpenes, (E)-3-caryophyllene and its oxide, have been identified. The composition of our oil sample is similar to that ofoils of Spanish origin (puiegone: 62.9-76.6%). However, it differed by the content of piperitenone which is very low (0.6% *vs* 11.7-16.7%). A high ratio of pulegone was also reported for oils isolated *from Z. tenuior* (86.3_87.1%)8, *Z. persica* and *Z. laurica* ssp. *cleonioide.v* (81.9%)¹. It should be pointed out the presence of *cis*- and trans-isopulegones which are reported for the first time in *Ziziphora* species.

Т

Т

Using the direct contact technique in agar medium, the oil of *Z. hispanica* exhibited moderate antibacterial activity against *Staphylococcus aureus* and *Salmonella typhii* (Table 2). imilar resuits are reported in the literature for pulegone-rich oils from various *Ziziphora* species: *Z. ciinopodioides* 0ll, (pulegone = 31.9%) active against several bacteria: *Z. clinopodioides* subsp, *rigida* 0ll (pulegone, 45.8%) moderateiy active against *B. subtilix*

and *S. epidertnis Z. persica* 01 (putegone = 79.3%) active agamst 32 bacicria (paruculady *Bacillus dispauri*)⁶. Hence, the antibacterial activity of *Z. hispanica* essential oit could be associated to the presence ofpulegone. However, the smatl amount ofearvacrol and thymol (2.5%) contribute also to the antibacterial activity.

Acknowledgements: B. C. express ber gratitude to the "Ministère de l'Education el de la Recherche Scientifique" d'Algérie and to the University Abou Bekr Belkaid (Tlemcen) for a research grant.

References

Т

- 1. **Ozel, M.Z.,** Gogus, F., Hamilton, **J.F.** and Lewis, A.C. (2005). Analysis of volatile components from *Ziziphora taurica* subsp. *laurica* by steam distillation, superhated-water extraction, and direct thermal desorption with GCXGC-TOFMS. Anal. Bioanal, Chem. 382,115-119.
- Quezel, P. and Santa, S. (1963). Nouvelle flore de l'Algérie et des régions désertiques méridionales, Tome 11. Ed. CNRS, Paris, pp 804-806.
- 3. **Baser, K.H.C.** 2002). Aromatic biodiversity arnong the flowering plant taxa from Turkey. Pure Appt, Chem.74, 527-545.
- 4. **Otzuk, S. and Ercisli** S. (2007). Antibacterial activity and chemical constitutions of *Ziziphora clinopodioides*. Food Control. 18, *535-540*.
- 5. **Rùstaiyan**, A., **Jamzad**, **M.**, Masoudi **S.**, **and Amen**, N. (2006). Volatile constituents of *Nepeta heliotropfolia* Lam., *Mentha mozaffarianli* Jamzad and *Ziziphora persica* Bunge. Three Labiateae Herbs Growing Wild in Iran. .1. Essent Oil Res. 18, 348-351.
- 6. **Ozturk, S. and Ercisli,** S. (2006). The chemical composition of the essential oil and *in vitro* antibacterial activities of essential oil and methanol extracts of *Ziziphora persica* Bunge. Journal of Ethnopharmacology. 106,372-376
- 7. **Meral, C.E., Konyalioglu, S. and Ozturk,** B. (2002). Essential oil composition and antioxidant ofendemic *Ziziphora taurica* subsp. *Cleonioidc's*. Fitoterapia. 73, 716-718.
- 8. Sezik, **E., Ttimen, G. and Baser, K.H.C.** (1991). *Ziziphora lenuior* L., a new source of pulegone, Flav. Fragr. J. 6, 101-103.
- 9. **Velasco Neguerela** A. and Mata Rico M. (1986). The volatile oit *of Zizipliora hispanica* L. Flav. Fragr. J. 1, II1-113.
- 10. **Bousmaha, L., Boti, J.B.,** Atik Bekkara, **F., Castola,** V. and Casanova, J. (2006). Intraspecific chemical variability of the essential oil *of Lavandula dendata*. L. from Algeria. Flav. Fragr. J. 21, 368-372.
- II. **Bkhechi, C., Atik Bekkara, F., kbdelonaliid, D.E., Tomi F. And Casanova,** J. (2007). Composition and antibacteial activity of the essential 01 of *Thymus fontanesii* Boiss. et Reut. from Algeria. J. Esent Oil Res. in press.
- 12. **Mecherara-Idjeri, S.,** Hassaiii, t., Castola, V. **And Casanova, J.** (2007). Composition and chemical variability *fromPistacia lentiscus L.* growing wild in Algeria: part II, fruit 0ll. J. Essent Oil Res. in press.

