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ABSTRACT

In 1975, K. Wilson has succeeded, through a new numerical method, called renormaliza-
tion group, to solve Kondo problem. This was a major breakthrough in the domain at
a point that K. Wilson was awarded the Nobel prize in 1982. This success has inspired
him, and many others, to apply the renormalization group method to quantum systems.
Unfortunately, the results were not so encouraging, due to their weak accuracy. In order to
overcome this drawback, many attempts was made by physicists: one of them was S. White,
who, apparently, was already working on the subject. He was able, after many attempts,
to localize the source of failure of Wilson method; it is the criteria of choosing the states
that must represent each block to form bigger ones. In 1993, S. White suggested, in his
famous paper, to use density matrix concept. Thus, instead of choosing the lowest energy
states, he has to build a density matrix of a block, diagonalize it and then choose states
corresponding to its highest eigenvalues. This allows him to pick up the ”best” states that
can represent a block as a part of a superblock. And it works!

Since then, the Density Matrix Renormalization Group (DMRG) has become a powerful
tool to investigate the ground state properties of a large panel of quantum systems, with all
variations these systems could present. The method was also combined to other numerical
methods to better understand the behaviour of those systems. There were attempts to
apply it even to cultural domain!

Like any other numerical method, DMRG has its own limitations: the most in sight is
that the method itself was firstly designed to deal with 1-dimensional systems, even though,
attempts was, later, made to extend it to higher dimensions.

In this thesis, I will first introduce the DMRG method by going back to its origin. Then,
technical details of the involved computations are given. I also use DMRG to investigate
the ground state properties of spin chains within Heisenberg model with spin site lacking.

En 1975, Kenneth Wilson a parvenu à l’aide d’une nouvelle méthode numérique, à savoir,
le groupe de renormalisation, à résoudre le problème de Kondo. Ce qui a été considéré en
son temps comme une percée dans son domaine; au point que K. Wilson lui même a reçu
le prix nobel en 1982. Ce succès lui a inspiré, et à bien d’autres physiciens, d’appliquer
la méthode de groupe de renormalisation aux systèmes quantiques. Malheureusement, les
résultats n’étaient pas si encourageantes, à cause de leurs faibles précisions. Pour y remédier,
plusieurs physiciens se sont mis à la besogne. Steve White, qui travaillait déjà sur le sujet,
a été en mesure, après plusieurs tentatives, à déceler la source du problème: le critère
qu’adoptait Wilson pour le choix des états qui devaient représenter chaque bloc du système
afin de construire une bloc plus grand n’était pas correct. Pour cela, White a suggéré,
dans un article, devenu célébré depuis, d’utiliser le concept de la matrice densité. Ainsi,
au lieu de choisir les états des énergies les plus bas, la matrice densité d’un bloc doit être
construite, puis diagonalisée. Cette procédure permet d’utiliser les états qui représentent le
mieux chaque bloc pour ensuite construire un superbloc.

Depuis, la méthode de groupe de renormalisation par la matrice densité est devenue un
outil puissant dans l’étude des propriétés de l’état fondamental d’une panoplie de systèmes
quantiques, avec toutes les variétés que peuvent présenter ces derniers. La méthode est

x



aussi combinée à d’autres méthodes numériques pour mieux comprendre le comportement
physiques de ces systèmes. C’est ainsi que même les sciences sociales n’ont pas échappées
à l’application de la méthode!

Comme toute méthode numérique ayant ses propres limites, la présente méthode ne fait
pas exception. En effet, son application exclusive à des systèmes unidimensionnels était de
son propre nature, et présentait un inconvénient majeur pour le traitement des systèmes
plus réalistes; bien que beaucoup d’effort a été fait dans ce sens.

Dans ce travail, Je fais une introduction à la méthode du groupe de renormalisation
par la matrice densité en retraçant son histoire. Ensuite, je donne les détails techniques
de l’implémentation de la méthode. Celle-ci est aussi utilisée pour l’étude des propriétés
physiques de l’état fondamental des systèmes de spins.

xi
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This work has a twofold goal: on one hand, I attempt to extend the Density Matrix
Renormalization Group (DMRG) method to be applied to systems with geometries other
than one dimension. Thus, a system composed of two crossed chains is investigated within
the simple Anderson model. An appropriate DMRG procedure is then applied. Results are
so encouraging, with high accuracy. The drawback is that the model itself, in its present
form, has no physical utility. It remains a toy model!

On the other hand, I use DMRG method to investigate ground state properties of
spin chains where a spin site is lacking (disordered systems). I use next nearest-neighbours
interactions to keep the spin chain assembled. The idea is new, and the results have brought
some light on the behaviour of ground state and first excited states energies when a spin
site is missing.



Chapter 1

Introduction

In quantum mechanics, diagonalizing the Hamiltonian of a system to obtain its eigenvalues
and eigenvectors plays a fundamental role in the investigation of its physical properties,
especially at low temperatures. The larger the system, the more efficient is the investigation
of its properties. However, increasing the size of the system will terribly increases the
corresponding Hilbert space. More and more memory and running time on computers
are then needed, and, unfortunately, these facilities become rapidly prohibitive, even for
small systems. For example, a one-band Hubbard chain of just 10 sites (which is ’nothing’
compared to a realistic structure) is represented in a Hilbert space of 410 = 1048576 states,
which is enormous, at least for us!

The use of symmetry properties of the system to investigate desired states with defined
quantum numbers can reduce the Hilbert space, and then smaller matrices are diagonalized.
Still, this reduction is not so helpful in many cases!

Helped by the rapid increase of the computational power of the computers, physicists
have proposed computational techniques for computing the low-lying states of strongly cor-
related systems; with mainly two types of approximations. The first class is based on the
projection of a huge Hilbert space on a smaller basis by means of truncation. Lanczos
method, Configuration Interaction schemes, and more recently the Density Matrix Renor-
malization Group are the most representative. The second branch of these approximations
uses the sampling of the full Hilbert space. The most in sight is the Monte carlo method.

In this thesis I will focus on one particular type of numerical methods, the Density Matrix
Renormalization Group (DMRG). This numerical method, invented by Steve White in 1992,
and which has its origin back to KennethWilson works on renormalization group, has proven
to be the most accurate tool for the numerical solution of one-dimensional models. It was
firstly applied to solve the ground state of the spin 1/2 Heisenberg chain. Since then, the
method has been applied to many models; from one dimensional fermionic systems, ladder
models and some two dimensional models both in real-space and momentum space. In
addition, generalization of the DMRG algorithm has been proposed for the calculation of
thermodynamic properties, 2D classical systems, phonons models, dynamical correlation
functions and even for social culture evolution!

In chapter 1, I revisit the remote origin of the DMRG, back to K. Wilson work on Kondo
problem, and see how he had solved it and why the renormalization group (RG) failed when
applied to other quantum systems. Then, I will revise some of the ideas that led S. White
to invent the DMRG.

3



4

In chapter 2, more technical insights on the DMRG method is given. Details about the
DMRG technique are abundant in literature, and the reader is invited to consult it.

In chapter 3, I first review different applications of the DMRG to quantum system
models. Then I will give examples of DMRG implementation to some strongly correlated
system models. The formalism to calculate expectation values of dynamic operators is also
presented.

Finally, in chapter 4, my work on DMRG method and its applications is presented.
Thus, the toy model of single quantum mechanics particle in box is extended to investigate
a two-crossed-chains model. Then, I will present a method using DMRG to compute ground
state energy for chains with lacking spin within spin-12 Heisenberg model. I also present
results of entanglement entropy of the spin-12 Heisenberg chains with and without a single
lacking spin site with next nearest neighbours interactions.



Chapter 2

Renormalization group method

2.1 Historical facts

In 1982, Kenneth. G. Wilson was awarded the Nobel prize of physics for his work on Kondo
problem. Inspired by ideas from field theory [1] and scaling ideas from condensed matter, he
had developed a non-perturbative powerful numerical tool, called since then the numerical

renormalization group method (NRG) [2], to calculate critical exponents, and later to solve
the Kondo problem [3]. This success opened the door to generalizing Wilson’s results to deal
with more realistic models for magnetic impurities, such as the non-degenerate Anderson
model.

In fact, the history of the Kondo problem [4] goes back to the 1930’s when a resistance
minimum was found at very low temperatures in seemingly pure metals [5].

As a matter of fact, in most metals, when the temperature is lowered, the electrical
resistivity decreases as a result of the decreasing amplitude of the thermal ionic vibrations.
When small amounts of iron, chromium, manganese, molybdenum, rhenium, or osmium
are added to copper, silver, gold, magnesium, or zinc, for example, the resistivity generally
exhibits a minimum.

In fact, the magnetic impurities can be found in transition metals, such as manganese
and iron, rare earths, such as cerium, and the actinides, of which the most important is
uranium. The magnetic character of these elements is due to their partially filled inner
shells, even though the outer valence states also contain electrons, which influences their
electronic density of states [4].

The explanation for this effect was provided by J. Kondo in 1964 [6], within a perturba-
tive calculation for the s−d (or Kondo) model (a model for magnetic impurities in metals),
by examining a system of noninteracting electrons undergoing spin flip scatterings by exter-
nal local moments. He realized that when magnetic impurities are present the conduction
electrons may suffer a change of spin as they scatter, and that higher orders of perturbation
theory than the first have to be treated very carefully.

Kondo successfully explained the resistance minimum within a perturbative calculation
for the s − d (or Kondo) model [6]. He had shown that second-order contributions to the
resistivity ρ(T ) increased logarithmically with T as T was lowered ( ρ(T ) ∝ lnT ). However,
Kondo’s result implies a divergence of ρ(T ) for T → 0, in contrast with the saturation found
experimentally. The problem of finding a solution valid in low temperature regime T → 0
is called the ’Kondo problem’.

5
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In his calculations, Kondo started with the part of the perturbing potential containing
the magnetic interaction, s · S, where s and S are, respectively, the spin of the conduction
electron and the spin of the localized electron in the d or f shell of the impurity. The
localized spin can have a total spin different from 1/2. Kondo assumed that the spins
of the localized and conduction electrons are uncorrelated and have independently equal
probability of initially being either up or down. While this will directly reveal the onset
of the resistance minimum as the temperature is lowered, it will fail as the temperature
is decreased further; since at the lowest temperatures conduction and localized spins form
bound singlet pairs.

Kondo suggested that the resistance minimum is rather a consequence of the interaction
between the spins of the localized and conduction electrons, than a fact of the interaction
with impurities.

It is worthy to note that impurities in transition metals cannot be treated by the well-
known self-consistent field approach [7] due to a strong local Coulomb interaction, and also
because we are interested in the behavior of the system as a function of temperature rather
than ground state properties. Instead, simpler model Hamiltonians are derived to describe
the low energy excitations associated with the impurity.

Conduction electrons in wide bands can be assumed to behave approximately as inde-
pendent particles moving within a periodic potential. The long range Coulomb interaction
between the electrons is screened (contributing to plasma excitations, which are of too
high an energy to concern us) so that the electrons are essentially quasi-particles, electrons
together with their screening cloud.

One of the most important ways in which impurities affect the behaviour of a metal
is their contribution to the electrical resistivity at low temperatures. The conductivity is
infinite for electrons in a perfect lattice as there is no scattering, and consequently no current
dissipation. At finite temperatures the scattering with phonons usually provides the most
important mechanism for the dissipation of the electron current. At low temperatures there
are few phonons, so the scattering by impurities and defects becomes more important, and
becomes the dominant dissipative mechanism as T → 0, leading to a finite conductivity in
this limit.

2.2 How Wilson solved the Kondo problem?

In 1974, K. G. Wilson [2] succeeded to solve the Kondo problem, where, as he himself
remarked, ”it was the first example where the renormalization group program had been
carried out in full”. In fact, the solution was based on the division of the whole lattice into
shells around the impurity, in such a way that the further shell was from the center, the
nearer to the Fermi surface the electrons were supposed to be. Shells were integrated in an
iterative way, starting from the center, so the external ones only saw the impurity sheltered
by the inner shells. It is important to remark that the solution required a strong amount
of numerical computations (in 1974 terms) and it was considered to be a great success with
an error in the observables of a few percent.

In fact, the usage of mixed real space and momentum space techniques is one of Wilson’s
great ideas. Electrons which are far away from the impurity only contributed to the magnetic
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susceptibility (his main target) if they were so near to the Fermi surface that their ability
to be excited could compensate.

In both Kondo model and impurity Anderson model, the impurity couples to a free
conduction band with a density of states which is, for simplicity, assumed to be constant
within the band-edges −D and D. The technical steps described in the following are mainly
designed to deal with the arbitrarily low energies (measured relatively to the Fermi level)
present in the free conduction band (for more details see [2, 4, 8]).

-1 1 ε/D

ρc(ε)

Λ−1Λ−2−Λ−1−Λ−2 · · ·· · · 0

Figure 2.1: Logarithmic discretization of the conduction band

The first step to set up the renormalization group transformation is a logarithmic dis-
cretization of the conduction band ( see Fig.2.1): the continuous conduction band is divided
into infinite intervals [ξn+1, ξn] and [−ξn, ξn+1] with ξn = DΛ−n and n = 0, 1, 2, · · · ,∞. D
is half of the bandwidth of the conduction band and Λ the NRG discretization parameter
(typical values used in the calculations are Λ = 1.5, · · · , 2). The conduction band states in
each interval are then replaced by a single state. While this approximation by a discrete
set of states involves some coarse graining at higher energies, it captures arbitrarily small
energies near the Fermi level.

In a second step, this discrete model is mapped on a semi-infinite chain form via a
tridiagonalization procedure (for details, see [8] and section 4.2 in [4]). The Hamiltonian of
the semi-infinite chain has the following form (see also Fig. 2.2):

H =
∑

σ

εff
†
σfσ + Uf †↑f↑f

†
↓f↓ +

∑

σ

V (f †σc0σ + c†0σfσ) +

∞
∑

σ,n=0

εn(c
†
nσcn+1σ + c†n+1σcnσ),(2.1)

This form is valid for a general symmetric conduction band density of states. The
impurity now couples to a single fermionic degree of freedom only (the c†0σ) with a hy-
bridization V . Due to the logarithmic discretization, the hopping matrix elements decrease
as εn ∝ Λ−n/2. This means that in going along the chain, the parameters in the Hamil-
tonian evolve from high energies (given by D and U) to arbitrarily low energies (given by
DΛ−n/2). The renormalization group transformation is now set up in the following way.

We start with the solution of the isolated impurity, that is, the knowledge of all eigen-
states, eigenvalues, and matrix elements. The first step of the renormalization group trans-
formation is to add the first conduction electron site, set up the Hamiltonian matrices for
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V ε0 ε1 ε2
· · ·
· · ·

Figure 2.2: Semi-infinite chain form of the single impurity Anderson model

the enhanced Hilbert space, and obtain the information for the new eigenstates, eigenvalues,
and matrix elements by diagonalizing these matrices. This procedure is then iterated.

An obvious problem occurs after only a few steps of the iteration. The Hilbert space
grows as 4N ( with N the size of the cluster), which makes impossible to keep all the
states in the calculation. Therefore, Wilson devised a very simple truncation procedure in
which only those states (typically a few hundreds) with the lowest energies are kept. This
truncation scheme is very successful but relies on the fact that the hopping matrix elements
are falling off exponentially. Higher-energy states therefore do not change the very low
frequency behaviour and can be neglected. This procedure gives for each cluster a set of
eigenvalues and matrix elements from which a number of physical properties can be derived.

The basic idea of this scheme is that only the low-energy eigenstates obtained for a
system of size L will be important in making up the low-energy states of a system of size L+
1. Note that in isolating the block of length L, one has to decide how to treat the boundaries
of the block. The simplest thing to do is to neglect connections to surrounding sites, which
corresponds to applying open boundary conditions to the system being diagonalized. This
procedure worked well in Wilson’s original work on the single impurity Kondo problem
and, with minor variations, is still used today for a variety of single and two Kondo and
Anderson impurity problems. In his original paper, Wilson has very carefully justified
the truncation by perturbatively calculating the error [2]. In addition, he compared the
numerical results with analytical analysis of the behaviour near the fixed points. However,
when this procedure is applied to other systems for which the model does not include
an intrinsic separation of energy scales, the accuracy becomes quite poor after just a few
iterations [15].

In general, Wilson’s numerical RG procedure then proceeds as follows:

1. Isolate a portion of the system, containing L sites. Here L is chosen to be small
enough so that the Hamiltonian HL can be diagonalized exactly.

2. Diagonalize HL numerically, obtaining the m lowest eigenvalues and eigenvectors.

3. TransformHL and other operators in the ”block” of length L, to a new basis consisting
of the m lowest eigenvectors of HL, i.e. form HL = OT

LHLOL, , where the columns
of OL contain the m lowest eigenvectors of HL. Note that HL is a diagonal matrix
with m elements,.i.e.:
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L

HL OL

HL

Figure 2.3: Step three of the Wilson RG procedure.

