DEMOCRATIC AND POPULAR REPUBLIC OF ALGERIA
MINISTRY OF HIGH EDUCATION AND SCIENTIFIC RESEARCH

THESIS

Presented at
ABOU-BAKR BELKAID UNIVERSITY - TLEMCEN
Faculty of Sciences-Physics Department

by
Ms BOUAYED born KANOUN Nawel

To obtain the degree of

DOCTOR OF PHYSICS

Option: Materials Science

Theme

Density functional theory study of physical properties of
nitrides, rare-earth dioxides and silicon-germanium

oxynitrides

At 27 June 2011 with the board of examiners:

Prof. Boumédiénne BENYOUCEF  Chairman University of Tlemcen

Prof. Berrezoug BELGOUMENE Examiner University of Saida

Dr. Boumédienne LASRI Examiner University of Saida

Dr. Smaine BEKHECHI Examiner University of Tlemcen

Dr. Abdelkrim MERAD supervisor University of Tlemcen

Dr. Souraya GOUMRI-SAID Co-Supervisor King Abdullah University of

Science and Technology



PEPICHTIONS

I dedicate this thesis to:
My lovely children Sanaa , Rawida and Ahmed Abderrahmen
My dear husband Fouad
My lovely parents, my parents in law and my grandmother.
My brother Benali as well as his wife Souraya
My sister souhila as well as her husband
My brothers Mohammed Adil and Ahmed-All
My well liked Areslane, Mehdi Sidi-Mohammed, Nihel and Smain

Nawel



Acknowledgements

With the help of God Almighty, | was able to accomplish this modest work.

This thesis was achieved within the « Laboratoire Equipe Physique de I'état

solide, LPT, Département de Physique» at Abou-BekrBelkaid University of Tlemcen.

I would like to express my deep gratitude to Dr. Abdelkrim MERAD, Maitre de
Conférences “A” at the University of Tlemcen and he is my supervisor for this thesis. |
wish to express my thanks to him for guiding me along this work, for his permanent
follow-up, his attentive readings as well as for his confidence, his comprehension during

these years of research.

I would like to express my deep gratitude to my Co-Supervisor Dr. S. GOUMRI-
SAID, researcher at King Abdullah University of Science and Technology, for teaching
me the new concepts and techniques on “computational material "during my stay in
Belgium in 2008, for critical reading of my results, she was always available to answer
my questions, | thank her for helping me in writing this manuscript, she found enough
and necessary time to be effective in the corrections of my various versions, thank you

for your guidance, encouragement and support throughout this work.

I would like to thank Mr. B. BENYOUCEF Professor at University of Tlemcen, to

have accepted to chair the jury of this thesis.

I hold to present my thanks to M"B. BELGOUMENE, Professor at University of
Saida, M'B. LASRI Maitre de conferences “A” at University of Saida, and M'S. BEKHECHI,
Maitre de conferences “A” at University of Tlemcen, that makes me honor to judge this

thesis.

I would also like to acknowledge my brother Dr. KANOUN Mohamed Benali
researcher at King Abdullah University of Science and Technology for his good ideas on
different sides of my research, for his comments and clarifications that enriched this

manuscript. | wish to thank Benali for his permanent encouragements and assistance.



All My thanks go to my family. | am indebted to my husband for helping me
throughout these years. To my parents, my parents in law, my sister and brothers, your

prayers helped me to accomplish this work.

My thanks go also to my colleagues in the research group” Equipe Physique de

I'état solide”- for their kind support and encouragement. Thanks for all.



Contents

LSt O [l UIeS. . .ot e iv

Listoftables ... .o e iiv
Introduction 1
1. Chapter 1: Theoretical methods and numerical tools 4
1.1 INtrodUCtioN .« .. oe e s 5
1.2. Fundamentals of density functional theory............. ...t 7
1.2.1. The Hohenberg-KohnTheorem. ...t 7
1.2.2. The Kohn-Shame equations ... e 9

1.2.3. Self-consistent scheme ......... ..o 11

1.3. Energy functional exchange-correlation............ ... ... it 12

1.3.1. Local density approximation(LDA) .. ... 13

1.3.2. Involvement of the local spin-density approximation...................... 14

1.3.3. Generalized gradient approximation (GGA) ..........ccoiiiiiiiiiian.. 15

1.3.4. LDA+U (U is the Hubbard term) approach ................ ... iii.t 15

1.3.5. Density Functional Perturbation Theory (DFPT) ...............ccoivietat. 17

1.4. Numerical implementation of DFT ... ... ..o 17

1.4.1.Bloch'stheorem ........coiuiiii i i i i 18

1.4.2. Full-potential linearized augmented-plane-wave method.................. 19

1.4.2.1. Augmented plane wave method (APW) ......... ... ..ot 19

1.4.2.2. Linearized augmented plane wave method (LAPW) ................ 20

1.4.2.3. Augmented plane wave plus local orbitals method (APW+lo)........ 21

1.4.2.4. Thefull potential ........ ... e 22

1.4.3. Pseudopotential/ plane wave method.............. ... . it 22

1.4.3.1. Pseudopotentia.........oouunniinii i e 22

1.4.3.2. Norm-conserving pseudopotentials................ ..., 24

1.4.3.3. Ultrasoft pseudopotentials............cccoiiiiiiiii i 25

1.4.4. CASTEP package. . . ..o ov ittt e e e 25

1.4.5. WIENZK package. . ..o vt it et 25

1.5, APPlICAtioNS. .\ttt e 26

1.5.1. LSDA for chromium nitride........ ... e 26



1.5.2. LDA+U approach for europium nitride. . ...
2. Chapter 2: Copper Nitrides

2.1, INtrodUucCtion .. ... e
2.2. Crystal structure description. . ... ....ueir it e i eaeens
2.3. Method of calculation. ........ ..o e
2.4. Structure and elastic CONStANTS. . . ... oot i i e
2.5, EleCtronic Properties. . vttt it et e e
2.6. Bonding characteristics. . ..... ..ot

2.6.1. Mulliken population. . ....... ..o e

2.6.2. Electroniclocalized function.......... ...

2.7. Temperature effect. ... ... it i e
3. Chapter 3: Rare Earth Dioxides

3.1 Introduction. . ..o v vt e
3.2. 1. Current interest of rare earth dioxides................cooiiiiiiii it
3.2.2, ClassifiCation. ... v vt e
3.2.3. Overview of experimental and theoretical works..........................
3.2.4. About fluorite StrucCture. . .....oui

3.2. Computational details. ... ... e

3.3. Effect of strong correlation on cerium dioxide................ccooiiiiiii it
3.3.1. Fundamental properties. . ....... ..o i
3.3.2. Electronic structure of Ceria. .......cuvuiiii i i

3.4. Physical properties of rare earth dioxides............. ...t

3.4.1. Equilibrium lattice properties. .........ccoiuiiiii e
3.4.2. Magnetic stability. ... ...

3.4.3. Elastic stiffness and related polycrystalline properties....................
3.4.4. Electronic properties. . ... ..ot
3.4.4.1. Density of states of nonmagnetic CeOzand LuOz .................

3.4.4.2. Density of states of REO; (RE=Pr, Nd, PM, Sm, Eu, Gd, Tb, Dy, Ho,

Er, Tm, Yb, and Lu) . ... ..o e
3.4.5. MagnetiC Properties. . .vu et e e
3.4.6. Charge density CONTOUTS. . ... .u et e i i aaeans
3.4.7. Spin density CONTOUTS. . ...\ttt e i i i eee s



4. Chapter 4: Physical properties of oxynitrides from DFT and DFPT 93

4.1 INTrOdUCTION. « ettt e e 94
4.1.1. State of art: Theoretical previous studies............... ..ot 95
4.1.2. Current interest and motivationsS . ..........oviuiii i i 95
4.1.3. Structure description. .......co it 96

4.2. Methodology and numerical details ... 97

4.3. Results and diSCUSSIONS ... .v vttt e 99
4.3.1. Structural properties. .. ... ... e 99
4.3.2. Mechanical properties. . ..... ..o e 99
4.3.3. Electronic properties bonding characterization: charge density and

Mulliken population. . . ... e 104
4.3.3.1. Band StrUCTUTES. . ..t vt ie et i i e ens 104

4.3.3.2. Densities of States . .......ouiii i e 105

4.3.3.3. Electronic charge densities. .. ... 107

4.3.3.4. Mulliken population analysis.............ccoiiiiiiii i 109

4.3.4. Optical properties ... ..o 110
4.3.5. Lattice dynamics and thermodynamic properties................coovvvnnn... 114
Conclusion 120
Annex 123



List of Figures:

1.1

1.2

1.3

1.4
1.5

1.6

1.7

1.8

2.1

2.2

2.3

2.4

2.5

3.1

3.2

Correspondence between the electron density p (r) and the external
001 7] L8 =) TP 8
a cartoon representation the relationship between the “real” many body

system (left hand side) and the non-interacting system of Khon Sham density

functionaltheory (right hand Side).......ccooei e e 10
Flow chart for the nt iteration in the self-consistent procedure to solve Khon-

N o E= N0 Y0 10U (o) o TSR 12
Schematic representation of various DFT-based methods of calculation............. 18

An illustration of the full all-electronic (AE) wavefunction and electronic
potential (solid lines) plotted against distance r, from the atomic nucleus. The
corresponding pseudo wavefunction and potential is plotted (dashed lines).
Outside a given radius r., the all electron and pseudo electron values are
TAENTICAL . cviiiriir e 23
Band structure for the ferromagnetic CrN ((a) spin up, (b) spin down) in the
hypothetical zincblende STrUCTUTE........cciiieiiier e e e e e 26
Calculated spin-polarized band structure corresponding to LDA and LDA+U
CAlCUIAtION .ttt —— 29
Total and partial densities of states in EuN with LDA and LDA+U calculation.
Majority (upper part) and minority (lower part). The vertical dash line

denotes the Fermi level........cciiinii e e 30
Zincblende structure, rocksalt structure and fluorite structure.........ccevvvevereeenne 37

TDOS and LDOS for copper nitrides (a) ZB, (b) RS and (c) C1 phases. The

vertical dot line denotes the Fermi level.......c.ccoiiiiiinii 43
2D and 3D-ELF for copper nitrides (a) ZB, (b) RS and (c) C1 phases.........cccce.... 47
Normalized volume of the copper nitrides as function of pressure..........cccccceue. 49

Coefficient of linear thermal expansion (a) and the heat capacity (Cv) as a
function of temperature for the considered phases........o e sseesseeseees 49
Crystal structure, Brillouin Zone for the primitive cell of REO2 Blue atoms are

RE and red atoms are OXYZEN ... .cccceicrerrriererersseeereeessreessesseessessee e sesseeesnessssesnsens 59
Lattice constant (a), bulk modulus (b) and band gap (c) as a function of the
HUDBDATA Uetfuriveiererisin s i s s s s e e s s s s 62



3.3

3.4
3.5
3.6

3.7

3.8

39

3.10
3.11

4.1

4.2

4.3

4.4
4.5

4.6

4.7

4.9

4.10

Total and partial density of states at GGA+U (with U = 0 and 5 eV) for CeO-.

Since the spin-up and spin-down channels are identical, only the spin-up

channel is shown. The vertical solid line denotes the Fermi level..........ccccueuuune. 64
The calculated lattice parameter as function of rare earth dioxides compounds 67
Ferromagnetic and antiferromagneticOrdering........ccccceeversrerrmesseerenesseeenen e 68
The total energy difference AErm-rm) as function of rare earth dioxides

(070) 44) 0010 s L6 KOO PRTRO 69
The total and partial density of states at GGA+U+SOC for CeO; and LuO-. Since

the spin-up and spin-down channels are identical, only the spin-up channel is
shown. The vertical solid line denotes the Fermi level........cccoovniiiiiiiiiiinins 73
Calculated total and partial density of states at GGA+U+SOC for REO: (RE =La,

Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er,Tm and Yb) for majority (upper part) and
minority (lower part) SPin StAteS......cu o e e e 76

Total and local magnetic moments versus of REO; (RE = La, Pr, Nd, Pm, Sm,

Gd, Tb, Dy, Ho, Er,Tm and YD) ....cooeeie e e e e e e e 83
Charge density distributions in (110) plane of CeO2 and LuO;.......ccccverieeerenenne 84
Spin density contours plot for REO; (RE = La, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho,

EF T @nd YD) oot e e e e e e e sre e nn e e 87
Crystal structure of XaN20 (X=Si and Ge)..cecccreieriirireee e e e e 97
Band structure of (a) SizN20 and (b) Ge2N20......ccmiiieei e 105
Total and partial densities of sates of (a) Si2N20 and (b) Gez2N20. The origin for
energyisat the Fermilevel..........oo e e 106
Calculated valence charge density of (a) Si2N20 and (b) Ge2N20.....cccoeveneriirnnncnen. 108

Calculated valence charge density of selected plane in (a,b) Si2N20 and (c,d)

Calculated £3*(w) (dark solid curve), £3” (w) (red dashed curve) and £2%(w)
(blUe SOLid CUIVE) SPECIIA..ruicueuerirectererireseereaeseere st serere st seseesteseresesreseseesessesese seans 112
Calculated £7*(w) (dark solidcurve), £7”(w) (red dashed curve) and £7%(w)
(blue SOLIACUIVE) SPECIIA..riuiiiiiiecreveireereerere s et eseses et ereses e se e sre s e sese s e e nrens sens 113
Dispersion curves of phonon and total phonon density of states for (a) Si2N20
ANd (D) GE2N2O0 .. e e e e e e e e s 114
Constant volume heat capacity Cv and temperature dependence of Debye

temperature Op for (@) Si2N20 and (b) GezN20... ..o e 116



List of Tables

1.1 Calculated equilibrium parameters, bulk modulus and pressure derivative of
bulk modulus for EuN compared with available experimental
0 1 2 PR 28
2.1 Calculated equilibrium parameters a(A), elastic constants Cj (GPa), Bulk
modulus B (GPa), Shear modulus ¢ (GPa), Young’s modulus Y (GPa), and
Poisson’s ratio v. The calculated density p (g/cm3), longitudinal, transverse
and average sound velocity(v;, vt, vmin km/s), and Debye temperatures 6p (K)
E L) RO I 0 L o U 3 |
2.2 AtomicMulliken charges in copper nitrides calculated from PW pseudo-
potential calCulationS......ovee e e e e e 45
2.3 Mulliken Bond populations and Bond lengths in copper nitrides calculated
from PW pseudo-potential calculations..........cceoerioeeeion s e 45
3.1 Some relevant properties of the lanthanides elements their atomic number
and symbol, and their main USAZES ........cccoreeriiriies e e e e 57
3.2 Equilibrium lattice parameter (a), bulk modulus (B), and its pressure
derivative (B’) of CeO2 compared to other theoretical and experimental data.
(aisin A Bin GPa,and B’ dimensionless). ..o e e 63
3.3 Lattice parametera (A), bulk modulusB (GPa), its pressure derivative B, of
REO2 compared to other theoretical and experimental data.......c...ccceecereierenne 66
3.4 Total energy difference (AEwurm-rm)) between antiferromagnetic (AFM) and
ferromagnetic (FM) phases Of REO2 ..o e e e 69
3.5 Calculated elastic constants C;(GPa), Bulk moduli Bygy (GPa), shear moduli G
(GPa), Young's modulus Y (GPa), and Poisson's ratio v for rare earth
AIOXIA@S vt e e 71

3.6 Total and local magnetic moments (inug/cell) for rare earth dioxides................ 82

4.1 Structural parameters as resulted from PP-PW and FP(L)APW+lo calculations

compared to available experimental data and theoretical works......................

4.2 Calculated elastic constants, Cij (in GPa), bulk modulus By (in GPa), shear

modulus Gy, (in GPa), Young's modulus, Y (in GPa), and Poisson’s ratio (v) of

Vi



Si2N20 and Gez2N20 SYSTEIMS. ..cuviieeeicieeieieeree et e ere e s e e e s e e nr e see e enees e 103
4.3 Atomic Mulliken charges and Mulliken overlap populations calculated from

PW pseudopotential calculations........ccoovciiiiiniinin e 110

4.4 Calculated dielectric constantse; (w), eﬂ (w)and refractive index n, for Si;N,0

and Ge2N20 COMPOUNAS......ueiiiirii e et e e e e e e ere e sreesn e nne e 113

vii



INTRODUCTION



olid materials are of great technological importance but the challenge to
theory and computation is that they are governed by very different length
and time scales. These may differ by many orders of magnitude depending on
the specific applications. On the length scale from meters down to micrometers classical
mechanics and continuum models are dominant conceptual frameworks for
investigation of diverse material properties. However, when one comes to the
nanometer scale or atomic dimensions measured in angstrom, all properties are

determined (or critically influenced) by the electronic structure of the solid state.

The electronic structure is determined by resolution of the quantum mechanics
equations. Understanding how these equations work out can enable one to make
qualitative predictions about structural, mechanical, electronic, spectroscopic, and
optical properties. Solving these equations can also give quantitative predictions of
these properties. In the past, it was necessary to use very severe approximations when
solving the quantum mechanics equations, and the most powerful computers available
were needed. The results were hard to interpret, and of qualitative value only.
Nowadays, even standard desktop computers are far more powerful than state-of-the-
art supercomputers of 20 years ago, and the programs used to solve the equations have
become much more powerful. Therefore, ab-initio approaches to atomic electronic

structure are much more widespread and useful.

The manuscript will focus on structural, electronic and magnetic aspects as well
as problems stability in different systems. Our interest lies on three categories of
systems: nitrides, rare earth oxides and oxynitrides. Even nowadays with efficient
methods and powerful computers it remains challenging to achieve an accurate
description of the close lying electronic states of such compounds, because of the

complex interactions between them.

The first chapter will be devoted to a detailed presentation of the numerical tool
introducing the spine of our work mainly the ab-initio methods based on density
functional theory. Throughout this chapter we will show the effect of different
approximations adapted to the various systems such as the rare earth elements which

require the application of strong correlation (i.e Hubbard U).



Indeed, in chapter 2, we apply the former detailed tool to study the copper nitrides in
zincblende, rocksalt and fluorite structures. Then the quasi-harmonic Debye model will
be applied to investigate the temperature effect on the variation of linear thermal

expansion parameters and the specific heat.

Chapter 3 is devoted to the strong correlation effect in the most challenging
materials rare earth dioxides. Our interest in these materials dates back to the work
achieved during the Magister thesis where we applied correction to the local density
approximation by taking into account of the Hubbard model parameter (U). The rare-
earth dioxides are more challenging and need both of U parameter and spin-orbit
coupling to correct generalized gradient calculations. Furthermore we try to understand
the properties of rare earth dioxides by applying the former approximation to determine

the structural, elastic, electronic and magnetic properties.

In Chapter 4, we focus our attention to the Oxynitrides based on Silicon and
Germanium: Si2N20 and Ge2N20. These compounds contain both of nitrogen and oxygen.
We present a deep study of their optimized geometries, crystal structure, bonding,
mechanical, thermodynamic and the optical properties will using the density function
(DFT) calculation by means of two methods, the full-potential linearized augmented

plane-wave plus local orbitals and plane-wave pseudopotential.

Finally, the manuscript is accomplished by general conclusions with a discussion of the
main results and outlook on the future research. We hope that our work will open
interesting perspectives, particularly on the prediction study of new nitrides, oxides and

their mixing compounds oxynitrides.



Chapter One
Theoretical methods and

numerical tools

Abstract

In this chapter we outline the theoretical framework that underpins the bulk of this
work. We begin by introducing the concept of density functional theory, and explain how
the physical systems can be described by the many-electrons Schridinger equations. We
introduce the Kohn-Sham method based on of DFT, and how this can be implemented
efficiently with different basis set and using appropriate approximations. In particular, we
talk about the exchange-correlation potential and related numerical approximations.
Finally, we will see the impact of DFT approximations through simple physical properties

of some compounds.

Les ondinateans ont le pouvocr de trantformen notre monde en un monde guc nous doit tout & fact étanger,
Dave Barry
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1.1. Introduction

The description of the physical properties of interacting many-particle systems

has been one of the most important goals of physics during this century. The problem is

to derive the properties of many-particle systems from the quantum mechanical laws.

According to quantum mechanics, the whole information of a system of interacting

electrons and nuclei is contained in the many-body wave function i, which can be

obtained by solving the Schrodinger (or Dirac equation) equation of 3N spatial variables

and N spin variables (for electrons) where N is the number of particles in the system:

Hy = Ey

(1.1)

H is the many-particle hamiltonian which describes the various contributions to the

total energy of the system of N electrons and M nuclei given by:

H= Tel + Tn + Vn—el + Vel—el + Vn—n

The Hamiltonian operator can be expressed more precisely by the equation:

. RAC VR h? VRL 2 2
- 24m, 24LM, 4rne, |§a —# | 8me,
1

2
Z ZM e Z(xZﬁ
B 2% |Ry—Rpl
In which the different terms correspond respectively to:

Te : kinetic energy for the M electrons of mass m, at 7

T, : kinetic energy operator for the N nuclei of mass Me at ﬁa

Voo : Coulomb interaction attractive nuclei - electrons

Van: Coulomb repulsive interaction nuclei— nuclei

AR

i i#j

V.o : Coulomb repulsive interaction between electrons and other electrons.