- 13. **Joulain, D.** and Knig, W.A. (1998). The atlas of spectral data of sesquiterpene hydrocarbons. E.B. Verlag, Harnburg.
- N1.ST National Institute of Standard Library. (1997). The Perkin Elnier corporation.
- 15. r1eLafferty, F.W. **and Stauffer, D.B.** (1994). Wiley registry of mass spectral data, 611 ed. Mass spectrometry library search system benchtop/PBM, version 3. bd. Palisade Co: Newfield.
- 16, Adanis, **R.P.** (1995). Identification of essential cils by ion trap mass spectroscopy, Acadernic Press Inc: New-York, NY.
- 17. **Tomi,** F., Bradesi, P., Bighelli, A. and Casanova, J. (1995). Computer-aided identification of individual components of essential cils using Carbon-13 NMR spectroscopy. J. Magn. Reson. Anal. 1, 25-34.
- 18. **Salehi, P.,** Sonboli, **A., Eftekhar,** F., Nejacl-Ebrahimi, S. and Yousefzadi, M. (2005). Essential oil composition, Antibacterial and Antioxidant Activity of the oil and Various Extracts *ofZiziphora clinopodioides* subsp. *rigida* (Boiss.) RECH. f. from Iran. Bio!. Pharm. Bail. 28(10), 1892-1896.
- 19. **Burt,** S., (2004). Essential oils: their antibacterial properties and potential applications in foods areview. International Journal of Food Microbiology. *94*,223-253.

Table 1. Percentage composition of Ziziphora Izispanica Oll sample from Algeria

Component	Ria	Rip	Percentage	Identification mode
a-Pinene	93:0	1025	0.2	RI, MS, ' C NMR
Sabinene	964	1122	0.1	RI, MS, ¹³ C NMR
f3-Pinene	970	1112	0.4	RI, MS, ¹³ C NMR
Myrcene	979	1161	0.1	RI, MS, ¹³ C NMR
Oct-1-en-3-ol	958	1447	0.1	RI, MS, ¹³ C NMR
p-Cyniene	1010	1271	0.2	RI, MS, ³ C NMR
Li _{monene} *	101.9	1202	1.7	RI, MS, ¹³ C NMR
1.8Cineole*	1019	1209	0.2	Ri, MS, ¹³ C NMR
y-Terpinene	1047	1245	0.1	RI, MS, ¹³ C NMR
p-Mentha-3,8-diene	1058	1257	0.1	RI, MS, 13 C NMR
Terpinolene	1077	1283	tr	RI, MS
Linalool	1081	1543	tr	RI, MS
trans-p-Mentha-2,8-diene-1-ol	1101	1626	tr	RI, MS
cis-p-Mentha-2,8-diene-1-ol	1114	1657	tr	RI, MS
trans-Pinocarveol	1122	1654	0.1	RI, MS, ¹³ C NMR
,rans-Verbenol	1126	1669	0.1	RI, MS, ¹³ C NMR
Menthone	1130	1463	0.3	RI, MS, C NMR
p-Menth3-en-8-ol	1131	1605	2.4	RI, MS, C NMR
Menthofurane	1146	1483	0.6	RI, MS, ¹³ C NMR
irans-Isopulegone	1148	1583	0.9	RI, MS, C NMR

table 1. (continued)

(omponent	Ria	Rip	Percentage	Identification mode
('is-Lsopulegone	1149	1572	0,6	RI, MS, a C NMR
13orneol	1148	1700	tr	RI, MS
Terpineol-4	1160	1598	0.1	RI, MS, C NMR
Œ-Terpineol	1172	1696	0.2	RI, MS, ¹³ C NMR
Myrtenol	1178	1789	tr	RI, MS
lran.s-Carveol	1196	1834	0.2	RI, MS, ~C NMR
ci.v-Carveol	1213	1866	tr	RI, MS
Pulegone	1219	1654	79.5	RI, MS, ¹³ C NMR
Piperitone	1226	1772	0.1	RI, MS, ¹³ CNMR
cis-Piperitone oxide	1233	1722	0.2	RI, MS, ¹³ C NMR
Thymol	1262	2186	0.9	RI, MS, 13C NMR
Carvacrol	1272	2217	1.6	RI. MS, 13 CNMR
Piperitenone	1314	1916	0.6	RI, MS, C NMR
(E)43-Caryophyllene	1417	1595	0.1	RI, MS, 13C NMR
Mintlactone	1450	2220	0.3	RI, MS, ¹³ C NMR
Caryophylleneoxide	1569	1986	0.2	RI, MS, -aC NMR
total %			92.2	

Ria: RI on apolar column,

RIp: RI on polar column. Order ofelution and percentages are given on apolar column (BP-l) except for compounds with an asterisk for which percentages are given on polar column (BP-20).

Table 2. Microbial inhibitions zones of essential oil of Ziziphora hispanica.

Microorganism	Inhibition zones (mm)
Pseudomonas aeruginosa (-) ATCC 27853	R
Kiebsiella. pneurnoneae (-) ATCC 700603	08.0
Listeria rnonocytogenes (+)	08.3
Proteus inirabilis (-)	09.0
Ci.trobacter frundii (-)	09.7
Eschrichia. cou (-) ATCC 25922	10.3
Énlerobacter cloaceae (-)	10.0
Staphylococcus aureus (+) ATCC 601	12.7
Salinonella typhii (-)	13.3

4 4j:

JJ1j4

Pharmacognosie

Composition et activité antibactérienne des huiles essentielles d'Origanum glandulosum d'Algérie

C. Bekhechi, F. Atik-Bekkara, D. E. Abdelouahid

Laboratoire des produits naturels, département de biologie, université Abou Bekr Belkaid, BP 119, Imma Tlemcen, Algérie Correspondance : e-mail ; bekhechtchahrazed@yahoo.fr

Résumé: La composition de l'huile essentielle extraite par hydrodistillation de la partie aérienne *d'Origanum vulgare* subsp. *glandulosum* (Desf.) poussant à l'état spontané en Algérie est déterminée par CPG et RMN C L'huile essentielle *d'Origanum vulgare* subsp. *gland ul osum* présente une teneur élevée en thymol variant entre 41 et 49,5 %. Nous avons également déterminé l'activité de l'huile essentielle de cette espèce vis-à-vis des bactéries à Gram + et à Gram -. On constate qu'elle est très active sur l'ensemble des bactéries testées, sauf les Pseudomonas qui se révèlent très résistantes.