4. Add a site to HL to form HL+1. In order to do this, the interaction between the block
of length L and the additional site added must be reconstructed.

5. Repeat starting with step (2), substituting HL+1 for HL.

2.3 What is Renormalization?

The study of electronic properties of quantum lattice systems requires the diagonalization
of their Hamiltonians. If the lattice has N sites and there are k possible states per site
then the dimension of the corresponding Hilbert space H is simply kN . For example, k = 4
for the Hubbard model, k = 3 for the t − J model and k = 2 for the Heisenberg model.
However, when N is large enough, it is impossible, at least in the immediate future, to solve
the corresponding eigenvalue problem, unless the system itself has an analytic solution.
This impasse opens the door to a variety of approximate methods which are more or less
accurate with different domain of excellency. Among them, the renormalization group (RG)
approach is one of the most relevant, especially its numerical version.

The basic idea of renormalization is to transform a lattice system to a bigger lattice
which is apparently the same as the original one. This is done by eliminating number of its
degrees of freedom (keep relevant information of a physical system, and neglect or integrate
out irrelevant one) followed by an iteration which reduces, step by step, the number of
variables until a more manageable situation is reached (see [9, 10, 11] and references therein).
In fact, it is a matter of symmetry that the system keeps its appearance as we move from
one scale to another. During the transformation parameters (coupling constants between
components) describing the components (electrons, atoms, atomic spins) of the system will
slightly change.
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A deeper understanding of the physical meaning of the renormalization group came
from the image given by Leo P. Kadanoff. In his paper in 1966 [9], Kadanoff proposed
the ”block-spin” renormalization group, with a fundamental idea: a spin block behaves,
after the coupling constants being appropriately readjusted, in the same way as a single
spin does. He proved that this transformation explains some empirical relations among the
scaling exponents. A breakthrough was made when, in 1974, Kadanoff and his collaborators
worked out the first results for one of the most significative problems: 2D and 3D Ising
models [12] [13].

Technically, there are mainly two procedures to reduce the size of the lattice. The first
one, introduced by Kadanoff, consists in dividing the lattice into blocks. This can be applied
to 2D and 3D systems.

Thus, in 2D Ising systems where each site is occupied by a single atom spin with two
degree of freedom, the renormalization process consists in aggregating, for example, four
sites together to make a square and then choose for them a single degree of freedom. How
could that value be chosen? The mean value of spins seems to be the natural solution,
except that it does not provide us with a value when the sum of spins is zero.

To lift this inconvenience, we may allow random values of spins to represent blocks, or
adopt more than one degree of freedom for each block, allowing a more refined analysis. This
transformation process, called flow, has some fixed points which determine the macroscopic
physics of the system.

The second approach, introduced by Wilson [2], starts with a small system whose Hamil-
tonian can be exactly diagonalized. The system size is then increased without increasing
the size of the Hilbert space (the Hilbert space is truncated to a numerically reasonable
size) until the desired system size is reached. It is intrinsically restricted to deal with one-
dimensional lattices, and was used by Wilson in his treatment of the Kondo problem. The
success of the renormalization approach rests on scale separation: for continuous phase
transitions, the diverging correlation length sets a natural long-wavelength low-energy scale
which dominates the physical properties, and fluctuations on shorter length scales may be
integrated out and summed up into quantitative modifications of the long-wavelength be-
haviour. In the Kondo problem, the width of the Kondo resonance sets an energy scale
such that the exponentially decaying contributions of energy levels far from the resonance
can be integrated out. This is the essence of the numerical renormalization group RG.

In fact, after two small blocks are linked to form a twice larger block, the Hamiltonian
of this latter is then exactly diagonalized and its eigenstates are used as base states. Only
eigenstates whose energy lies below a certain threshold are kept. The states which are
kept characterize the new block that is again linked to an identical block, and the process
is iterated. During this process of block forming the Hamilton operator of the systems
must not change. Also, physical quantities like the partition function for thermal phase
transitions or the density of states for the Anderson model [14] are not changed, while
the coupling constants are varying according to their own trajectories, for different initial
values, in the corresponding space. Another version of the Wilson approach is to start from
an exact representation of a small subsystem and build effective representations of larger
subsystems iteratively, adding one site at every iteration.

In systems where the degrees of freedom can be cast in terms of the Fourier modes of a
given field, the so-called momentum-space RG can be used. It proceeds by integrating out a
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certain set of high momentum (high spatial frequency) modes, since high spatial frequency
is related to short length scales.

2.4 The Renormalization Group mathematically

The renormalization group is a mapping R of a Hamiltonian H(K), which is specified by
a set of interaction parameters or couplings K = (K1,K2, · · · ) into another Hamiltonian of
the same form with a new set of coupling parameters K′ = (K ′

1,K
′
2, · · · ). This is expressed

formally

R{H(K)} = H(K′), (2.2)

or equivalently,

R(K) = K′. (2.3)

The transformation is in general non-linear. Such transformations were generated in the
scaling approach to eliminate higher energy states. The new effective Hamiltonian is then
valid over a reduced energy scale. In applications to critical phenomena the new Hamiltonian
is obtained by removing short range fluctuations to generate an effective Hamiltonian valid
over larger length scales. The transformation is usually characterized by a parameter, say
α, which specifies the ratio of the new length or energy scale to the old one. A sequence of
transformations,

K′ = Rα(K), K′′ = Rα(K
′), K′′′ = Rα(K

′′), etc. (2.4)

generates a sequence of points or a trajectory in the parameter space K, where α is a
continuous variable. The transformation is constructed so that it satisfies

Rα′{Rα(K)} = Rα+α′(K). (2.5)

In applications, as the transformations are generated either by a reduction in energy scale
or a coarse graining of space, inverse transformations do not exist so that, strictly speaking,
the transformations constitute a mathematical semi-group rather than a group.

One of the key concepts of the renormalization group is that of a fixed point. This is
a point K∗ which is invariant under the transformation,

Rα(K
∗) = K∗. (2.6)

The trajectories generated by the repeated application of the renormalization group tend to
be drawn towards or expelled from the fixed points. The behaviour of the trajectories near
a fixed point can usually be determined by linearizing the transformation in the neighbour-
hood of the fixed point. If in the neighbourhood of a particular fixed point K = K∗ + δK
then, expanding Rα(K) in powers of δK,

Rα(K
∗ + δK) = K∗ + L∗

αδK+O(K2), (2.7)
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where L∗
α is a linear transformation. If the eigenvectors and eigenvalues of L∗

α are O∗
n(α)

and λ∗n(α), and if these are complete (there is in general nothing to ensure this, so it is an
assumption) then they can be used as a basis for a representation of the vector δK,

δK =
∑

n

δKnO
∗
n(α), (2.8)

where δKn are the components.
How the trajectories move in the region of a particular fixed point depends on the

eigenvalues λ∗n(α). If we act m times on a point K in the neighbourhood of a fixed point
K∗ then, from (2.7), we find

Rm
α (K∗ + δK) = K∗ +

∑

n

δKnλ
∗m
n (α)O∗

n(α), (2.9)

provided all the points generated by the transformation are in the neighbourhood of the
fixed point so that the linear approximation (2.7) remains valid.

For eigenvalues λ∗n(α) > 1, which are termed relevant, the corresponding components
of δK in (2.9) increase with m. Those corresponding to eigenvalues λ∗n(α) < 1, termed
irrelevant (this is a technical term and should not be always taken literally), get smaller
with m. Eigenvalues λ∗n(α) = 1 are termed marginal and the corresponding components in
(2.9) do not vary with m. The eigenvalues of the linearized equation lead to a classification
of the fixed points. Stable fixed points have only irrelevant eigenvalues so δK → 0 and
the trajectories in their neighbourhood are drawn in towards the fixed point. If there are
one or more relevant eigenvalues then the fixed points are unstable and the trajectories are
eventually driven away from the fixed point in a direction largely determined by the most
relevant eigenvector. A fixed point is marginal if it has no relevant eigenvalues and at least
one marginal one. In this case the behaviour of the trajectories in the neighbourhood of the
fixed point cannot be determined solely from the linearized form (2.7) and the non-linear
corrections have to be examined. There may be competitive influences on a trajectory due
to several fixed points. The region in which a trajectory passes from the sphere of influence
of one fixed point to that of another is known as a crossover region.

Transformations are then generated to find how the interaction between blocks varies as
the size of the block increases, on the assumption that the interblock interaction can always
be described by a model of the same form (at least approximately). The critical exponents
are then deduced from these scaling transformations in the limit in which the block size
tends to infinity (it is the interactions between the very large blocks that determine the
long range fluctuations that determine the critical behaviour). These transformations are
essentially renormalization group transformations, and are such that the trajectories for
very large blocks are controlled by an unstable fixed point.

2.5 Numerical RG for a Particle in a Box

In order to understand why the Wilson numerical renormalization group procedure breaks
down for interacting quantum chemical systems, it is useful to consider first its application
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to a simple non interacting problem, e.g. a linear chain of H-atoms. The Hamiltonian that
we will consider is the simple Hückel Molecular Orbital (HMO) approximation:

H = α
L
∑

i=1

c†i ci + β
L−1
∑

i=1

(c†i ci+1 + c†i+1ci) (2.10)

where c†i and ci are respectively the creation and annihilation operators for an orbital on
site i. The matrix elements Hij = 〈i|H|j〉 are then

Hij =

{

α = 0 i = j
β = −1 |i− j| = 1

0 otherwise
(2.11)

The values: α = 2 and β = −1 are chosen so that this operator is just the discretization of

the second derivative operator, ∂2

∂x2 ⇒
∂2 f(x)
∂x2

l

≈
2f(xl)−f(xl−1)−f(xl+1)

h2 .

The Wilson procedure described in the previous section can be carried out on this
system with just a few minor modifications. First, since this is a one-particle problem,
the dimension of the Hilbert space for a grid of length L is L, rather than exp(L) as in
an interacting system. Since the Hilbert space grows less rapidly with system size for the
non-interacting systems, we will add two equal-sized blocks in the real-space blocking step,
rather than adding a site at a time. Secondly, the formalism of putting the blocks together
is a little simpler.

In step (1) of the Wilson’s procedure, we isolated a block of length L. We can understand
how this is done for the non-interacting system by considering a semi-infinite system broken
up into blocks of length L. The Hamiltonian can then be written:

H =









HL TL 0 0 · · ·
T

†
L HL TL 0 · · ·

0 T
†
L HL TL · · ·

...
...

...
...









(2.12)

For L = 1, the H1 is a 1 × 1 matrix with value 2 and T1 is a 1 × 1 matrix with value
−1. For larger L, HL just has the form of Eq. (2.11), and TL just has a −1 in the lower
left corner, and just connects the sites on the block boundaries. Isolating a block then
consists of neglecting the TL, and therefore applies fixed boundary conditions to HL. Here
we use the term ”fixed” boundary conditions rather than the equivalent ”open” boundary
conditions to emphasize that the single-particle wavefunction vanishes at the boundary. In
step (2), we diagonalize HL and form

OL =





| |
v̄1 · · · v̄m
| |



 (2.13)

where v̄1 · · · m̄ are the eigenvectors corresponding to them ≤ L lowest eigenvalues of HL. In
step (3), we form the diagonalm×m matrix HL = Ot

L HL OL and transform the connection
between HL and the rest of the system TL to the new basis by forming TL = Ot

LTLOL.
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We now increase the size of the system, step (4), by putting two blocks of size L together
to form a system of size 2L with

H2L =

(

HL TL

T
†
L HL

)

(2.14)

and

T2L =

(

0 0
TL 0

)

(2.15)

The procedure can then be repeated starting with step (2) by substituting H2L and T2L

for HL and TL. The size of the system therefore doubles at each step, but the size of the
matrix to be diagonalized is at most 2m×2m. Notice that since we transform to a truncated
basis at each step, the matrix elements of HL and TL can no longer be easily related to the
original real-space basis. However, if m were equal to L at each step, the procedure would
be exact; it would just be a complicated reshuffling of the original Hamiltonian.

This scheme is depicted pictorially in Fig. 2.4. For a Hamiltonian represented in a real-
space basis, the RG step is a real-space blocking scheme. Typically, the number of states m
kept at each step is held constant, so the time and memory required for each diagonalization
stays the same, and the computer time needed is linear in L.

H̄L

H̄L+1

Figure 2.4: A pictorial depiction of the Wilson numerical RG procedure.

This procedure performs quite badly as soon as m < L. There are large errors in the
energies of the lowest few states after only the first few truncating steps. This failure was
pointed out by Wilson at an informal seminar at Cornell University in 1986 as an example
of a numerical RG procedure which does not work. He also, pointed out that in this simple
system it is easy to understand why the procedure fails. In the continuum limit, the linear
H-atom chain model with fixed boundary conditions describes a particle-in-a-box of length
L with an infinitely high potential at the walls. The eigenfunetions are therefore particle-
in-a-box eigenfunctions: ψn(x) ∝ sin(nπ x

L ) with n a positive integer, and vanish at the
boundaries of the box. In the RG procedure, the lowest few eigenstates of a system of
length L are combined to form the low-lying eigenstates of a system of length 2L. Clearly, a
combination of the ground states of two systems of length L is a bad approximation to the
ground state for a system of lengthM . Since the wave vectors of the discrete system take on
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small but finite values on the first and last sites of the system, the ”kink” at the boundary
between the blocks can be removed, but only by using almost all of the eigenstates of the
smaller block.

2.6 Real-Space Numerical Renormalization Group (NRG)

Algorithm for a 1D Quantum Lattice

In the standard real-space NRG, one begins by breaking the 1D chain into finite identical
blocks. It is usually convenient to start at the first iteration with blocks consisting of just
one site. We will label the blocks, ”B” and the block Hamiltonian ”HB” . HB contains
all terms of H involving only sites contained in B. HB is represented as an m×m matrix
where m is the number of states of the block B. The information describing the interactions
between blocks is also needed. Now, the standard procedure is as follows:

1. At the beginning of an iteration, one forms the Hamiltonian for two blocks joined
together, HBB . BB has m2 states.

2. The lowest-lying eigenstates uαi1i2 , α = 1, · · · ,m of HBB are the states used to describe
B′ (BB → B′), obtaining by diagonalization of HBB

3. Then one forms matrix representations of boundary operators corresponding to the
interactions between neighbouring blocks for BB from the corresponding matrices for
B.

4. The new block Hamiltonian matrix HB′ is evidently diagonal in this basis; but in
the more general case where the states kept, the uα, are not eigenstates of HBB we
can use this transformation where the m ×m2 matrix O is made out of the basis in
such a way that the rows of O are the states kept. If O were square, this would be a
unitary transformation. Since O is not square, the transformation truncates away the
high-energy states. Moreover, in order to obtain new matrices for boundary operators
at this stage, it is necessary to use O again.

5. Now we can replace B by B′ and start the next iteration. The iteration is continued
until the system is large enough to represent properties of the infinite system.

Many authors applied the real-space approach described below to quantum systems :
1D Hubbard model [15], 1D Heisenberg model [16], 2D Anderson localization [17]. The
results are more or less discouraging, and the standard numerical RG approach generally
performs poorly.

2.7 Why Wilson Renormalization group fails?

While the Wilson approach of renormalization leads to solve accurately the Kondo problem,
it fails to give accurate results when applied to strongly correlated systems like Hubbard
model, t-J model and Heisenberg model [15, 18, 19, 16]. The most important difference
between the Kondo system and a 1D system is that the couplings between adjacent layers
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or ”sites” decreases exponentially in the Kondo system, whereas it remains constant for a
1D system. This exponential decrease is the key to the success of the method for the Kondo
system and related impurity systems.

Technically, the failure of Wilson’s RG lies in the way each method deals with entan-
glement. Typically the ground state of a lattice system exhibits quantum correlations. In
order to represent the state of an isolated portion of lattice sites, say A, it is necessary to
take into account the correlations between A and the rest of the lattice, say C. Due to
the nonlocal nature of the entanglement responsible for the correlations, it is impossible
to represent the state of AC using only the local degrees of freedom of A. Thus Wilson’s
RG cannot represent the correlations of A with C unless a full exact diagonalization is
performed. Thus, neglecting all connections to neighbouring blocks during the diagonal-
ization of the block Hamiltonian introduces large errors which cannot be corrected by any
reasonable increase in the number of states kept.

In quantum information language, the failure is due to the fact that the ground state of
an interacting lattice is typically entangled, and thus a subsystem of the total lattice cannot
be assigned a definite state.

This can be understood in detail by considering a toy model, a single particle on a tight-
binding chain which is equivalent in the continuum limit to a 1D particle in a box with the
Hamiltonian matrix like that:

H =

{

2, i = j,
−1, |i− j| = 1
0 otherwise

(2.16)

Applying the outlined real-space NRG approach to this problem, gives very poor results.