(1.2)

(1.3)
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It is out of question that the problem cannot be solved without making
approximations somewhere along the line. A first level of approximation can be obtained
by the Born-Oppenheimer, or adiabatic, approximation [Born-27], and treat the nuclei
as classical particles that move on a time scale much longer than that of the electrons.
This means that, as far as calculations on the electrons are concerned, the nuclei can be
considered to be fixed in space. The many-body problem is therefore reduced to the
smaller problem of a system of electrons moving in some external potential, i.e. the
potential created by the positively charged nuclei. Thus, the Hamiltonian given before
reduces to the so-called electronic Hamiltonian which is central to the theory of

electronic structure.

Helec = Tel + Vnu—el + Vel—el (14)

The quantum many body problem obtained after the first level approximation
(Born-Oppenheimer) is much simpler than the original one, but still far too difficult to
solve. Several methods exist to treat the problem. Solution of such models generally
requires the use of approximation schemes: the independent electron approximation,
the Hartree theory and a historically very important one is the Hartree-Fock (HF)
method, described in many condensed matter textbooks. It performs very well for atoms
and molecules, and is therefore used a lot in quantum chemistry. For solids it is less
accurate, however. We will not treat HF, but explain a more modern and probably also
more powerful method: Density Functional Theory (DFT). Although its history goes back
to the early thirties of the 20th century, This method has the double advantage of being
able to treat many problems to a sufficiently high accuracy, as well as being

computationally simple (simpler than even the Hartree scheme).

The main idea of DFT is to describe an interacting system of fermions via its
density p and not via its many-body wave function. For N electrons in a solid, which
obey the Pauli principle and repulse each other via the Coulomb potential, this means
that the basic variable of the system depends only on three -- the spatial coordinates x, y,

and z -- rather than 3N degrees of freedom.
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1. 2. Fundamentals of density functional theory

Density functional theory (DFT) is a quantum mechanical modeling method used
in physics and chemistry to investigate the electronic structure (principally the ground
state) of many-body systems, in particular atoms, molecules, and the condensed phases.
With this theory, the properties of a many-electron system can be determined by using
functionals, i.e. functions of another function, which in this case is the spatially
dependent electron density p. Hence the name density functional theory comes from the
use of functionals of the electron density. DFT is among the most popular and versatile
methods available in condensed-matter physics, computational physics and
computational chemistry. Historically, the first who expressed energy in terms of
density were L. H. Thomas [Thomas-27] and E. Fermi [Fermi-28] in 1927. But DFT has
been formally established in 1964 by two theorems due to Hohenberg and Kohn
[Hohenberg-64].

1.2.1. Hohenberg-Kohn Theorem

In 1964, Hohenberg and Kohn set out a simple theorem which relates the
potential and the electronic density in a quantum system [Hohenberg-64]. Stated

simply the Hohenberg Kohn theorems are as follows:
1.2.1.a) First theorem [Hohenberg1964]:

The external potential Vext(r) (to within a constant) and hence the total energy is

a unique functional of the density p(r).

p(1)=Vex: (1) (1.5)

In fact all properties of the system, including excited state properties are, in
principle, exact functionals of the electron density. The reason for this, as was proven by
Hohenberg and Kohn, is that there is a one-to-one mapping between the electron density
p(r) and the external potential (Figure 1.1). If we happen to know the density, then, in
principle, we know the external potential, and if we know the external potential we can,
again in principle, solve the many-electron Schrédinger equation and know everything

about the system [Gibson-06].
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p = Vext=> H= Y= E (and all properties) (1.6)

Of course, this is not yet of any practical use, because the whole point of using
DFT is so that we can avoid having to deal with the many-electron Schrodinger equation.
Nevertheless, we are provided, at least in principle, with a means of finding the ground
state energy for a given external potential. The energy functional E alluded to in the first
Hohenberg-Kohn theorem can be written in terms of the external potential in the

following way:
E(p) = Elp(r)] = Fux(p) + [ p(¥)Vere (F)dF (1.7)
With

Furlp(r)] = Talp(r)] + Ver—arlp(r)] (1.8)

Where Fuk [p(r)] is the Hohenberg-Kohn density functional universal for any
many-electron system. An explicit expression for the Hohenberg-Kohn functional Fuxis
not known, notably the kinetic Te[p], and electron-electron functional Ve-e[p] are

unknown.

p defines .. |' - . . . | Ve defines P

Figurel.1: Correspondence between the electron density p(r ) and the external

potential.
1.2.1.b) Second theorem: variational principle

The functional E for the ground state energy is minimized by the ground state

electron density po.
E = min, E[p(#)] (1.9)

This theorem being a direct consequence of the variational principle of Rayleigh-Ritz

enables the ground state electron density to be calculated variationally [Renold-03].

~8~
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The first theorem is a statement about the existence of an energy functional E and gives
no information about this functional form. If E{p) were known the ground state electron
density could easily be found using the second theorem hence requiring the variation of
the energy functional with respect to the electron density to vanish. At this stage we are
still no nearer to a practical method because exact evaluation of F(p) would require us to
solve the many-body Schrédinger equation. The question that arises is, what should we

use for functional Fgu??
1.2.2. Kohn-Sham equations

In 1965, Kohn and Sham made a significant breakthrough when they showed that the
problem of many interacting electrons in an external potential can be mapped exactly to a set
of non-interacting electrons in an effective external potential [Kohn-99, Kohn-65]. Indeed,
central to the Kohn-Sham method is the introduction of a fictitious auxiliary system, which is
intended in some way to mimic the true many-electron system that we are dealing with. This
fictitious system is a set of particles whose properties are identical to those of electrons,
except that the electron-electron repulsive interaction is switched off. The particles move in
some fictitious external potential Vis(r) known as the Kohn-Sham potential, which is defined
such that the system's ground state density equals p the same density as the electronic system
for which we want to evaluate F(p).This assumes that the true ground state density actually is
also the ground state density of a non-interacting system. Because there are no interactions
between the particles, the ground state wavefunction of this system is far less complicated that
of the true, interacting, system. In fact, we can write the ground state wavefunction explicitly
in terms of simple single-particle wavefunctions, and the kinetic energy and electron density

are known exactly from the orbitals.
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T —r vy (1) + v, (r)
é,(r)

Figure 1.2: A cartoon representation the relationship between the “real” many body
system (left hand side) and the non-interacting system of Khon Sham density functional

theory (right hand side)

The confrontation between these two systems so different, so similar (same
energy, same density distribution) springs an exact formal expression and (in principle)

accessible to the functional.

Furlp()] = Talp(] + [ 2220 drdr + Eye [p] (1.10)

Where T, [p] is the Kkinetic energy of non-interacting electrons system T,[p] =
Z?’zl((pi|— 1/2 V2 |(pi) the second term corresponds to the electron-electron interaction is

the classical Coulomb interaction- or Hartree energy -Vy[p(r)] = %f%drdr’, Exc

[p] is the unknown exchange-correlation functional, which contains all many-body
aspects of the problem. Walter Kohn shared the Nobel Prize in Chemistry in 1998 for
this work [Kohn1999]. However, the exact form of the exchange-correlation energy
functional is not known, thus approximations for this functional must be used. The

resolution requires minimizing the total energy which can be rewritten as follows:

E[p(")] = Talp(M1+ [ p) VT [p(r)]dr (1.11)

With
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VeIl [p(r)] = Ver(r) + [ 2 dr + Vi
(1.12)
And
_ e [p(R)]
VXC - 5

P (1.13)
The Khon-Sham approach reduces the problem " many-body electrons' equations in
simple single-electron interdependent equations of Kohn and Sham [Sing-94]:

The first can calculate the effective potential Ves

p(r) = Vesg[p(] = v¥07 () + [ 222 dr’ 4 Vi [p(r)] (114)

The effective potential is inserted into the N single-electron Schrédinger equations to

obtain the KS orbitals i.

Verr(r) — (‘%Vf + Veff(r)>(pi(r) = g¢;(r) (1.15)

The N wave functions solutions ¢; are reinjected into a third equation to calculate a new

density described as a sum of single-particle densities.

@i(r) = p(r) = T lo:l? (1.16)

Both the Hartree term Vyand the exchange-correlation V. depend on the entire density
function, which depends on the KS orbital which in turn depend on Ve that is, the

solutions are self-consistent

1.2.3. Self-consistent scheme

The self-consistency or self-consistent scheme is an iterative process that
provides the correct electron density which minimizes the total energy of the system. In
the approaches mentioned before, Vegdepends on the density p, which in turn depends
on the i which are being searched. This means we are dealing with a self-consistency
problem:

The solutions (¢;) determine the original equation (Vyand Vicin Hgs), and the
equation cannot be written down and solved before its solution is known. An iterative
procedure is needed to escape from this paradox (figurel.3). Some starting density p, is

guessed, and a hamiltonian Hgs; is constructed with it. The eigenvalue problem is solved,
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and results in a set of ¢; from which a density p; can be derived. Most probably, p,will
differ from p;. Now p,is used to construct Hgsz, which will yield a p,, etc. The procedure

can be set up in such a way that this series will converge to a density pswhich generates
a Hgsrwhich yields as solution againp;: this final density is then consistent with the

hamiltonian.

[oorm ]
-

Constructe Kohn —Sham

hamiltanian

-2
1

Al

wE + V] P = EgtPg

mixture of
‘ #i Ea Pe=P a1

Construct py

l P = D ey |2

EPn=Pn+1 T
# En #Pn+1

¥

Pais selfconsistent
density py

Figurel.3: Flow chart for the nt iteration in the self-consistent procedure to solve

Kohn-Sham equations.

1.3. Energy functional exchange-correlation

The numerical advantages of the approach described are obvious. Efficient
methods exist for solving single-particle Schrodinger equations with a local effective
potential, the failure to find accurate expressions for the density-functional is a result of
the complexity of the many-body problem which is at the heart of the definition of the
universal functional.

As mentioned in the other literature[Roquefelte-01, nawel-07], the exchange-
correlation energy is defined as what remains unknown after removing a non-
interacting kinetic energy and Hartree interaction, Exc is the difference between the

energy of the real system and the energy of Khon Sham fictitious system:
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Exclpl = Tlpl = T™[p] + Voo [p] — Vurlp] (1.17)

The exchange-correlation energy is decomposed into two parts: the exchange
term which reflects the fact that electrons are indistinguishable fermions (due to the
antisymmetry of the wave function) and the correlation term which is the rest of the
Coulomb interaction between each electron (Pauli principle; Exclusion between two

electrons with same spin ).

Eve = & + &, (1.18)

DFT offers a practical and potential highly accurate alternative to the wave
function methods discussed above. In practice, the utility of the theory rests on the
approximation used for the exchange-correlation energy Exc[p] which has lead to a large
and still rapidly expanding field of research. There are now many different flavours of
functional available which are more or less appropriate for any particular study.
Ultimately such judgments must be made in terms of results (i.e. the direct comparison

with more accurate theory or experimental data).

1.3.1. Local density approximation

The simplest method of describing the exchange-correlation energy of an
electronic system is to use the Local Density Approximation (LDA). It is the basis of all
approximate exchange-correlation functions. In the LDA, the exchange-correlation

functional is defined for an electron in a uniform electron gas of density [Kohn-65].

ELPA = [ p(Perc(p(P))dF (1.19)

In other term, two hypotheses are made: 1) the effects of exchange and correlation are
dominated by the density at r point; 2) density is a slowly varying function. In molecules
and solids, however, the density tends to vary substantially in space. Despite this, the

LDA has been very successfully used in many systems.
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1.3.2. Involvement of the local spin-density approximation

The local spin-density approximation (LSDA) is a straightforward generalization
of the LDA to include electron spin, indeed the LSDA uses the same principle as the LDA
by differentiation of populations electronic spin majority and minority densities p'(r)
and p*(r) in the treatment of exchange-correlation energy. Thus the functional Exc

depends both densities of spin up and spin down:

ELEPA[p", pt] = [ p(B)ere™[p" (r), p*(r)]dr (1.20)

Where p is the electronic density and &x the exchange-correlation energy of the
homogeneous electron gas (HEG), it is decomposed into exchange and correlation terms

linearly:

exc(ph pt) = ex(p’. p*) + ec(p", ) (121
The exchange-energy density of a HEG is known analytically, is obtained by applying the
expression [Dirac-30].

/
€. = —3 (i)l ’ pf/3 +pf/3] (1.22)

4w

For the correlation energy & the situation is more complicated, since the
correlation energy of a homogeneous electron gas is not known exactly. The &.can be
obtained by the parameterization from Monte Carlo [Ceperly-80] simulations or
molecular dynamics. There are several in the literature; Dirac [Slater-64], Wigner
[Wigner-34], Von Barth-hedin [Hedin-71, VonBarth-72], and Ceperley-Alder
[Ceperly-80].

This approximation has proved amazingly successful, and gives good results,
However some quantities such as modulus and cohesive energy are greatly overstated,
others such as lattice parameters and bond lengths are underestimated, it also gives a
bad description in the case of certain magnetic systems, eg with the LDA the Iron is

found ferromagnetic bcc instead of bcc antiferromagnetic [Arras-10].
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1.3.3. Generalized gradient approximation (GGA)

In the LDA one exploits knowledge of the density at point r. Any real system is
spatially inhomogeneous, i.e. it has a spatially varying density, and it would clearly be
useful to also include information on the rate of this variation in the functional. A next
logical step to improve on LDA is to make the exchange-correlation depend on both the
density and its derivatives. This approximation is therefore called the Generalized
Gradient Approximation (GGA). The concept is to make a gradient expansion of the

density, which introduces a nonlocal correction:

ESEAIp] = [ flp(r), Vp(r)d3r] (1.23)

ESEAIp", p*] = [ (), p* (), V(p (), p* (r))] d®r (1.24)

But there is some freedom to incorporate the density gradient, and therefore
several versions of GGA exist, PW-91 version of the GGA by Perdew and Wang [Perdew-
92], the GGA-PBE developed by Perdew, Burke and Ernzerhof (PBE) [Perdew-96],
meta-GGA [Perdew-99] and a new form proposed by Wu and Cohen (WC) [Wu-06].
Anyway, these methods offer significant advantages in the precision that they deliver the

quantities that the LDA tended to describe less precisely.

1.3.4.LDA+U approach

The standard local density approximation is a functional that works well for a
vast number of compounds. But, for some crystals, the interactions between electrons
are so important that they cannot be represented by the LDA alone or GGA. Generally,
these highly correlated materials contain rare-earth metals or transition metals, which
have partially filled d or f bands and thus localized electrons. In the last fifteen years
many methods were proposed in this direction. Among these, LDA+U approach used in
this thesis, first introduced by Anisimov and co-workers [Anisimov-91,Anisimov-
93,Solovyev-94]|, has allowed to study a large variety of strongly correlated compounds
with considerable improvement with respect to LSDA or GGA results[Cococcioni-05].

In LDA+U, the correlation absent in LDA is reintroduced by an on site Coulomb

repulsion parameter U (U is the Hubbard term [Hubbard-64]). In the LDA+U, we
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separate delocalized (s and p electrons) which are correctly described by the usual LDA
calculation, from the localized ones d or f electrons, on which the Hubbard term will act,

for the latter the total energy of a level is given by Anisimov and al [Anisimov-97]:

E=Eps—3UNN = 1) +-U iy nimy (1.25)

The orbital energies €;and the orbital-dependent potential Vi r) are given by:

OE 1 1
€; = a_nl = €1pa — U (E - ni)JVi(r) = VLDA + U(E - ni) (126)

The LDA+U orbital-dependent potential gives upper and lower Hubbard bands with the
energy separation between them equal to the Coulomb parameter U.
The generalized LDA+U functional is introduced and developed by Anisimov et al

[Lichtenstein-95] as the sum of three terms:

XAV [0 (1), {n°}] = EXPA[p? ()] + BV [{n"}] — Egc[(n°}] (127)

Where p(r) is the electronic density, and ELP4is the standard LSDA functional, the

second term is the correction of the correlation energy of Coulomb type described by:

1 " -
EU[{na}] = Ezma{ (m, m'|Vee |m', m )nfnm,nm'fmm_ (1 28)
((m,m"|[Voelm,m"') — (m,m"|VeIm"" ,m'VOn> _inJ v}
Where Veeis the screening Coulomb interactions among the nl electrons (n/ orbitals are

considered partially filled), ng,,,,,are the density matrix elements defined by[Anisimov-

93]:

1 rE
Mot = =2 o G i (B AE (1.29)
WithG;um,inzm’(E) = (inlmo|(E — H) |inlm’c)are the elements of the Green function

matrix in this localized representation. Finally the last term in the equation is then
subtracted in order to avoid double counting of the interactions part for localized
electrons (already included in the LSDA, although in an average manner) is given by:
1 1
Eqc[{(n®}] = JUN(N = D) = J[N'(N" = 1) + N*(N* - 1)] (1.30)

With N = Tr(n; /) and N=N'+N', U and J are the screened Coulomband exchange

parameters [Anisimov-97].
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1.3.5 Density Functional Perturbation Theory (DFPT)

Generally, the ground state properties, as the total energy, and forces and
stresses are described essentially by the first derivatives of E. It can be possible to go
further and examine higher derivatives of E with respect to ionic positions and lattice
parameters, or with respect to macroscopic applied external (typically electric) fields.
The formalism which calculates the response functions of a DFT system is known as
density functional perturbation theory (DFPT) [Baroni-87, Giannozzi-91, Gonze-97,
Gonze-Lee97].

If the perturbation strength is characterized by a parameter A, then the energy,
potentials, and wavefunctions have an expansion as a function of lambda:

E=E® + AEM + PE® + ... (1.31)

The first term of the series represents the standard ground-state energy. If the
perturbation A represents the atomic displacements then the first term corresponds to
the forces on the atoms. This term is null at equilibrium. The forces and stresses are in
E(), and many experiments probe E(2), such as Raman and infra-red spectroscopy, linear

optics, and elastic constants.

1.4. Numerical implementation of DFT

Different DFT based electronic structure methods can be classified, depending on
the representations that are used for density, potential and KS orbitals. Many different
choices are made in order to minimize the computational and human costs of
calculations, while maintaining sufficient accuracy. A brief summary of the many

possibilities to solve the Schrédinger's equation is given in Figure 1.4.

In this work, the calculations have been performed mainly using two approaches,
the (linearized) augmented plane wave plus local orbitals ((L)JAPW+lo) and pseudo-
potential plane wave (PP) (plane waves / pseudopotential). In each of these methods,

Kohn and Sham orbitals are of the form:

@i(r) = Xa €iaPa (1.32)
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where the @qare the basis functions and the cjqare the expansion coefficients. Given a
choice of basis, the coefficients are the only variables in the problem, since the density

depends only on the KS orbitals.

—— ull potental
[No relativistic I
relativistic Pseudopotential(pp)
DA
GGA
b

1
(- - VE +~ Flr)+ Ve W) @1 =19
* F 3 “h

Mo periodic
lane wave
periodic o spin l

Augmented plane
Spin polarized J

Figurel.4: Schematic representation of various DFT-based methods of calculation.

1.4.1 Bloch's theorem

Bloch's theorem tells how this can be done for a hamiltonian that has a lattice
periodicity. The theorem says: Any eigenfunction can be written as a product of a

function u(r) that has the periodicity of the lattice, and a plane wave e,

@i (1) = e uy (1) (1.33)

kis a vector that is confined to the first Brillouin zone of the reciprocal lattice. ux(r) has
the same periodicity as the direct lattice, has translational symmetry and it can be
expressed in terms of a discrete plane-wave basis set with wavevectors G that are

reciprocal lattice vectors of the crystal [ Kittel-89, Cottenier-02]:

w (r+ R) = w (P (r) = 3 C(k — G)e " (1.34)
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Bloch's theorem uses the periodicity of a crystal to reduce the infinite number of one-
electron wavefunctions to be calculated to simply the number of electrons in the unit
cell of the crystal. Bloch's theorem is of major interest in terms of first calculations for
the different operators (matrix form) will be treated in direct space or in reciprocal
space as they are diagonal in one or the other, and secondly, by the use of Bloch's
theorem, the problem of the infinite number of equations to a single electron can be
transformed to problem of a finite number (within the first Brillouin zone) and the
description of the system and its study is limited the region of space defined by the unit
cell, which in reciprocal space is found at the first Brillouin zone. Solving equations of
Kohn and Sham will therefore sampling points k reflecting the symmetry of the first

Brillouin zone.

1.4.2. Full-potential linearized augmented-plane-wave method

Among the most accurate schemes for solving the KS equations is the all-electron
full-potential linearized augmented-plane-wave (FP-LAPW) method which found its
origins in the work of Slater [Slater-37]. The basic concepts and ideas of LAPW have
been presented in various places [Singh-06, Schwarz-03, Schwarz-02] so only the
main points shall be mentioned here [Schwarz-10]. For didactical reasons it is

advantageous to discuss APW first, before going to its successors LAPW and APW+lo.