Mots clés: Origanum vulgare subsp. glandulosum(Desf.) - RMN C' - CPG - Thymol - Activité antibactérienne

Composition and antibacterial activity of the essential oils contained in Algerian Origanum glandulosum (Desf.)

Abstract: The composition of the essential oil isolated by hydrodistillation from the aerial parts of *Origanuni vulgare* subsp. *glandulosum* (Desf.) growing wild in Algeria was determined by GC and ³C NMR. The où was characterized by high thymol content (41-49.5%) and its antibacterial activity was tested against bacteria Gram (-) and Gram (+). The oil is very active against all bacteria tested except *Pseudomonas* which turned out to be very resistant.

Introduction

Le genre Origanum, appartenant à la famille des Lamiacées, comporte 38 espèces qui sont largement répandues dans les régions euro-sibérienne et irano-sibérienne. Cependant, la plupart des espèces, environ 75 %, sont concentrées dans le pourtour méditerranéen, en particulier dans les régions méditerranéennes de l'Est 120, 361. L'origan est souvent considéré comme une forme sauvage de la marjolaine, c'est l'ornement odorant des montagnes. Cependant, le terme origan provient de deux mots grecs « oros » et « genos », c'est-à-dire

« éclat des montagnes » [30]. Cette plante est utilisée dans les préparations culinaires et est considérée essentiellement comme une plante médicinale pour traiter les maladies sévères. Elle jouit d'une grande faveur populaire en Algérie et en Tunisie comme remède contre la toux et les affections respiratoires. En effet, cette plante expectorante, stomachique, stimulante, tonique possède des propriétés antiseptiques, antispasmodiques et antitussives [, 4º1]. Les espèces d'Origanum sont utilisées également comme des désinfectants puissants et comme des agents odoriférants dans les parfums [1²].

Pour cela, nous nous sommes intéressés à l'étude d'une plante dite Origanurn glandulosum Desf. 1311 (Syn Origanum vulgare subsp. glandulosum [20]), qui pousse spontanément dans 1 tout le nord de l'Afrique, en particulier dans les montagnes, à une altitude de 300 à 1 600 m, surtout dans les endroits rocheux [20]. Selon Quezel et Santa [31], l'espèce Origanum glandulosum est une plante à tiges toutes dressées. L'inflorescence est en épis denses, à fleurs restant contigus après la floraison. La corolle a une lèvre inférieure bien plus longue que la lèvre supérieure. C'est une espèce endémique en Algérie et en Tunisie et qui pousse au niveau des broussailles et des garrigues. L'étude phytochimique d'Origanum glandulosum de la région de Sétif en Algérie montre que les huiles essentielles de cette plante présentent de fortes teneurs en carvacrol %), suivi de y-terpinène (13,4 %), de p-cymène (11,2 %) et de thymol (6,6 %) [5]. Par ailleurs, les analyses chromatographiques effectués par Ruberto et al. [36] sur les huiles essentielles d'origan um gla ndulosum, récolté dans quatre stations différentes dans la région de Sétif (Algérie), signalent la présence de deux chimiotypes chimiotype à thymol et chimiotype à carvacrol, suivi de p-cymène (3,6-25,8 %) et de y-terpinène (4,8-13,2 %). Ces auteurs avancent également que l'huile essentielle de cette plante possède une activité antioxydante considérable, due à la présence des composés phénoliques.

Sari et al. [38] ont effectué une étude de la variabilité chimique de l'huile essentielle d'Origanum glandulosum

récolté dans différentes régions de l'est de l'Algérie. Ils avancent l'existence de deux chimiotypes : chimiotype à thymol et chimiotype à carvacrol. Les résultats obtenus montrent que les composés majoritaires identifiés sont les suivants : le thymol (185-73,1 %), le carvacrol (7,6-72,6 %), le p-cymène (1,7-18,5 %) et le y-terpinène (1,1-18,7 L'étude qui a eu pur objet l'évaluation du pouvoir antimicrobien de l'hui1e essentielle *d'Origanum glandulo*sum rapporte que ces produits naturels ont montré un effet inhibiteur sur les levures et moisissures isolées à partir de l'hôpital central de Sétif [6].

La présente étude est relative à la composition

La présente étude est relative à la composition quantitative et qualitative de divers échantillons d'huiles essentielles extraites là partir d'Origanum glandulosum récolté à partir de trois stations qui se trouvent dans la région de Tlemcen (Algérie). Nous avons également déterminé l'activité dun seul échantillon de cette espèce vis-à-vis des bactéries de référence et celle d'origine hospitalière.

Matériels et méthodes

Matériel végétal

Т

Le matériel végétal (parties aériennes) provient de la région de Tlemcen (Algérie) à partir de différentes stations, à savoir Sebdou, Beni-Mester etTerni. La récolte a été faite au mois de juin, en pleine floraisor de la plante.