2.8 The way towards Density Matrix Renormalization Group
(DMRG)

In order to improve the performance of the real-space RG, many authors were bended over.
Thus, instead of doubling the block size, Xiang and Gehring [16] used to add a single site
to a block at each iteration. The result was more encouraging, but still with low accuracy.

Wilson himself was convinced that the truncation of the interactions leading to disconti-
nuities at the edge of a block was unjustified, because ignoring them means that the retained
states vanish at the edge of the blocks, and any subsequent states. Thus, he proposed, in
an informal talk in 1986, that attempts to fix the approach should pass first through the
solution of the particle-in-a-box problem of real space RG before trying out many particle
systems [20]. Steve R. White was among the assistance and decided to take care of the
problem .

In fact, few years after, S. White and R. Noack [21] had succeeded to formulate two
types of RG procedures which solve these problems and work quite well for the single-particle
problem. Both are based on choosing a new basis for HL which is not the eigenbasis of HL.

In the first procedure, called the combination of boundary conditions (CBC) method, the
new basis is formed from the low-lying eigenstates of several different block Hamiltonians.
The Hamiltonians are formed by applying a number of different boundary conditions to the
edge of the block. For example, fixed and free (for free boundary conditions the derivative
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of the wave function vanishes at the boundary) boundary conditions can be applied. One
can form Hbb′

L with b, b′ = fixed or free. For example,

H free,fixed
L=2 =

(

1 −1
−1 2

)

(2.17)

One diagonalizes Hbb′

L for all 4 combinations of boundary conditions, and then form OL

from the m/4 eigenvectors associated with the lowest eigenvalues from each combination of
boundary conditions. Since the columns of OL are not orthogonal, we must explicitly or-
thogonalize them using e.g. the Gram-Schmidt procedure. We then form TL = Ot

L TL OL.
Note that Hbb′

L is not diagonal. The Hamiltonian of the system of size 2L is then

Hbb′
2L=

(

H
b,fixed
L TL

T
†
L H

fixed,b′

L

)

(2.18)

Fixed boundary conditions must be used at the boundaries between the blocks in order
to make the procedure exact when all states are kept. The matrix T2L is formed as in
Eq. (2.15). The fixed-free CBC procedure works amazingly well. The state energy can
be obtained to 10 digit accuracy keeping m = 8 states and performing 10 iterations so
that L = 2048. The CBC procedure can also be formulated with other combinations of
boundary conditions such as periodic and antiperiodic. While the periodic-antiperiodic
CBC procedure is not as accurate as the fixed-free procedure, it performs much better than
the Wilson procedure with periodic or antiperiodic boundary conditions.

The second type of procedure developed by S. White and R. Noack [21], called the
superblock method, consists in choosing a new basis for H2L and T2L based on the idea
that they will eventually be used to make up part of a larger system. In order to do this, a
”superblock” (with periodic boundary conditions) made up of p > 2 blocks is formed and
diagonalized. For example,

H
p=4
2L =







HL TL 0 Tt
L

Tt
L HL TL 0
0 Tt

L HL TL

TL 0 Tt
L HL






(2.19)

The transformation O2L is then made up by projecting the m lowest-lying eigenstates
of Hp

2L onto the coordinates of the first two blocks, and then orthogonalizing its columns.
This new basis is used to transform H2L = Ot

2L H2LO2L and T2L = Ot
2L T2L O2L , as

defined in Eqs. (2.14) and (2.15). The idea is that the fluctuations in the additional blocks
surrounding the system to be blocked effectively apply general boundary conditions, or
equivalently, provide the conditions at the boundaries that the transformed blocks would
see as part of a larger system. As p becomes large, this procedure becomes exact because it
reduces to an exact diagonalization of the complete final system. Another interesting feature
of this procedure is that the diagonalization step is decoupled from the real-space blocking
step; a different size system is diagonalized than is blocked together. This procedure yields
accurate results for the particle-in-a-box eigenstates, although not quite as accurate as the
fixed-free CBC procedure.

The standard real-space renormalization group procedure is as follows:
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1. Interactions on an initial sublattice (”block”) A of length l are described by a block
Hamiltonian ĤA acting on an M -dimensional Hilbert space.

2. Form a compound block AA of length 2 l and the Hamiltonian ĤAA, consisting of two
block Hamiltonians and interblock interactions. ĤAA has dimension M2.

3. Diagonalize ĤAA to find the M lowest-lying eigenstates.

4. Project ĤAA onto the truncated space spanned by the M lowest-lying eigenstates,
ĤAA −→ Ĥtr

AA.

5. Restart from step 2, with doubled block size: 2 l −→ l, AA −→ A, and Ĥtr
AA −→ ĤAA,

until the box size is reached.

This success pushed Steven White to try his numerical technique to interacting quantum
systems; in vain. However, as White himself said, this led him to the conclusion that extra
boundary sites are needed, which were not part of the block, in order to induce the right
boundary conditions. This led to the idea of solving a ”superblock” system, and then
projecting the superblock state onto the block [20].

Then, he realized that the projection idea of the superblock onto a block was actually
equivalent to a singular value decomposition:

ψij = UiαDααVαj (2.20)

where i denotes states of the block, and j denotes states of the remainder of the superblock.
The very decomposition was actually equivalent to diagonalizing a density matrix, a

concept borrowed from Feynman’s lectures [22]:

ρii′ = ψijψi′j = UiαD
2
ααUi′α. (2.21)

Indeed, for a system which is strongly coupled to the outside universe, it is much more
appropriate to use the eigenstates of the density matrix to describe the system rather than
the eigenstates of the systems Hamiltonian. In other words, to analyze which states have
to be retained, the block has to be embedded in some environment and we can view the
rest of the lattice as a heat bath at an effective inverse temperature b to which the system
is coupled. And the density matrix tells us which states are the most important ones.

Therefore, we come up with the key idea of DMRG namely: rather than keeping the
lowest-lying eigenstates of the Hamiltonian in forming a new effective Hamiltonian of a
block of sites, one should keep the most significant eigenstates of the block density matrix,
obtained from diagonalizing the Hamiltonian of a larger section of the lattice which includes
the block.

Thus, infinite-system DMRG method for the Heisenberg spin 1/2 chain was the first
application of the new technique, and nice results were obtained when compared with the
exact Bethe ansatz solution.



Chapter 3

Density Matrix Renormalization
Group

3.1 Introduction

The dramatic success of the DMRG method [21, 23, 24] has changed the picture of real-
space RG techniques completely and became in few years a powerful numerical technique
for finding accurate approximations to the ground state and the low-lying excited states of
strongly interacting quantum lattice systems such as the Heisenberg, t − J , and Hubbard
models. DMRG is remarkable in the accuracy that can be achieved for one dimensional
systems.

Thus, DMRG has been applied until now in very different fields of scientific research
[25, 26, 27]. The method itself is a rather complicated algorithm and a detailed description
together with some examples is given by S.R. White in [23].

3.2 The Density Matrix Projection

In this chapter, I will attempt to introduce DMRG in a pedagogical manner and discuss
how to generalize the projection of the superblock described in the previous section for the
noninteracting system to interacting systems. The main material is taken from [28]. The
procedure involves forming the reduced density matrix for the system block as part of the
superblock. I will show that the basis obtained using this density matrix projection is the
optimal basis in a particular sense.

First, let us briefly review the properties of density matrices. An excellent treatment is
given in Feynman’s book on statistical mechanics [22]. The term ”density matrix” is used to
refer to a number of different, but related mathematical objects, both in quantum mechanics
and quantum statistical mechanics. Here I consider a quantum mechanical system in a
definite pure state, and consider the properties of a part of that system. Since I will later
use this procedure as part of a superblock algorithm, I will label the entire system the
superblock, the part that we are interested in constructing a basis for the system block, and
the remainder of the system the environment block, as depicted in Fig.5.1. Let |i〉 labels
the states of the system block, and |i〉 labels the states of the environment block, i.e. the

19



20

rest of the superblock. If ψ〉 is a state of the superblock,

|ψ〉 =
∑

ij

ψij |i〉|j〉 (3.1)

The reduced density matrix for the system block is defined as

ρii′ =
∑

j

ψ∗
ijψi′j. (3.2)

by normalization, Trρ = 1. The density matrix contains all the information needed from
the wavefunction ψ to calculate any property restricted to the system block. If the operator
A acts only on the system block, then

〈A〉 =
∑

ii′

Aii′ρi′i = TrρA (3.3)

Now let us diagonalize the density matrix. Let ρ have eigenstates |uα〉 and eigenvalues
wα ≥ 0. Since Trρ = 1,

∑

αwα = 1. Then for any system block operator A,

〈A〉 =
∑

α

wα〈u
α|A|uα〉. (3.4)

system environment

superblock

|i〉 |j〉

Figure 3.1: A superblock divided into a system block and an environment block.

Equation (3.3) will apply immediately to our numerical renormalization group proce-
dure. Suppose we wish to throw away some states from the system block. If for a particular
α, wα ≈ 0, we make no error in 〈A〉, for any A, if we discard |uα〉. We have found a way to
find which states to keep (those with significant wα) and which to discard.

This argument can be made much more precise. In particular, we can show that keeping
the most probable eigenstates of the density matrix gives the most accurate representation
of the state of the superblock, i.e., the system block plus the environment block. Let us
assume we have diagonalized the superblock and obtained one particular state |ψ〉, typically
the ground state. We wish to define a procedure for producing a set of states of the system
block |uα〉, α = 1, · · · ,m, with |uα〉 =

∑

i u
α
i |i〉, which are optimal for representing ψ in some
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sense. Because we allow only m states, we cannot represent |ψ〉 exactly if l > m, where l is
the number of system block states |i〉. We wish to construct an accurate expansion for |ψ〉
of the form

|ψ〉 ≈ |ψ̄〉 =
∑

α,j

aα,j|u
α〉|j〉. (3.5)

In other words, we wish to minimize

S =
∣

∣|ψ〉 − |ψ̄〉
∣

∣

2
(3.6)

by varying over all aα,j and uα, subject to 〈uα|uα
′

〉 = δαα′ . Without loss of generality, we
can write

|ψ̄〉 =
∑

α

aα|u
α〉|vα〉 (3.7)

where vαj = 〈j|vα〉 = Nαaα,j , with Nα chosen to set
∑

j

∣

∣

∣
vαj

∣

∣

∣

2
= 1. Switching the matrix

notation, we have

S =
∑

ij

(ψij −
m
∑

α=1

aα u
α
i v

α
j )

2, (3.8)

and we minimize S over all uα, vα, and aα, given the specified value of m. The solution
to this minimization problem is known from linear algebra. We now think of ψij as a
rectangular matrix. The solution is produced by the singular value decomposition of ψ [?],

ψ = U DV T , (3.9)

where U and D are l × l matrices, V is an l × J matrix (where j = 1, ..., J ,and we assume
J ≥ l), U is orthogonal, V is column-orthogonal, and the diagonal matrix D contains the
singular values of ψ. Linear algebra tells us that the uα, vα, and aα which minimize S
are given as follows: the m largest-magnitude diagonal elements of D are the aα and the
corresponding columns of U and V are the uα and vα. (We emphasize that the singular
value decomposition is not being used here as a numerical method, only as a convenient
factorization which allows us to use a theoretical result from linear algebra.)

These optimal states uα are also eigenvectors of the reduced density matrix of the block
as part of the system. This reduced density matrix for the block depends on the state of
the system, which in this case is a pure state |ψ〉 ( the system could also be in a mixed
state or at finite temperature.) The density matrix for the block in this case, where ψij is
assumed real, is given by

ρii′ =
∑

j

ψijψi′j. (3.10)

We see that

ρ = U D2 UT , (3.11)
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i.e. U diagonalizes ρ. The eigenvalues of ρ are wα = a2α and the optimal states uα are
the eigenstates of ρ with the largest eigenvalues. Each wα represents the probability of the
block being in the state uα, with

∑

αwα = 1. The deviation from of Pm ≡
∑m

α=1 wα from
unity, i.e. the ”discarded weight” of the density matrix eigenvalues, measures the accuracy
of the truncation to m states.

We can also consider the superblock to be in a mixed state. This is the natural as-
sumption for a system at finite temperature, and it is also useful to assume a mixed state
when one wishes to obtain several of the lowest lying states: if we put the superblock with
equal probability into each of several states, then the system block states obtained from
the density matrix will equally well represent each of these superblock states. We represent
the mixed case by saying that the superblock has probability Wk to be in state |ψk〉. If the
superblock is at a finite temperature, then the W k are normalized Boltzmann weights. In
this case the appropriate definition for the error in the representation is

S =
∑

k

Wk

∑

ij

(ψk
ij −

m
∑

α=1

akα u
α
i v

k,α
j )2, (3.12)

Note that we are interested in determining a single set of optimal uα, whereas we allow the
rest of the system additional freedom to choose a different vα for each state k. Minimizing
over the uαi , v

k,α
j and akα , we find

ρα = wαu
α (3.13)

with

ρii′ =
∑

k

Wk

∑

j

ψk
ijψ

k
i′j (3.14)

and

wα =
∑

k

Wk(a
k
α)

2. (3.15)

This equation for ρ is the definition of the reduced density matrix when the superblock is
in a mixed state, and the uα are the eigenstates of ρ.

3.3 DMRG Algorithms

In this section, I will describe how to combine the superblock procedure with the density
matrix projection in order to define efficient DMRG algorithms. There are three main
ingredients needed to form a DMRG algorithm: first, we have to decide how to add degrees
of freedom to the system, i.e. how to build up the system block; second, we have to determine
the configuration of the superblock; and finally, we must choose which superblock eigenstate
or eigenstates to use to construct the density matrix.

For interacting systems, it is clear that one wants to add the minimum number of degrees
of freedom at once to the system block in order keep as large a fraction of the system block
states as possible, and to keep the size of the Hilbert space of the superblock as small as
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possible. Therefore, one usually wants to build up the system block one site at a time in a
procedure similar to that described for the Wilson numerical RG.

The algorithms then fall into two classes, depending on how the environment block is
chosen to form the superblock: the infinite system algorithm and the finite system algorithm.
We will discuss these algorithms in detail below.

The superblock state or states used to form the reduced density matrix for the system
block are called target states. If only ground state properties are desired, it is most accurate
to target just the ground state of the superblock. (The Hamiltonian is usually block diagonal
in particular quantum numbers such as Sz; by ground state we will mean ground state for a
particular quantum number.) If excited states or matrix elements between different states
are required, more than one target state can be used. However, for fixed number of states
kept m, the accuracy with which the properties of each individual state can be determined
goes down as more states are targeted. For simplicity, we will assume that only the ground
state is targeted in the following.

3.3.1 The infinite system algorithm

The infinite system algorithm is the most straightforward extension of the Wilson procedure
described before that incorporates the superblock concept. We build up the system block
one site at a time, just as in the Wilson procedure, but must choose some sort of environment
block. The simplest way of forming the environment block is to use a reflection of the system
block. The superblock configuration is shown in Fig.3.2. Here H l is the Hamiltonian for
the system block in the reduced basis, as before, and the solid dots represent single sites.

The right block, H
R
l , is formed by relabelling the sites in the system block so that they are

reflected onto the right part of the lattice.

H̄l H̄
R
l

Hl+1

Figure 3.2: A superblock configuration for the infinite-system algorithm.

The infinite system algorithm then proceeds as follows:

1. Form a superblock containing L sites which is small enough to be exactly diagonalized.

2. Diagonalize the superblock HamiltonianHsuper
L numerically, obtaining only the ground

state eigenvalue and eigenvector |ψ〉 using the Lanczos or Davidson algorithm.

3. Form the reduced density matrix ρii′ for the new system block from |ψ〉 using (3.10).
Note that l′ = l = L/2− 1.
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4. Diagonalize ρii′ with a dense matrix diagonalization routine to obtain the m eigen-
vectors with the largest eigenvalues.

5. Construct Hl+1 and other operators in the new system block and transform them to
the reduced density matrix eigenbasis using H̄l+1 = O†

LHl+1OL, Āl+1 = O†
LAl+1OL,

etc.,where the columns of OL contain the m highest eigenvectors of ρii′ , and Al+1 is
an operator in the system block.

6. Form a superblock of size L+ 2 using H̄l+1, two single sites and H̄R
l+1.

7. Repeat starting with step 2, substituting Hsuper
L+2 for Hsuper

L .

It is clear that this algorithm is very much in the spirit of the original Wilson procedure in
that the system being diagonalized grows at each step. There are, however, a few important
differences. First, as in the noninteracting superblock procedure, the diagonalization step
and the real-space blocking step take place on different size systems. Therefore, the energy
and various expectation values are calculated during the superblock diagonalization, while
the density matrix diagonalization rather than a Hamiltonian diagonalization is used to
determine the new basis for the system block. Second, the size of the superblock grows by
two sites rather than one site at every step. Third, we have assumed that the system is
reflection symmetric. It is possible to formulate algorithms that do not assume reflection
symmetry, but this is done most easily in the context of the finite system algorithm described
below.