1.4.2.1. Augmented plane wave method (APW)

The ideas that lead to the APW basis set is that the region far away from the
nuclei, the electrons are more or less ‘free'. Free electrons are described by plane waves.
Close to the nuclei, the electrons behave quite as they were in a free atom, and they
could be described more efficiently by atomic like functions. Space is therefore divided
now in two regions: around each atom a sphere with radius R is drawn (call it S(r)). Such
a sphere is often called a muffin tin sphere; the part of space occupied by the spheres is
the mulffin tin region. The remaining space outside the spheres is called the interstitial
region (call it I) [Cottenier-02]. One augmented plane wave (APW) used in the

expansion of ¢ and s are defined as:
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@s5(1r) = Zim A Ui (1, ED Y (1)
{ (1.35)

1 .
@, (r) = EZG Ce gl(G+ir

In the above relations, 2 is the unit cell volume, r is the position inside sphere, kis a
wave vector in the irreducible Brillouin zone (IBZ) and unis the numerical solution to

the radial Schrédinger equation at the energy E.

-5+ 0 4 v - B | ru) = 0 (1.36)

dr? T2

Where V the spherical component of the potential in the sphere and Cs and am are
expansion coefficients; Ej is a parameter (set equal to the band energy). Inside the MT
sphere a KS orbital can only be accurately described if E in the APW basis functions is
equal to the eigen-energy Ei. Therefore, a different energy-dependent set of APW basis
functions must be found for each eigen-energy.

Since the continuity on the spheres boundaries needs to be guaranteed on the dual
representation, constraint must be imposed. In the APW method this is done by defining

the Ajy in terms of C¢ in the spherical harmonic expansion of the plane waves.

amil .
Aim = T 2 Cahi (ke + gIRY;, (k + 9) (1.37)

The orbitals @i (r) of KS are expressed as linear combination of APW wave ¢ (r). The KS
orbital can be accurately described only if E in the basic functions of APW is equal to the
eigen-energy Ei. Consequently, all the different energy-dependent basis functions are
unknown, they must be determined iteratively at each step of the process of self-

consistency, which complicates greatly the problem.

1.4.2.2. Linearized augmented plane wave method (LAPW)

Several improvements to solve the energy dependence of the basis set were tried
but the first really successful one was the linearization scheme introduced by Andersen
[Anderson-75] leading to the linearized augmented plane wave method. In LAPW the
energy dependence of each radial wave function inside the atomic sphere is linearized
by taking a linear combination of a solution u at fixed linearization energy and its energy

derivative ucomputed at the same energy.
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%ZG Cs eiG+l)Ty. € 1

(1.38)
Yiml[Amw(r, E) + Bppt(r, ED)Yn(r) T €S

(1) ={

where the By are coefficients for the energy derivative analogous to the Aj,. The basis
functions inside the spheres are linear combinations of a radial functions u(r) Yim(r) and
their energy derivatives. The u;are defined as in the APW method and the energy

derivative u,;(r) satisfies the following equation:

-5+ D 4 v () - B ritn (1) = rugm () (1.39)

dr? T2

The LAPWs provide a sufficiently flexible basis to properly describe eigenfunctions with
eigen-energies near the linearization energy, which can be kept fixed. This scheme

allows us to obtain all eigen-energies with a single diagonalization in contrast to APW.

1.4.2.3. Augmented plane wave plus local orbitals method (APW+lo)

Recently, an alternative approach was proposed by Sjostedt and al. [Sjostedt-00],
namely the APW+lo (local orbitals) method. Here the augmentation is similar to the
original APW scheme but each radial wave function is computed at a fixed linearization
energy to avoid the non-linear eigenvalue problem that complicated the APW method.
Thus only the condition of continuity can be required and the basis functions may
contain a kink at the sphere boundary.

The missing variational freedom of the radial wave functions can be recovered by

adding another type of local orbitals containing a u and  term.

o(r) = {Zlm[alng'loulma(r)+blma'lou(r)]ylm(r) P(:Z T<Rq (1.40)

The local orbitals are evaluated at the same fixed energy as the corresponding
APWs. The two coefficients are determined by the normalization and the condition that
the local orbital has zero value at the sphere boundary. In this version, 7t is independent
of the PWs, since it is only included for a few local orbitals and not associated with every
plane wave. Recently it was demonstrated that this new scheme can reach the same

accuracy as LAPW but converges faster in terms of number of PWs [Madsen-01]. The
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highest efficiency was found for a mixed basis set in which the “physically important” I-
quantum numbers are treated by APW+lo but the higher I by LAPW. It was shown in
[Madsen-01] that quantities such as the total energy, forces converge significantly
faster with respect to the number of basic functions than with the pure LAPW procedure

but reach the same values.

1.4.2.4. Full potential scheme

Within one calculation a mixed “LAPW and APW+lo” basis can be used for
different atoms and even different /-values for the same atom [Madsen and al. 01]. In
general one describes by APW+lo those orbitals which converge most slowly with the
number of PWs (such as 3d states) or the atoms with a small sphere size, but the rest
with ordinary LAPWs [userguide-09].

In its general form the LAPW (APW+lo) method expands the potential in the
following form:

Ym Vi ()Y (r) inside sphere

V@) = { (1.41)

Y« Ve " outside sphere

and the charge densities analogously. Thus no shape approximations are made, a
procedure frequently called a “full-potential” method.

The FLAPW is a method that has the double advantage of giving a complete
description of the potential as well as electrons.
There are a number of computer codes implement this ab initio approximation methods

as WIENZk and Exciting.

1.4.3. Pseudopotential/ plane wave methods

1.4.3.1. Pseudopotential

This method assumes that the physical and chemical properties of a system are
essentially governed by the valence electrons, while the ionic cores can be considered
"frozen" in their atomic configurations. In the context of the DFT, pseudopotential
method involves coupling of plane waves and pseudopotentials. This process appears to

be extremely accurate and reasonably fast for solid modeling systems.
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One of the main advantages of using a plane wave basis set is that its accuracy can
be easily controlled. This is related to the fact that, when using such a basis set, we are
making no assumptions about the final shape of the orbitals, other than that there is
some scale below which they become smoothly varying. However, this also leads to a
major disadvantage of using a plane wave basis set, which is that the size of the basis set
required for a given system is often far larger than would be required with a localised
basis set. This is because, in condensed matter systems, the orbitals tend to oscillate
very rapidly in the vicinity of atomic nuclei, and are much more smoothly varying
elsewhere [Gibson-06].

A pseudopotential essentially changes part of what the outer, or valence,
electrons “see'. The core electrons, and the potential due to the bare nuclear charge, are
replaced by a fictitious potential that is defined such that the behaviour of the valence
electrons is not affected outside of some cut-off radius r.from the nucleus. So long as
this radius is not so large that it overlaps regions of space that are involved in chemical
bonding, the pseudopotential approximation should not significantly alter the inter-

atomic interactions that govern the behaviour of condensed matter.

o (AE]
*pseudnputemial

~

/ full patertial |

Figurel.5: An illustration of the full all-electronic (AE) wavefunction and electronic
potential (solid lines) plotted against distance r, from the atomic nucleus. The
corresponding pseudo wavefunction and potential is plotted (dashed lines). Outside a

given radius r¢, the all electron and pseudo electron values are identical.
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Some criteria to judge whether a particular pseudopotential is good, are: transferability
softness and accuracy.
1/ The transferability of the pseudopotential, its ability to accurately describe the
valence electrons in different atomic, molecular, and solid-state environments. A
transferable pseudopotential gives correct results in a wide variety of environments.
2/A pseudopotential is called “soft” when few plane waves are needed. Making a
pseudopotential soft means that it gets tailored for an element in a specific environment.
3/Accuracy: the pseudo-charge density must reproduce the true density as accurately as
possible.

The art of creating good pseudopotentials is to find potentials with these criteria.
There are essentially two kinds of pseudopotentials, norm-conserving soft
pseudopotentials [Troullier-91] and Vanderbilt ultrasoft pseudopotentials
[Vanderbilt-90].

1.4.3.2. Norm-conserving pseudopotentials

Norm-conserving pseudopotentials enforce the condition that, outside of a cutoff
radius, the norm of each pseudo-wavefunction be identical to its corresponding all-
electron wavefunction, therefore, it is necessary that outside the core region the real and
pseudo wavefunctions be identical so that both wavefunctions generate identical charge

densities .Generation of a pseudopotential that satisfies:

fOTc lp;E (T‘) l/)AE (T‘) dr = fOTc lp;seudo (T‘) lppseudo (T‘) dr

S 0 1.42
fO lp;E (T‘) Yae (T‘) dr = fo lp;seudo (T‘) lppseudo (T‘) dr =1 ( )

Where 1,45 (r)is the all electron wavefunction and y¥p¢(r)is the pseudo wavefunction,
guarantees the equality of the all electron and pseudo wavefunctions outside the core
region.

Pseudopotentials of this type are known as non-local norm-conserving
pseudopotentials and are the most transferable since they are capable of describing the

scattering properties of an ion in a variety of atomic environments.
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1.4.3.3. Ultrasoft pseudopotentials

Developed by Vanderbilt in the early 1990 [Vanderbilt-90], the ultrasoft
pseudopotentials, as the name suggests, attain much smoother (softer) pseudo-
wavefunctions so use considerably fewer plane-waves for calculations of the same
accuracy. This is achieved by relaxing the norm-conservation constraint, which offers
greater flexibility in the construction of the pseudo-wavefunctions. In this scheme the
total valence density is partitioned into so-called hard and soft contributions. These
methods are implemented in various forms, and many computer softwares can be used

mainly in VASP, DACAPO, CASTEP and ABINIT codes.

1.4.4. CASTEP package

The CAmbridge Serial Total Energy Package (CASTEP) is originated from
Cambridge University. It was created by Prof. M.C. Payne and it is actually widely used in
U.K universities and condensed matter theory communities available from Molecular
Simulations. CASTEP is based on DFT and provide a good atomic-level description of all
materials. This code is a total-energy code employing pseudopotentials and either the
local density approximation (LDA) or generalized gradient approximation (GGA) for

electronic exchange and correlation, and plane-waves as a basis set.

1.4.5. WIEN2K package

The WIEN2k package is a computer program written in FORTRAN which
performs quantum mechanical calculations on periodic solids. It uses the full-potential
(linearized) augmented plane-wave and local-orbitals [FP-(L)APW+lo] basis set to solve
the Kohn-Sham equations of density functional theory. WIENZ2k is an all-electron
scheme including relativistic effects and has many features. WIEN2k was originally
developed by Peter Blaha and Karlheinz Schwarz from the Institute of Materials

Chemistry of the Vienna University of Technology.
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1.5. Applications

1.5.1. LSDA for chromium nitride

Our calculations are performed with the FP-(L)APW+lo method based on DFT
and LSDA, as implemented in the WIENZ2k code [Schwarz-02]. The electrons exchange-
correlation energy is described by LSDA, for which we adopt the Ceperley-Alder
[Ceperly-80] forms and parametrization of Perdew and Wang [Perdew-92]. Note that
the spin-polarized calculations are achieved with two different spin-up and spin down
densities and two sets of Kohn-Sham single particle equations are solved self-
consistently. We employ the semi-relativistic approximation without spin-orbit effects
for all valence states (including the Cr-3d states).

The band structures of majority and minority spin populations are shown in Fig.
1.6 of the hypothetical zincblende ferromagnetic CrN compound. The spin-up and spin-
down Cr eg states are occupied. The spin-up Cr tq state is only partially occupied. The Cr
d state in the Tq symmetry is split into a triply degenerated state tzg and a doubly
degenerated eg state. The tzg state is higher than the ez state and couples with the anion

N p state [Nkanoun-bouayed08].
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Figure 1.6: Band structure for the ferromagnetic CrN ((a) spin up, (b) spin down) in the

hypothetical zincblende structure.
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1.5.2. LDA+U approach for europium nitride

In this case, we use the spin-polarized DFT using the FP-(L)JAPW+lo method
within the WIEN2k software package[Schwarz-02]. The exchange-correlation energy of
electrons is described by LDA or GGA with the most popular scheme of Perdew, Brouke
and Ernzerhof (PBE) [Perdew-96] and the new one of Wu and Cohen (WC) [Wu-06].
We employ the semi-relativistic approximation without spin-orbit effects for all valence
states (including the Eu-d and f'states). For EuN, we have adopted the values of 2.45 and
1,7 Bohr for Eu and N. In the following calculations, the FP-(L)APW + lo basis set
consists of 4f7 5d?? and 6s? orbitals of Eu, and Zs?and 2p? orbitals of N. In this approach,
the wave function, charge density and potential are expanded differently in two regions
of the unit cell.

We use the approach LDA+U which explicitly includes the term of Coulomb in the
conventional Hamiltonian. As there are several schemes, we choose the scheme
introduced by Anisimov et al. [Anisimov-91, Anisimov-93] which is based on the
correction self-interaction (SIC). This application requires the introduction of two
parameters: U, the Hubbard parameter, which is the term of electronic correlation of
Coulomb and ] is the parameter which makes the interatomic average of exchange. For
binary compound EuN, we have adopted 7.397¢eV for Uer =U - ] [Larson-93].

The fundamental properties are obtained from optimization curves, giving the
variation of the total energy versus the volume for EuN. From optimization, we have
calculated the lattice parameter, Bulk modulus as well as its pressure derivative, using
Murnaghan equation of state [Murn-44]. In Table 1.1, we report the theoretical results
obtained using LDA, GGA (PBE and WC), LDA+U, GGA+U (PBE and WC), compared to the
available experimental data [Suehiro-04]). We can see from the table 1.1 that
calculations obtained by pure LDA underestimate in a significant way the lattice
parameter whereas calculations of GGA-PBE over-estimate the cell parameter in
comparison with the experimental data [Suehiro-04]. Furthermore, we notice that the
GGA-WC calculations significantly improve the lattice parameter between the LDA and
the GGA-PBE approximations. In the other hand, the existence of f-electrons in Eu, we
apply both of approximations LDA+U and GGA+U. By analyzing more carefully the
reported results of Table 1.1, we can see that the introduction of the parameter U in LDA

and GGA (PBE and W() calculations does not lead to a significant improvement of lattice
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parameter value. Moreover, the calculated bulk modulus is in good agreement with the
experimental data. GGA+U (PBE) calculations always over-estimate the cell parameter
and underestimate the bulk module, which suggests that they are in slight agreement
with the experiment than calculations obtained by LDA+U. When we compare the
results obtained by LDA and GGA with those of LDA+U and GGA+U, we have observed
that the corrections due to the U parameter do not improve the value of lattice
parameter. This result was also observed in former calculation done in rare-earth

nitrides using the full potential method FP-LMTO [Larson-93].

Table 1.1: Calculated equilibrium parameters, bulk modulus and pressure derivative of

bulk modulus for EuN compared with available experimental data [Suehiro04].

LDA GGA GGA LDA+U  GGA+U GGA+U  Expt.
(PBE)  (WC) (PBE) (WC)
a (R) 4027 5053 4982 4924 5.05 497 5.00
B(GPa) 1435 11549 132.07 145.0 114.71 133.79 -
B’ 4425 4604 4429  4.804 3.983 4.476 -

We have calculated the band structure of EuN in ferromagnetic state by means of
LDA and LDA+U. Figures 1.7 show the corresponding band structure (majority and
minority spin respectively), according to the high symmetries directions in the Brillouin
zone. We can see that the application of LDA+U induce some modifications to the levels
of the f states in the band structure compared to the LDA, in particular on the energy
levels of the occupied and unoccupied 4f states. Indeed, in the band structure calculated
by the LDA (see fig. 1.7), the occupied states Eu-4fare situated approximately at 0.4 eV
below the Fermi level (Er) in hybridization with the N-2p states, whereas the unoccupied
states 4f are located nearly 4 eV above the Ef, in hybridization with the Eu-5d states.
Moreover, the LDA calculation does not give the correct binding energies of the 4f
energy levels. This problem is solved by the application of the LDA+U (Fig.1.7). In fact,
the unoccupied 4f states remain around 9 eV above the Er level and the occupied states

4fare nearly 1.44 eV below the Fermi level.
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To obtain a deep description of electronic bands, we display in figure 1.8, curves
corresponding to total and local densities of states (TDOS and LDOS respectively). We
can notice, the calculated TDOS corresponding to LDA and LDA+U have a similar aspect
except for the position of the f-states of Eu. In the TDOS calculated by LDA, we observe
only one intense peak whereas with the introduction of the Hubbard term U, the f-states
are represented by several peaks, which correspond to the electronic nature of these
states. Furthermore, we observe three bands; the deeper one is relative primarily to the
5p states of the rare earth. The second band is situated near the Fermi level and presents
a result of hybridizations. The third band, which is slightly deeper corresponds to the
states 2s of nitrogen atom. Moreover, when we observe the LDOS curves, the bands
located under the Fermi level correspond to p states of N with a substantial
hybridization with the f states of Europium [Bouayed-Kanoun-08, Bouayed-Kanoun-
09].

We find a global magnetic moment of 6.0 ug per cell. As expected, the Eu atom is
found to be the main contributor to the magnetic moment of the ferromagnetic
structure, having a localized magnetic moment of 6.116 pg per atom. The nitride
neighbors of Eu together make a much larger contribution of -0.297 ug, while the

interstitial region contributes with 0.182 pg to the magnetic moment.
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Figure 1.7: Calculated spin-polarized band structure corresponding to LDA and LDA+U
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Conclusion

In this chapter we discussed the important theoretical formulation of density
functional theory. We have shown in different section the obvious role of the electronic
density in determination of the physical properties. The main goal of this section was to
provide the reader by the important steps in the foundation of the DFT. The calculations
performed are performed on two types of codes: CASTEP and WIEN2k.
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Chapter two

Copper Nitrides

Abstract

This chapter is devoted to the investigation of physical quantities that can actually
be calculated using density functional theory performed on Copper Nitrides compounds.
Indeed, we report plane-wave pseudo-potential ab-initio calculations in order to
investigate the structural parameters, elastic constants, bonding properties and
polycrystalline parameters of CuN in zincblende, rocksalt and fluorite structures. We pay
more attention to the electronic properties and bonding characteristics and their relation

to the possible covalent/ionic bonding characters in copper nitrides compounds.

« 2ue la stratégie soit belle est an fait. macs n'oubliey pas de vegarder le nésaltas »

Wenodton Chunctill
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2.1. Introduction

Transition metal nitrides attract considerable interest for their properties and
potential technical applications [Pierson-96-Zerr-03]. Both theoretical and
experimental efforts have gone into studying the early transition metal nitrides [Kroll-
03, Wu-05, Grossman-99, Jin-05, Zhan-03, de Paiva-07, Mattesini-03, Kanoun-07].
The 4d and 5d series of late transition metals Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au, also
known as noble metals, are generally considered not to form nitrides [Pierson-96],
although CusN and CusMN have been reported [Moreno-04, Moreno-07]. Despite the
wide interest in making ever better nitrides for applications, the noble metal nitrides
have evaded discovery until the recent synthesis of gold [Krishnamurthy-04], and
platinum nitrides. In fact, the recent highest pressure of a new material, PtN, was
synthesized and recovered in zincblende structure back to atmospheric pressure, by
Gregoryanz and al. [Gregoryanz-04]. As for theoretical progress, ab initio quantum
mechanical calculations of the atomic and electronic structures allow the theoretical
modelling of new materials permitting their properties to be predicted, and suggesting
new syntheses. In fact the structural and electronic properties of cubic PtN have been
extensively studied using various theoretical calculations [Kanoun-05-Zhang-09].
Young and al [Yu-06] have performed first-principles calculation and experimental
studies of PtN, finding its structure to be elastically unstable. A fluorite-type structure
was therefore suggested with a composition of PtN; [Yu-06]. These explorations
motivated us to study theoretically different crystal structures of copper nitrides as
possible candidates as hard noble metals. In particular, we are interested in studying the

compound with 1:1 stoichiometric ratio of Cu:N and fluorite structure CuNo.

2.2. Crystal structure description

We consider three possible phases for copper nitrides: ZB (space group F43m),
RS (space group Fm3m), and fluorite C1-like structure (space group Fm3m). ZB, RS and

C1 phases consist of three lattice constants of the conventional unit cell a, b, and c. The
basis consists of a copper atom at (0, 0, 0) and nitrogen at (i)(l, 1, 1), wherea=b=rc.
The first and third phases have a= 4, while the second has a= 2. For the crystal structure

of fluorite-type structure, the copper atoms form a face-centered cubic (fcc) lattice,

while nitrogen atoms occupy all of the tetrahedral interstitial sites.
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Figure2.1: Zincblende structure, rocksalt structure and fluorite structure

2.3. Method of calculation and computational details

Our calculations use first-principles total energy calculations based on DFT
applying the generalized gradient approximation (GGA) using the scheme of Perdew,
Brouke and Ernzerhof [Perdew96] and also tools specific to CASTEP code [Segall-02-
Milman-00]. These include norm-conserving and ultra-soft pseudopotentials (UPP)
[Vanderbilt-90], a plane wave (PW) basis set, and use of k-point sampling techniques
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme for optimizing geometry, etc.
Major advantages of the PW based approach are: the ease of computing forces and
stresses; good convergence control with respect to all computational parameters
employed; favorable scaling with the number of atoms in the system and the ability to
make cheaper calculations by neglecting core electrons. Our calculations used the
valence electron sets but employed an UPP representation to describe the core
electrons. For our systems we use PW cut-off energy of 320 eV, with a Monkhorst-Pack
k-point mesh in the Brillouin zone [Vanderbilt-90] about 10x10x10 for ZB and RS-CuN
and with 9x9x9 for CuN2. The convergence is assumed when the forces on atoms are
less than 0.03 eV/A. Mulliken charges and bond populations where calculated by

projecting the PW Kohn-Sham eigenstates onto the atomic basis sets.