Extraction des huiles essentielles par hydrodistillation

Les huiles essentielles sont obtenues par hydrodistillation avec un appareil de tpe Clevenger pendant une durée de trois heures, et l'hydodistillat obtenu est séché par du Na₂So₄. Elles sont con ervées dans des tubes en verre fumé à l'abri de la lumière et à une température entre o et ₄ 'C.

Analyse des huiles essentielles

Les analyses des huiles essentielles *d'Origanum glandulosum* ont été effectuées par l'université de Corse-CNRS, équipe « Chimie et Biomasse », UMR CNRS 6134.

Analyse par chromatographie en phase gazeuse (CPG)

Les analyses ont été 'Êtes à l'aide d'un chromatograph Perkin Elmer Autosy Lem, équipé d'un injecteur diviseur de deux colonnes cap laires (50 x 0,22 mm d.i.; épaisseu: du film 0,25 tm), p laire (BP20), polyéthylène glycol e apolaire (BPi, diméti ylsiloxane) et de deux détecteurs ionisation de flamme Les conditions opératoires sont le suivantes : gaz vect ur : hélium, pression en tête d colonne 20 PSI, p)grammation de température : d 60 à 220 C à 2 'C/m avec un palier de 20 min à 220 C température de l'inje eur 250 C, température des détec teurs 250 'C, injecti n mode split.

Analyse par spectroscopie de la résonance magnétique du carbone 13 (RMNC¹),

Les spectres ont été enregistrés dans le chloroforme deutérié, sur un spectromètre de marque « Bruker », opérant à 100,623 MHz pour le •C, sous les conditions opératoires suivantes sonde de ₅ mm, durée d'impulsion (PW) : 4 jis (angle ₄₅₎, temps d'acquisition : 2,73 s correspondant à une acquisition de 128 K avec une largeur spéciale (SW) de 25 ooo Hz (250 ppm), résolution digitale 0,183 Hz/pt, mode de découplage pulsé (composite phase decoupling), le nombre d'accumulations est compris entre 2 ooo et ₃ ooo pour chaque enregistrement. Les déplacements chimiques sont des données en ppm par rapport au TMS pris comme référence interne. L'analyse d'un mélange est menée sur un échantillon de 40 mg dilué dans 0,5 ml de CDC13.

Identification des constituants

Les constituants ont été identifiés

- par comparaison de leurs indices de rétention (Ir) calculés par rapport à une série d'alcanes (C₈-C₂₈) avec interpolation linéaire sur les deux colonnes, avec ceux des composés de référençe contenus dans la bibliothèque du laboratoire
- par RMN du C¹³, selon une méthode mise au point et développée par l'équipe « Chimie et Biomasse » de l'université de Corse [431. Cette méthode est fondée sur la comparaison des déplacements chimiques des carbones du mélange avec ceux des produits de référence enregistrés dans des conditions expérimentales (solvant, dilution) rigoureusement identiques à celles des huiles essentielles et stockés dans des bibliothèques de spectres propres au laboratoire. L'identification est ainsi réalisée par la prise en compte du nombre de pics observés par rapport à ceux attendus pour chaque molécule, du nombre de superpositions des signaux et des variations des déplacements chimiques des carbones dans les spectres du mélange par rapport aux valeurs de référence (z). En plus de ces paramètres, qui sont directement accessibles par un logiciel élaboré au laboratoire de chimie et biomasse à l'université de Corse, l'intensité des raies de résonance permet de contrôler l'appartenance d'un déplacement chimique à un composé donné. Dans les échantillons étudiés, les composés ont été identifiés jusqu'à une teneur de 0,3-0,4 %.

Étude du pouvoir antibactérien des huiles essentielles d'Origanum glandulosum

Les souches pathogènes testées

- Bactéries à Gram - : Pseudomonas aerugonosa (P₂), Ps. aeruginosa (P₃) ATCC 27853, Klebsiella pneumoneae (KL,), KL. pneumoneae (KL₂) ATCC 700603, Enterobacter cloaceae (En), Salmonella typhi (SL), Proteus mirabilis (Pr), Escherichia ccli (E,), E. cou (E₂), E. ccli (E₃), E. ccli (E₄) ATCC 25922, E. ccli (E₆) et *Çitrobacterfrundii* (Ci)

- bactéries à Gram + Listeria monocytogenes (L₁₁) ATCC 19111, L. monocytogenes (L, 5) ATCC 19115, Staphylococcus aureus (St,) ATCC 60i, S. aureus (St₂) et S. aureus (St,) ATCC 43866.

Les souches, qui ne sont pas de référence, sont obtenues à partir du laboratoire de microbiologie des hôpitaux et sont isolées à partir des plaies post-opératoires infectées. Ensuite, elles sont identifiées sur des plaques API 20 E pour les entérobactéries, et api Staph (pour *Staphylococcus* aureus). Les inoculums sont préparés à partir de cultures en milieu liquide de 18 h, dilués dans de l'eau physiologique de manière à renfermer environ io ⁸ germes/ml, soit à une densité variant entre 0,08 et 0,ià 625 nm [ii, 221.

Technique d'étude du pouvoir antimicrobien

Nous avons évalué la sensibilité de ces germes vis-à-vis de l'huile essentielle *d'Origanum glandulosum* provenant de la station de Terni. Nous avons appliqué trois méthodes et nous avons utilisé le milieu Mueller Hinton pour les différentes techniques.