3.3.2 The finite system algorithm

In the finite size algorithm, the environment block is chosen in a different way: it is chosen
so that the size of the superblock is kept fixed at each step. Suppose that we have run the
infinite system algorithm until the superblock reaches size L, but have stored all the H̄R

l′

for l = 1, · · · , L/2−2 as well as all the additional operators needed to connect the blocks at
each step. We can then continue to build up the system block, but keep L = l+ l′ +2 fixed
by using the appropriate previously stored H̄R

l′ . The finite size algorithm then proceeds as
follows:

1. Carry out the infinite system algorithm until the superblock reaches size L, storing
H̄l and the operators needed to connect the blocks at each step.

2. Carry out steps 3-5 of the infinite system algorithm to obtain H̄l+1. Store it. (Now
l 6= l′.)

3. Form a superblock of size L using H̄l+1, two single sites and H̄R
l′+1. The superblock

configuration is given by Fig. 6, where l′ = L− l − 2.

4. Repeat steps 1-2 until l = L − 3 (i.e. l′ = 1). This is the left to right phase of the
algorithm.

5. Carry out steps 3-5 of the infinite system algorithm, reversing the roles of H̄l and H̄
R
l′ ,

i.e. switch directions to build up the right block and obtain H̄R
l′+1. Store it.
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6. Form a superblock of size L using H̄l−1, two single sites and H̄R
l′+1.

7. Repeat steps 4-5 until l = 1. This is the right to left phase of the algorithm.

8. Repeat starting with step 1.

Note that since the left block and the right blocks are stored independently, we do not
have to assume that the lattice is reflection symmetric. Since the same size superblock
is always diagonalized, the algorithm is less dependent than the infinite system algorithm
on translational invariance,i.e. on the optimum representation of different size superblocks
being similar.

If reflection symmetry is present, it can be used at the point at which l = l′ to shorten
the length of the zips. One way of formulating the algorithm in this case is to build up
the left blocks from l = 1 to l = L/2 − 1, and build up the right blocks from l′ = L/2
to l′ = L − 3, i.e. to only zip from the left side of the superblock to the middle and then
back to the left side. The fact that we have used reflection symmetry in the infinite system
phase, step 0, is usually not important. However, it is also possible to formulate infinite
system algorithms that do not use reflection symmetry. This issue will be discussed in more
detail below in the context of algorithms for two-dimensional and fermion systems.

For a given system size L, the finite system algorithm almost always gives substantially
more accurate results than the infinite system algorithm, and is therefore usually preferred
unless there is a specific reason to go to the thermodynamic limit.

3.4 Details for interacting systems

Up to now, we have not considered in detail how to store and transform the operators nec-
essary to carry out the renormalization group transformation for an interacting system. In
this section, we will discuss how to do this efficiently. In order to construct the Hamiltonian
of the system, a block must have various operators stored as matrices connecting these
states. For example, for the Heisenberg model with exchange terms

Si · Si+1 = Sz
i S

z
i+1 +

1

2
(S+

i S
−
i+1 + S−

i S
+
i+1) (3.16)

one needs to store m × m matrix representations of Sz
i , S

+
i and S−

i for i equal to the
left or right end sites of the block. (In practice, one needs not store S−

i , since it can
be obtained by taking the Hermitian conjugate of S−

i ). For a Hubbard model one would
have to store matrices for ciσ, with σ =↑ and ↓, in order to reconstruct the hopping term
∑

σ(c
†
i+1σciσ + c†iσci+1σ).

Consider joining two blocks B1 and B2 together in a Heisenberg system. In the Wilson
procedure, B2 will typically consist of a single site, and for the DMRG algorithms, it is
sufficient to consider how to compose two blocks. If B1 has m1 states, and B2 has m2

states, the combined block B1B2 has m1m2 states. We label the combined states by two
indices, ij. The matrix representing the Hamiltonian of B1B2 is then given by

[HB1B2
]ij;i′j′ = [HB1

]ii′ δjj′ + [HB2
]jj′ δii′ + [Sz

l ]ii′
[

Sz
l+1

]

jj′

+
1

2

[

S+
l

]

ii′

[

S−
l+1

]

jj′
+

1

2

[

S−
l

]

ii′

[

S+
l+1

]

jj′
(3.17)
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where HB1
is the Hamiltonian matrix of block B1, and l is its rightmost site. In order for

the connections in the Hamiltonian to be restored when the two blocks are combined, each
block must contain each of the matrices appearing in (3.17).

The most time-consuming part of a DMRG calculation is the diagonalization of the
system Hamiltonian, which occurs once for every step. Only the ground state or a few
low-lying states are needed, and so the Lanczos or Davidson iterative algorithms should be
used. These algorithms both require repeated multiplications of superblock vectors ψ by
the superblock Hamiltonian Hsuper. However, the actual Hamiltonian matrix should not be
constructed and stored. Instead, the following procedure to directly multiply Hsuperψ uses
much less memory and is also much faster. Consider again, for simplicity, a system formed
from two blocks. The superblock Hamiltonian can be written in the general form

[Hsuper]ij;i′j′ =
∑

α

Aα
ii′ B

α
jj′. (3.18)

Then the product Hsuperψ can be written as

∑

i′j′

[Hsuper]ij;i′j′ ψ
α
i′j′ =

∑

α

∑

i′

Aα
ii′

∑

j′

Bα
jj′ψi′j′. (3.19)

For each α the last sum is performed first, as a matrix-matrix multiplication of Bα and ψT ,
to form a temporary matrix Cα

ji′ . Then a matrix-matrix multiplication of Aα and [Cα]T

forms a partial result, which is added into the result vector, giving a sum on α.
Whenever a site is added onto a block, or more generally two blocks are added, the

operator matrices must be updated. The eigenstates of the density matrix can be written
in the form uαij, which we write as Oij;α, α =, · · · ,m. Here i and j represent state indices
of the two blocks that are being added together. Then for each operator A that is needed,
Aij;i′j′, is replaced by Aαα′ , where

Aαα′ =
∑

iji′j′

Oij;αAij;i′j′Oi′j′;α′ . (3.20)

The terms appearing in (3.17) show the various ways operators Aij;i′j′ , can be formed
from single-block operators Aii′ .

Any efficient DMRG program must make use of quantum numbers to speed up the
calculation and reduce storage. For example, in order to construct the system Hamiltonian
it may be necessary to store for a block the matrix form of the operator Ŝ+

l , where l is the
right-most site of the block. If there are m states in the block, this is an m ×m matrix.
However, if states are labelled and grouped by block quantum number Sz , then this matrix
is mostly zeroes, with the nonzero parts in rectangular blocks. These blocks connect states
with specific quantum numbers, e.g. the states corresponding to the left index of the matrix
may have Sz = 0, and for the right index Sz = −1. It is essential to store only the nonzero
elements of this matrix. Although this can done using sparse matrices, the best way to do
it is as a set of dense matrices, one for each nonzero rectangular block. The multiplication
of Hsuperψ described above takes place as described in the previous paragraph, except that
now there is an additional sum or loop over quantum numbers, and the dense matrices
which are multiplied are much smaller. Keeping track of all the matrices, each of a different
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size, can be very well organized in the programming language C++ by defining classes to
represent operator matrices, submatrices, etc. The fact that these matrices are all different
sizes and have different dimensions at each DMRG step makes it somewhat more difficult
to use storage efficiently in Fortran 77, which does not have dynamic allocation of memory.

It is useful at this point to mention typical maximum numbers of states kept, m, for
various systems on current computers. For the one-dimensional Hubbard model, m = 800
for a system of up to a few hundred sites can be treated on typical workstation, using a few
hundred megabytes of main memory [29, 30]. For the Heisenberg model, up to m = 1100
states have been kept for the spin-one chain with an impurity [31] and m = 1700 for the
spin two chain [32].

3.5 Measurements

Measurements are made using the superblock wavefunction |ψ〉 to evaluate expectation
values of the form 〈ψ|A|ψ〉. Rather complicated operators can be evaluated fairly easily,
but dynamical information is more difficult to obtain. In order to measure A, one must
have kept operator matrices for the components of A. For example, to measure the on-site
spin-density Sz

j for all sites l, one must keep track of matrices [Sz
l ]ii′ , for all each site l in

each of the blocks. These operators must be updated using (3.20) at every step of each
iteration. We will once again divide superblock into two parts with states labeled by |i〉
and |j〉. One then obtains the expectation value using

〈ψ|Sz
l |ψ〉 =

∑

i,i′,j

ψ∗
ij [S

z
l ]ii′ ψi′j , (3.21)

This procedure gives exact evaluations of 〈ψ|A|ψ〉 for the approximate eigenstate |ψ〉.
For a correlation function such as 〈ψ|Sz

l S
z
m|ψ〉, the evaluation depends on whether l and

m are on the same block or not. If they are on different blocks, then one needs only have
kept track of [Sz

l ]ii′ ,and [Sz
m]jj′ , and one has

〈ψ|Sz
l S

z
m|ψ〉 =

∑

i,i′,j,j′

ψ∗
ij [S

z
l ]ii′ [S

z
m]jj′ ψi′j′ (3.22)

If l and m are on the same block, one should not use

〈ψ|Sz
l S

z
m|ψ〉 ≈

∑

i,i′,i′′,j

ψ∗
ij [S

z
l ]ii′ [S

z
m]i′,i′′ ψi′′j (3.23)

This expression does not evaluate the correlation function exactly within the approximate
state |ψ〉. The sum over it should run over a complete set of states, but does not, whereas
the sums over the other variables need run only over those states needed to represent |ψ〉,
since they appear as a subscript in either the |ψ〉 on the left or on the right.

To evaluate this type of correlation function, one needs to have kept track of [Sz
l S

z
m]ii′

throughout the calculation. One then evaluates

〈ψ|Sz
l S

z
m|ψ〉 =

∑

i,i′,j

ψ∗
ij [S

z
l S

z
m]ii′ ψi′j (3.24)

to obtain the correlation function.
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3.6 Wave function transformations

At each DMRG step, two sites are added inbetween the left and right blocks, previously
obtained by truncation process. Meanwhile, one can keep track of the wavefunction in
an appropriate basis for the new block [33]. The new basis is defined by the eigenvectors
of the density matrix, which is determined from the current system wavefunction. The
eigenvectors defining the new basis (which we rewrite as matrices L and R below) can then
be used to transform the current system wavefunction into the appropriate basis for the
next step. Here we consider a finite-system DMRG step, in which we move from left to
right, adding a site onto the left block. Let |αl〉 be the states of left block l, where l is the
rightmost site of the block. The two sites in the middle are l + 1 and l + 2. Let |sl〉 be the
states of site l, |sl+1〉 for site l + 1, etc. Then the basis states for the new left block are
given by

|αl+1〉 =
∑

sl+1,αl

Ll+1 [sl+1]αl+1,αl
|αl〉 ⊗ |sl+1〉. (3.25)

The transformation matrix Ll+1 [sl+1]αl+1,αl
is a slightly rewritten form of the truncated

matrix of density matrix eigenvectors uαl+1 : specifically, Ll+1 [sl+1]αl+1,αl
= u

αl+1
sl+1αl

. L
includes only the eigenvectors which are retained, i.e. whose corresponding eigenvalues are
above a cutoff. Let the states of the right block be |βl+3〉, where we note that l + 3 is
the leftmost site of the block. These states were formed at an earlier right-to-left DMRG
step, using a different set of density matrix eigenvectors, which we write in terms of a
transformation matrix Rl+3:

|βl+3〉 =
∑

sl+3,βl+4

Rl+3 [sl+3]βl+3,βl+4
|sl+3〉 ⊗ |βl+4〉. (3.26)

Note that reflection symmetry is not assumed here: the L and R matrices are independent.
The wavefunction is written in a basis for the two block plus two site superblock. This

superblock basis has basis states of the form

|αlsl+1sl+2βl+3〉 = |αl〉 ⊗ |sl+1〉 ⊗ |sl+2〉 ⊗ |βl+3〉. (3.27)

A system wavefunction |ψ〉 is written in this basis as

|ψ〉 =
∑

αlsl+1sl+2βl+3

ψ(αlsl+1sl+2βl+3)|αlsl+1sl+2βl+3〉. (3.28)

One needs to transform this wavefunction into the basis appropriate for the next DMRG
step, in which the superblock is shifted by one site, with basis states of the form αl+1sl+2sl+3βl+4.
However, the transformation between the two bases cannot be exact, since there is a trun-
cation in going from αlsl+1 to αl+1. However, the states αl+1 are formed using the density
matrix to be ideally adapted for representing |ψ〉. This means that the wavefunction can be
transformed in an approximate but controlled fashion, with the error in the transformation
depending on the truncation error in the DMRG step. Since the error in the density matrix
is given by the truncation error, and since the density matrix is, roughly speaking, the
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square of the wavefunction, the error in the wavefunction transformation should be roughly
the square root of the truncation error.

The simplest way to derive the transformation is to assume, based on the above argu-
ment, that for the transformation of the wavefunction only, one can approximate

∑

αl+1

|αl+1〉〈αl+1| ≈ 1. (3.29)

With this approximation one readily obtains

ψ(αl+1sl+2sl+3βl+4) ≈
∑

αlsl+1βl+3

Ll+1 [sl+1]αl+1,αl
ψ(αlsl+1sl+2βl+3)R

l+3 [sl+3]βl+3,βl+4
.(3.30)

This is the desired transformation.
The most efficient way to implement this transformation numerically is to first form the

intermediate wavefunction

ψ(αl+1sl+2βl+3) =
∑

αlsl+1

Ll+1 [sl+1]αl+1,αl
ψ(αlsl+1sl+2βl+3), (3.31)

and then form the final result

ψ(αl+1sl+2sl+3βl+4) =
∑

βl+3

ψ(αl+1sl+2βl+3)R
l+3 [sl+3]βl+3,βl+4

. (3.32)

In this form, the transformation requires very little computer time compared to other parts
of the calculation. This transformation is used for one half of the DMRG steps, when a site
is being added to the left block. An analogous transformation is used for adding a site to
the right block.

Implementing this transformation requires saving all the matrices L and R, which was
not necessary in the original formulation of DMRG.

3.7 Extension to two dimensions

A straightforward way to extend the DMRG to two or more dimensional quantum systems
would be to replace the single sites added between the blocks with a row of sites. However,
for wide systems the extra degrees of freedom in the two center ”sites” would make the size
of the system’s Hilbert space prohibitively large. It is usually better to add single sites by
mapping the 2D system onto a 1D system, simply by tracing a path through the lattice. A
typical superblock configuration for a ladder system is shown in Fig.(3.3). The site added
to the system block is enclosed by a dashed line and the dotted line shows the order in
which sites are added in a sweep. An up-down-up-down path is shown. One can see that it
is not possible to reflect the left block onto a right block of the proper geometry at every
step, so the finite system algorithm must used. With the mapping onto a 1D system, the
two-dimensional procedure differs from the one-dimensional finite system procedure only in
that there are additional connections between the system and environment blocks along the
boundary.
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system environment

Figure 3.3: The superblock configuration for the two-dimensional algorithm. The order in which
sites are added to the system block on a series of iterations is given by the dotted line, and the site
added to the approximate system block Hamiltonian is outlined by the dashed line.

The number of states needed to maintain a certain truncation error in the density matrix
projection procedure depends strongly on the number of operators connecting the two parts
of the system. The best accuracy is obtained when the number of connections between the
system and environment blocks is minimized. Therefore, we usually study systems with
open rather than periodic or antiperiodic boundary conditions. Also, we find that the
number of states m needed to maintain a given accuracy depends strongly on the width
and weakly on the length of the system.

Liang and Pang [34] studied the error in the energy as a function of width for a gas of
noninteracting spinless fermions and found that the number of states needed to maintain a
given accuracy grew exponentially with the width of the system. In an interacting system
such as the Hubbard model, the detailed structure of the energy spectrum seems to be
important. For systems of more than one dimension, it is important to be able to keep as
many states m per block as possible.

3.8 Main restrictions

Like any other numerical method, the DMRG has some important restrictions which are
inherent to the method itself and therefore cannot be removed by applying simple changes
to the DMRG algorithm. Here we mention the three main restrictions briefly:

1. The most in sight limitation of DMRG is dimensionality. As the method is applied to
higher dimensions a declining accuracy appears as the size grows up.
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2. The absence of an analytical formulation of the DMRG method.

3. DMRG is restricted to zero temperature and is usually applied for calculating ground
state properties. Finite temperature results were obtained only in the low lying spec-
trum but with very limited accuracy. Recently, based on the idea of Xiang et al,
a thermodynamic method was applied successfully, which combines White’s DMRG
idea [23] with the transfer-matrix technique [35] and which is now called TMRG.