2.4. Structure and elastic constants

The equilibrium lattice parameters and the bulk modulus, listed in Table 2.1 for
CuN in the ZB, RS, and fluorite structures, were calculated using PP-PW and

FP(L)APW+lo. We have obtained larger lattice parameters for the C1 type than those
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reported for the ZB and RS types. This result seems reasonable because, in C1-type
structure, the nitrogen atoms all occupy the tetrahedral interstitials of the copper
sublattice. The octahedral interstitials are left empty because nitrogen atoms are too
small to be stabilized in the octahedral interstitials of the noble nitrides. The lattice
constant of the RS structure is smaller, but close to the ZB structure’s one. Although the
nitrogen atoms fill the same face-centered-cubic lattice formed by the metal atoms in the
RS and ZB structures, the volume of the octahedral interstitial sites (where nitrogen
atoms reside in the RS structure) is larger than that of the tetrahedral interstitial sites
(occupied by nitrogen in the ZB structure). When we compare our results for CuN to
pure fcc-Cu (ao = 3,615 A, B = 133 GPa [Sigalas-92]), we observe that alloying copper
with nitrogen makes the nitride harder than the metal. Thus, the copper nitride phases
are less compressible than the pure metal.

In order to complete the mechanical stability description of these systems, we
obtain a set of zero-pressure elastic constants from the resulting change in total energy
on the deformation. The elastic constants Cj were calculated within the total-energy
method, where the unit cell is subjected to a number of finite-size strains along several
strain directions. Cubic lattices have three independent elastic constants [Nye-85],

namely, C11, C12, and C44. These constants obey the following relations:

1
B = 3 (Ci1 +2C52) (2.1)
Cr = Cyy (2.2)

1
Cs = E(Cn — C12) (2.3)

Where B is the isotropic bulk modulus, C; is the resistance to shear deformation across
the [100] plane in the [010] direction, and Cs is the shear modulus across the [110]
plane in the [1-10] direction. The obtained elastic stiffness constants Cij are gathered in
Table 2.1. Furthermore, the mechanically stable phases or macroscopic stability is
dependent on the positive definiteness of stiffness matrix [Fedorov-68]. For a stable
cubic structure, the independent elastic constants should satisfy the well-known Born-
Huang criterion [Born-82], given by: Cas> 0, C11> |C12| and C11+2C12> 0. It can be seen
that the CuN in ZB, RS and C1 phases are mechanically stable because all elastic

constants are positive and satisfy the Born mechanical stability restrictions.
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To ascertain the stiffness of the solid, we compute Young’s modulus, the ratio
between linear stress and strain. Young’s modulus can be calculated from Hill’s [Hill-52]

shear (G) and bulk modulus through the following equation:

__ 9BG
T 3B+G

(2.4)

The value of G has been obtained by taking the arithmetic mean of the computed Reuss

(R) [Reuss-29] and Voigt (V) [Voigt-28] approximations:

G = (2.5)
_ 5(€11=C12)C4s
R 4C44+3(C11—C12) (26)
G, = Su=Crat3Cu (2.7)

5

Then, Poisson’s ratio v was obtained for polycrystalline compound species from B and Gy

as:

_ 3B-2G,
T 2(3B+Gy)

(2.8)

Our calculated values for bulk modulus, shear modulus, Young’s modulus, and
Poisson’s ratio of all structures are summarized in Table 2.1, within the Voight-Reuss-
Hill bounds [Fedorov-68]. The shear modulus of the RS phase is evidently higher than
those for the C1 and ZB phases. The larger shear and Young’s moduli are mainly due to
its larger value for C44. Moreover, our computed Poisson’s ratio of the RS phase is
considerably smaller than the C1 and ZB phases. The smaller value of Poisson’s ratio
indicates that the RS phase is relatively stable against shear; a stronger degree of
covalent bonding results in the higher hardness. In fact, Poisson’s ratio can formally take
values between -1 and 0.5, which correspond, respectively, to the lower bound where
the material does not change its shape and to the upper bound when the volume
remains unchanged. It has been proved that v= 0:25 is the lower limit for central-force
solids and 0.5 is the upper limit, which corresponds to infinite elastic anisotropy
[Ledbetter-83]. All the calculated Poisson’s ratio values are larger than 0.25, which
means that CuN phases are affected by central contributions. The elastic anisotropy of
crystals has an important implication in engineering science since it is highly correlated
with the possibility to induce microcracks in the materials [Tvergaard-88]. The

anisotropy factor for cubic crystals [Karki-97] is given by:
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_ 2C4_4_+C12
C11

Aan (2.9)

In addition, this factor may provide insight on the elastic anisotropy of the
present CuN phases. The shear anisotropic factors obtained from our theoretical studies
are given in Table 2.1. For a completely isotropic material, that is when Cr = Cs, the A
factor takes the value of 1, while values smaller or greater than unity measure the
degree of elastic anisotropy. It is interesting to note that our calculations give values
close to unity for the RS phase: a characteristic of highly isotropic systems. This is
further confirmed by the fact that G =Css. On the other side both ZB and C1 phases are
showing a certain amount of elastic anisotropy, which might lead to a higher probability

to develop microcracks or structural defects during the growing process.
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Table 2.1: Calculated equilibrium parameters a(A),elastic constants Cj (GPa), Bulk
modulus B (GPa), Shear modulus G (GPa), Young’s modulus Y (GPa), and Poisson’s ratio
v. The calculated density p (g/cm3), longitudinal, transverse and average sound velocity

(v, Vi, vmin km/s), and Debye temperatures 0p (K) are also shown.

CuN (ZB) CuN (RS) CuN; (Fluorite)
a 4.336 4.078 4.694
(4.341)2 (4.074)2
C11 293.55 340.0 292.14
C12 219.63 191.0 242.34
C44 73.16 72.80 62.36
B 244.27 240.66 258.94
G 55.623 73.475 43.154
Y 155.096 200.066 122.648
14 0.394 0.361 0.421
A 1.246 0.990 1.256
p 6.305 7.580 5.870
Vi 2970 3.113 2.711
Y 7.106 6.684 7.342
Vm 3.360 3.506 3.078
Op 732.592 812.901 620.058

areference [Kanoun-07]

One of the most important parameters determining the thermal characteristics of

materials is the Debye temperature (Op). As a rule of thumb, a higher Debye temperature
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implies a higher associated thermal conductivity. The knowledge of such a numerical
figure is essential for developing and manufacturing electronic devices. At low
temperatures, the vibrational excitations arise solely from acoustic vibrations.
Therefore, the Debye temperature calculated from elastic constants at low temperatures
is the same as that determined from specific heat measurements. In order to estimate
Debye temperature, we used the simple Debye-Griineisen model. The Debye
temperature can be defined in terms of the mean sound velocity and gives explicit
information about lattice vibrations [Ibrahim-88]. It can be determined from the

following equation [Anderson-63]:

1

6, = é 2 (*22)[* v, (2.10)

A1

Where h is Planck’s constant, kzis Boltzmann’s constant; Nsis Avogadro’s number, p the
density, M the molecular weight, n the number of atoms in the unit cell, and vy, the mean

sound velocity given by the following relations:

_ 3Byry+4GVRH
= [(Een 2
G
v, = (%) (2.12)
_1
1({2 1 3

Where v; and v: are longitudinal and transverse elastic wave velocity of the
polycrystalline materials and can be obtained using the polycrystalline shear modulus
and bulk modulus from Navier’s equation [Schreiber-73]. The calculated Debye
temperatures are listed in Table 2.1. Our model predicts a relative high 6p value,
indicating a rather stiff lattice and therefore good thermal conductivity. The progressive
decrease of mean sound velocities in the RS—ZB—C1 phases further explains the
proneness of lowering Debye temperatures along the same sequential order. Further

properties depending on temperature will be given in the last section.

2.5. Electronic properties

For a detailed description of electronic properties using the GGA, Fig. 1a, 1b and
1c shows the total (TDOS) and local densities of states (LDOS) for the ZB, RS, C1 phases,

respectively. We can decompose the LDOS into three energy regions: (i) the lowest
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region stemming mainly from N-Zs states; (ii) the region at the bottom of the valence
band complex dominated by occupied 3d noble metal states; (iii) the upper region of the
valence-band complex cut by Erand mainly due to Cu-3d states mixed with N-Zp states.
It can be observed that the N-Zp states hybridize strongly with the Cu-3d states. We can
thus consider that two main factors are at origin of the electronic structure of the cubic
copper nitride compounds. The first factor is the expansion of the face-centered-cubic
lattice compared to the pure Cu lattice due to the insertion of the nitrogen atoms at the

tetrahedral interstitial sites. The second factor is the interaction between the Cu-3d

electrons and the N-Zp electrons.

DOS (States/eV cell)

Figure 2.2: TDOS and LDOS for copper nitrides (a) ZB, (b) RS and (c) C1 phases. The
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vertical dot line denotes the Fermi level.
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2.6. Bonding characteristics

2.6.1. Mulliken population

In order to obtain a deeper insight into the bonding character, we calculate the
Mulliken population. Table2.2 shows the orbital charges and the effective valence of both
Cu and N species for the phases under consideration. The effective valence for the Cu
cation is +0.36, +0.38 and +0.23 in the ZB, RS and C1 phases respectively. These values
are representative of the concurrent ionic and covalent bonding confirming a part of
results of the previous calculations with full potential ab initio calculations [Kanoun-
07]. Although it is difficult to put a figure on the level of iconicity and covalency using
the effective valence concept, the type of bonding and its level can be determined by
calculating the Mulliken bond population as reported in Table2.3. We can see that the
bond population and bond length (mainly Cu-N) for the ZB are in the same order of
those of RS. Compared to the C1 phase, the bond population decreases although the
bond length still of the same order of those of the ZB and RS phases. It is important to
notice that a high positive bond population indicates a high degree of covalency in the
bond, and positive and negative values indicate bonding and anti-bonding states
respectively. From our results, the negative values (and then the anti-bonding states)
are found in the C1 phase, between the nitrogen atoms. If we compare the bond
population of all three phases, we can conclude that ZB is the most covalent, followed by

RS and C1 phases.
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Table2.2: Atomic Mulliken charges in copper nitrides calculated from PW pseudo-

potential calculations.

Phases Species s p d Total (e) Charge Effective

(¢) Charge(e)

CuN (ZB) Cu 0.49 0.53 9.35 10.36 0.64 0.36
N 1.77 3.87 0.00 5.64 -0.64

CuN (RS) Cu 0.48 0.52 9.39 10.38 0.62 0.38
N 1.78 3.84 0.00 5.62 -0.62

CuN: Cu 0.47 0.47 9.29 10.23 0.77 0.23
(1) N1 1.90 3.49 0.00 5.39 -0.39
N2 1.90 3.49 0.00 5.39 -0.39

Table2. 3: Mulliken Bond populations and Bond lengths in copper nitrides calculated

from PW pseudo-potential calculations.

Phases Bond Bond population Bond length [A]

CuN (ZB) N - Cu 1.54 1.9172
N-N - 3.1445

CuN (RS) N - Cu 1.45 2.0905
N-N - 2.960

CuNZ2 (C1) N1-Cu 0.78 2.0675
N2 -Cu 0.78 2.0675

N1-N2 -0.28 2.3874
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2.6.2. Electronic localized function

To further elucidate the nature of chemical bonding, we have calculated the
electronic localized function (ELF) [Burnus-05] using the Exciting code [Silvi-94]. The
ELF has proven to be a useful companion to the density in the task of providing us with
insightful intuition on the electronic structure. In fact, when ELF = 1, it corresponds to
perfect electron localization. In Figure 2.3, we sketch the ELF 3D contours and gave
specific bond lengths of CuN in ZB, RS and Clstructures. It is clear that the Cu-N bonds
are stronger than N-N bonds for CuN in ZB, RS and C1. On the other hand, for the C1, the
ELF analysis indicates that the Cu-N bonds are considerable weaker than of the ZB and
RS structures (thus a much lower Css value for the C1 structure). The ELF contours
reveals areas with a considerable charge accumulation (at nitrogen sites) and
dissipation (at Cu sites) as to indicate that charge transfer is not a negligible effect in
CuN for ZB, RS and C1 structures. Most of the electronic charge transferred to the
nitrogen atoms comes from regions where the covalent Cu-Cu interactions are taking

place.
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(a) Zinc Blende

(b) Rock Salt

Figure 2.3: 2D and 3D-ELF for copper nitrides (a) ZB, (b) RS and (c) C1 phases.
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2.7. Temperature effect

In order to investigate the thermodynamic properties, we studied thermal effects
within the quasi-harmonic Debye model at high temperatures and pressures as
implemented in the GIBBS program [Blanco-04]. We obtained E - V data for the
optimized CuN structures at P = 0 and T = 0, and then derived the macroscopic
properties as functions of p and T from standard thermodynamic relations. Applying this
model, we have successfully investigated the structural and thermodynamic properties
of CuN in all the considered phases. The obtained pressure dependencies of the
normalized volume are illustrated in Fig.2.4. To further investigate the thermal
anisotropy of our systems, we calculate the linear thermal expansion parameters and in

the inter-layer direction, by the following equation at zero pressure:

= 1
q =2 — 19

(2.14)

Where | represents the lattice parameter (a for our cubic structure). At room
temperature, we obtain 1.90 x 10-5 K-1, 1.81x10-% K- and 1:70x10-> K-1 for ZB, RS and
Fluorite phases respectively.

The obtained heat capacities, Cy, at P = 0 are plotted in Fig.2.5 showing that,
when T> 500 K, Cy depends on both temperature and pressure. This is due to the
anharmonic approximations of the Debye model used in our calculation. However, at
higher temperature, the anharmonic effect on Cy is suppressed, and Cy is very close to
the Dulong-Petit limit which is followed by all solids at high temperature. In the same
Fig.2.5, we present at P = 0 the temperature dependencies of thermal expansion a. The
thermal coefficient a also increases with T3 at lower temperatures and gradually
approaches to a linear increase at higher temperatures, and that the propensity to
increase becomes moderate [Goumri-Said-08]. Moreover, the variation of thermal
expansion coefficient with temperature is similar to that of Cv . Our results show that

both of Cyand a are sensitive to the structure type of these copper nitrides.
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Summary

In summary, we have carried out ab initio calculations of structural, elastic,
electronic, bonding, and thermal properties for different cubic phases for the copper
nitrides. There is a concurrence between ionic and covalent character in the phases
considered. The bond population calculation confirms that zincblende is the most
covalent of these phases. Bonding nature was analyzed using the electronic localized
function. Our results provide a basis for closer investigation of new copper nitride
properties. We used the quasi-harmonic Debye model to study the effect of temperature
on the variation of linear thermal expansion parameters and the specific heat. We are
not aware of any experimental data or theoretical calculations on the copper nitrides, so

we consider these results as a prediction study for these compounds.
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Chapter Three
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Abstract

This chapter deals with properties and structure of rare earth dioxides. The goal of this
chapter is to provide an overview of the properties that can be obtained in these systems,
and to serve as a basis for more application driven research. Furthermore we try to
understand the properties of these compounds from a physical and structural point of view,
we clarify that the GGA implementation and the inclusion of the Hubbard U parameter and

the spin-orbit coupling lead us to describe correctly the relativistic effect on 4f electrons.

“7&W6mm&xaawmwm&a, bafile us én oun pecalations, and lbawnt ud in oan uery dreams. They

stnetel lile an anbnown sca befone ue, mocking, mydtiying and munmaning strange nevclations and pooddbilitics”
S Wellcam (rookes, 1902
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3.1. Introduction

The exploit of lanthanide elements in modern technology has increased
dramatically over the past years, a continuous increase of the research effort on rare
earths containing materials has occurred, and particularly on their oxides. Indeed, a
number of functional materials based on rare earth oxides have been developed in
various fields. Up to 1990, many review articles describing rare earth oxides have been
reported and several intensive articles dealing with the physical properties have been
published. It is presently acknowledged that the rare earth may find very relevant
applications as catalysts [Shafer-72, Trovarelli-02], optical materials [Gschneidner-
81, Choppin-89, Bergmann-74], or ionic conductors [Guinier-64, Boulesteix-82].
Some of these applications have reached the technological maturity, large scale
industrial consumption of the rare earth oxides being associated with them [Bergmann-
74], Such is the case of the three-way catalysts [Eyring-90, Eyring-98, Hyde-65,
Zhang-96], or the lighting applications of lanthanoid-containing photo-luminescent

materials [Gschneidner-81, Bergmann-74].
3.1.1. Current interest in rare earth dioxides

From our personal items such as a portable compact disc player to a super
computer or a huge atom-smashing accelerator, there are many rare earth materials
having crucial roles in such systems. An automobile is a heap of rare earth materials.
This is because rare earth ions exhibit some unique properties. Usefulness of rare earth
materials for permanent magnets and luminescent materials for television and lighting
systems goes without saying. Most of rare earth materials have been produced from rare
earth oxides. Rare earth oxides are of importance for glass industry, not only glass
components but also surface polishing [Gschneidner-81]. As deduced from a recent
review work, a great deal of data on the structural, physical and chemical properties of
the binary rare earth oxides are presently available. This wealth of information has
substantially modified our view about them, formerly, considered as a rather exotic

group of oxides, with mainly academic interest.

In basic studies on markers for brain tumor and digestibility estimation, the rare
earth oxides have an affinity for plant cell walls, and have been used in their soluble

form to label indigestible plant fiber, in order to study digestion in ruminants
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[Marabelli-87]. Samarium, scandium, ytterbium and europium oxides have already
been successfully used as inert markers to measure apparent utilization of nutrients in
humans [Hutcheson-79].Lanthanides are now incorporated into many technological
devices, including superconductors, samarium-cobalt and neodymium-iron-boron high-
flux rare-earth magnets, magnesium alloys, electronic polishers, refining catalysts and
hybrid car components (primarily batteries and magnets)[Haxel-06]. Most lanthanides
are widely used in lasers, and as (co-)dopants in doped-fiber optical amplifiers (e.g. Er-doped
fiber amplifiers (EDFAs) which are used as repeaters in the terrestrial and submarine fiber-optic
transmission links that carry internet traffic). These elements deflect ultraviolet and infrared
radiation and are commonly used in the production of sunglass lenses. Other applications are

summarized in the following table 3.1 [Helen-01].

3.1.2. Classification

There is some confusion over the definition of the term rare earth (RE) element.
Strictly speaking the term refers to the lanthanide series, that is those elements that
have a partly-filled 4f orbital (series comprises the elements with atomic number
increasing from 58 (cerium)(Ce) to 71 (lutetium)(Lu)). Usually lanthanum (La) is also
included in the lanthanide series. All lanthanide elements form trivalent cations, Ln3+,
whose chemistry is largely determined by the ionic radius, which decreases steadily

from lanthanum to lutetium.

From the chemical point of view, the Lanthanoid elements are characterized by a
regular variation of their 4f electron configuration throughout the series, Table 3.1.
Inherent to this peculiar electron configuration, the lanthanoid elements show a number
of atomic properties that are considered to determine the chemical and structural

properties of their compounds, and, particularly, those of their oxides.

Despite their name, rare earth elements (with the exception of the radioactive
promethium) are relatively plentiful in the Earth's crust, with cerium being the 25th
most abundant element at 68 parts per million (similar to copper), even the least
abundant lanthanoid elements, Tb, Tm, and Lu, are more abundant than Ag [Kilbourn-
93]. However, because of their geochemical properties rare earth elements are typically
dispersed and not often found in concentrated and economically exploitable forms

known as rare earth minerals. It was the very scarcity of these minerals (previously
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called "earths") that led to the term "rare earth". The first such mineral discovered was

gadolinite, a compound of cerium, yttrium, iron, silicon and other elements.

The electronic structure of the lanthanide elements, with minor exceptions is
[Xe]6s?4f". In their compounds, the 6s electrons are lost and the ions have the
configuration [Xe]4f™. The chemistry of the lanthanides differs from main group
elements and transition metals because of the inner nature of the 4f orbitals. Also, the
differences of electron configuration between the lanthanoid elements are associated to
4f electrons relatively well screened from the chemical surroundings by the outer
(5s2pf) shell. This implies weak crystal fields splitting effects [Antic-02], and a relatively
small covalent contribution to the bonding. Accordingly, the ionic model plays an
important role in determining their chemistry. Also related to these chemical
characteristics, the lanthanoid compounds exhibit a rich variety of structures, often

reflected in the occurrence of polymorphism phenomena.