La technique de l'antibio-aromatogramme (méthode de Vincent)

Afin de tester l'activité antimicrobienne des huiles essentielles, nous avons utilisé la méthode de l'antibiogramme par diffusion à partir de disques imprégnés d'huile essentielle pure [21]. Les milieux coulés en boîte de Petri sont ensemencés avec i ml de suspension bactérienne de b germes/ml et l'excédent de l'inoculum est éliminé par aspiration [39]. L'huile essentielle est déposée sous volume de 3 pi sur des disques de papier Whatman stériles de 6 mm de diamètre. En parallèle, nous avons utilisé des témoins afin de vérifier la croissance des différentes souches.

La technique de contact direct

Elle est fondée sur l'utilisation sous forme d'émulsion de ces produits non miscibles à l'eau. L'émulsifiant utilisé est le Tween 80 dilué à 10 % dans de l'eau distillée stérile [8, 9, 151. Nous avons utilisé la même méthode pour déterminer les concentrations minimales inhibitrices (CMI). Enfin, l'ensemencement a été réalisé de la même manière que précédemment. Dans les témoins, nous avons mis 15 % de Tween 80 afin de vérifier qu'il n'inhibe pas la croissance des différentes souches. Remarque : pour les Pseudomonas, nous avons augmenté la quantité d'huile essentielle dans la solution mère. Nous avons mis 1,75 ml d'huile essentielle au lieu de i ml d'huile essentielle.

La technique de micro-atmosphère

Elle permet d'évaluer l'activité des substances volatiles [, 241 sur les mêmes germes utilisés précédemment. Les milieux coulés ers boîte de Petri sont ensemencés avec i ml de suspension bactérienne de l'est germes/ml, et l'excédent

de l'inoculum est éliminé par aspiration [391. Ensuite, des disques de papier filtre stérile sont déposés aseptiquement sur les couvercles des boîtes de Petri. Ces disques ont un diamètre de 9 cm et sont imprégnés de différentes quantités d'huile essentielle pure allant de 50 à 200 avec un pas de 25 tl.

Ensuite, nous avons déterminé les quantités minimales inhibitrices (QMI) en utilisant la même méthode mais avec des intervalles variant selon la sensibilité des souches et avec un pas de $_5$ pi. En parallèle, nous avons utilisé des témoins afin de vérifier la croissance des différentes souches. Pour chaque méthode et pour une même souche, nous avons réalisé cinq essais afin de pouvoir établir une moyenne dans les mesures d'inhibitions et d'obtenir une meilleure fiabilité des résultats.

Résultats et discussions

Rendements

Les rendements moyens en huiles essentielles obtenus (calculés en fonction de la masse du matériel végétal sèche) varient sensiblement entre les différentes stations : Beni-Mester = 3,53 %, Terni = 3,90 %, Sebdou = 3,95 %. La détermination quantitative des huiles essentielles dans cette espèce végétale révèle sa richesse en ses métabolites secondaires. L'étude phytochimique de cette même espèce poussant dans la région de Sétif, effectuée par Belhattab et al. [5], leur a permis d'obtenir des rendements en huiles essentielles de l'ordre de 2,7 %. Nos résultats sont proches de ceux qui ont été obtenus avec cette même espèce par Ruberto et al. [36]. Ces auteurs ont noté que les rendements en huiles essentielles de cette espèce récoltée dans différentes stations de la région de Sétif sont variables allant de 2,3 à 5 %. Les rendements en huile essentielle de cette même plante récoltée dans différentes stations de la région Est de l'Algérie, effectué par Sari et al. [38], leur a permis d'obtenir des rendements en huiles essentielles allant de 0,8 à 3 %.

Analyse des huiles essentielles

Afin de contribuer à la caractérisation de l'huile essentielle d'Origanum glandulosum poussant spontanément dans la région de Tlemcen (Algérie), nous avons procédé à une analyse de quatre échantillons d'huile essentielle de cette plante récoltée dans trois stations différentes, à savoir Sebdou, Beni-Mester et Terni. Pour cette dernière station, nous avons effectué deux récoltes sur deux années successives. Le Tableau i fait état des composés identifiés et de leurs teneurs dans les quatre échantillons. L'analyse de ces huiles essentielles par CPG-Ir et par RMN C' 3 nous a permis d'identifier douze composés qui représentent un pourcentage variant entre 93,5 et 94,7 % selon les différentes stations étudiées. Les quatre échantillons analysés sont quantitativement et qualitativement très

J thIcali j (,qil	<i>I</i> <i>II</i> L, ,	. I		7 .		
I			:-L10	t,)		
I	929	105	07	06	07	7
	968	1111	02	02	02	2
1	978	1161	17	20	21	1
t J! L	1 007	1 181	1 7	i 8	2 2	4
	1 011	1 27	183	177		
I	1 020	1 202	03	04	UA	
		1 246	16,4	20,0		
<i>III I</i>		I ÇL1S	0,5	0,4		
7 L'		2 15'	49,5	,i7t'r54		Ι
		2 218	2,9	:li: 73,6		
J 11			935	939	936	7
(' i	105 Ï	1 OS	tpolairc (8P-	di'exreptiod i1 s cot a et IRp t 7ll4iC6S de	1	

proches. La même observation est faite pour la station de Terni concernant les deux années successives. Ces huiles essentielles ne contiennent que des monoterpènes dont 8 oléfines (40,4-48,9 %) et 4 monoterpènes oxygénés (z' et 53,2 %). Le thymol est le composé majoritaire (41,0 et 49,5 %) et les mêmes composés sont identifiés dans tous les échantillons. En revanche, le carvacrol est présent en faible teneur (2,9-3,6 %). Les autres monoterpènes oxygénés identifiés sont également présents en très faibles teneurs : le Œ-terpinéol (0,2-0,4 %) et le terpinène-4-01 (0,4-0,5 %).