A disadvantage of the DMRG method is that the base states chosen by the algorithm are
not intuitive, and the description of the state requires the measurement of observables. For
the measurement process, one needs a representation of the operators in the current basis.
Consequently each operator that needs to be measured must be stored, and every time the
basis is changed all of them have to be transformed. This is expensive in time and memory.
Another disadvantage is that dynamical information cannot be easily obtained.

Note that, although its name suggests a connection to renormalization group methods
in the analytical sense, the DMRG method should better be viewed as an exact numerical
diagonalization technique with a restricted set of Hilbert space states.



Chapter 4

Implementations of the Density
Matrix Renormalization Group

In this chapter I will first review briefly the different applications of the density matrix renor-
malization group method to quantum systems models. Then, I will present, in some details,
DMRG implementations for some well-known models that are currently used to investigate
strongly correlated systems. Finally, the formalism used to calculate the expectation values
of dynamic operators using DMRG method is given.

4.1 DMRG in literature

The development of the density-matrix renormalization-group (DMRG) algorithm by S.
White represented an important improvement over previous numerical methods for the
study of low dimensional lattice models. It has been applied to a wide variety of sys-
tems (gapped ones)[28]. The DMRG approach was first used to study the ground state
properties and low-energy excitations of one-dimensional chains [36, 37], ladders [185, 39],
Bethe lattice system [40], strongly correlated electron systems [41, 42, 43]. It has been
extensively applied to the study of various spin chains. Low-lying excited states of the spin-
1 [36, 37] and spin-1/2 Heisenberg antiferromagnets have been calculated [44]. Likewise,
spin-1 chains with quadratic and biquadratic interactions [45, 46], a spin-2 antiferromag-
netic chain [47, 48, 49], spin-1/2 and spin-1 chains with dimerization and/or frustration
(next-nearest-neighbor coupling) [50, 51, 52, 53, 54, 55], and frustrated spin-3/2 and spin-2
chains [56] have all been studied. By using DMRG, the ground-state entanglement in the
spin-1/2 isotropic antiferromagnetic Heisenberg chain is studied when there are domain
walls generated by a boundary magnetic field [57]. Edge excitations at the ends of finite
spin chains and the effects of perturbations such as a weak magnetic field coupled to a few
sites have been considered [47, 58, 59, 60]. Randomness in the form of random transverse
magnetic field in a spin-1/2 XY model [61], random exchange couplings[62], and random
modulation patterns of the exchange [63, 64], has been examined. Also, alternating spin
magnitudes [65], the presence of a constant [66] or a staggered [67] magnetic field in a spin-1
chain, bond doping [31], the effects of a local impurity [68], and interactions with quan-
tum phonons [27, 69] have also been considered. Attempts were made to extract critical
behavior of gapless systems using the DMRG to generate renormalization transformations

32
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of the coupling constants in the Hamiltonian [70, 71]. Hallberg et al.[72, 73] studied the
critical behavior of S = 1/2 and S = 3/2 quantum spin chains with periodic boundary
conditions through extensive calculations of ground state correlation functions at different
separations and different chain sizes. Spin correlation functions in an open chain have also
been calculated and compared with results calculated from low-energy field theory, showing
that estimates of the amplitudes can also be obtained [74].

The technique is also applied to models, such as 1D Holstein model [75], 1D Holstein-
Hubbard model [76], spin-Peierls model [77], spin-boson model [78, 79, 80, 81, 82] and
one-dimensional Kondo lattice model [83].

Xiang have applied the DMRG to models in momentum space [84]. It is then applied
to investigate the Hubbard model [85, 84, 86], and other models.

It has proved difficult to extend the density-matrix renormalization-group technique to
large two-dimensional systems. Hence, many attempts were made to extend the applicability
of DMRG to those systems [87, 88, 171, 86, 90, 91, 92, 84, 86].

DMRG is also used to investigate 1D quantum systems at finite temperatures, using
the quantum transfer matrix formulation [93, 169, 95, 96, 97, 167]. Thermodynamic prop-
erties of the one-dimensional Kondo model at half-filling are studied by the density matrix
renormalization group method applied to the quantum transfer matrix [99]. The density
matrix renormalization group (DMRG) method and its applications to finite temperatures
and two-dimensional systems are reviewed in [100].

The ground-state dynamical correlation functions calculations in one-dimensional quan-
tum systems based on the density matrix renormalization-group method and the maximum
entropy method was developed in [101]. A DMRG method for calculating dynamical proper-
ties and excited states in low-dimensional lattice quantum many-body systems is presented
in [102].

The DMRG method is also adapted and extended to treat time-dependent problems like:
the real-time dynamics of interacting one-dimensional spinless Fermi systems [103, 104, 105,
106], the study of transport properties of quantum-dot systems connected to metallic leads
[107], the quantum impurity systems which have a time-dependent Hamiltonian [108], the
spin dynamics and transport in one-dimensional spin-1/2 systems at zero temperature [109],
the calculation of the zero temperature conductance of nanostructures [110, 111].

The DMRG method has been also applied to the Pariser-Parr-Pople-Peierls model to
explore the nature of the ground and low-lying excited states of large polymeric systems
[112, 113, 114, 115]. Also, the full configuration interaction problem in quantum chemistry
is solved using DMRG [116].

The linear response theory (Kubo) is combined with the DMRG method to evaluate
conductance of strongly interacting quantum systems [117]. It is also used to solve the
impurity problem in the dynamical mean field theory [118, 119]. The ground-state phase
diagram of 2D electrons in a high Landau level ( Quantum Hall effect) is studied by the
DMRG method in [120]. It is also applied to the BCS pairing Hamiltonian which describes
ultrasmall superconducting grains [121].

The DMRG method have been extended to the case where the Hamiltonian has a non-
Abelian global symmetry group.[122, 123]

G. Fáth and M. Sarvary have used the DMRG method to establish a theory of cultural
evolution [124]!.
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In other hand, Mart́ın-Delgado and Sierra have investigated the analytic formulation
of DMRG, and have formulated the Correlated Block Renormalization Group (CBRG)
[125, 126]. They have also reformulated the DMRG method in terms of a single block,
instead of the standard left and right blocks used in the construction of the superblock
[127].

F. Verstraete et al. have introduced a picture to analyze the density matrix renormal-
ization group (DMRG) from a quantum information perspective [128]. Also, DMRG is
reformulated in terms of Matrix-Product States method (MPS) [129, 130, 131, 132, 133].

After this review of applications of DMRG, it is useful to explore in some detail how
DMRG procedure is implemented for some important physical models used to study strongly
correlated systems. We begin with Hubbard model.

4.2 DMRG implementation on Hubbard chain

The single-band Hubbard model [134] is widely accepted as a generic and minimal model for
one-dimensional strongly interacting electrons. The simplest approximation for the inter-
action between the electrons is when both electrons are on the same site (on-site Coulomb
repulsion), with nearest-neighbour hopping representing the kinetic energy of the system
[174, 134]. An exact solution for the Hubbard model is possible for the one-dimensional
case using the Bethe Ansatz [136, 137], while it is unsolvable in two and higher dimensions.

4.2.1 Hubbard model

The simplest Hubbard Hamiltonian writes

H = −t
∑

i,σ

(c†i+1σciσ + h.c.) + U
∑

i

ni↑ni↓ (4.1)

where c†iσ creates an electron with spin σ in a Wannier orbital at lattice site i, niσ = c†iσciσ,

U is the Coulomb repulsion, t is the nearest-neighbor hopping integral and h.c = c†iσci+1σ,
is the hermitian conjugate.

The hopping term alone leads to a conventional band spectrum and one-electron Bloch
levels in which each electron is distributed throughout the entire crystal (a metal). The
Coulomb term alone would favour local magnetic moments, since it suppresses the possibility
of a second electron (with oppositely directed spin) at singly occupied sites (an insulator).
When both terms are present, the competition between them brings about a transition
between the metallic phase and the Mott insulating phase (see for example [138]).

A comparison between DMRG results with the exact solution is given in [139]. Thus,
the difference between ground states calculated by analytical and numerical methods as the
number of iterations and the number of states kept are varying. One can see that after
two or three iterations, the error ( difference between the exact and the numerical values)
saturates. The iteration where saturation happens depends on the number of states kept.
The important thing is that the accuracy of the results increases as the number of states
kept is increased. However, this accuracy will diminish as the number of sites on the system
is increased.
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A comparison is also made between the convergence of results using periodic (PBC) or
open (OBC) boundary conditions [139]. One finds that convergence is better for (OBC)
than for (PBC), which makes reasonable to treat systems with open boundary conditions
on large lattices rather than systems with periodic boundaries on small lattices.

As next-nearest neighbors hopping are considered [139], an impurity is introduced [140]
or higher dimensions [141] are to be treated, the Hubbard model is no longer integrable
[142], i.e., one cannot use Bethe Ansatz to solve it. Also, the weak-coupling treatments
no longer work at strong coupling. Therefore, an accurate numerical technique is needed
to investigate the low energy behaviour of this system. The DMRG technique seems to
be, among other ones, a good candidate to deal with these situations. The investigation
involves the calculation of the ground state and few excited states energies, the behaviour of
correlation functions of different physical quantities, like spin-spin and charge-charge ones.

One extension of the original Hubbard model is the inclusion of longer-ranged interac-
tions between the electrons on different sites. Then we add the term

∑

j

Vj
∑

i

nini+j (4.2)

where Vj is the interaction term between two electrons on sites far apart of j units.
In order to consider next-nearest neighbours hopping, we have to add the term

t′
∑

i,σ

(c†i+2σciσ + h.c.) (4.3)

where t′ is the next-nearest-neighbor hopping integral.
The effect of impurities on the ground state of a Hubbard chain is investigated by

introducing the term [143]

∑

i

(εi − µ)ni, (4.4)

εi (on-site energy) are randomly distributed, ni = ni↑ + ni↓, and µ represents the chemical
potential which controls the particle density of the system (see, for example, [144]) .

A local site impurity on site j0 is modeled by [140]:

Himp = V nj0 (4.5)

and a hopping impurity by the nonlocal potential

Himp = (t− t′)
∑

σ

(c†j0+1,σcj0,σ + c†j0,σcj0+1,σ) (4.6)

such that the hopping amplitude t is replaced by t′ on the bond linking the sites j0 and
j0 + 1.

If a small magnetic field is applied (in the z-direction, for example), an extra term in
the site Hamiltonian is then added

Hh = −h
∑

i

Sz
i , (4.7)
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with Sz
i is the z-component of electron spin on site i, defined as:

Sz
i = ni −

1

2
(4.8)

In order to examine the properties of a Hubbard model on a two-chain ladder to understand
the ground state behaviour of the undoped and doped two-leg ladders, Noack, White and
Scalapino [141] used a Hamiltonian of a single-band Hubbard model of two coupled chains
of length L,

H = −t
∑

i,λσ

(c†i+1,λσci,λσ + h.c.) − t⊥
∑

i,σ

(c†i,1σci,2σ + h.c.) + U
∑

i

ni,λ↑ni,λ↓ (4.9)

where c†i,λσ and ci,λσ create and destroy, respectively, an electron on ring i and chain λ with

spin σ, and ni,λσ = c†i,λσci,λσ. The hopping integral parallel to the chains is t, the hopping
between the chains t⊥, and U is the on-site Coulomb interaction.

A Hamiltonian with particle-hole symmetry and spatial reflection symmetry is used by
Eric Jeckelmann [145] to study the phase diagram of the one-dimensional half-filled Hubbard
model:

H = −t
∑

i,σ

(c†i+1σciσ + c†iσci+1σ) + U
∑

i

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

+ V
∑

i

(ni − 1)(ni+1 − 1)(4.10)

with on-site U and nearest-neighbor V repulsion and hopping term t. Note that at half
filling, the number of electrons equals the number of sites of the system.

4.2.2 Implementation details

In this section, I will show in more detail how to implement the DMRG technique on a
one-dimensional Hubbard chain. The notation and some ideas about the implementation
are borrowed from the work of Dan Bohr, who did himself the calculations [146].

Let’s take a simpler version of the Hubbard model for a chain of length L,

H = −t1

L−1
∑

i,σ=↑,↓

(c†iσci+1σ + c†i+1σciσ) + U

L
∑

i=1

ni↑ni↓, (4.11)

First, we define and label the basis used for a single site as: |0〉 ≡ |1〉, c†↑|0〉 ≡ | ↑〉 ≡ |2〉,

c†↓|0〉| ↓〉 ≡ |3〉, and c†↑c
†
↓|0〉 ≡ | ↑↓〉 ≡ |4〉, such that, for example, the element c

(1,2)
i↑ =

〈2|ci↑|1〉 is equivalent to c
(1,2)
i↑ = 〈↑ |ci↑|0〉. Using the fact that | ↑〉 ≡ c†↑|0〉 and 〈i|j〉 = δij ,

we get c
(1,2)
i↑ = 1. This procedure can be applied to get matrix elements for all operators in

(4.11).
Therefore, the matrix representation, in the already cited fourfold basis, of annihilation

operators ciσ, the on-site repulsion operator HU = Uni↑ni↓ and the total z-spin operator
Si
z for a single site are given by:

ci↑ =

( 0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)

, (4.12)
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ci↓ =

( 0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

)

, (4.13)

HU = Uni↑ni↓ = Uc†i↑ci↑c
†
i↓ci↓ = U

( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)

, (4.14)

Sz
i =







0 0 0 0
0 1

2 0 0
0 0 −1

2 0
0 0 0 0






. (4.15)

Because electrons are fermions, the corresponding site operators, (4.12) and (4.13) and their
hermitian conjugates should satisfy the anticommutation relations (see for example [147]),

{ciσ, c
†
jσ′} = δi,jδσ,σ′ , (4.16)

and

{ciσ , cjσ′} = {c†iσ , c
†
jσ′} = 0. (4.17)

In the other hand, these operators have to be expressed in the basis of several sites, and
hence we must keep track of this anticommutation on this extended basis. This is done using
a matrix counting the number of particles on each site, and returning a sign in accordance.
For the single site this matrix is

Pi =

( 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)

. (4.18)

Let’s see how can we maintain these relations when expanding the basis to several sites.
First we expand the basis of operators c1σ and c2σ, related to sites 1 and 2, respectively,

to the basis of both sites,

c̃1σ = c1σ ⊗ δ2, (4.19)

c̃2σ = P1 ⊗ c2σ, (4.20)

where δ2 is a 4× 4 unit matrix. More specifically

c̃1↑ = c1↑ ⊗ δ2 =





0 δ2 0 0
0 0 0 0
0 0 0 δ2
0 0 0 0



 , (4.21)

and

c̃2↑ = P1 ⊗ c2↑ =





c2↑ 0 0 0
0 −c2↑ 0 0
0 0 −c2↑ 0
0 0 0 c2↑



 . (4.22)
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which are 16× 16 matrices. Ordinary matrix multiplication yields

c̃†1↑c̃2↑ + c̃†2↑c̃1↑ =





0 δ2 0 0
0 0 0 0
0 0 0 δ2
0 0 0 0















c†2↑ 0 0 0

0 −c†2↑ 0 0

0 0 −c†2↑ 0

0 0 0 c†2↑











+











c†2↑ 0 0 0

0 −c†2↑ 0 0

0 0 −c†2↑ 0

0 0 0 c†2↑















0 δ2 0 0
0 0 0 0
0 0 0 δ2
0 0 0 0





=







0 [c†2↑, δ2] 0 0
0 0 0 0
0 0 0 −[c†2↑, δ2]
0 0 0 0






(4.23)

It is easy to check that

[c†2↑, δ2] =

( 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)

(4.24)

Thus, we find c̃†1↑c̃2↑ + c̃†2↑c̃1↑ = 0.
Note that if we had used δ1 instead of P1 we would find

c̃†1↑c̃2↑ + c̃†2↑c̃1↑ =







0 {c†2↑, δ2} 0 0
0 0 0 0
0 0 0 {c†2↑, δ2}
0 0 0 0






(4.25)

with

{c†2↑, δ2} =

( 0 0 0 0
2 0 0 0
0 0 0 0
0 0 2 0

)

(4.26)

Thus, c̃†1↑c̃2↑ + c̃†2↑c̃1↑ 6= 0, which is incompatible with the anticommutation relations.
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Similarly, we may consider

c̃†2↑c̃2↑ + c̃†2↑c̃2↑ =





c2↑ 0 0 0
0 −c2↑ 0 0
0 0 −c2↑ 0
0 0 0 c2↑















c†2↑ 0 0 0

0 −c†2↑ 0 0

0 0 −c†2↑ 0

0 0 0 c†2↑











+











c†2↑ 0 0 0

0 −c†2↑ 0 0

0 0 −c†2↑ 0

0 0 0 c†2↑















c2↑ 0 0 0
0 −c2↑ 0 0
0 0 −c2↑ 0
0 0 0 c2↑





=











{c†2↑, c2↑} 0 0 0

0 {c†2↑, c2↑} 0 0

0 0 {c†2↑, c2↑} 0

0 0 0 {c†2↑, c2↑}











(4.27)

where we can easily check that

{c†2↑, c2↑} =

( 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

(4.28)

and hence indeed {c̃2↑, c̃
†
2↑} = 1, which is also obtained using δ1 instead of P1.