As f-f transitions are forbidden, once an electron has been excited, decay to the
ground state will be slow. This makes them suitable for use in lasers as it makes the
population inversion easy to achieve. The Nd:YAG laser is one that is widely used.
Lanthanide ions are also fluorescent as a result of the forbidden nature of f-f transitions.
Europium-doped yttrium vanadate was the first red phosphor to enable the

development of color television screens [Eyring-90]
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Table3.1: Some relevant properties of the lanthanides elements their atomic number

and symbol, and their main usages [Kilbourn-93].

Z Symbol Name Electron Selected Usages
Contf.
57 La Lanthanum 5d16s? High refractive index glass, flint, hydrogen
storage, battery-electrodes, camera lenses,
fluid catalytic cracking catalyst for oil
refineries
58 Ce Cerium 4f15d16s?  Chemical oxidizing agent, polishing powder,
yellow colors in glass and ceramics, catalyst
for self-cleaning ovens, fluid catalytic
cracking catalyst for oil refineries
59 Pr Praseodymium 4£36s2 Rare-earth magnets, lasers, core material for
carbon arc lighting, colourant in glasses and
enamels, additive in Didymium glass used in
welding goggles, ferrocerium firesteel (flint)
products.
60 Nd Neodymium 4f*6s2 Rare-earth magnets, lasers, violet colors in
glass and ceramics, ceramic capacitors
61 Pm Promethium 45652 Nuclear batteries
62 Sm Samarium 4f66s2 Rare-earth magnets, lasers, neutron capture,
masers
63 Eu Europium 417652 Red and blue phosphors, lasers, mercury-
vapor lamps, NMR relaxation agent
64 Gd Gadolinium  4f75d16s? Rare-earth magnets, high refractive index
glass or garnets, lasers, x-ray tubes,
computer memories, neutron capture, MRI
contrast agent, NMR relaxation agent
65 Tb Terbium 412652 Green phosphors, lasers, fluorescent lamps
66 Dy Dysprosium 4{106s2 Rare-earth magnets, lasers
67 Ho Holmium 4{116s2 Lasers
68 Er Erbium 412652 Lasers, vanadium steel
69 Tm Thulium 4{136s2 Portable X-ray machines
70 Yb Ytterbium 4{146s2 Infrared lasers, chemical reducing agent
71 Lu Lutetium 4f145d16s PET Scan detectors, high refractive index

glass

3.1.3. Overview of experimental and theoretical works

On account of this obvious importance, several studies have already been

conducted especially for CeO2 and little for PrO2. On the experimental side, the electronic

states were experimentally determined on the basis of spectroscopic measurements

[Marabelli-87, Fujimori-83, Karnatak-87, Ogasawara-91] and the Brillouin zone
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center (BZC) phonon frequencies have been measured by several methods [Spanier-
01,Wang-01]. The variety of experimental results reported on the bulk modulus of CeO;
[Duclos-88, Gerward-93, Nakajima-94, Gerward-05] and PrO; [Gerward-05]. The
high-pressure a-PbCl2-type phase of the CeO: has also been investigated and the
transition pressures have been reported as 31 GPa.

On the theoretical side, a small number of calculations have been published for
PrO, [Dabrowski-01, Mehrotra-07, Divi-04, Divi-05, Novk-07] in contrast to the
number of studies related to CeO». Particularly, elastic stiffness, electronic structure and
dielectric functions for all rare earth dioxides have not been considered yet with an
accurate approximation as well as spin-orbit coupling and strong correlation effects. As
for CeO2, numerous calculations are available and are carried out by several methods
such as periodic Hartree-Fock [Gennard-99], self-interaction-corrected local spin-
density approximation [Gerward-05, Petit-07], local-density approximation (LDA), and
generalized gradient approximation (GGA) within density functional theory (DFT)
[Mehrotra-07, Skorodumova-01, Koelling-83, Fabris-05, Loschen-07, Jiang-05,
Yang-04, Silva-07]. The debate on the methods to investigate systems with localized
(strongly correlated) f electrons still continues in the literature. Many researchers
believe that conventional DFT techniques based on LDA or GGA could be unable to cope
with these systems. This belief is supported by the current and recent papers on CeO-
and Ce203 [Skorodumova-01, Skorodumova-04]. The LDA+U and GGA+U methods
[Anisimov-91, Anisimov-97] are applied in the study of CeO: [Shi-10, Gurel-06,
Nolan-05, Andersson-07] and PrO; [Tran-08] where Hartree-Fock type interactions

are parameterized with Coulomb U and exchange ] terms.

3.1.4. About fluorite structure

Fluorite structure (CaF;) has the basic crystal structure knows as fluorite, which
is shown in Figure 3.1. It is one of the most common crystalline solid types found in
nature. This structure type is the aristotype for all the intermediate rare earth oxides.
The fluorite structure is filled with a host structure; the anions form a simple cubic
lattice where the cations occupied the half of the cubic sites. It is also possible to reverse
the roles of cations and anions and considered cations as a face-centred cubic (fcc)
arrangement with the anions occupying all tetrahedral sites. These two views are

equivalent; the fluorite structure can be equated with two subnet works: cations form a
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subnet fcc and anions form a cubic primitive subnet. In the fluorite structure, the
coordination number of cations and the anions is 8 and 4 respectively. This corresponds
to fcc structure in which the cations are positioned at (0, 0, 0) and the anions are located

at(1/4,1/4,1/4) and (3/4, 3/4, 3/4), there are 4 CaF; in unit cell in the group Fm3m.

Figure3.1: (a) Crystal structure and (b) Brillouin Zone for the primitive cell of REO;Blue
atoms are RE and red atoms are Oxygen.

3.2. Computational details

Our calculations were carried out using the full-potential (linearized) augmented
plane waves plus local orbitals (FP-(L)APW+lo) method [Blaha-01] based on the
density functional theory. The electronic exchange and correlation functions have been
treated by utilizing both LDA and Wu-Cohen scheme [Wu-06] form of GGA together
with their on-site Coulomb interaction added versions, The mulffin-tin radii (Rur) are
considered to be equal to 2.22 and 1.9 a.u. (bohr units) for Ce and O atoms, respectively.
The self-consistent procedure has been carried out with the energy cutoff constant Rur x
Kmax = 9 and the Brillouin zone integrations were performed with the special k-points
method over 12x12x12 Monkhorst-Pack mesh [MonKhorst-76]. To improve the
description of rare earth (RE) 4f electrons we used the GGA+U (U is the Hubbard term)
which corresponds to the GGA+U method described in Refs. [Anisimov-93] and
[Liechtenstein-95] with the GGA correlation potential instead of LDA. In the GGA+U-
like methods, an orbitally dependent potential is introduced for the chosen set of

electron states, which in our case is 4f states of RE. This additional potential has an

~ 50 ~



Chapter 3 Rare-earth dioxides

atomic Hartree-Fock form but with screened Coulomb and exchange interaction
parameters. The choice of U is, however, not unambiguous and it is not trivial to
determine its value a priori, though there are attempts to extract it from standard first-
principles calculations [Cococcioni-05]. In order to determine the Uesr = U - | (setting J =
0), available experimental data such as lattice constant, bulk modulus, and band gap
have been compared with the calculated values. Hence, Ues is treated as an empirical
fitting parameter. Moreover, the spin-orbit coupling was included in all calculations. The
convergence of the self-consistent field calculations is attained with a total energy
convergence tolerance of 0.1 mRy. Moreover, the spin orbit coupling (SOC) was also

included in the calculations based on the second variational approach [Blaha-01].

3.3. Effect of strong correlation on Ceria

3.3.1. Fundamental properties

The cerium as all rare-earth elements differs from main group elements because
of the presence of the 4f orbitals, which are more localized and induce then a direct
weak coupling between themselves and ions. On the other hand, 4f RE elements can
have larger magnetic moments than the 3d elements, and, unlike the d states, f electrons
can couple strongly with the host s electrons, leading to the possibility of electron-
mediated ferromagnetism in these materials. It can therefore be anticipated that for a
RE, LDA is unable to describe correctly the interaction between these localized and
strongly correlated 4f electrons and the itinerant 3d states of the host material. This
could be overcome by treating the 4f states as core states. An efficient and popular way
to improve on the LDA failure without resorting to fully atomic 4f behavior is to use the
LDA+U method. In LDA+U, the correlation absent in LDA is reintroduced by an onsite
Coulomb repulsion parameter U (called also Hubbard parameter), to which an a priori
value has to be assigned. The Hubbard approach has been used in some recent works
with considerable success. It's expressed in terms of two parameters. These are the
Hubbard parameter U, which reflects the strength of the on-site Coulomb interaction,
and the parameter ], which adjusts the strength of the exchange interaction. In the
somewhat simplified, these two parameters are combined into a single parameter
Ue=U-/.
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The crystal structure of CeO; is equivalent with that of fluorite structure Fm3m
(see Fig. 3.1). Firstly, to determine the Uer parameter for this rare earth oxide lattice
parameter, the bulk modulus, and band gap (Egep = O 2p - Ce 4f'and Egqp = O 2p - Ce 5d)
values are calculated by LDA+U and GGA+U, then these results are compared with the
experimental data as shown in Fig.3.2. Equilibrium lattice parameter, bulk modulus, and
its pressure derivative for CeO; are gathered in Table3.2, in comparison with
experimental [Gerward-93, Nakajima-94, Gerward-05, Villars-91] and theoretical
values [Skorodumova-01, Fabris-05, Silva-07, Gurel-06, Shi-10,Sevik-09]. The
equilibrium lattice constant (a) and the bulk modulus (B) were estimated by fitting the
Murnaghan-Birch equation of states [Murnaghan-44, Birch-78] to the resulting

energy-volume data. This equation is expressed as
2 3 2 2 2
_ 9V B Vo3 ’ Vo3 Vo3
E(V) =E, + 1"60{[(7") - 1] By + l(V") - 1] [6 - 4(2) l} (3.1)

Where Epand Vyare the energy and volume at equilibrium B and B’ are the bulk modulus

and it's the pressure derivative

The lattice parameter is underestimated by 0.62 % at the purely LDA level
(Ue=0eV) compared to experiment. Thus, introducing Ues> 0 show that lattice
parameter is always larger than experimental value but increases as function of yes for
GGA+U (see Fig.3. 2a). In the case of LDA+U, the lattice parameter is smaller than
experimental data but also increases of Uet. In the case of GGA+U, the calculation at Uesr =
0 eV gives that a is overestimated by 0.13 % compared to the experimental data and for
a Uesr value between 4 and 5 eV the lattice parameter matches the experimental value. As
indicated in Fig.3.2b, the bulk modulus value is also steadily increasing with increasing
Uesr but this observable is even less affected by the latter parameter. However, our
calculated a and B values calculated by the GGA+U approach with Ues values 5 eV
compare well with the experimental data. In addition to consistent reproduction of a
and B with the chosen values of Uetr for CeO2 compound, the calculated values for band
gaps are reasonably good, given the well-known fact that DFT underestimate band gaps
of insulators (see Fig.3.2c). Furthermore, our systematic study of these three parameters
shows that the GGA+U (with Wu and Cohen scheme) approach works better than LDA+U

and also PBE+U (Perdew-Burke-Ernzerhof formalism).

~ 61 ~



Chapter 3

Rare-earth dioxides

5.44
" GGA+U (a) ’34: **************************
* LDA+U - (b)
543 Expt. . . - i = GGA+U
_ . . . - ner o LDA+U
"S 542 1 . _— ----  Expt. . .
£ . S mf .
£ ) .
E B £ 216t
a =
= =
g 340r E 210 . . .
E E L -
- 539 1 . . é 1 B T o
sash . . ‘ 198 | . -
192 :
0 1 2 3 4 5 6 7 8 0 I 2 4 5 6 7
UErr (eV) U"f (eV)
(c)
. P
d .
v
v \ : : e °
v v
S 5t '
= = GGA+U(2p - 4f)
= o GGA+U (2p - 5d)
s s LDA+U(2p - 4f)
= 4F v LDA+U(2p-5d)
8 - Expt.Qp-4)
= - Expt.(2p-5
2 pt. (2p - 5d)
I e r------ 2
= .
. 1
22 - . :
1 1 1 L 1 1 1 1
0 1 2 3 4 5 6 8
Ue" (eV)

Figure 3.2: (a) Lattice constant, (b) bulk modulus and (c) band gap as a function of the

Hubbard Ues
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Table3.2: Equilibrium lattice parameter (a), bulk modulus (B), and its pressure
derivative (B’) of CeO2 compared to other theoretical and experimental data. (a is in A, B

in GPa, and B’ dimensionless).

a B B’
FP-(L)APW+lo GGA (U=0)  5.417 193.74 4.60 Our work
FP-(L)APW+lo GGA+U,5eV ~ 5.426 207.08 4.81 Our work
FP-(L)APW+lo LDA (U=0) 5.376  204.15 4.25 Our work
FP-(L)APW+lo LDA+U,5eV ~ 5.384 221.3 4.5 Our work
Experiment 5410 204-236 [a,b,c,d]

[a,b,c,d]reference[Gerward-93, Nakajima-94, Gerward-05,Villard-91]

3.3.2 Electronic structure of Ceria

In order to show the effect of strong correlation in electronic structure, we have
calculated the total and partial density of states (DOS) curves at the predicted
equilibrium lattice constants for CeO;, which are displayed in Figure3.3 within the
framework of GGA approach with and without Ues, where the vertical line is the Fermi
level (Er).A common trend can be proposed from total DOS graphs that the influence of
Uer on the electronic structure is basically restricted to the unoccupied f state and this
does not drastically change the electronic distribution especially occupied states.
Another consequence of higher values of Ues is a slightly reduced width value of the Ce

4f peak and increases the intensity of this peak, which reflects stronger localization.
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Figure3. 3: Total and partial density of states at GGA+U (with U = 0 and 5 eV) for CeO..
Since the spin-up and spin-down channels are identical, only the spin-up channel is

shown. The vertical solid line denotes the Fermi level.

3.4. Physical properties of rare earth dioxides

3.4. 1. Equilibrium lattice properties

As first step, the ground-state structures of dioxides REO> for the rare earths, RE=
La, Ce, Pr, Nd, PM, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, were obtained by
performing DFT/GGA (add U) calculations with spin-polarization effects. The
equilibrium lattice constants (a), bulk modulus (B) and its pressure derivative (B') for
dioxides REO; are listed in Table 3.4, in comparison with experimental data [Duclos-88,
Gerward-93, Nakajima-94, Gerward-05, Villars-91] and recent theoretical
calculations [Mehrotra-07, Skorodumova-01, Fabris-05, Loschen-07, Jiang-05,
Yang-04, Silva-07, Shi-10,Gurel-06 , Sevik-09] for comparison. The calculated a and B
values have been obtained from the corresponding energy minimization at constant
volumes and by fitting to a third-order Birch-Murnaghan equation of state [Murnaghan-

44, Birch-78] to find the optimized parameters.
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As a general remark, the deviations for lattice constants are estimated to be about
0.07 - 0.7 % for CeO2, PrOz and TbO2 compared to available experimental data. The
trends of the calculated lattice parameter of dioxides REO; may be discussed as
displayed in Figure 3.4. As can be seen, the increase of valence electrons of RE elements
when moving rightwards along the periodic table results in a decrease of the lattice
parameter except for GdO2. We have also noticed that the LaO; and GdO; have larger
lattice constant values than the other dioxides REO:.

However, our theoretical approach seems to considerably underestimate the bulk
modulus, the calculated values being 207.08GPa and 189.38 GPa for CeO: and PrOg,
respectively, which are 6 - 19 % and 3% lower than the experimental data [Duclos-88,
Gerward-93, Nakajima-94, Gerward-05, Villars-91]. It is observed that the
experimental values for the bulk modulus of CeO; are confined to a 15 % range 204 to
236 GPa, whereas there is large scatter of the calculated values. Therefore, it is worth
noticing that all GGA calculations tend to underestimate the bulk modulus.
Unfortunately, there are no experiential data for other rare earth dioxides. Moreover, it
is clear that the predicted bulk modulus value for CeO; is larger than the REO;

compounds.
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Table3.3: Lattice parameter a (A), bulk modulus B (GPa), its pressure derivative B, of

REO2 compared to other theoretical and experimental data.

a B B’
LaO, This work 5.706 127.72 436
CeO, This work 5.426 207.08 481
Experiment™™* 5.410 204-236
SIC-LSD" 5.384 176.9
FP-LMTO ¢ 5.48 187.7
PW-PP’ 5.48 178.0
PAW GGA+U & 5.48 187.0
PAW GGA+U" 5.38 202.4
PAW GGA' 5.45 194
PAW PBEO 5.39
PAW PBE! 5.47 172
L/APW+LO PBE/ 5.47 170
PAW LDA+Uk 5.40 217
HGH PP! 5.40 211.11 4.417
PAW LDA+U™ 5.366 210.1 4.4
PrO, This work 5.380 189.38 401
Experiment™® 5.394 187
SIC-LSD* 5.364 176.8
TB-LMTO" 5.392 378
NdO, This work 5.358 184.80 4.97
PmO, This work 5.344 169.10 4.05
SmO, This work 5.345 156.53 5.96
EuO, This work 5.386 145.57 432
GdO, This work 5.434 144 .64 4.18
TbO, This work 5.272 192.03 476
Experiment* 5222
DyO, This work 5.241 181.36 4.62
HoO, This work 5.248 188.05 5.81
ErO, This work 5.242 177.18 4.46
TmO, This work 5.237 168.80 4.90
YbO, This work 5.240 173.37 4.60
LuO, This work 5.220 166.40 448

areference [Duclos-88]} reference[Gerward-05],c reference [Villars-91]

b reference[Gerward-05](SIC, self-interaction corrected; LSD, local spin density approximation)
dreference [Skorodumova-01] (FP LMTO, full potential linear muffin tin orbital)

freference [Fabris-05](PW PP, plane-wave pseudopotential method)
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greference[Loschen-07](PAW, projector-augmented wave method
hreference[Jiang-05](PAW, projector-augmented wave method)
Ireference[Yang-04](PAW, projector-augmented wave method)

reference [ Silva-07](PAW, projector-augmented wave method)

kreference [Shi-10] (PAW, projector-augmented wave method)
Ireference[Gurel-06] (HGH, Hartwigsen-Goedecker-Hutter PP)

mreference [Sevik-09](PAW, projector-augmented wave method)
nreference [Mehrotra-07](TB LMTO, Tight binding linear muffin tin orbital)
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Figure 3.4: Calculated lattice parameter as function of rare earth dioxides compounds.

3.4. 2. Magnetic stability

The origin of the magnetism lies in the orbital and spin motions of electrons and
how the electrons interact with each other. These are quantum mechanical phenomenon
due to the relative orientation of the spins of two electrons. In some solids the magnetic
moments on different atoms are ordered and can form a ferromagnetic or an
antiferromagnetic. In the ferromagnetic phase, the magnetic moment on each atom is
aligned in the same direction as shown in figure 3.5. Ferromagnetic materials exhibit
parallel alignment of moments resulting in large net magnetization even in the absence

of a magnetic field.

Many crystals have magnetic ions that are ordered in arrangements other than
ferromagnetic. In antiferromagnetic (AFM) ordering, the moments pointing in one

direction are balanced by others pointing in the opposite direction, with the result that
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the substance has no net magnetization. The exchange interaction between ions in this
case has the opposite sign and favors the alternate arrangements of spins. The sign of
the exchange interaction between ions depends on the length of the covalent bond and

the bonding angles; it may have either orientations.

spin-up spin-up spin-up

Figure3.5: Ferromagnetic and antiferromagnetic ordering

In order to compute the ground state magnetic phase between antiferromagnetic
(AFM) and ferromagnetic (FM) phases, we calculated the total energy difference AEapm-
rM) between them. Results are summarized in Table 3.4 and displayed inFig.3.6.We must
recall here that the FM phase is stabilized over the AFM phase when AE > 0, whereas the
AFM is stabilized over the FM phases when (AE < 0). From the Table 3.4 and Fig. 3, we
found that the ground state is the FM phase for LaO;, PmO;, SmO;, EuO;, TbO;, TmO,,
and YbO..
So, for PrO;, NdO2, GdO;, Dy0O;, HoO; and HoO2 compounds, the AFM phase is more
stable but AEarm-rm) are small. This result indicates that these systems are weakly anti-
ferromagnets. Note that no theoretical calculations or experimental data exist for REO>

as far as the stable magnetic phases are concerned.
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Table 3.4: total energy difference (Ewurm-rmy)) between antiferromagnetic (AFM) and

ferromagnetic (FM) phases of REO-

LaOz PI‘OZ NdOz Pl’l’lOZ Sl’l’lOZ Equ GdOz TbOz DyOZ HOOz EI‘OZ TI’I’IOZ YbOz

AE 10.32 -0.56 -085 170 1020 11.22 -5.42 3741 -452 -9.77 -0.07 5.80 2.10

(AFM-FM)

40 |

30 F

20

AE(AF.\] SFM) (meV)
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Figure 3.6: The total energy difference AEuru-rm) as function of rare earth dioxides

compounds

3.4. 3. Elastic stiffness and related polycrystalline properties

The elastic stiffness determines the response of the crystal to an externally
applied strain (or stress) and provides information about the bonding characteristics,
mechanical and structural stability. The elastic constants Cj were calculated within the
total-energy method, where the unit cell is subjected to a number of finite-size strains
along several strain directions. Cubic lattices have three independent elastic constants
[Nye-85], namely, C11, C12, and Cas, as show in following equation. The obtained elastic
stiffness constants Cj are gathered in Table 3.5. Furthermore, the mechanically stable

phases or macroscopic stability is dependent on the positive definiteness of stiffness
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matrix [Fedorov-68]. For a stable cubic structure, the independent elastic constants

should satisfy the well-known Born-Huang criterion [Born-82], given by:

Cys >0
Ci1 > |Cy2] (3.2)
Ci1 +2C, >0

One may see that the rare earth dioxides are mechanically stable because all
elastic constants are positive and satisfy the Born mechanical stability restrictions.
Considering the experimental data set due to Nakajima et al [Nakajima-94], the C11, C12
and Ca44 for CeO; values are underestimated by 3%, 22 % and 5%, respectively, whereas
the agreement is good for all elastic constants. Note also that our results are in close

agreement with the available theoretical works [Gurel-06, Sevik-06].
In order to measure the stiffness of the solid, Voight-Reuss-Hill [Hill-52, Reuss-
29, Voigt-28] estimates Byry, G, Y and v of polycrystalline bulk modulus, shear modulus,
Youngs modulus, and Poissons ratio computed from Cj are presented in Table
3.5(following the procedure detailed in chapter 1). One can remark that the shear and
Youngs modulus of the PrO; is higher than all REO; dioxides compounds. The larger

shear modulus is mainly due to its larger Css.
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Table 3.5: Calculated elastic constants Cj;;(GPa), Bulk moduli Bygy (GPa), shear moduli G

(GPa), Young's modulus Y (GPa), and Poisson's ratio v for rare earth dioxides.