Ces huiles essentielles renferment également des monoterpènes hydrocarbonés en quantités appréciables, à savoir le 'y-terpinène (16,4-218) et le p-cymène (15,7-20,3).

Nous constatons également l'existence en moindres quantités d'autres monoterpènes oléfiniques, qui sont le cc-terpinène (1,7-2,4), le myrcène (1,7-2,1), l'Œ-thujène (1,1-1,6), l'a-pinène (0,6-0,7), le limonène (0,3-04) et le -pinène (0,2). Ces analyses nous permettent de constater une stabilité et une homogénéité dans la composition chimique de l'huile essentielle d'Origanurn glandulosum. Ainsi, l'origine et l'année de cueillette du matériel végétal ne semblent pas avoir une influence sur la composition chimique de cette huile essentielle. Par ailleurs, ces résultats nous amènent à supposer que nos huiles essentielles appartiennent à un seul groupe chimique à thymol! 'y-terpinènel p-cymène. Enfin, vu la richesse de cette espèce, récoltée dans la région de Tlemcen (Algérie), en huile essentielle ainsi que l'homogénéité et la stabilité de la composition chimique de son huile essentielle, cette plante est susceptible d'avoir un intérêt industriel et peut être également recommandée comme source potentielle de thymol.

L'étude phytochimique *d'Origanum glandulosum* de la région de Sétif (Algérie) a été effectuée par Belhatteb et al. [s]. Ils ont mis en évidence 29 composés qui représentent

89,4 %. Ils montrent que l'huile essentielle de cette plante présente une forte teneur en carvacrol (' %), suivi de y-terpinène (13,4 %), de p-cymène (11,2 %) et de thymol (6,6 %). Cette huile essentielle est de type chimique différent des nôtres.

Par ailleurs, la comparaison de nos résultats avec les travaux de Ruberto et al. [36], effectués sur l'huile essentielle d'Origanum vulgare subsp glandulosum récolté dans quatre stations (Ouled Lyiche, Djebel Megriss, Anini et Tafat) de la région de Sétif (Algérie), permet de distinguer que l'huile essentielle de cette plante récoltée à Ouled Lyiche et à Djebel Megriss présente le même composé majoritaire que celui de nos échantillons, à savoir le thymol; en revanche, l'huile essentielle de cette même espèce récoltée à Anini et à Tafat est de type chimique à carvacrol; Elles renferment également des quantités appréciables en d'autres composés, à savoir : p-cymène (16-25,8) et 'y-terpinène 48-112).

Sari et al. [38] ont effectué une étude de la variabilité chimique de l'huile essentielle *d'Origanum glandulosum* récolté dans différentes régions de l'est de l'Algérie. Ils ont identifié trente composés qui représentent un pourcentage variant entre _{97,7} et 99,6 %. Ils avancent l'existence de deux chimiotypes : chimiotype à thymol et chimiotype à carvacrol. Les résultats obtenus montrent que les composés majoritaires identifiés sont les suivants le thymol (18,5-73,1 %), le carvacrol (7,6-72,6 %), le p-cymène (1,7-18,5 %) et le y-terpinène (1,1-18,7 %).

Étude du pouvoir antibactérien des huiles essentielles

Détermination de l'activité antibactérienne par la méthode de diffusion par disques

Les résultats de la détermination de l'activité antibactérienne des huiles essentielles provenant de la station de Terni, de la région de Tlemcen, sur plusieurs souches qui

U11,1(au 2. | s des Loues (I inhibition concentations ri i I r (MI) et quantites mtnimares inhib r sentielles d'Orjganuhi:;d.1andntosu»iI.

R r' 980 5 980 2 30 157 YL 2 300 2250 130 90 9/ 930 120 660 90. 600 580 93ï..t.. ioR 90 station disques est compris dans le Jî.rrr t **J**

sont responsables des maladies nosocomiales, figurent dans le Tableau 2. Comme cela a été rapporté dans la littérature, nous avons considéré qu'une huile essentielle a une action bactériostatique si son diamètre d'inhibition est supérieur à 12 mm 14,371 ou à 15 mm 1341. Si l'on considère les résultats fournis par la technique de Vincent, on observe de larges écarts dans les diamètres des zones d'inhibition obtenus, allant de 08,0 à 26 mm.

t t .1' J ri //t t t

Notre huile essentielle agit de façon très active sur l'ensemble des souches testées, sauf les deux Pseudomonas qui se révèlent très résistantes. Par ailleurs, nos résultats montrent donc une grande variabilité des qualités bactériostatiques de l'huile essentielle vis-à-vis des différentes souches. Enfin, les trois staphylocoques, 1'E. coli de référence (E4) et la salmonelle se révèlent très sensibles. Parmi les études qui ont eu pour objet la détermination du pouvoir antimicrobien des huiles essentielles de certaines sub-espèces d'Origanum vulgare, celles de Morris et al. [26] et de Dorman et Deans 1171 ont révélé une importante activité de ces huiles essentielles. Ils ont obtenu les résultats suivants: E. cou (24,30 mm), S. aureus (33,18 mm) respectivement.