It should be noted that the fermionic sign matrix for sites 1 and 2 is

P12 = P1 ⊗ P2 =





P2 0 0 0
0 −P2 0 0
0 0 −P2 0
0 0 0 P2



 (4.29)

where it is clear that an odd total number of particles on sites 1 and 2 gives a sign, while
an even total number of particles does not.

To understand what does this mean, we have to know that the above matrix is a repre-
sentation of operator P12 in the basis {|0〉|0〉, |0〉| ↑〉, · · · , | ↑〉| ↓〉, · · · , | ↑↓〉| ↑↓〉}.

Thus, we can, for example, easily check that

〈↑ |〈0|P12|0〉| ↑〉 = −1 (4.30)

whereas

〈↑↓ |〈↑↓ |P12| ↑↓〉| ↑↓〉 = 1 (4.31)

The operator (4.14) is diagonal and remains diagonal after enlargement of the basis. Diag-
onal matrices commute and hence so does the number operators before and after enlarging
the basis. Hence any commutation relations of diagonal matrices are preserved in the pro-
cess of enlarging the basis. Note that we use δ and not P when enlarging the Hilbert space
for bosonic operators.
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4.2.2.1 Infinite system sweep

The DMRG procedure is started by constructing the Hamiltonian and other operators for a
four site superblock. The basis is enlarged by performing Kronecker tensor products. The
Hamiltonian for sites 1 and 2 is constructed first,

H12 = HU ⊗ δ2 + δ1 ⊗HU

−t
[

(c†1↑ ⊗ δ2)(P1 ⊗ c2↑) + (P1 ⊗ c
†
2↑)(c1↑ ⊗ δ2)

]

−t
[

(c†1↓ ⊗ δ2)(P1 ⊗ c2↓) + (P1 ⊗ c
†
2↓)(c1↓ ⊗ δ2)

]

(4.32)

where the first line represents the on-site repulsions and the second line represents the
hopping between sites 1 and 2. Matrix P1 is used to maintain anticommutation of fermionic
operators.

Other relevant operators are

Sz
12 = Sz

1 ⊗ δ2 + δ1 ⊗ S
z
2 , (4.33)

P12 = P1 ⊗ P2, (4.34)

cLσ = P1 ⊗ c2σ, (4.35)

representing the total z-component of the spin, the fermionic sign operator, the annihilation
operator for the rightmost site, and the number operator for two sites respectively. Note
that cLσ is needed to connect the left block to the leftmost central site. All matrices in the
combined Hilbert space of sites 1 and 2 have dimensions 16 × 16.

Completely analogous expressions exist for the right block. Hence, we may construct
the Hamiltonian and other operators for the four site superblock,

H1234 = H12 ⊗ δ34 + δ12 ⊗H34

−t
[

((cL↑ )
† ⊗ δ34)(P12 ⊗ c

R
↑ ) + (P12 ⊗ (cR↑ )

†)(cL↑ ⊗ δ34)
]

−t
[

((cL↓ )
† ⊗ δ34)(P12 ⊗ c

R
↓ ) + (P12 ⊗ (cR↓ )

†)(cL↓ ⊗ δ34)
]

(4.36)

where cRσ is the annihilation operator for the leftmost site in the right block, and where the
second line in Eq. (4.36) is the hopping between the left and right blocks.

For realistic calculations, no truncation is done at this stage because the number of
states is smaller than the number of states one usually retains. However, for the sake of
illustration we will start DMRG process at this system size level (4 sites).

The first step is to compute the ground state eigenvector of the Hamiltonian H1234; a
256 × 256 sparse matrix represented in the 256-vectors basis
{|0, 0〉|0, 0〉, |0, 0〉| ↑, 0〉, · · · , |0, ↑〉|0, ↓〉, · · · , | ↑↓, ↑↓〉| ↑↓, ↑↓〉}. To do this we can use effi-
ciently Lanczos or Davidson routines or even, but in less efficient way, standard routines.

In the process of constructing the superblock, it is useful to profit of the symmetries
of the system. This means that the Hamiltonian matrix of the superblock can be made of
submatrices corresponding to different numbers of electrons and different numbers of total
spin Sz. Consequently, the calculations time may be considerably reduced.
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4.2.2.2 Matrix density

The most general wave function, describing a system and the universe surrounding it, can
be written [22]

|ψ〉 =
∑

ij

Cij|φi〉|θj〉 (4.37)

where |φi〉 is a complete set of vectors in the vector space describing the system, and |θj〉 is
a complete set for the rest of the universe.

Let A an operator that acts only on the system, and then it equals to
∑

ii′j

Aii′ |φi〉|θj〉〈θj |〈φi′ |. (4.38)

Then

〈ψ|A|ψ〉 =
∑

iji′j′

C∗
ij Ci′j′〈θj|〈φi|A|φi′〉|θj′〉

=
∑

iji′

C∗
ij Ci′j〈φi|A|φi′〉

=
∑

ii′

〈φi|A|φi′〉ρii′ (4.39)

where

ρii′ =
∑

j

C∗
ij Ci′j (density matrix). (4.40)

We define the operator ρ, which operates only on the system, to be such that ρii′ = 〈φi′ |ρ|φi〉.
It is convenient to write |ψ〉 in a matrix form

ψ =

|φ1〉|θ1〉 |φ1〉|θ2〉 · · · |φN 〉|θN 〉
|φ1〉|θ1〉
|φ1〉|θ2〉

...
|φN 〉|θN 〉







C11 C12 · · · C1N
C21 C22 · · · C2N
...

...
. . .

...
CN1 CN2 · · · CNN







(4.41)

so that, it is easy to check from eq.(4.40) that the reduced density matrix (RDM) writes as
a simple matrix product

ρ = ψ · ψ† (4.42)

The ρL (L stands for left side of the superblock, i.e, the system) matrix is diagonalized
and m column eigenvectors {uα, α = 1 · · ·m} are retained to construct a matrix,

O = (u1, u2, · · · , um), (4.43)

The block Hamiltonian and all operators needed to reconstruct the superblock Hamiltonian
are given by,

H̃1 = O†H12O, (4.44)
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c̃Lσ = O†cLσO, (4.45)

P̃L = O†PLO, (4.46)

Ã = O†AO, (4.47)

where A is the matrix representation of any operator working on the left block.
In a similar way, we diagonalize ρR (R stands for right side of the superblock), to obtain

a truncation operator O, through which we calculate H̃4 and c̃
R
σ . The old operators are then

replaced by the new ones: H̃1 → H1, c̃
L
σ → cLσ , P̃L → PL, H̃4 → H4, and c̃

R
σ → cRσ . Note

that the old and the new operators are stored to be used in the finite system algorithm.
At this stage, we add two effective sites (represented in their full real space) in be-

tween the right and left blocks. These latter are represented in a truncated basis, and the
superblock contains now 6 sites. This procedure is then repeated until the desired chain
length L is reached. In the meantime, all operators matrices should be stored.

4.2.2.3 Finite system sweeps

The final picture of the superblock at the end of the infinite system algorithm is: two blocks
(left and right), each consisting of L/2 − 1 sites and represented in a truncated basis and
two central sites in between them.

Once the superblock Hamiltonian has been constructed the basic step is similar to the
infinite system method. Taking the left to right sweep as an example, the basic DMRG step
is:

1. Compute the ground state of the superblock Hamiltonian.

2. Construct the RDM ρL for the new left block, consisting of the old left block, initially
of length L/2− 1, and the leftmost central site.

3. Diagonalize ρL.

4. Find the retained eigenbasis by keeping the m most probable eigenstates of ρL.

5. Transform all left matrices to the eigenbasis of ρL and store them.

6. Construct a new superblock Hamiltonian, consisting of the new truncated left block,
two central sites, and a new right block containing one site less. At the first finite
system step the length of the new left block is L/2, and the length of the new right
block is L/2− 2. Matrices defining the new right block were found and stored during
the infinite system sweep.

As this procedure is repeated, the position of the two sites is moving along the chain, and
a sweep is counted as the left and right blocks are of equal size. Typically 4-6 iterations are
sufficient to reach convergence of the ground state value.
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4.3 DMRG implementation on Ising model

The Ising model was introduced in the 1920’s by H. Lenz and his student E. Ising in order
to explain the spontaneous appearance of a magnetization in a ferromagnetic material as
it is cooled under its Curie’s temperature. It is a matter of a model where spins with only
two orientations are arranged on the sites of a multidimensional lattice. L. Onsager in his
celebrated paper [148] derived the free energy of the two-dimensional Ising model (2D IM)
in the absence of an external magnetic field.

A variation of the model is the Ising model in a transverse field (ITF), used to investigate
quantum phase transition on a two-dimensional square lattice. It has the advantage to be
exactly soluble in d = 1 dimensions; which will help checking accuracies for the method we
are using.

To illustrate the infinite system DMRG implementation for Ising model, we pick up an
example from the work of A. Juozapavicius [149], where he uses a simple version of the
antiferromagnetic Ising spin-1/2 chain in a transverse uniform magnetic field,

H = J
L−1
∑

i=1

Sz
i S

z
i+1 − h

L
∑

i=1

Sx
i , (4.48)

where J is a positive coupling constant between the z-components, and h is a uniform
magnetic field in x-direction. The basis states on a single site are chosen such that the
Sz
i operator is diagonal, and the corresponding states are denoted by: | ↑〉 and | ↓〉, for
Sz = 1/2 and Sz = −1/2, respectively. In this basis, the single-site spin matrices have the
following form:

Sz =
↑ ↓

↑
↓

(

1
2 0
0 −1

2

)

, Sx =
↑ ↓

↑
↓

(

0 1
2

1
2 0

)

. (4.49)

4.3.1 Infinite system sweep

Two blocks with two sites each are constructed; then assembled together to form a su-
perblock of 4 sites. Each block has 4 states which are direct products of the single-site
states:
| ↑〉 ⊗ | ↑〉 ≡ | ↑↑〉,| ↑〉 ⊗ | ↓〉 ≡ | ↑↓〉, | ↓〉 ⊗ | ↑〉 ≡ | ↓↑〉 and | ↓〉 ⊗ | ↓〉 ≡ | ↓↓〉. Thus, the
superblock of 4 sites has (2S + 1)4 = 16 possible states.

The explicit form of the Hamiltonian of two spins is

H12 = Sz
1 ⊗ S

z
2 − hS

x
1 ⊗ δ2 − hδ1 ⊗ S

x
2 , (4.50)

where δ1 and δ2 are 2×2 unit matrices acting in the spaces of the first and the second spins,
respectively. Calculation of the direct products gives

Sz
1 ⊗ S

z
2 =









1
4 0 0 0
0 −1

4 0 0
0 0 −1

4 0
0 0 0 1

4









, (4.51)
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Sx
1 ⊗ δ2 =

1

2

( 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)

, δ1 ⊗ S
x
2 =

1

2

( 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)

, (4.52)

and so the matrix of the Hamiltonian is

H12 = −
1

4





−1 2h 2h 0
2h 1 0 2h
2h 0 1 2h
0 2h 2h −1



 (4.53)

In a similar way, the Hamiltonian of the right block H34 is obtained. We need now a
Hamiltonian term that represents the interaction between these two blocks, say H23:

H = H12 ⊗ δ34 + δ12 ⊗H34 + δ1 ⊗H23 ⊗ δ4, (4.54)

where δ12 and δ34 are 4 × 4 unit matrices, and H23 = Sz
2 ⊗ S

z
3 is given by Eq. (4.51). The

superblock matrix H has 16× 16 = 256 elements.
Once H is constructed (we have to choose a value for h), the diagonalization, using

numerical methods, is straightforward; and the ground state eigenvector is obtained. Then,
we use this ground state eigenvector to construct a 4× 4 density matrix ρ for the left side
of the system using

ρii′ ≡

L
∑

j=1

ψ∗
ijψi′j (4.55)

This matrix is also diagonalized, and according to the algorithm, only m states with the
largest eigenvalues are kept. In a real calculation it is not useful to start the truncation
just after a 2-sites blocks are constructed. We have to extend our blocks to a length such
that the number of available states for each block is greater than the number of states we
want to keep. This is an illustrative example and we can choose for example m = 3. The
eigenstates of the lowest energy is then discarded. These three eigenvectors of ρ will form
a 3× 4 transformation matrix O. This matrix is used to change the basis and truncate the
H12 Hamiltonian

H̃12 = OH12O
T (4.56)

The matrix H̃12 represents the Hamiltonian of a 2-spin block, which is projected from its
own real effective space (4 basis states) onto a basis with three eigenvectors of ρ with highest
eigenvalues. This block is stored to be used later. Similarly, other important matrices of the
half-system are truncated. In this case, the matrix of the rightmost spin of the left block is
created and truncated: S̃z

12R = O(δ1 ⊗ S
z
2)O

T . It will be needed to connect the new block
to a new single-site in the next iteration. Since the Hamiltonian (4.54) is symmetric with
respect to the middle point of the chain, it is possible to number states of the system in
such a way, that the right-side matrices are always equal to the left-side ones: H̃34 = H̃12

and S̃z
34L = S̃z

12R, where the S̃
z
34L matrix represents the z-component of the leftmost spin in

the right block. This kind of state numbering is called “ reflected numbering”. Finally, the
matrices are renamed H̃12 → H1,H̃34 → H4, S̃

z
12R → Sz

12R etc., and the first DMRG step is
finished.
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The second step is to insert two new sites between the left and right blocks. The latters
are now represented by m ×m truncated Hamiltonian matrices H1 and H4, respectively,
while the two added sites are described by the on-site 2× 2 Hamiltonian H2 = −hSx, and
H3 = H2, respectively.

To obtain the Hamiltonian matrix of the new superblock, we need at first to construct
those of the left and right sides. To do it for the left side, we need H1 of the block, H2 of the
new site, and a term of interaction between them. Since only nearest neighbor interactions
are present in the model, the block-site interaction is equivalent to the interaction between
the rightmost spin of the block with the spin of the site. The z-component of the rightmost
spin of the block is given by Sz

12R, so the interaction term is HBs = Sz
12R⊗S

z
2 . Consequently,

the Hamiltonian of the left side of the system can be written as

H12 = H1 ⊗ δ2 +HBs + δ1 ⊗H2, (4.57)

which is a 2m× 2m matrix. Due to the ”reflected” numbering of states, the Hamiltonian of
the right-side is simply H34 = H12. The total superblock Hamiltonian is easily constructed
using the left-side and the right-side matrices, adding a term, which connects the two middle
sites:

H = H12 ⊗ δ34 + δ12 ⊗H34 + δ1 ⊗H23 ⊗ δ4, (4.58)

where δ1 nd δ4 are m×m, while δ12 and δ34 are 2m× 2m unit matrices, and the inter-site
interaction term H23 = Sz

2 ⊗ S
z
3 .

Now the Hamiltonian is diagonalized, the ground state eigenpair is obtained. The re-
duced DM of the left side is created from the eigenvector using the formula (4.55). ρ is
diagonalized, and m states, corresponding to the largest eigenvalues are retained. The m
eigenstates of the ρ form the transformation matrix O, which is used to truncate the ma-
trices of the left-side operators: The Hamiltonian H̃12 = OH12O

T and the spin matrix of
the rightmost spin of the block S̃z

12R = O(δ1 ⊗ S
z
2)O

T . The right-side matrices are equal
to the corresponding left-side one due to the ”reflected” numbering of states. The matrices
are renamed H̃12 → H1,H̃34 → H4, S̃

z
12R → Sz

12R, and the second DMRG step is finished.
Consecutive steps are exactly the same as the second step. They are repeated until

the ground state energy o the system converges or until a desirable length of the chain is
reached and then the finite-system DMRG may be started to increase accuracy.

4.4 Fermionic DMRG: The Kondo lattice model

The Hubbard model is considered too simple when trying to describe the behaviour of
magnetic elements in dilute metallic alloys. Thus, a more sophisticated model is set up to
include interactions between the electrons of the localized magnetic ions and the conduc-
tion electrons of the host metal. This model is called the periodic Anderson model. Its
Hamiltonian is given by

H = −t
∑

〈i,j〉,σ

(

c†iσcjσ + c†jσciσ

)

+ εf
∑

iσ

f †iσfiσ

+V
∑

iσ

(

c†iσfiσ + f †iσciσ

)

+ U
∑

i

f †i↑fi↑f
†
i↓fi↓ (4.59)
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where σ =↑ or ↓ denotes the spin state, ciσ(fiσ) is the annihilation operator of the conduction
(localized) electrons, and 〈i, j〉 denotes summation over nearest neighbours only. The first
sum represents the hopping processes of the conduction electrons, the second one gives
the energy of the f electrons, where εf is the atomic energy of the f level, the third sum
describes the hybridization of the two bands, namely, V is the matrix element of the mixing
between the two orbitals. The last term represents the Coulomb repulsion between the f
electrons on the same orbital.