Ciz Ciz Cas Byry G Y 1%

LaO; 1493 124.22 204.0 13258 78.06 195.76  0.254
CeO; 390.86 1285 57.0 21595 80.14 21396 0.334

3902 1302 822

386P 1245 73b

354.79¢ 139.27¢ 51.19¢

4034 1054 604
PrO; 34433 1265 181.1 199.11 147.68 355.23 0.202
NdO, 241.04 116.5 13135 158.01 97.34 242.28 0.244
PmO, 217.18 12801 9833 157.73 71.58 186.54 0.303
SmO; 27091 123.26 105.72 172.47 91.55 23336 0.274
EuO; 159.36 132.18 326.61 141.24 116.69 27448 0.176
Gd0O, 2357 68.4 100.62 177.37 85.01 219.9 0.293
ThO, 300.2 10863 130.0 18494 11933 294.63 0.234
DyO, 200.0 166.05 209.0 191.16 12538 30866 0.230
HoO, 291.21 13837 142.66 189.32 111.05 278.66 0.254
ErO, 3223 125.6 1475 186.31 94.44 242.38 0.283
TmO, 200.3 123.15 93.0 148.87 65.34 171.0 0.309
Yb0O: 25353 152.7 143.61 18631 94.44 242.38 0.283
LuO, 314.48 12892 59.02 190.77 70.8 189.01 0.334

areference [Sevik-06], ® reference[ Gurel-06], < reference [Shi-10], d reference [Nakajima-
94 )experimental data

3.4. 4. Electronic properties

3.4.4.1. Density of states of nonmagnetic CeO; and LuO:

The calculated total and partial density of states (DOS) curves at the predicted

equilibrium lattice constants for rare earth dioxides CeO;and LaO:are shown in figure3.7

~71 ~



Chapter 3 Rare-earth dioxides

within the framework of GGA+U calculations, where the vertical line is the Fermi level Er
. In which concerns the electronic structure of CeO, the gap between the valence O (2p)
and conduction Ce (5d) bands is 5.5 eV, however this calculated value is slightly smaller
than the measured one (6 eV) [Andersson-07] and agrees with a previous theoretical
study (5 - 5.5) eV[Skorodumova-01, Loschen-07, Andersson-07]. Furthermore, the
distance between the valence band and the Ce4f states is 2.66 eV, compared to 3 eV in
experiments [Andersson-07]. Then, the width of the O 2p is 4.38 eV, which agrees with
experimental data and theoretical calculation. We notice an important feature in DOS
that they are the O 2p-Ce5d band gap and the empty Ce4f states in the gap above the O
Zp band.

For LuO3, the 4f states are fully occupied around -5 eV and are located below the
oxygen p states. Note that the O 2p states are partially occupied and are situated above

the Fermi level.
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Figure 3.7: The total and partial density of states at GGA+U+SOC for CeO2 and LuOs,.
Since the spin-up and spin-down channels are identical, only the spin-up channel is

shown. The vertical solid line denotes the Fermi level.

3.4.4.2. Density of states of REO: (RE= Pr, Nd, PM, Sm, Eu, Gd, Tb, Dy,
Ho, Er, Tm, Yb, and Lu)

We have also displayed in figure 3.8 the total and partial DOS curves for rare
earth dioxides REO; (RE= Pr, Nd, PM, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu). The DOS
of PrO; is plotted in Figure3.8. We can see that the highest occupied states Pr4f states for
spin up are situated around -4 eV below the Fermi energy and concentrates them into a
sharp peak. Note that the peak from the O 2p DOS at -4 eV comes from separate bands
without 4f contributions and thus these 4f states are localized and not hybridized with
the O 2p states. A further indication of the Pr 4f - O 2p hybridization can be observed
from some similarities in the positions of the peaks at -0.8 and -0.3 eV between the Pr 4f
and O Zp curves. Note that the spin-up and spin-down Pr 4f DOSs above -3 €V, are very
similar. Above the Fermi level we find the unoccupied f -levels. The fundamental band
gap separates the valence band maximum and unoccupied Pr 4f'is about 1.8 eV. Then, at
about 5 eV above the Fermi energy, states predominantly of Pr 5d character begin to

appear. Derived from experimental data, Van der Kolk and Dorenbos [van-06] proposed
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a model to predict the insulating or metallic behavior and chemical stability of
lanthanide materials. From their model, it was predicted that for PrO;, the 4f empty
states are situated at about 2 eV above the top of the valence band, a feature which is
quite well reproduced by our calculated DOS where we obtained a value of 1.8 eV. For
TbO,, we observe the dominance of Tb 4f to majority spin in the valence band and of the
minority spin in the forbidden band. Note that the spin up Tb 4f are centered around -
10 eV below Fermi level and for spin down bands, they are empty and situated between
the valence band maximum and conduction band minimum with a more localized peak
about 2 eV.

LaO0: has its outer 6s electrons removed, but the 4f shell is still empty. The DOS in
GGA+Ug+Uy is also shown in Fig. 3.7. The effect of adding Ur is simply to push up the
empty 4f states in the conduction band minimum. They are centered at about 6 eV.
Again, there is a small overlap between the La 5d conduction band and O 2p valence

band.

In the case of NdOy, the occupied majority spin f states are situated in top of
valence band near the Fermi level (Er). The density of states Figure 3.8at Er is then
dominated by p-f bands. In addition, the empty majority and minority spin bands occur
in conduction band minimum. In PmO,, the occupied f electrons occur in narrow energy
range and the rest is located near the Er. Note that the O p- Pm f bands dominated this
last region. Thus, the empty majority spin bands situated above the Er. We also observe
that the empty minority spin bands occur in the forbidden band.

The DOS of SmO; is shown in Figure 3.8. The majority spin occupied fbands occur
in three narrow energy ranges. Furthermore, the empty f bands of majority spin are
about 3.5 eV above the Er, while the empty minority spin f bands occur in conduction
band minimum and in conduction band between about 6.5 and 8.5 eV and significantly
hybridize with the rest of the conduction band.

As for SmO;, the majority spin occupied f bands in EuO: occur in four narrow
energy ranges and the empty fbands of majority spin are about 5 eV above the Er. Then,
the empty minority spins f bands situated in conduction band minimum and also in
conduction band.

For GdO2, we show in Figure 3.8that the majority spin 4f states are fully occupied
around -5 eV and are located below the oxygen p states. The minority spin 4f states are
fully unoccupied and are nearly 7.5 eV above the Fermi level.
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Again, the DyO2 and HoO: have the same behavior where the spin-majority
occupied 4f states occur in four narrow bands. The remaining occupied f electrons go in
minority spin bands at about -1 and -4 eV. One may notice that the empty minority spin f
bands located in conduction band minimum.

In ErO;, the majority spin f states occur again in five narrow bands, while the
minority spin bands are filled and occur almost evenly spread and alternating with the
majority spin bands in energy. The empty minority spin bands occur in a narrow band
about 4 eV above the Fermi level.

Like to ErO, the TmO; has the same behavior where the majority spin f bands
which are completely filled, on the other hand, occur again in narrow energy ranges. The
minority spin bands however show significant splitting while the empty minority spin
bands occur in a two narrow band about 3 and 4 eV above the Fermi level. Finally, for
YbO,, it can be seen that the majority and minority spin occupied 4f states are located
between -2 and -7 eV while the empty minority spin bands occur in a narrow band about

4 eV,
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Figure 3.8(suite): Calculated total and partial density of states at GGA+U+SOC for REO>
(RE=La, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm and Yb)) for majority (upper part) and
minority (lower part) spin states.
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3.4.5. Magnetic properties

We present the total and local magnetic moment by one cell for REO2 compounds
in Table 3.6. The total moment comes principally from the rare earth elements. A
relative amount of the moment is found in the interstitial region about 0.001 - 0.08uB,
while oxygen has a small induced moment about 0.1 - 0.5z for all rare earth dioxides
except for PrOz, NdO2, PmO2, and SmO2 where it shows weak antiparallel spin moment
close to -0.1 and -0.47ug. It is important to notice that gadolinium has a strong value of
magnetic moment compared to other compounds. Moreover, one can clearly observe
from Figure 3.9 that the curve trend adopts triangular-like form where the total moment
increases with the filling of the f states of the rare earth element until Gd about 7.999uz

and after it decreases.

Table 3.6: Total and local magnetic moments ( ingg/cell) for rare earth dioxides

M tot mRE mo minterstitial
LaO2 1.0 0.018 0.490 0.001
CeO2 0.0 0.0 0.0 0.0
PrO; 0.999 1.147 -0.101 0.056
NdO2 2.112 2.834 -0.390 0.058
PmO; 2.955 3.221 -0.142 0.017
SmO; 3.996 4.875 -0.474 0.071
EuO2 6.960 5.960 0.464 0.066
GdO: 7.999 6.964 0.478 0.078
TbO: 7.016 6.645 0.157 0.056
DyO. 5.998 5.259 0.348 0.043
HoO2 5.000 4.108 0.428 0.033
ErO: 3.936 3.266 0.291 0.088
TmO:> 2.993 1.959 0.506 0.020
YbO: 1916 0.928 0.483 0.020
LuO: 0.0 0.0 0.0 0.0
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Figure 3.9: Total and local magnetic moments versus of REO; (RE = La, Pr, Nd, Pm, Sm,

Gd, Tb, Dy, Ho, Er,Tm and Yb) .

3.4. 6. Charge density contours

To gain a more detailed insight into the bonding characters of nonmagnetic rare
earth compounds, we calculate the charge density distribution. The charge density
contours for a cut in the (110) plane of CeO2 compound are displayed in Figure 3.10. It
clearly seen that cerium oxide is characterized by a nearly spherical charge-density
distribution around the Ce and O atoms and a low charge density in the interstitial
region. It can be also seen that the ionic bonding is the determinant of the chemical
bonding in CeO2, even though the covalency is strong in the sense of orbital participation
in forming the valence state. According to our density of states analysis and results of
population analysis obtained by Nakamatsu and al [Nakamatsu-95], it can be to
attribute to CeO2 a covalent character due to the strong hybridization between O 2p and
Ce4f and 5d states and ionic character to O p and Ce 5s and 5p states. Moreover, the
components of Ce5s, 5p make a repulsive interaction with O Zp because of overlap of the
essentially filled states. Concerning the bonding in CeO;, this repulsion cancels the
covalent bonding between Ce 4f, 5d and O 2p.We have also sketched in Fig.3.10, the
charge density distributions in (110) plane of LuO;. Note that the completely filled 4f

case occurs in LuO,. It can be seen that there is an increase of the electron charge
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density around the O atoms and a decrease in the interstitial region between Lu atoms.
Furthermore, these charges rearrangements reflect the electronegative nature of O
atoms. It revealed an ionic contribution to the bonding that adds to a clear metallic
character. Therefore, our results demonstrate that the bonds of LuQ; are an unusual

mixture of metallic and ionic bonding.
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Figure 3.10: Charge density distributions in (110) plane of CeO; and LuOa.

3.4. 7. Spin density contours

To complete the magnetic structure description, we display in Fig. 3.11, the spin
densities map of the magnetic systems. One may observe that it is an increase in the
polarization of Oxygen atoms. Moreover, interactions appeared between heavy rare
earth atoms show a pronounced effect on the spin densities maps. The electron density
symmetry around second rare earth atom is also influenced appreciably by cation-anion
interactions and the oxides magnetic properties also reflect this complexity. This result
agree well with a former calculations performed on the sesquioxides that suggested
including the possibility of subshell contributions and effective electron numbers are
derived for all the ions including rare earths whose polarizabilities are experimentally

published [Grimes-98].

It is interesting to see that from one compound to another, the spin density
distribution changes in size and shape. The spin density distribution around the oxygen

has a circular appearance but slightly modified due to the polarization induced by the
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presence of RE atom. Besides this polarization varies from one system to another, the
value of the density around O atoms is estimated at 5, 1, 0.43, 0.3421, 0.285, 0.285, 0.6,
and 0.11 for SmOz, EuO; PmO;, NdO2, PrO2, GdO;, HoO: and ErO; systems, respectively.
For the remaining systems, it tends to be negative. On the other hand, the shape of the
spin densities distribution around the RE atom is far from circular. This distribution
depends on the filling of orbitals, mainly the f one. We are able to conclude that the
hybridization between different orbitals affects the spin density contours [Grimes-98,

Kanoun-09].
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Figure 3.11: Spin density contours plot for REO; (RE = La, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho,
Er, Tm and Yb) .

Summary:

To conclude this chapter, we have performed detailed investigations on the
structural, elastic, electronic, and magnetic properties of rare-earth dioxides compounds
within the DFT framework based on full potential approaches. To achieve our goal, first
we realized a set of simulations to predict Coulomb Uesf parameter used in LDA+U and
GGA+U approaches for CeOz. The GGA+U (WC) method gives better agreement than the
LDA+U method. Consequently, we have applied of GGA+U and also the spin-orbit
coupling, in order to investigate the structural, electronic, and magnetic properties of all
rare earth dioxides. The calculation of the elastic constants shows the mechanical

stability of all the considered systems. Moreover, the electronic structure study showed

~ 87 ~



Chapter 3 Rare-earth dioxides

that these structures are stable in ferromagnetic phases and good agreement with
experiment can be obtained for the magnetic moment. We were able to give a trend on
the magnetic moment as function of Z of rare earth atoms. It was important to give the
magnetic contribution of the rare earth atom in each dioxide via the spin-density

calculation, where the polarization on the first neighbor oxygen is observed.
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Chapter Four

Physical Properties of Oxynitrides

Abstract

In this chapter we are interested to the oxynitrides based on silicon and germanium:
SizN20 and Ge;N:0. We will initially present state of art of these compounds and their
electronic structure. Then the structure, bonding, mechanical, thermodynamic and the
optical properties will be studied using the DFT calculation by means of two methods, the
full-potential linearized augmented plane-wave plus local orbitals and plane-wave
pseudopotential. We will pay more attention to the electronic gap nature of GezN;0 which
was subject of various ab-initio contradictory studies. Furthermore, it was interesting to us
to analyze the bonding via the charge densities and Mulliken population. We always

compare our results with the experience whenever possible.
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Chapter 4 Physical properties of oxynitrides

4.1. Introduction

With technological progress, natural materials become insufficient to meet
increasing demands of product capabilities and functions. There are many combinations
of metallic and non-metallic atoms that can combine to form ceramic components and
also several structural arrangements are usually possible for each combination of atoms.
This led scientists to invent many new ceramic materials to meet increasing
requirements and demands in various application areas. In the past forty years, serious
efforts were made to obtain an optimum composition and micro-structures of ceramics
based on silicon nitride composites, which are an extremely wide class of materials
possessing a unique combination of thermal, mechanical and electro-physical
properties, and have found commercial application owing to interesting properties such
as hardness, abrasion resistance, strength and thermal shock resistance [Riley-77,
Chelikowsky-77].

In fact, the history of oxynitride glasses is not an old one. It was only in the late of
seventies that some systematic studies on oxynitride glass were reported [Loehman-
79), and this encouraged many researchers to explore this new field leading to
accelerated research in the next decade of eighteens. The idea of the existence of
oxynitride (ON) glass came in an indirect way, indirect in the sense that its preparation
was not sought for from the constituents. On the other hand it was discovered that dense
silicon-nitride based ceramic materials which were sintered with some metal oxide
additives contained a grain boundary glassy phase, which was identified as the
oxynitride glass [Idrestedt-64, Labbe-77]. Silicon oxynitride Si;N.0 is an important
link between two major classes of materials of great technological importance, silicon
nitride (SizsN4) and silicone dioxide (SiO2), in recent years, SizN20 has emerged as a new
high-temperature ceramic material of many unique physical properties with a variety of
potential applications such as high temperature electric insular, nuclear-reactor
moderator or reflector, and materials for solid electrolytes. In microelectronic industry,
the passivating dielectric films glow on Si may involve layers of amorphous forms of
silicon oxynitride [Ching-81]. After, a high-pressure time-of-flight neutron diffraction
studies have been carried out on orthorhombic Ge;N20. The behavior of Ge2N:0 is very

similar to his isotopic Si2N.0 [Appl-79].
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4.1.1. State of art: theoretical studies

In this chapter we focused on the study of two oxynitrides, but before the study,
we will get familiar with what is known of these systems. Intensive studies of the
oxynitride phase Si2N20 were performed using ab-initio methods such as the non-self-
consistent orthogonalized linear combination of atomic orbitals (OLCAO) method
[Ching-81], by the self-consistent OLCAO method [Xu-95] and by the full-potential
method (FLMTO) [IvanovskKii-00,Ivanovskii-99]. The X-ray photoelectron
spectroscopy and the X-ray Auger Electron Spectroscopy (AES) were used to study the
electronic properties of silicon oxynitride Ims [Riviere-88, Chourasia-96]. Vibrational
properties and pressure-induced structural transitions were theoretically studied
[Mirgorodsky-89], and molecular-orbital studies of silicon oxynitride glasses,
simulated by small clusters, were reported [Murakami-88].

Moreover, Kroll and Milko [Kroll-03] have investigated a manifold of possible
structures of high pressure phases of crystalline silicon oxynitrides, SizN20, to elucidate
the pressure-dependent phase of Si2N20 using DFT calculations. It revealed that the
stability of the orthorhombic ternary phase of SizN;0 appears from 6 GPa and this phase
is depending on the configurational entropy influence to the free energy of the solid
state reaction. Most recently a systematic simulation study of the thermo-chemistry
involved in the formation of new class of Si-Ge-N-O oxynitrides materials based on
reactions of both (SiH3)20 and (GeHs3):0 molecules, and the proposed SiH30GeHs
analogue, in an ambient of ammonia was performed by Weng et al [Weng-10]. They

proposed two ordered phases such as SiGeN20 phase and pseudo-lamellar 3-SiGeN:O.

4.1.2. Current interest and motivations

In this chapter, we solve the gradient conjugate equations to systematically
investigate the elastic, electronic, optical and lattice dynamics properties of Si2N,0 and
GezN20 with two major motivations. Firstly, we apply the recent amelioration reported
on the full-potential (linearized) augmented plane waves plus local orbitals (FP-
(LYAPW+lo) in order to determine the electronic structure. We will pay more attention
to the nature and the value of the band gap. In fact, the theoretical work performed by
Ching and Ren [Ching-81] in the beginning of the eighties have revealed that Si;N20
have an indirect bandgap of 5.97 eV where the top of the valence band (VB) is at I point
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and the bottom of the conduction band (CB) is at Z. Then, Xu and Ching [Xu-95] have
employed the same method as used in ref. [Ching-81] (i.e. OLCAO method) but with self-
consistent and they found that the band gap is a direct at I' point. In the other hand, for
the Ge;N20 compound, a direct band gap at I' point was estimated to 3.78 (eV). Our
second motivation is the calculation of the elastic constants and their derived
mechanical properties. In fact, to the best of our knowledge, there is no work, neither
theoretical nor experimental about the elastic constants and the existence of nitrogen
will make it interesting to see their mechanical properties. Moreover, one can guess that
the oxygen also plays a role in these properties. We will use exclusively plane wave
pseudo-potential (PW-PP) method in order to compute the elastic constants. This
method will help us also to determine the atomic Mulliken population, which will be

useful to complete the bonding characterization discussion.

4.1.3. Structure description

The silicon-germanium-based oxynitrides crystallize in orthorhombic structure
with space group Cmc21. The orthorhombic system is based on three unequal axes all at
right angles to each other. All axes of the orthorhombic system can serve as two fold
rotational axes. They as well can serve as the linear intersection of two perpendicular
mirror planes. If all three perpendicular mirror planes are present, then the three
crystallographic axes are defined by the intersection of the mirrors. All of this symmetry

produces a center of symmetry (an inversion operation).