Par ailleurs, nous avons comparé nos résultats avec ceux de Piccaglia et al. [30], qui ont étudié le pouvoir antimicrobien de l'huile essentielle de Satureja montana à chimioype carvacrol (41 %), sur plusieurs souches, notamment Pseudomonas aeruginosa, Kiebsielle pneumoneae, E.coli, Citobacter frundii et Staphylococcus aureus. Nous avons obtenu les mêmes résultats pour Ps. Aeruginosa (7,1 mm) et pour

Ki. Pneumoneae (18,9 mm); en revanche, ils ont enregistré une faible activité pour *Ci. Frundii* (11,2 mm), *E. cou* (10,5 mm) et S. *aureus* (15,4 mm) par rapport à nos résultats, cela est dû au fait que leurs souches sont plus résistantes que les nôtres.

Évaluation de l'activité antibactérienne des huiles essentielles par la méthode de contact direct et détermination des concentrations minimales inhibitrices (CMI)

Nous rapportons dans le Tableau 2 les concentrations minimales inhibitrices de l'huile essentielle d'Origanum glandulosum obtenues par la méthode de contact direct en milieu gélosé. Les CMI sont inversement proportionnelles aux diamètres des zones d'inhibition, obtenus avec la méthode de l'antibio-aromatogramme. Aligiannis et al. [j] ont proposé une classification des huiles essentielles du matériel végétal sur la base des résultats des CMI, comme suit

- forte inhibition : CMI inférieure à 5⁰⁰ 119/ml
- inhibition modérée: CMI varie de 600 tg/ml à $1\ 500\ \text{ILgfml}$
 - faible inhibition : CMI supérieure à 1 600 tg/ml.

Par ailleurs, Teixeira Duarte et al. [42] avancent que toute huile essentielle qui présente des CMI inférieures à 2 000 tg/ml est caractérisée par un pouvoir antimicrobien. Ainsi, l'huile essentielle d'Origanum glandulosum est sans réserve très active sur l'ensemble des souches testées, sauf les Pseudomonas, les Kiebsielles et les Listerias qui se révèlent très résistantes, et cela malgré l'utilisation du Tween 80 qui abaisse considérablement l'activité antimicrobienne des huiles essentielles [16, 32]. Les souches de Pseudomonas aeruginosa sont les plus résistantes, inhibées à des concentrations très élevées d'huile essentielle, soit supérieures à 15 980 ig/m1. Les souches de Klebsielle et de Listeria sont inhibées à partir d'un même seuil de concentrations d'huile essentielle, soit entre 2 180 et 2 350 tg/ml. Les entérobactéries suivantes : Proteus mirabuis, E. cou (E,, E21 E3 et E6), Enterobacter cloaceae et Citrobacterfrundii sont inhibées à des CMI variables allant de 930 à 1 660 tg/ml. Enfin les bactéries les plus sensibles sont les staphylocoques E.coli de référence (E₄) et la salmonelle, inhibées à des CMI nettement inférieures à celles obtenues avec les autres souches, soit entre 480 et 660 ig/ml. On remarque également que l'appartenance des souches bactériennes à Gram (+) ou à Gram (-) n'influe pas sur leur sensibilité et cela a déjà été démontré par Ouattara et al. en 1997 [28].

Nous avons comparé nos résultats avec ceux de Morris et al., qui ont déterminé la CMI des huiles essentielles *d'Origanum* d'Espagne sur quatre souches microbiennes, notamment *E. cou* et S. *aureus*. Ils ont enregistré une faible activité par rapport à nos souches, à savoir 500 ppm et cela pour les deux souches testées 1261. Nous avons également comparé nos résultats à ceux de Simeon de Bouchberg et al. 1411, qui ont déterminé les CMB de l'huile essentielle de *Thymus vulgaris* à chimiotype à carvacrol (80 %) sur plusieurs souches, notamment des S. *aureus* (250-1 000 p.g/ml), des *E. cou* (500-1 000 j.tg/ml) des

M. Pneumoneae (i 000 ig/ml) et des P. Aeruginosa (4 000-8 000 99/ml). Les souches Ki. Pneumo neae et P. Aeruginosa se sont montrées moins sensibles que les nôtres.

Évaluation de l'activité antibactérienne de la phase volatile des huiles essentielles et détermination des quantités minimales inhibitrices (QMI)

Les résultats obtenus par la technique de micro-atmosphère fondée sur l'activité des substances volatiles sont résumés dans le Tableau 2. On remarque que cette méthode ne confirme pas les résultats obtenus avec la méthode de contact direct en milieu gélosé et celle de l'antibio-aromatogramme. Cela est dû au fait qu'un composé - volatil donné présent dans l'huile essentielle, responsable de l'inhibition d'un microorganisme par contact direct, ne réagit pas de la même manière que dans la phase vapeur [16]. Par la détermination des QMI, nous pouvons avancer que nos huiles essentielles affectent la croissance de toutes les bactéries, jusqu'à leur inhibition totale en présence de faibles quantités d'huile essentielle, sauf les souches de *Pseudomonas* qui sont très résistantes, même à des quantités très importantes de l'ordre de 800 kti. Par ailleurs, on note une efficacité variable des huiles essentielles sur le reste des souches bactériennes, indépendamment de leur appartenance à Gram - ou à Gram +.