Solving the periodic Anderson model is a very complicated problem. However in the
limit of large Coulomb repulsion U , the model can be slightly simplified, leading to the
Kondo lattice model.

4.4.1 Single-impurity Kondo model

An effective model of the periodic Anderson model can be obtained in the limit, where
the number of the localized electrons on a lattice site is fixed, and equal to one. This
can happen when the f level is lowered below the d band, or, correspondingly, when the
mixing between the two bands V is small compared to the Coulomb repulsion U between
f electrons on the same site. The second-order perturbation with respect to V transform
the periodic Anderson model Hamiltonian into the Kondo lattice Hamiltonian [150]

H = −t
∑

〈i,j〉,σ

(

c†iσcjσ + c†jσciσ

)

+ J
∑

i

Ŝci · Ŝi, (4.60)

where Ŝci =
1
2

∑

σσ′ c
†
iστσσ′ciσ′ with τ the Pauli spin matrices. The Ŝi are spin-1/2 operators

for the localized spins. The first sum describes again the motion of the conduction electrons
(c-electrons) while each term of the last sum represents the interaction between the localized
f spins and the the moving c electrons on a given site. The exchange interaction J > 0 is
antiferromagnetic: it favors an opposite alignment of the conduction electron spin with the
spin of the localized f -electron. It is related to the parameters of the Anderson model U
and V .

There are essentially just two parameters in the model: the exchange interaction J (in
units of t) and the filling of the c-electrons n = Nc/Nf , where Nc is the total number of
c-electrons and Nf is the total number of f -electrons ( equal to the length of the lattice L).
The case n = 1 is referred to as half-filling, and 0 < n < 1 as partial filling.

The Kondo lattice model is considered to be a very good model for number of diverse
compounds involving rare-earth or actinide elements. Most of these intermetallic com-
pounds exhibit complex and unusual properties, due to strong many-body effects of the
electrons.

The strong correlation is introduced via dynamic scattering by the localized spins. As
a conduction electron moves through the lattice, it interacts with the f -spins on each site.
If spins of the two electrons are antiparallel, they both flip. Consequently, the conduction
electron leaves a trace of its interactions on the lattice. A current spin direction of a given
f -electron depends on all those c-electrons that visited in the past. Since a given c-electron
might spin-flip on a given lattice site depending on the spin direction of the f -electron on
that site, the c-electron lose their independence. This increase of the correlation is a purely
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dynamic scattering effect. In contrast, an ordinary potential scattering of electrons would
leave them independent.

4.4.2 DMRG application

Contrary to the Ising spin chain, the implementation of the DMRG to the Kondo lattice
model has an additional complication due to the fermionic nature of particles (as for Hub-
bard model). The operators of fermions anticommute and hence a minus sign is introduced
whenever places of two operators are interchanged [149].

The single-site basis of the model has 8 states, since the localized electron of spin-1/2
can be in two states, and there are 4 different states of conduction electrons: |0〉, | ↑〉, | ↓〉
and | ↑↓〉, while the impurity f spin has two states: | ⇑〉 and | ⇓〉. Thus, the local basis |ηk〉,
k = 1, · · · , 8, can be chosen so that the z-component of the spin operator is diagonal

{ηk} = {|0 ⇑〉, | ↑⇑〉, | ↓⇑〉, | ↑↓⇑〉, |0 ⇓〉, | ↑⇓〉, | ↓⇓〉, | ↑↓⇓〉}

This local basis is a direct product of states of 3 different particles: |ηk〉 = |n↑〉⊗ |n↓〉⊗ |f〉,
where n↑ = 0, 1 is the number of electrons with Sz = 1

2 , n↓ = 0, 1 is the number of electrons
with Sz = −1

2 , and f =⇑,⇓ is the f spin.
While the matrices of the creation and annihilation operators of spin electron in the

single particle basis are easy to get from the anticommutation relations, Eqs.(4.16) and
(4.17), the extension to several particles is more complicated, for we have keep track of
signs. Using the definition |n1, n2, · · · 〉 = (c1)

†(c2)
† · · · |0〉, where |0〉 is the vacuum state

with no electrons, one obtains

cr| · · ·nr · · · 〉 =
{

(−1)σr | · · · nr − 1 · · · 〉 if nr = 1,
0 otherwise

c†r| · · ·nr · · · 〉 =
{

(−1)σr | · · · nr + 1 · · · 〉 if nr = 1,
0 otherwise (4.61)

where the phase factor σr is defined by σr =
∑r−1

j=1 nr, so to say, a minus sign is introduced
whenever the number of electrons ”to the left” of the electron r is odd.

Consequently, the matrices of the creation operators in the basis |ηk〉 of a single Kondo
lattice site are given by

C†
↑ =





τ− 0 0 0
0 τ− 0 0
0 0 τ− 0
0 0 0 τ−



 , C†
↓ =

( 0 0 0 0
τz 0 0 0
0 0 0 0
0 0 τz 0

)

, (4.62)

where τ− = (τx− iτy)/2, 0 is a 2×2 zero matrix, and τ = (τx, τy, τz) are the Pauli matrices,

τx =
(

0 1
1 0

)

, τy =
(

0 −i
i 0

)

, τz =
(

1 0
0 −1

)

, τ− =
(

0 0
1 0

)

. (4.63)

Let’s check over two elements of the creation operator defined in Eq.(4.62), say

C
†(4,3)
↑ = 〈⇑↑↓ |C†

↑| ↓⇑〉 = 1 and C
†(4,2)
↓ = 〈⇑↑↓ |C†

↑| ↑⇑〉 = −1.
We have:

C†
↑| ↓⇑〉 = C†

↑|0〉↑|1〉↓| ⇑〉 (4.64)
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Following Eq.(4.61), this gives:

C†
↑| ↓⇑〉 = C†

↑|0〉↑|1〉↓| ⇑〉 = (−1)0|1〉↑|1〉↓| ⇑〉 = | ↑↓⇑〉 (4.65)

where 0 in (−1)0 indicates that there is no electron to the left of the created electron. Thus,

indeed: C
†(4,3)
↑ = 〈⇑↑↓ |C†

↑| ↓⇑〉 = +1
Similarly,

C†
↓| ↑⇑〉 = C†

↑|1〉↑|0〉↓| ⇑〉 (4.66)

which gives:

C†
↓| ↑⇑〉 = C†

↓|1〉↑|0〉↓| ⇑〉 = (−1)1|1〉↑|1〉↓| ⇑〉 = −1| ↑↓⇑〉 (4.67)

where 1 in (−1)1 indicates that there is an electron to the left of the created electron. Thus,

indeed: C
†(4,2)
↓ = 〈⇑↑↓ |C†

↓| ↑⇑〉 = −1. The annihilation (destruction) operators C↑ and C↓

are obtained by a simple transposition of the corresponding creation matrices.
The interaction term of the Kondo lattice model on a single site writes:

HJ = JŜc · Ŝf = J(Sx
c · S

x
f + Sy

c · S
y
f + Sz

c · S
z
f ) (4.68)

with

Sx,y,z
c =

1

2

∑

σσ′

c†στ
x,y,z
σσ′ cσ′ ,

and

Sx,y,z
f =

1

2

∑

σσ′

f †στ
x,y,z
σσ′ fσ′ ,

with the Pauli matrices elements τx,y,zσσ′ , where, for example, τx↑↓ = τx12, so that

J(Sx
c · S

x
f + Sy

c · S
y
f + Sz

c · S
z
f ) =

J

4

∑

σσ′σ′′σ′′′

(τxσσ′τxσ′′σ′′′ + τyσσ′τ
y
σ′′σ′′′ + τ zσσ′τ zσ′′σ′′′)c†σcσ′f †σ′′fσ′′′(4.69)

Using these matrices and the interaction term of the Kondo lattice model (4.60), one
obtains the single site Hamiltonian matrix HJ , which has only six nonzero elements:

〈↑⇑ |HJ | ↑⇑〉 =
J

4
, 〈↓⇑ |HJ | ↓⇑〉 = −

J

4
, 〈↑⇓ |HJ | ↓⇑〉 =

J

2
,

〈↓⇓ |HJ | ↓⇓〉 =
J

4
, 〈↑⇓ |HJ | ↑⇓〉 = −

J

4
, 〈↓⇑ |HJ | ↑⇓〉 =

J

2
. (4.70)

Let’s verify one of these matrix elements, say, 〈↑⇑ |HJ | ↑⇑〉 =
J
4 . We have to apply HJ on

the basis vector | ↑⇑〉. This will involve 16 terms of operators in the sum; only 4 of them
give a nonzero result. Here they are:

c†↑c↑f
†
⇑f⇑| ↑⇑〉 = | ↑⇑〉, c

†
↑c↑f

†
⇓f⇑| ↑⇑〉 = | ↑⇓〉,
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c†↓c↑f
†
⇑f⇑| ↑⇑〉 = | ↓⇑〉, c

†
↓c↑f

†
⇓f⇑| ↑⇑〉 = | ↓⇓〉. (4.71)

Now we have to compute the corresponding coefficients in the sum made of multiplication
of Pauli matrices elements, where

τx↑↑τ
x
↑↑ + τy↑↑τ

y
↑↑ + τ z↑↑τ

z
↑↑ = 0 · 0 + 0 · 0 + 1 · 1 = 1

τx↑↑τ
x
↓↑ + τy↑↑τ

y
↓↑ + τ z↑↑τ

z
↓↑ = 0 · 1 + 0 · i+ 1 · 0 = 0

τx↑↓τ
x
↑↑ + τy↑↓τ

y
↑↑ + τ z↑↓τ

z
↑↑ = 1 · 0− i · 0 + 0 · 0 = 0

τx↓↑τ
x
↓↑ + τy↓↑τ

y
↓↑ + τ z↓↑τ

z
↓↑ = 1 · 1 + i · i+ 0 · 0 = 0 (4.72)

which indeed gives 〈↑⇑ |HJ | ↑⇑〉 =
J
4 .

Apart from the complication with signs (4.61), there are no other essential differences
from a simple spin-chain case. The anticommutativity of the c operators is incorporated
into single-site matrices (4.62). What remains is to define these operators on the whole
system of four DMRG blocks. To satisfy Eq. (4.61), the matrix of the operator, acting on a
given block, should include information about the number of electrons on the blocks ”to the
left”. This can be achieved by introducing a diagonal single-site matrix P , which counts the
number of electrons in each state, and gives +1 if the number is even, and -1 if the number
is odd. The diagonal of the P matrix in the basis {|ηk} is then (1,−1,−1, 1, 1,−1,−1, 1).
Now the operator acting on a given block i, i = 1, 2, 3 or 4, can be defined on the whole
system of four blocks so that it satisfies anticommutation relations with other operators.
At the first DMRG step, the following operator matrices are introduced [151]:

C̃†
1σ = C†

σ ⊗ δ2 ⊗ δ3 ⊗ δ4, C̃
†
2σ = P1 ⊗ C

†
σ ⊗ δ3 ⊗ δ4,

C̃†
3σ = P1 ⊗ P2 ⊗ C

†
σ ⊗ δ4, C̃

†
4σ = P1 ⊗ P2 ⊗ P3 ⊗ C

†
σ. (4.73)

where σ =↑, ↓, P1 = P2 = P3 = P are just single-site P matrices, and δi are 8 × 8 unit
matrices, acting on corresponding blocks. The destruction operator matrices are simple
transpositions of the corresponding C̃†

iσ. The KLM Hamiltonian can be rewritten as

H = −t
∑

σ=↑,↓

3
∑

i=1

(

C̃†
iσC̃i+1σ − C̃iσC̃

†
i+1σ

)

+
4
∑

i=1

(HJ)i, (4.74)

where (HJ)i are single-block matrices (in the first iteration they are all given by Eq.(4.70).
Now the following DMRG algorithm is not different from a simple application to any non-
fermionic spin-chain. The Hamiltonian of the whole system is diagonalized, the reduced
density matrix of the left side is constructed, diagonalized and truncated leaving the states
with largest eigenvalues. These chosen states make up the transformation matrix O, which
is used to rotate and truncate all left-side matrices into the new basis. The truncated
matrices are acting on a block number 1 in the next iteration. They are used to create a
new Hamiltonian Eq.(4.74), where matrices on blocks 2 and 3 are just single-site matrices
an those acting on blocks 1 and 4 are the truncated matrices of the previous iteration. E.g.,
the new (HJ)1 matrix is a truncation of the left-side Hamiltonian of the previous step:

(HJ)1 → O

(

(HJ)1 ⊗ δ2 − t
∑

σ

(C̃†
1σC̃2σ − C̃1σC̃

†
2σ) + δ1 ⊗ (HJ)2

)

OT (4.75)
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Similarly the new C̃†
2σ matrix is needed as a connection between the first block and the

second block, so it corresponds to the c† matrix of the electron, residing on the rightmost
spin of the block. Consequently

C̃†
2σ ← O(P1 ⊗ C

†
σ)O

T , (4.76)

where C†
σ is a single-site matrix, given by Eq. (4.62). Evidently, the only extra element

of this implementation of the fermionic DMRG algorithm as compared to the simple-spin
chain, is the necessity to keep the P matrix of the first block. It is clearly obtained as

P1 ← O(P1 ⊗ P2)
T . (4.77)

Commutativity of the number operator with the KLM Hamiltonian leads to the block
diagonal matrix (with respect to the particle number), which eventually means that the P
matrix is always diagonal with either +1 or -1 on the diagonal.

There exists one problem, common to the infinite system DMRG, applied to fermionic
chains: it is usually impossible to keep constant filling the c-electrons while growing the
system. Even though the particle number operator Nc =

∑

i,σ C̃
†
iσC̃iσ commutes both with

the Hamiltonian of the KLM and the DM of half-system, and it is easy to work in the
subspace of a given number of particles, their number should integer at every step. As the
chain grows during the iteration, the ratio between Nc and the number of system sites L can
not be kept constant. The fluctuations can be a serious hindrance, e.g., to obtain accurate
ground state properties close to the phase transition [151, 152]. There is no such problem
in the finite system DMRG, since the system size is fixed then.

4.5 The Heisenberg model

For many magnetic materials, it is shown that the magnetic part of the Hamiltonian can be
accurately represented as a set of localized spins ~Si interacting with each other. A standard
form of this magnetic part of the Hamiltonian can be put in the form

H = J
∑

〈ij〉

{γ~Si · ~Sj + (1− γ)Sz
i S

z
j } −

∑

i

~H · ~Si (4.78)

where 〈ij〉 stands for nearest-neighbors. The ~Si·~Sj term is called a spin exchange interaction,
J is the coupling constant energy between neighbor spins, Sz

i is the z- component of a spin

on site i, γ is a parameter characterizing the degree of anisotropy and ~H a magnetic field.
This Hamiltonian reduces to the Ising case when γ = 0 and the Heisenberg case when

γ = 1. For certain highly anisotropic systems, the coupling energy can be approximated by
the pure Ising form but for most systems the anisotropy, although important, is not very
large and the pure Heisenberg coupling is more realistic [153].

Thus, the Heisenberg model, in spite of its simplicity as a model for many-body sys-
tems, was found to be very useful for understanding magnetism and hence has received
considerable attention from experimentalists because its describes a number of materials
with magnetic ions arranged in chains [154, 155, 156]. The exact energy eigenstates of an
infinite chain of spins interacting with nearest neighbors via a Heisenberg interaction were
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found by Bethe [157] and the ground-state energy was found later by Hulthen [158]; even the
generalization of the solutions to higher dimension is not available, and thus, the problem
remains open.

In order to investigate whether a purely isotropic Heisenberg interaction between nearest
neighbors produce long-range order in one dimension, Lieb, Schultz and Mattis [159] were
lead to construct an exactly solved model, called the XY model, which closely resemble to
the Heisenberg model, and whose Hamiltonian writes as:

H = J
∑

i

[(1 + γ)Sx
i S

x
i+1 + (1− γ)Sy

i S
y
i+1], (4.79)

This model was called the XY model because the Hamiltonian only involves the x- and y-
components of the spin operators. The investigation of this model strongly suggests that
the isotropic Heisenberg model has no long-range order but that such order exists for any
finite amount of anisotropy [159].

Another variant of the model is known as the XXZ model, with the Hamiltonian:

H = J
∑

i

(Sx
i S

x
i+1 + Sy

i S
y
i+1 + γSz

i S
z
i+1), (4.80)

which has XY symmetry. The behaviour of the ground state of this model as the anisotropy
parameter γ is varied is well-known (see for example [160]).