The SizN20 (Ge:N:0) has an orthorhombic crystalline structure with lattice
constants of a=8.843(9.312) A, b=5.437(5.753) A, c=4.835(5.102) A. There are four
formula units (twenty atoms) per unit cell. The basis of this structure is a three-

dimensional net of SiNzO tetrahedral [Ching-81].

The overall structure is a network of sheets of Si2N2 or Ge:N: interconnected by
oxygen atoms. Nitrogen atoms are still surrounded by three Si (Ge) atoms in a trigonal
structure while Si (Ge) retains its tetrahedral bonds with one of the N atoms being
replaced by oxygen atoms [Labbe-77]. These crystal structures refer to the sketches in
Fig.4.1. The Si (Ge), N, and O atoms are in fourfold, threefold, and twofold coordinations,

respectively.
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The Si-O bond length in Si2N20 is longer than that in SiO2, while the Si-N bond
length is shorter than that in SiN4, In Gez:N20 crystal the Ge-O bond length is longer than
the Ge-N bond length, but the opposite is true for Si;N20 crystal. In Si;N20 the average
Si-N-Si angle is 120°, indicating an almost coplanar configuration for the N atom and the
three bonded Si atoms. The corresponding structure is less coplanar in Ge2N,0 with an
average Ge-N-Ge angle of 118.5° furthermore the Ge-O-Ge angle of 122.3° is much
smaller than the Si-O-Si angle of 147.7°. These differences in the crystal structure can

account for their differences in the electronic structures [Ching-81].

@ Xx=5i, Ge
OnN
Qo

Figure4.1: Crystal structure ofX2N,0 (X= Si and Ge)

4.2. Methodology and numerical details

The calculation procedure selected in this thesis is based on the combined use of
two codes based on the density functional theory DFT. We start by calculations carried
out using an all electron full-potential (linearized) augmented plane waves plus local
orbitals (FP-(L)JAPW+lo) method as implemented in WienZ2k code [Blaha-01]. The
influence of the exchange and correlation potential has been tested within the
generalized gradient approximation (GGA-WC() using the scheme of Wu and Cohen [Wu-

06] for exchange and correlation. Basis functions were expanded simultaneously as

~ 97 ~



Chapter 4 Physical properties of oxynitrides

spherical harmonic functions (inside non-over muffin-tin (MT) spheres centred at
atomic sites) and as plane waves in the interstitial region. The I-expansion (azimuthal
quantum number) of the non-spherical potential and charge density inside MT spheres
was carried out up to lmax = 10. In order to achieve energy eigenvalue convergence, the
wave functions in the interstitial region are expanded in plane waves with a cutoff of
Kmax=8/Rumr (where Knaxis the maximum modulus for the reciprocal lattice vector and
Rur is the average radius of the MT spheres). Moreover, local orbitals have been added
for all atoms and valence states. The MT radii for SizN20 and Ge:N:0 were chosen to be
1.65, 1.75, 1.45 and 1.4 atomic units (a.u.) for Si, Ge, O and N, respectively. The self-
consistency cycle was achieved taking 1500 points in the irreducible Brillouin zone. The
convergence has been followed with respect to the energy and the density.

We used also the ab initio pseudo-potential density functional method based on
the powerful code of CASTEP. Although a PW basis set can be very large, the use of
optimized pseudopotential significantly reduces the number of plane waves needed to
accurately represent the electronic states. Interactions of electrons with ions were
represented by a Vanderbilt-type ultrasoft pseudopotential [Vanderbilt-90]. As in FP-
(LYAPW+lo calculations, the electronic exchange correlation energy was treated under
the GGA-WC [Wu-06]. In the process of setting up the CASTEP run [Clark-05], all the
possible structures are optimized by the BFGS algorithm proposed by Broyden, Fletcher,
Gold-farb and Shannon, which provides a fast way of binding the lowest energy
structure and supports cell optimization. The optimization is performed until the forces
on the atoms are less than 0.01 eV/ A’ and all the stress components are less than 0.02
GPa, the tolerance in the self-consistent field (SCF) calculation is 5:0x107 eV/ atom.
Ultra-soft pseudo-potentials are expanded within a plane wave basis set with a 380 eV
cutoff energy in the process of optimization. The k-points sampling are 7x7x7 according
to the Monkhorst-Pack method. For all the optimized structures, the Mulliken charges
and bond populations are investigated in detail with a method that projects plane wave
states onto a linear combination of atomic orbitals basis set which is widely used to

perform charge transfers and populations analysis.
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4.3. Results and discussions

4.3.1. Structural properties:

The geometry has been optimized for the considered structures following the
classical procedure: A set of different predefined volumes are chosen and for each of
these volumes, different calculations are made for several c/a and b/a ratio values. The
energy curves as function of the ¢/a and b/a ratios are then fitted with a polynomial
function. This allows us to find a minimum in energy as a function of the ¢/a and b/a
ratios for each selected volume. These minima give a set of energy as a function of the
volume in which all other parameters are optimized. In the last step, this energy versus
volume curves is fitted using the third-order Birch-Murnaghan equation of state

[Murnaghan-44, Birch-78] to determine the optimized parameters.

3

E(V) =E,+ %{[(%)g - 1] By + l(%)é - 1] [6 _4 (%ﬂ} (4.1)

Where Epand Vpare the energy and volume at equilibrium. B and B’ are the bulk
modulus and it's the pressure derivative. Our calculated values for a, b and ¢ within PP-
PW and FP-(L)APW+lo calculations are gathered in Table 4.1 along with the
experimental data [Idrestedt-64, Srinivasa-79, Srinivasa-77] and theoretical

calculations [Kroll-03, Weng-10] for comparison.
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Table 4.1: Structural parameters a, b and c (A), as resulted from PP-PW and FP-

(LYAPW+lo calculations compared to available experimental data and theoretical works.

a b c
PP-PWa 8837 5431 4.840
FP-(L)APW+lo2 8839 5433 4.839
Si2N20 Experimentb 8.843 5437 4.835
PAW-GGA-PBE ¢ 8.894 5477  4.845

PPPW-GGA-PBE ¢ 8964 5536 4.889

PP-PW2 9.308 5748 5.101

Ge2N20 FP-(L)APW+lo2 9.312 5753  5.102
Experimente 9317 5.752  5.105

PAW-GGA-PBE¢ 9331 5764 5.125

a Qur work, [b, ¢, d,eJreference[Srinivasa-77, Kroll-03, Weng-10, Srinivasa-79]

Compared to the experiment, the calculated a, b and c lattice parameters from
both methods were underestimated by around 0.06%, 0.07-0.11% and 0.09-0.1%,
respectively, for Si;N20. For GezN:20, a, b and c deviate from the experiment of about
0.05-0.09%, 0.02-0.07% and 0.06- 0.07%, respectively. It should be remarked that our
calculations using both of the FP-(L)APW+lo and PP-PW methods give a good agreement

compared to the experimental data.

4.3.2. Mechanical properties

In the study of materials, hardness or elasticity of the solid (material response to
the forces (stresses) applied) must be considered, mechanical properties informs on the
binding characteristics, mechanical stability and structure. The elastic stiffness
determines the response of the crystal to an externally applied strain (or stress) and
provides information about the bonding characteristics, mechanical and structural
stability. In general, estimating elastic constants from first principles calculation is really
tough because it requires accurate methods to evaluate the total energy or stress
accompanying strain. Fortunately, state of the art first principles computational

modeling permits us to reproduce the elastic properties of oxynitrides well.
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Born Stability criteria:

The elastic behavior of a completely asymmetric material is specified by 21
independent elastic constants, the necessary number is determined by the symmetry of

the material, and it is 9 for orthorhombic crystals.

The elastic stability is checked by the whole set of elastic stiffness constants that

satisfies the Born-Huang criterion [Born-82]. The criteria for mechanical stability are

given by:
Ci1>0,055>0,033>0,C44>0,C55 >0,Cg6>0 (4.2)
[Ci1 + Cop + C53 + 2(Ci2 + Ci3 + (3] >0 (4.3)
(Ci1+,Cap — 2613 > 0,(Cyq + C33 — 203 > 0 ,(Cop + G353 — 2C53) >0 (4.4)

The calculated elastic constants allow us to obtain the macroscopic mechanical
parameters, namely their bulk B and shear G moduli. There are two methods for
calculating these modules, the first defined by the Voigt model [Voigt-28] (Bv, Gv),

which are expressed as:
By = (1/9)[C11+C22 + C33 + 2(C1p+Ci3+C53)] (4.5)

GV = (1/15) [Cll + CZZ + C33 + 3(C44 + C55 + C66) - (C12+C13 + ng)] (46)

And secondly by the Reuss model (GR) [Reuss-29] by the equations:

C11(Caz + C33 — 2033) + C5(Ca5 — 2Cy3) — 203364, + -

4.7
C12(2C53 — Cy2) + C13(2C,5 — Cy3) + C23(2C 3 — Cy3) (7)

BR:A[

-1

4[C11(Cop + C33 + Cp3) + C3(C33 + Cy3) + C33C;, —
Gr =15 C12(Cy3 + C12) — C13(Cyp + Ci3) — C3(Cy3 + Cp3)]/A (4.8)

1 1 1
+3[( /C44) + ( /CSS) + ( /666)]
With
A: C13(C12C23 - C]S’CZZ) + C23(C12C13 - CZS’CII) + C33(C11C22 - C]ZZ) (49)

Then Hill [Hill-52] show that these two elastic modules represent the extreme limits,

the actual value can be approximated by the average Hill:
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Gy = Ctn) (4.10)

B, = &) (4.11)

and Young’s modulus Ymay be calculatedby the expression:

9By Gy

Yy = 38,16y (4.12)
Then, Poisson’s modulus was obtained from BH andGH as:

_ 3By—2Gy

"~ 2(3By+ Gy) (4:13)

The elastic anisotropy of the low-symmetry crystal can be described by the percentage

anisotropy in compressibility (Ag) and shear (Ac) [Hill-52]:

_ By-Bpr

Ap = C 0k 100% (4.14)
_ Gv—Gp

Ag = oot 100% (4.15)

To investigate the mechanical stability description of Si2N20 and Ge:N:0
compounds, a set of zero-pressure elastic constants was determined from the stress of
the strained approach implemented in CASTEP code [Clark-05] by taking into account
the ionic relaxations in response to strain perturbations. The predicted elastic stiffness
constants Cj are summarize in Table 4.2. The elastic stability is checked by the whole set
of elastic stiffness constants that satisfies all the below conditions using the Born-Huang
criterion [Born-82]. Furthermore we show that the Ci;, C33, and Css values of the
GezN20 are lower (about 47-60%) than that of the Si2N:0 compound. Indeed, our
calculated bulk modulus, shear modulus, Young's modulus, and Poisson's ratio of SizN20
and Ge;N20 compounds are summarized in the same table according to the Voight-

Reuss-Hill bounds [Hill-52].
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Table4.2: Calculated elastic constants, Cjj (in GPa), bulk modulus By (in GPa), shear
modulus Gy, (in GPa), Young’s modulus, Y (in GPa), and Poisson’s ratio (v) of Si2N.0 and

Ge2N20 systems.

Ci1 Ci2 Ciz C2 (€3 (33 Cas Cs5 Ces B Gy Y v

Si:N.0 295 221 26 320 131 60 72 48 72 123.8 935 2242 0.198
Ge2N20 156 127 6.0 230 99 29 29 29 38 694 565 1334 0.179

From this table, the bulk modulus agrees with that from the third-order Birch-
Murnaghan equation of state. Then, it should be remarked that the shear and Young's
modulus and of Si2N20 are higher than that of Gez:N:0. In fact, no measured values of the
quantities in table 4.2 are available in the literature. The larger shear modulus of SizN20
is mainly due to its larger Ca4, which is about one time that of Ge;N:0.

Our calculated value for the bulk modulus of Si;N20, 123.8 GPa, agrees well with
the experimental value of 127 GPa [Srinivasa-77] obtained via neutron diffraction at
low-pressures (P < 3 GPa), and somewhat overestimate the value of 115 GPa recently
obtained by Haines et al [Haines-08] using an extended compression range (P < 50
GPa). Haines et al. also reported an anomalously small value for the bulk modulus
derivative (B') about 1.2, which they ascribe to the possible effect of non-hydrostatic
stress in their experiments. This discrepancy may be related to the experimental
uncertainties reported in ref [Haines-08] that are quite large at high pressures. Then,
when comparisons are performed with the bulk modulus results of Weng and al
[Haines-08], 129.1 GPa and Kroll et al [Haines-08], 130 GPa, the differences are smaller
and range between an underestimation by 4.1% and 4.7%, respectively. Again, the bulk
modulus of Ge;N20 has also determined experimentally [Srinivasa-79] from
compressibility to be about 101 GPa, which is smaller than our calculated value.

The elastic anisotropy (A) of crystals is also important for their mechanical
applications. The elastic anisotropy of the low-symmetry crystal can be described by the
percentage anisotropy in compressibility (Ag) and shear (Ac) [Hill-52-Kanoun09]. For
Agand Ag, the values of 0 and 1 (100%) represent the elastic isotropy and the largest
anisotropy. Comparing the average Ap= 1.21% with Ag= 5.42% for SizN:0, we find it less
anisotropic in compression and shear. For Ge:N;0, the Ag= 2.55% and Ac=11.55%,
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indicate it is elastically isotropic in compression and greatly anisotropic in shear. We can

deduce that the Ge;N20 compound is less anisotropic than the Si;N20 one.

4.3.3. Electronic properties bonding characterization: charge density

and Mulliken population

In this section, various properties will be presented; the electronic band structure
(BS) of a solid describes those ranges of energy an electron is "forbidden” or "allowed"
to have, the BS determines several characteristics about our compounds, the density of
states (DOS) of a system who describes the number of states per interval of energy at
each energy level that are available to be occupied. Also the electron density plays the

key role and thus we use it for another mode of interpretation in DFT.

4.4. 3. 1. Band structures:

The one-electron energy eigenvalues (solutions of the Kohn-Sham equation) as
functions of k-vectors define the band structure. The calculated electronic band
structures of SizN20 and Ge;N20 are displayed in Fig.4.2 (a and b), along the symmetry
lines of the Brillouin zone (BZ). As we have mentioned before, that one of our
motivations for studying these two oxynitride, is the nature of their band gap which was
subject of various ab-initio contradictory studies, and we will explain this through this
property, so, the band structures of these compounds show the appearance of a
forbidden band gaps. Our calculations show (Fig.4.2a) that Si;N20 crystal is an insulator
with a rather large value of a direct band gap equal to 5.1 eV. The band gap (Eg) is found
to be direct at I'point, which is in good agreement with the experimental values of Eg
(5.2- 5.6 eV) [Ivanovskii-00] and the theoretical result obtained by the OLCAO method
(5.2 eV) [Ching-81], but it is bigger than the value obtained from the FLMTO method
(3.24 eV)[ Ivanovskii-00, Ivanovskii-99] and by projector augmented wave (PAW)
method (4.86 eV) [Xu-95].

The band structure of Ge:N20 (Fig. 4.2b) is characterized by an indirect band gap
of 2.65 eV between the maximum of the valence band at the S point and the conduction
band minimum at the ['point. Our results disagree with those reported previously by

Ching et al [Ching-81] and Weng et al [Weng-10].
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Figure 4.2: Band structure of (a) SizN20 and (b) GezN20.

4. 3.3. 2. Densities of states.

In order to assess the results obtained with the band structures calculations, we
present in Fig.4.3 (a,b) the densities of states which have been computed by the
improved tetrahedron method (which requires many k points) [Blochl-94]. From the
eigenvalues and eigenvectors solved at sufficient number k-points in the BZ, the total
DOS can be projected into its partial components (PDOS) with respect to the different
atoms which are useful for the interpretation of chemical bonding. Figures 4.3 (a and b)
show the calculated total and partial densities of states of both Si;:N20 and Ge;N:0
systems. As can be seen, for both compounds there are three valence regions: the lowest
energy band extends over a small interval of energy around -18 eV(-17.5 eV) for
Si2N20(GezN20), is mainly composed of the O s with mixture of Si/Ge s states, the next
band occur between -13 and -17 eV are mostly due to N s and Si/Ges, and p states with a

minor admixture of Ge d states. The upper valence band which is wider for a range of -9
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eV up to Fermi level consists of hybridized p states of Si/Ge, N and O atoms, the Si/Ge s

and Ge d states are contributing to this valence band. Note also that the contribution of

Ge d states is quite small compared to Ge p states. Moreover, the unoccupied conduction

band separated from the valence band by an energy gap of 5.1 eV in the case of Si2N-0, is

made up of antibonding Si 3p with a slight contributions of N Zp states. While for

GezN20, the conduction band is composed of the antibonding Ge 4p, Ge 3d and N 2Zp

states. It can be noted that the conduction band minimum of Si2N;0 possesses p

character, while in Ge2N20 the unoccupied Ge s states dominate this energy rang.
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Figure 4.3: Total and partial densities of sates of (a) Si2zN20 and (b) Gez:N20. The origin

for energy is at the Fermi level.

~ 106 ~



Chapter 4 Physical properties of oxynitrides

4.3. 3. 3. Electronic charge densities.

The charge density distribution is an important property of solids in the fact that
provide a good description of the chemical properties. The investigation of chemical
trends in solid-state properties appears as an extremely useful part of new material
research. Performing those calculations, we try to gain some information about the
Si2N20 oxyitrides and his hypothetical Ge;N:0. The bonding mechanism can be
described based on the electronic density of charge calculations, So, To investigate the
charge transfer of these compounds, we have calculated the charge densities in plane
[111] shown in Fig. 4.4 (a and b). As we can see, the charge transfer from Ge to N and O
atoms is more important in the Ge2N0 than in Si2N20. When we analyze more carefully
these maps, we may observe that the charge density distribution is essentially non-
spherical in the case of Si;N20 and this behavior is more accentuated in Ge;N20 system.

Furthermore, the bonds between Si-O and Si-N in Si2N;0 and Ge-O and Ge-N in
GezN20 (as presented in Fig.4.4 (a,b,c and d)) are strongly covalent. The charge density
along Ge-N bonds is more pronounced for the Germanium oxynitrides, this is dueto the
stronger hybridization of covalent Ge-N and Ge-O bonds. These conclusion correlate
with the full potential linear muffin-tin orbital (FP-LMTO) method performed on C2N,0
and Siz?N20 systems [Ivanovskii-00] and agree well with conclusion drawn from the

bond population analysis reported in ref. [Yuryvea-99].
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Figure4.4Calculated valence charge density of (a) Si2N20 and (b) Ge2N20
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Figure 4.5: Calculated valence charge density of selected plane in (a,b) SizN.0 and (c,d)
GezN:0.

4.3. 3. 4. Mulliken population analysis

For discussion of bonding mechanism of the structures, we have calculated
Mulliken bond populations and bond lengths in unit lattices of Si2N20 and Ge2N:0. The
results for Mulliken populations along with bond length are given in Table 4.3
Chemically, the positive Mulliken population values correspond to bonding character
and negative values are related to an anti-bonding character of these systems.
Furthermore, if the value of Mulliken bond population is close to zero, the ionic
interaction increases between two atoms forming the bond. Generally, a high value of
positive population indicates a high degree of covalency in the bond. As seen from Table
4.3, two different bonding characters take place in the atomic interactions of the both

systems, Si(Ge)-0O, N-O, N-Si(Ge) and N-N, one group of O-Si(Ge) and N-Si(Ge) bonds are
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covalent, and N-O, N-N are ionic for both systems. It is interesting to note that in Si2N20
the Si-Si bonds are also ionic as well as the Ge-Ge interaction. We may observe also that
the bond population of the Ge-O (1.878) bond is clearly much larger than that of the Si-O
(1.624) but with same bond population. When we compare the N-O and N-N bonds
interaction in Si;N20 and Ge2N:0 systems, we observe a small but negative N-O and N-N
population, which indicates a repulsive overlap of oxygen and nitrogen shells in both
considered systems. In both systems, the anti-bonding character is induced between N-
0, N-N and Si-Si (Ge-Ge) atoms in SizN20 (in Ge2N20). Moreover, we report the calculated
Mulliken atomic population for both structures. The Mulliken charges are determined to
be -1.08e and -1.48e for N atoms, -0.79¢ and -1.14e for O atoms and 1.48e and 2.05e for
Si and Ge atoms for Si2N20 and Ge;N:0 systems, respectively. Both the values of Si and
Ge Mulliken charges are representative of the concurrent ionic and covalent bonding in

Si2N20 and GezN;0 systems.

Table 4.3: Atomic Mulliken charges and Mulliken overlap populations calculated from

PW pseudopotential calculations.