On remarque également que les Kiebsielles et les Listerias restent toujours les souches les plus résistantes après les Pseudomonas. Les souches d'Enterobacter, d'E. ccli (E₅), de S. aureus (St₂), (St₃) se sont révélées plus résistantes à la phase vapeur. Elles sont inhibées à des quantités variables d'huile essentielle, soit entre ioo et 120 iil. En revanche, les espèces E. ccli (E₄), S. aureus (St,) et pour Si. typhi restent les plus sensibles, inhibées à des QMI très faibles, soit entre 90 et 93 Jtl.

Conclusion

L'importante activité de l'huile essentielle *d'Origanum* giandulosum est due à sa richesse en composés phénoliques (thymol). Les composés les plus antimicrobiens sont les phénols (carvacrol, thymol, eugénol), viennent ensuite les alcools (cinéole, linalol ...) et dans une faible mesure les alcènes (p-cymène, pinène, terpinène...) [io, 451. En effet, plusieurs travaux ont démontré que le pouvoir antimicrobien élevé des huiles essentielles de plusieurs espèces d'origan est attribué à leur richesse en composés phénoliques (carvacrol et thymol) [2, 13, 14, 18, 19, 27, 29].

La plupart des travaux qui ont eu pour objet l'étude du mécanisme d'action des composés phénoliques avancent que leur principal site d'action est la membrane plasmique bactérienne 1391. Ils sont aptes à désintégrer la membrane cellulaire des bactéries [4]. La membrane perd sa structure et devient plus perméable aux ions [25]. La lésion de la membrane cellulaire peut également permettre la dissipation du gradient pH et la diminution du potentiel

membranaire []. La résistance de *Pseudomonas aeruginosa* est liée à sa grande capacité de développer des résistances vis-à-vis de nombreux agents antimicrobiens, d'où son implication fréquente dans les infections hospitalières. Plusieurs auteurs rapportent la faible, voire l'absente activité des souches de *Pseudomonas aeruginosa* vis-à-vis des huiles essentielles de diverses espèces d'origan [19, 23, 35].

Remerciements

Je tiens à exprimer ma très vive reconnaissance et ma gratitude à _{J.} Casanova (directeur du laboratoire Systèmes Physiques de l'environnement, équipe « Chimie et Biomasse » de l'université de Corse) et à F. Tomi (professeur à l'université de Corse) pour leur aide, leur collaboration et leur accueil au sein de leur laboratoire afin de pouvoir réaliser l'analyse des huiles essentielles.

Bibliographie

- Aligiannis N, Kalpotzakis E, Mitaku S, Chinou IB (2001) CompositiOn and antimicrobial activity of the essential cils of two Origanum species. J Agric Food Chem 40: 4168-70
- z. Arras G, Usai M (2001) Fungitoxic activity of twelve essential olis against four postharvest Citrus pathogens: Chemical analysis of Thymus capitatus (L) Hoffing Oil and its effect in subatmospheric pressure conditions. J Food Prot 64: 1025-9
- Baba Aissa F (1999) Encyclopédie des plantes utiles, flore d'Algérie et du Maghreb. Librairie moderne-Rouiba, pp. 194-231
- Baudoux D (zooi) L'aromathérapie, se soigner par les huiles essentielles, 2 éd., Atlantica, pp. 25-6
- Belhattab R, Larous L, Figueiredo CA, et al. (2005) Origanum glandulosum Desf Grown Wild in Algeria: Essential oil composition and glycosidic bound volatiles, Flavour Fragr J 20: 209-12
- Belhattab R, Larous L, Kalantzakis Y, et al. (2004) Antifungal properties of origanum glandulosum Desf. Extracts J of Food, Agriculture and Environment 2 69-73
- Benjillali B, Tantaoui-. Elarski A, Ayadi, Ihial M (1984) Method to study antimicrobial effect of essential oils: Application to the antifungal activity of six Moraccan essences. J Food Prot 47: 748-52
- Benjillali B, Tataoui-Elaraki A, Ayadi A (1986) Méthodes d'étude des propriétés antiseptiques des huiles essentielles par contact direct en milieu gélosé. Plantes médicinales et phytothérapie w: 155-67
- Beylier-Maurel F (1976) Activités bactériostatiques des matières premières de parfumerie. Rivista Italiana EPPOS 58: 283-6
- Burt SA (2004) Essential oils: their antibacterial properties and potentiel applications in foods-a rewiew International. J Food Microbiol 94: 223-53
- ii. Careaga M, Fernândez E, Dorantes L, et al. (2003) Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat International. J Food Microbiol 83: 331-5
- Chiej R (1984) Macdonald encyclopedia of medicinal plants. Ed Macdonald, London, pp. 212-7
- Chorianopoulos N, Kalpoutzakis E, Aliqiannis N, et al. (2004) Essential oils of Satureja, Origanum and Thymus species: chemical composition and antibacterial activities against foodborne pathogens. J Agric Food Chem 52: 8261-7
- Chun SS, Vattem DA, Lin YT, Shetty K (2005) Phenolic antioxidants from clonai oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem 40: 809-16
- Courvallin P, Goldstein F, Philippon A, Sirot J (1985) L'antibiogramme. videom MPC, Paris, pp. 225-35