Si2N20 GezN20
Species population Bond Species Mulliken Bond length
Mulliken length population
0-Si 0.55 1.624 0-Ge 0.52 1.878
N-Si 0.63 1.724 N-Ge 0.68 1.846
N-O -0.16 2.740 N-O -0.14 2.867
N-N -0.21 2.815 N-N -0.14 2.993
Si-Si -0.28 2.949 Ge-Ge -0.31 2.997

4.3.4. Optical properties

The optical properties of crystalline Si;N20 and Ge2N:0 were not well studied at
all due to the lack of single-crystal samples until the publication of some limited optical
measurement more than 20 years ago[Baak-82]. In theoretical side, except the work of
Xu and Ching [Xu-95] about the optical properties of Si2N20, we are not aware of any
serious numerical calculation of the optical properties of both Si2N:0 and GezN20

crystals. Based on the FP(L)APW+lo method and GGA approach, we have calculated
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different optical functions such as imaginary and real parts of the dielectric function, the
reectivity spectra and the loss function. Since the considered systems crystallize in the
orthorhombic structure space group Cmc21, the dielectric tensor has three components
corresponding to the electric field E being along the a, b, and c-crystallographic axes.
These are the complex tensor components: € (w), €¥(w) and €%(w). The imaginary part
of these three complex components are £5*(w), £5” (w)andeZ? (w). Measurements of the
dielectric properties are normally done on single crystals. Sometimes experiments are
performed with light vector E parallel or perpendicular to the c-axis. The experimentally
determined dielectric functions are then &5 (w)andeg (w). These are related to the above

mentioned components by [Adachi-99]:

= e () (+16)
And e (w) = sg (w) (4.17)

The imaginary part e5*(w),&)” (w)and €%(w) of theoptical function's dispersion
completely defines the linear optical properties. These are shown at Fig. 4.6. Broadening
is taken to be 0.1 eV which is traditional for oxide crystals and this value is typical of the
experimental accuracy. All the optical properties are scissors corrected [Levine-73],
which is the difference between the calculated and measured energy gaps. It is a
consequence of a fact that the DFT calculations usually underestimate the energy gaps. A
very simple way to overcome this drawback is to use the scissors correction, which

merely brings the calculated energy gap close to the experimental gap.
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Figure4.6: Calculated £5*(w) (dark solid curve), £5” (w)(red dashed curve) and

eZ%(w)(blue solid curve) spectra.

From Fig. 4.6, one can see that the edge of optical absorption (fundamental
absorption edge) for e¥*(w), &3 (w)and ££(w) are located at 5.6 eV and 4.7 for SizN0
and GezN:0, respectively. These edges of optical absorption give the threshold for direct
optical transitions between the top of valence band and bottom of conduction band. All
the componentsei (w)(ii= xx, yy and zz) display one principal peak situated around 14.0,
12.0, and 10.0 eV for SizN,O and 11.0, 11.5 and 10.0 eV for Ge;N20. Some
insignificant/significant humps are situated around these peaks. One can see a
considerable anisotropy between these three components of the frequency dependent
dielectric function. In order to identify the spectral peaks in the linear optical spectra we
considered the optical transition matrix elements. We used our calculated band
structure and density of states to indicate the transitions, indicating the major structure
for the principal componentse¥(w). From the imaginary part of the dielectric function's
dispersions e (w) the real part e/(w)(ii= xx, yy and zz), were calculatedusing Kramers-
Kronig relations [Tributsch-77]. The results of our calculated £{(w)are shown in Fig.
4.7. The calculated (0) are listed in Table 4.4. Using the calculated imaginary and real
parts of the dielectric function dispersions one can evaluate other optical properties
such as reectivity spectra R(w), and loss function L(w). Moreover, the square root of

£(0)is a good estimate of the refractive index. We list our calculated values as well as the
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available experimental data [Gritsenko-78, del Giudice-90] for non-stoichiometric

amorphous samples of SizN20. The general agreements are very consistent.

£ (0)
,(0)

¥
(8}

0 5 o 15 2 25 30 35 40 0 5 o 15 20 25 30 35 40
Energy (eV) Energy (eV)

Figure4.7: Calculated £{*(w) (dark solidcurve), £;” (w) (red dashed curve) and 7% (w)

(blue solidcurve) spectra.

Table4.4: Calculated dielectric constantse; (w), eﬂ (w)and refractive index, n, for SizN.0

and Gez2N;0 compounds.

£ (0) & (0) & (0) n

Si2N20 Our work 3.06 2.88 292 1.71
Calculation? 3.33 3.36 3.34 1.83
Experimentb 1.55-2.91
Experiment ¢ 1.68

Ge2N20 Our work 3.52 3.36 3.46 1.86

areference [ Xu-95], breference [Gritsenko-78], ¢ reference[del Giudice-90]

~ 113 ~



Chapter 4 Physical properties of oxynitrides

4.3.5. Lattice dynamics and thermodynamic properties

Dynamical properties were obtained by the use of linear response method, within
density functional perturbation theory (DFPT) [Gonze-97, Baroni-01]. Unlike the
previous calculations performed with CASTEP [Clark-05], the calculations of phonons
have been made using the norm-conserving pseudopotentials [Vanderbilt-90] as
implemented in this code. In fact, DFPT is able to calculate of the second-order
derivatives of the total energy with respect to atomic position, and thus the properties of
phonon modes can be directly evaluated. Furthermore, phonons of a nonzero wave-
vector play an important role in the thermo-physical properties of crystalline solids and
the physics of many solid state phase transitions. Proving the mechanical stability of a
crystal structure by testing for real frequencies requires a vibrational calculation over
the full BZ and dispersion curves and densities of states are frequently required for
comparison with inelastic neutron and X-ray scattering experiments. Our calculated
dispersion curves and total densities of states of the phonon in Si2N20 and Ge;N20 are
displayed in Fig. 4.10(a) and (b). There is LO-TO splitting at the I' point due to coupling
between the phonon modes and the electric field. It is important to further check the
dynamical stability of Si;N20 and Ge2N20 from their phonon-dispersion curves. It is clear
that no imaginary phonon frequency exists in the whole BZ, indicating the dynamical

stability of our systems.
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Figure 4.10: Dispersion curves of phonon and total phonon density of states for (a)

SizNzO and (b) GezNzo

Phonon calculations from DFPT calculation can be used to evaluate the
temperature dependence of the enthalpy, entropy, free energy, and lattice heat capacity
of a crystal in a quasi-harmonic approximation. These results can be compared with
experimental data (for example heat capacity measurements) or used to predict phase
stability of different structural modifications or phase transitions. Are given in Fig.4.11
(a,b), the variations of the lattice heat capacity with temperature for SiN20 and Gez2N,0
respectively. It is suggested that the heat capacities Cy increase with the applied
temperature. Below a temperature ~ 562 K for SiZN20 and ~ 441 K for Ge:N:0, Cy
increases very rapidly with increasing temperature; Above these temperatures, Cy
increases slowly with temperature and gradually approaches the Dulong-Petit limit

owing to the ana-harmonic approximations of the Debye model [ Ashcroft-76].
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Figure4.11: Constant volume heat capacity Cv and temperature dependence of Debye

temperature Op for (a) Si2N20 and (b) Ge2N-0.

Conclusion
We have performed a detailed investigation on the structural, elastic, electronic,
and optical and lattice dynamic properties of SizN20 and Ge;N.0 compounds within the
DFT framework based on two approaches full potential and pseudo-potential plane
waves.
* The band structure of these oxynitrides states that these materials are

semiconductors with a direct band gap of 5.1 eV at I for SizN,0 and an indirect
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band gap about 2.65 eV between S and I points for Ge;N20. The moderate size of
band gap places Si2N:20 crystal in the class of semiconductors of large gaps rather
than GezN:0 insulator. An inspection of the Mulliken bond population shows that
this material has mixed ionic-covalent character.

¢ Calculation of the complete set of zero-pressure elastic constants has been
performed and satisfied the Born mechanical stability criteria, highlighting the
fact that the Si2N20 and Ge;N;0 structures are mechanically stables. In addition,
their bulk and shear modulus are larger than those reported on III-V
semiconductors like GaN and AIN.

¢ Optical properties of Si;N20 and Ge;N20 crystals were reported and compared
with the available experimental and theoretical data. The optical properties
namely the dielectric functions, refractive index were calculated as part of a
material characterization. The typical goals of such calculations were to predict
optical spectra of these materials under extreme conditions and to achieve better
understanding of the optical properties in connection to their electronic
structure.

¢ Vibrational density of states integrated across the Brillouin zone was used to
compute thermodynamic properties including specific heat capacity and Debye
temperature. Ab initio lattice dynamics calculations using DFPT methods were
very well adapted to Si2N20 and Ge2N:0 given for first time as prediction.

We expect that our results will be useful for future measurements on these systems and

especially for mixing systems such as SixGeyN:0. In particular, solid Si-Ge-O-N phases

may be immediately relevant in the emerging area of high-k gate materials for use in

next generation high mobility Si-Ge based transistors [Weng-10].
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Conclusion

his thesis has been concerned with the computational study of copper
nitrides, rare earth dioxides and potentially important oxynitrides

materials incorporating silicon and germanium. We have applied ab-

initio calculations including the FP-(L)APW+lo and pseudopotential methods, based on

DFT approach. We have presented an extensive investigation on the structural,

electronic, elastic, electronic optical and dynamical properties and the relative stabilities

of the bulk of these nitrides, dioxides and oxynitrides based systems. The main results of

our work can be summarized as follow:

For copper nitrides, ab initio calculations of structural, elastic, electronic,
bonding, and thermal properties were performed for different cubic phases,
zincblende, rocksalt, and fluorite phases. A concurrence between ionic and
covalent character was observed in all phases. Structural and mechanical
stabilities were examined by calculating the structure parameters and elastic
constants. We paid more attention to the electronic properties and bonding and
their relation to the possible covalent/ionic bonding characters. Using a quasi-
harmonic model we have calculated the temperature effects on the thermal

expansion parameters and specific heat observables.

In the case of rare earth dioxides, we have performed a set of simulations to
predict Coulomb parameter (Ues) used in LDA+U and GGA+U approaches,
especially for CeO;. The GGA+U (WC) method gives better agreement than the
LDA+U method. The application of GGA+U added to the spin-orbit coupling, on
the electronic, magnetic and optical properties was detailed and demonstrated to
be relevant for the correctness of our results. Elastic constants calculation proves
the mechanical stability of the rare earth dioxides. The electronic structure
description has shown that these structures are stable in ferromagnetic phases
and an excellent agreement with experiment has been obtained for the magnetic
moment. We were able to give a trend on the magnetic moments as function of
the atomic number (Z) of the rare earth atoms. Magnetic contribution of the rare
earth atom in each dioxide was achieved by analyzing the spin-density contours,

where the polarization on the first neighbor oxygen was confirmed.
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e For first time we report predictions on the silicon-germanium-based oxynitrides.
Their bulk and shear modulus are larger than those reported on III-V
semiconductors like GaN and AIN. We provided new information on the
electronic nature of Si2N20 and Ge;N20. In fact, the FP-LAPW+lo method is
known to be very accurate on the electronic structure calculations compared to
the other methods. It is employed for first time to determine the electronic
properties: band structure, densities of states and the optical properties. These
properties have been studied experimentally in the past especially and also
theoretically with on-self-consistent orthogonalized linear combination of atomic
orbitals (OLCAO) for SizN20. In our work, we applied FP-LAPW+lo method for
Si2N20 and Ge:N0 and our results are in good agreement with
experiments/theoretical works. The calculations on Ge2N:0 are purely predictive
because this material remains unusable and we have shown that it is a very
interesting material from electronic structure point view. We have also applied
the plane wave pseudo-potential (PW-PP) method to calculate the elastic
properties and density functional perturbation theory (DFPT) for phonons. In
particular their elastic constants have been performed and satisfied the Born
mechanical stability criteria, highlighting the fact that the Si:N.0 and Ge;N:0
structures are mechanically stables. The elastic constants are reported for the

first time and thermodynamic properties are deduced from these calculations.

Therefore we are able to conclude this work. Using the modern computational methods
for material modeling, we have simulated the properties of new materials and made
prediction of new phenomena as well as timed explain experimental observations. These
different materials could be highly interesting materials for modern and future

industrial applications.

~ 122 ~



Annex



Annex

Annex 1: Calculation of elastic stiffness constants

The mechanical properties of materials are of crucial importance for
technological applications. A solid body which is subject to external forces, or a body in
which one part exerts a force on neighbouring parts, is in a state of stress. If such forces
are proportional to the area of the surface of the given part, the force per unit are so-
called the stress. The stress in a crystalline material is a direction dependent quantity
and, therefore, is in general described by the stress tensorg;; .

011 012 013
o] = [021 022 023] (A-1)
031 032 033

If all parts of the body are in equilibrium and body forces are absent the equation:
29y

=0 (A-2)

J
It must be fulfilled. The symbols x;denotes the Cartesian axes. The deformations of the

solid caused by the exerted stress are described by the strain tensor defined as:

€11 €12 €13
[e] = |€21 €22 €31 (A-3)
€31 €32 €33
If ujis the displacement of a point x; in a deformed solid, the strain tensor element is then
defined as
_ 1o, 9y ;
eij T2 <axj T axi> (A 4)

The diagonal components €,4, €5, andes; are called tensile strains, whereas theother
components are usually denoted as shear strains. Both stress and straintensors are
symmetrical.

The linear theory of elasticity provides a mathematical description for the
phenomenological fact, that relative elongations and distortions (or strains in general)
are linearly proportional to applied stresses, provided that these stresses are kept to
suitable small magnitudes. Once the stresses are removed, an ideal linearly elastic body
returns to the unstrained state. This theoretical model does not refer to any model for
real matter, and the atomistic nature of matter does not enter as a prerequisite to this
concept. The range of the stress for which the assumption from above applies is called
the elastic limit. Beyond the elastic limit a non-linear effects break the (linear)
proportionality between stress and strain, and for large stresses a plastic dissipation

makes the deformation irreversible.
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The most general linear relationship which connects stress to strain is provided

by the generalized version of the well-known Hooke's law:

Tnn = CnnprEpr (A-5)
in which g,,,, denotes the stress tensor, €,, the strain tensor and the elements of the
fourth-order tensor Cy,,,, are the so-called elastic constants. Alternatively, one might
express the strains in terms of the stresses by

Emn = SprOpr (A-6)
defining the elastic moduli ;. The elastic constants and elastic moduli are
fundamental materials parameters providing detailed information on the mechanical
properties of materials.

The knowledge of these data may enable prediction of mechanical behaviour in
many different situations. Whereas o,,,,, and €, are symmetric and have therefore only
6 independent elements, the number of 36 elastic constant is reduced by symmetry
arguments to a total of 21. The elastic energy density U, which is defined as the total
energy per volume, is obtained from the stress tensor (force per unit area) by

integration of Hooke's law

E 1
U= v = 5 Cmnpremnepr (A'7)

So far, the strain tensor has been considered as a tensor of order two of the form

1+ e, 7Gxy 5 €zz
_ 1 1 1
€=] ey teyy ey (A-8)
1 1
5 €zx S €zy 1+e,,

Introducing the convenient matrix-vector notation, where the 6 independent elements

of stress and strain are represented as vectors (denoted as };ande; with i, j running

from 1. .. 6 according to the sequence xx; yy; zz; yz; xz; xy), and furthermore rewriting

the fourth order tensor C,,,,,,,-as a 6x6 matrix cj.
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Table A.1: The number of independent elastic constants for different lattice symmetries

and point groups [LePage-01].

Lattice (point group) No. of constants
Triclinic 21
Monoclinic 13
Orthorhombic

9
Tetragonal(4, -4, 4/m) 7
Tetragonal(422, 4mm, -42/m, 4/mmm) 6
Hexagonal and rhombohedral(3, -3) 7
Hexagonal and rhombohedral (32, 3m, -32/m) 6
Hexagonal (6, -6, 6/m, 622, 6mm, -62m, 6/mmm) 5
Cubic 3

Taking into account additional symmetry arguments imposed by the crystal
lattice, the number of elastic constants further decreases. In particular, for a cubic lattice
only three independent elastic constants, Ci1, Ci2, C44 remain, whereas for an
orthorhombic lattice the 9 elastic constants C11,C12, C13, C22, C23, C33, Cas, Cs5 ,Ces, are
sufficient, Since the examples discussed here are cubic and orthorhombic crystals, the

explicit form of the tensor is given for these two cases:

€11 €12 €12 0 0 0
C12 €11 C12 0 0 0
€12 €12 €11 0 0 0
Ceubic = 0 0 0 Cas 0 0 (A-9)
0 0 0 0 C44 O
0 0 0 0 0 Cua
€11 €12 G130 0 0
0 €2 C3 0 0 0
0 0 €3 0 0 0
Corthorhombic = 0 0 0 Ciz 0 0 (A-10)
0 0 0 0 ¢s5 O
0 0 0 0 0 g
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Annex 2: Quasi-harmonic Debye model

To investigate the temperature and pressure dependences of thermodynamic
properties of a crystal, the quasi-harmonic Debye model is applied, in which the
phononic effect is considered. This model is described in detail in Ref. [Blanco-04]. In
the following, we make a brief description for this model.
The Debye model is based on the estimation of the Debye temperature, using the

isotropic approximation [McLellan-80].

0= [6m2Van] /3 f (v) \/% (A-11)

where V is the molecular volume, M the molecular mass of the compound, Bs the
adiabatic bulk modulus, f{v) the scaling function [Francisco-98, Francisco -01], that
depends on Poisson’s ratio v[Poirier-91], [Maradudin-71] of the isotropic solid and kg
the Boltzmann constant.

Bs can be approximated by the static bulk modulus B static, leading to the

following equation:

d?E(V
Bs = Bstatic = V( dV(Z )) (A-lZ)

Where E is the total energy for each volume of the crystal, obtained from FP-LAPW
method at static conditions (T = 0 K). As a first step, the Equation of mechanical stability
of a compound is used to obtain the Debye temperature that is calculated from the static
bulk modulus By, which is determined using one of the three empirical EOS (Vinet,
Birch-Murnaghan and spinodal EOS) [Poirier-91].

A quasi-harmonic Debye model is then used to obtain the vibrational Helmotz

free energy A,;, (0, T)as a function of temperature at each volume

A,i(0,T) = 1k [22 4 3In (1 - e=/)| - D(6/T) (A-13)

Where D(y) is the Debye integral defined as

3y x®
D(y) _ﬁfo pr= dx
_ o
_kBT

(A-14)
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The (p,T) equilibrium situation is then obtained by minimizing the dynamic Gibbs
energy G* with respect to V. The non-equilibrium Gibbs energy is given by [Francisco-
98]

G(V,p,T) =EWV) +pV + Ay, (0(V),T) (A-15)
The equilibrium V{(p,T) curve (the thermal equation state (EOS)) is obtained by solving

the equation:

aG*(V,p.T)
(52, (A-16)
The isothermal bulk modulus is then defined as
3
Br(p.T) =~V (35). (A-17)

The adiabatic bulk modulus is given by

By = Bs(1+ ayT) (A-18)
Where a and y are the thermal expansion coefficient and Griineisen parameter,
respectively. The common thermodynamic parameters that depend on temperature and

pressure are used to derive other macroscopic properties.
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Abstract: The aim of the present thesis is to study the physical properties of

crystalline materials using the density functional theory (DFT) by means of two
methods, the full-potential linearized augmented plane-wave plus local orbitals and
plane-wave pseudopotential. After presentation of the employed method and its
conceptual basis as well as the most recent developments, we will pay more attention to
a direct application of the introduced method to compute the structural, electronic and
magnetic properties as well as the mechanical stability criteria in different systems. The
effect of strong correlation will be undertaken using both of the Hubbard (U) parameter
and the spin-orbit coupling. It is worthwhile to see that the rare-earth dioxides need the
application of both corrections: U and SOC compared to the rare-earth nitrides, where
GGA+U is sufficient to describe correctly the electronic structure. The last application
concerns the oxynitrides based on silicon and germanium, where structural, electronic,
elastic, electronic optical and dynamical properties are detailed.

Key words: DFT, nitrides, rare earth dioxide, the oxynitride, Lapw,

pseudopotential, Hubbard, spin-orbit coupling.

Résume: L'objectif de la thése est d'étudier les propriétés physiques des
matériaux cristallins en utilisant la théorie de la fonctionnelle de densité (DFT)
implémentée sous deux approches : la méthode linéaire des ondes plane augmentées
plus orbitales locales et la méthode de pseudopotentiel. Les fondements de cette théorie
ainsi que ces récents développements, qui permirent de palier aux problemes
numériques rencontrés dans les systémes complexes comme les terres rares, seront
détaillés. Nous aborderons ensuite le calcul des propriétés structurales, électroniques et
magnetiques ainsi que le critére de stabilité mécanique et énergétique des différents
systemes. Le probléme de la forte corrélation électronique sera ensuite abordé dans les
dioxydes de terre rare via l'introduction du parameétre de Hubbard (U) ainsi que le
couplage spin-orbite qui corrigeront la structure électronique. 1l est intéressant de voir
que les dioxydes de terre rare nécessitent I'application des deux corrections: U et SO
alors que les nitrure de terre rare exige que la correction U. Nous avons étendu notre
étude a des matériaux potentiellement important a savoir les oxynitrures a base de
silicium et de germanium.

Mots clés : DFT, les nitrures, les dioxydes de terre rares, les oxynitrure, LAPW,

pseudopotentiel, hubbard, couplage spin orbit