Also, the effect of weak disorder in quantum spin chains has gained attention; and a
wide range of models was introduced to investigate different kinds of disorder like a random
transverse magnetic field in the z direction:

H =
∑

i

hziS
z
i , (4.81)

or a random component in the planar exchange interaction,

H =
∑

i

δJxy
i (Sx

i S
x
i+1 + Sy

i S
y
i+1), (4.82)

and so on (see for example [160]).
In the Heisenberg model one assumes that there is a single electron localized at each site,

and that the charge cannot move. Therefore, the only degrees of freedom in the Heisenberg
model are the spins of each site. This can be viewed as a limiting case of the Hubbard
model when we have half-filling , i.e. ni ≡ 1 for all sites, hopping becoming impossible.

Although the spins in the model are localized they are meant to describe a system of
mobile electrons. The model treats electrons with spin 1/2, but it can also be generalized to
particles with spin > 1

2 . A possible generalization for these models is to extend the nearest
neighbors summation to more distant neighbours.

4.5.1 Heisenberg DMRG example

In this example we will illustrate the DMRG implementation for the antiferromagnetic spin
1/2 Heisenberg chain [161]

H = J
∑

i

SiSi+1 = Sz
i S

z
i+1 +

1

2
(S+

i S
−
i+1 + S−

i S
+
i+1) (4.83)
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where J is taken to be unity and

S±
i = Sx

i ± iS
y
i =

1

2
(σx ± iσy) , Sz

i =
1

2
σz (4.84)

where σx, σy and σz are the Pauli matrices given by

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

and σz =
(

1 0
0 −1

)

(4.85)

The possible states for a single site are: |d1〉 = | ↑〉 and |d2〉 = | ↓〉 (this notation is borrowed
from the work of A. Malvezzi [162]). Because in DMRG we deal with truncated Hilbert
spaces, we will represent a block of l sites with a m-dimensional basis by B(l;m) (m is the
number of states kept during the renormalization process and it is obviously smaller than
the full Hilbert space of the block).

We start with two blocks BL(1, 2) and BR(1, 2) (L for left and R for right), each contains
one single site. The possible states of the block are

|b1〉 = | ↑〉, |b2〉 = | ↓〉. (4.86)

Then a single site is added to each block. Let’s focus on the left block, because the right
one is obtained by a spatial reflection. Thus, the basis of the left enlarged block is

|be1〉 = | ↑↑〉
|be2〉 = | ↑↓〉
|be3〉 = | ↓↑〉
|be4〉 = | ↓↓〉 (4.87)

The Hamiltonian HL
e for the enlarged block BL(2, 4) writes as tensor products of matrices

representing each site, so that

HL
e = HB ⊗ Id + Ib ⊗HB +

1

2
(S+

b ⊗ S
−
d + S−

b ⊗ S
+
d ) + Sz

b ⊗ S
z
d (4.88)

In Eq. (4.88) the indices b and d refer to the operators acting on the Hilbert space of the
block and the site, respectively, and I is the unit matrix. HB is a null matrix because one
isolated site without external fields has the Hamiltonian equal to zero. Thus

HL
e =

(

0 0
0 0

)

⊗
(

1 0
0 1

)

+
(

1 0
0 1

)

⊗
(

0 0
0 0

)

+
1

2

[(

0 1
0 0

)

⊗
(

0 0
1 0

)

+
(

0 0
1 0

)

⊗
(

0 1
0 0

)]

+
1

4

(

1 0
0 −1

)

⊗
(

1 0
0 −1

)

(4.89)

and it looks as follows:

HL
e =

1

4

( 1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

)

(4.90)
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In the same spirit, the superblock is constructed as tensor products of matrices repre-
senting the left and right blocks plus matrices of operators on rightmost and leftmost sites
that connect the two blocks. Thus, The

Hs = HL
e ⊗ I

R
e + ILe ⊗H

R
e +

1

2

[

(S+
r )

L
e ⊗ (S−

l )
R
e + (S−

r )
L
e ⊗ (S+

l )
R
e

]

+ (Sz
r )

L
e ⊗ (Sz

l )
R
e (4.91)

where HL
e and HR

e are matrices representing left and right enlarged blocks(with two sites
each), IRe and ILe are 4×4 unit matrices, (S+

r )
L
e , (S

−
r )

L
e and (Sz

r )
L
e are matrices representing

rightmost site operators of the left block, while (S+
l )

R
e , (S−

l )
R
e and (Sz

l )
R
e are matrices

representing leftmost site operators of the right block. All these operators are represented
in the basis of the enlarged block . The rightmost and leftmost sites are connecting the two
blocks. For example, (S+

r )
L
e matrix, is given by

(S+
r )

L
e = Ib ⊗ S

+
d =

(

1 0
0 1

)

⊗
(

0 1
0 0

)

(4.92)

Thus, the basis for the superblock has 16 states: {| ↑↑↑↑〉, | ↑↑↑↓〉, · · · , | ↓↓↓↑〉, | ↓↓↓↓〉}.
This means that any operator for the superblock has to be represented in this 16-states
basis.

The Hamiltonian matrix of the superblock Hs is then diagonalized; the ground state
vector is used to construct the density matrix ρ, following equation (4.40). Note that the
diagonalization of a 16×16 matrix is quite easy task (we can do it with standard routines),
and therefore we can keep applying this recipe à la lettre. However for realistic calculations,
and in order to keep a considerable number of states m, we have to extend the superblock
so it contains a number of states larger than m. This makes the diagonalization of the
superblock matrix very onerous, and the recourse to other numerical methods, like Lanczos
method is of great necessity. In other hand, the superblock contains basis states correspond-
ing to many different values of total z-component spin Sz (called quantum number); hence
the full matrix of the whole system can be blocked out to submatrices corresponding to
different values of Sz, which may help to diminish the time consuming of the calculations.

In our example, it happens that the ground state belongs to the subspace Sz = 0, with
the basis states:{| ↑↑↓↓〉, | ↑↓↑↓〉, | ↑↓↓↑〉, | ↓↑↑↓〉, | ↓↑↓↑〉, | ↓↓↑↑〉}. Thus, the matrix to be
diagonalized is just a 6×6 one, instead of a 16×16 matrix, ans this will considerably speed
up the calculations.

Note that ρ and HL
e (Eq. (4.90)) have the same matrices order and also share the same

block diagonal structure. ρ matrix is then diagonalized, the m eigenvectors corresponding
to the largest eigenvalues are used as rows in the truncation operator matrix O (in our
example m = 2).

After determining the basis and the transformation, the representations of all operators
used to describe the enlarged block are changed to the new basis, i.e.,

HL
e (B(2, 2)) = O(1)HL

e (B(2, 4))O†(1) (4.93)

where HL
e (B(2, 4)) is the Hamiltonian of the left enlarged block in the effective basis (with

4 basis states) transformed through truncation operator O(1) to the truncated basis ( with 2
states), as HL

e (B(2, 2)). The index 1 in O(1) refers to the first step of truncation. The same
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transformation is done with the other operators that will be needed for future calculations.
One example is the S+-operator, which has the following representation in the new basis

S+
r (B(2, 2)) = O(1)(S+

r )e(B(2, 4))O†(1) (4.94)

In order to ’monitor’ the accuracy of the procedure, it is useful to calculate the sum of
the density matrix eigenvalues of the discarded states (1 −

∑m
α=1 wα). This sum measures

the severity of the truncation [163]. The goal is to keep this number as small as possible.
Acceptable truncation errors in actual calculations are usually kept smaller than 10−4 [162].

After all operators for the left block are obtained, a new enlarged block, B(3,m× 2), is
constructed by adding a new site. Using tensor products of spin operator matrices in left
and right blocks, a superblock Hamiltonian of 6 sites is then constructed in a m×2×2×m-
states basis. The ground state is then obtained; the density matrix constructed and the
truncation operator established, i.e.,

HL
e (B(3,m)) = O(2)HL

e (B(3,m× 2))O†(2) (4.95)

and, for example,

S+
r (B(3,m)) = O(2)(S+

r )e(B(3,m× 2))O†(2) (4.96)

This infinite system algorithm is then repeated until a desired length of the chain is reached.
To increase the accuracy of the results we have to start the finite system algorithm which
consists, as it is well explained before, in a kind of sweeping, i.e., incorporating( not adding)
a new site to the left block and retrieving a site from the right block. The above procedure
of diagonalization ,etc...is then repeatedly applied, until the right block is nothing but a
single site. The structure of the superblock is then reversed: the single site is now at the left
side of the superblock, while the enlarged block is at its right. The procedure of truncation
is again applied. This is the finite system algorithm. The ground state values and other
measurements are picked up as the left block size is the same as the right block. Four to
five sweeps are, in general, needed to achieve the convergence. The accuracy of results is
also increased by keeping more and more states.

4.6 Dynamic quantities

One scheme to calculate expectation values of dynamic operators was proposed by Wang,
Hallberg, and Naef [28]. Following their ideas, we show how to obtain dynamic quantities
in the zero temperature limit.

For any approximate ground state |ψ0〉 of the Hamiltonian H we may construct an
orthogonal basis in a Lanczos procedure. We specialize to calculating fermionic correlators

C(t) = 〈ψ0|{A
†(t), A(0)}|ψ0〉. (4.97)

We usually seek the Fourier transform

C(ω) =

∫ ∞

−∞
dt eiωt〈ψ0|{A

†(t), A(0)}|ψ0〉 (4.98)
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and inserting the Heisenberg time evolution we find

C(ω) =

∫ ∞

−∞
dt eiωt〈ψ0|{e

iHtA†e−iHt, A(0)}|ψ0〉

= 〈ψ0|A
†

∫ ∞

−∞
dt ei(ω−E0+H)tA+A

∫ ∞

−∞
dt ei(ω+E0−H)tA†|ψ0〉

= 2π〈ψ0|A
†δ(ω + E0 −H)A+Aδ(ω − E0 −H)A†|ψ0〉. (4.99)

Additionally we use the identity

1

x+ iη
=

1

x
− iπδ(x), η → 0+, (4.100)

to rewrite the δ-functions

δ(ω ± (E0 −H)) = −
1

π
lim

η→0+
Im

1

ω ± (E0 −H) + iη
(4.101)

so that

C(ω) = −2 lim
η→0+

Im〈ψ0|A
† 1

ω + E0 −H + iη
A+A

1

ω − E0 +H + iη
A†|ψ0〉, (4.102)

or finally using the notation

G+(z) = ψ0|A(z +H)−1A†|ψ0〉, (4.103)

G−(z) = ψ0|A
†(z −H)−1A|ψ0〉, (4.104)

we find

C(ω) = −2 lim
η→0+

Im(G−(ω + E0 + iη) +G+(ω − E0 + iη)). (4.105)

We start the Lanczos procedure by defining

|f0〉 =

{

A|ψ0〉,
A†|ψ0〉,

(4.106)

and iterate to find further Lanczos vectors,

|fn+1〉 = H|fn〉 − an|fn〉 − b
2
n|fn−1〉, (4.107)

where n ≥ 0, b0 = 0, and 〈fn|fm〉 = 0 for n 6= m. The coefficients are

an =
〈fn|H|fn〉

〈fn|fn〉
, (4.108)

b2n =
〈fn|fn〉

〈fn−1|fn−1〉
. (4.109)

In order to reexpress the Green’s functions, Eq. (4.103) we first define an orthonormal basis

|n〉 =
|fn〉

√

〈fn|fn〉
. (4.110)
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Using Eq. (4.107) the Hamiltonian applied to the basis state |n〉 is

H|n〉 =

√

〈fn+1|fn+1〉

〈fn|fn〉
|n+ 1〉+ an|n〉+ b2n

√

〈fn−1|fn−1〉

〈fn|fn〉
|n− 1〉 (4.111)

and using the notation
√

〈fm|fm〉

〈fn|fn〉
= nm,n (4.112)

we find the matrix elements

〈m|H|n〉 = nn+1,mδm,n+1 + anδm,n + b2nnn−1,nδm,n−1

=

{

nn+1,m, m = n+ 1,
an, m = n,

b2nnn−1,n, m = n− 1.
(4.113)

Thus by construction the Hamiltonian is tri-diagonal in the Lanczos basis

(z ±H)n =













z ± a0 ±b21n0,1 0 · · · 0

±n1,0 z ± a1 ±b22n1,2
...

0 ±n2,1 z ± a2 0
...

. . . ±b2nnn−1,n
0 · · · 0 ±nn,n−1 z ± an













. (4.114)

First, we rewrite Eq. (4.103) as

G±(z) = 〈f0|(z)
−1|f0〉

=
∑

mm′

〈f0|m〉〈m|(z ±H)−1|m′〉〈m′|f0〉

=
∑

mm′

〈f0|fm〉
√

〈fm|fm〉
〈m|(z ±H)−1|m′〉

〈fm′ |f0〉
√

〈fm′ |fm′〉

= 〈f0|f0〉〈0|(z)
−1|0〉. (4.115)

Hence we need to find the first element of the inverse of the matrix (z±H) in the basis
of Eq. (4.110) (See e.g. [164] for details on inverting matrices). In order to invert the
matrix in Eq. (4.110) we first consider the solution to 2nd order in the coefficients ai and
b2i

(z ±H)1 =

(

z ± a0 ±b21n0,1
±n1,0 z ± a1

)

⇒ 〈0|[(z ±H)1]
−1|0〉 =

[C1](1,1)

det(z ±H)1
, (4.116)

where [C1](1,1) is the complement of [(z ± H)1](1,1), given by the subdeterminant, in this
case just a scalar

[C1](1,1) = z ± a1, (4.117)

so that to this order

〈0|[(z ±H)1]
−1|0〉 =

z ± a1
(z ± a0)(z ± a1)− b

2
1n0,1n1,0



57

=
1

z ± a0 −
b2
1

z±a1

, (4.118)

where we used that ni,i+1ni+1,i = 1. Next we consider the solution to (n + 1)’st order in
the coefficients ai and b

2
i , given by a very similar expression,

〈0|[(z ±H)n]
−1|0〉 =

[Cn](1,1)

det(z ±H)n
, (4.119)

with the complement given by the subdeterminant

[Cn](1,1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z ± a1 ±b22n1,2 0 · · · 0

±n2,1 z ± a2 ±b23n2,3
...

0 ±n3,2 z ± a3 0
...

. . . ±b2nnn−1,n
0 · · · 0 ±nn,n−1 z ± an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≡ det(2 : n), (4.120)

which defines the notation det(2 : n) for the subdeterminant of (z ± H)n in Eq. (4.120).
Extending in the obvious way the usage of this notation we have

〈0|[(z ±H)n]
−1|0〉 =

det(2 : n)

det(1 : n)
, (4.121)

The full determinant can be written

det(1 : n) = (z ± a0)det(2 : n)∓ b21n0,1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z ± a1 ±b22n1,2 0 · · · 0

±n2,1 z ± a2 ±b23n2,3
...

0 ±n3,2 z ± a3 0
...

. . . ±b2nnn−1,n
0 · · · 0 ±nn,n−1 z ± an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (z ± a0)det(2 : n)− b21n0,1n1,0det(3 : n)
= (z ± a0)det(2 : n)− b21det(3 : n),(4.122)

and hence we find

〈0|[(z ±H)n]
−1|0〉 =

det(2 : n)

(z ± a0)det(2 : n)− b21det(3 : n)

=
1

z ± a0 − b21
det(3:n)
det(2:n)

(4.123)

Due to the tri-diagonal structure of the Hamiltonian matrix in Eq.(4.114) we can rewrite
any fraction det(m+ 1 : n)/det(m : n) in a completely similar way,

det(m+ 1 : n)

det(m : n)
=

det(m+ 1 : n)

(z ± am−1)det(m+ 1 : n)− b2mdet(m+ 2 : n)
1

z ± am−1 − b2m
det(m+2:n)
det(m+1:n)

. (4.124)
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Hence by successive use of Eq. (4.124) and using Eq. (4.115) we find the final solution for
arbitrary n, in particular n→∞,

G+(z) =
〈ψ0|AA

†|ψ0〉

z + a0 −
b2
1

z+a1−
b2
2

z+···

G−(z) =
〈ψ0|AA

†|ψ0〉

z − a0 −
b2
1

z−a1−
b2
2

z−···

(4.125)

The condition for this method to be feasible is that the continued fractions in Eq. (4.125)
converge using a finite and manageable number of Lanczos coefficients ai and bi2. If very
many coefficients are needed it becomes difficult to maintain the accuracy.

In principle this procedure is independent of the method used to find the ground state
[165]. In a DMRG implementation of the method above there are however technical de-
tails that need attention. The DMRG basis is usually heavily truncated compared to the
complete basis. The truncation is performed to optimally describe the target state, usually
the ground state. The basis may therefore not be suitable for describing excitations in the
system, making it impossible to accurately describe dynamical quantities in this basis.

This apparent incompatibility can be remedied by including exited states as target
states. As was pointed out by Hallberg the first few Lanczos vectors are candidates for such
additional target states [166] . Hence the new normalized target states become

|ψl〉 =

{

|ψ0〉, l = 1,
|fl−2

〈fl−2|fl−2〉
, l = 2, 3, · · · ,M (4.126)

and the reduced density matrix accordingly

ρii′ =

M
∑

l=1

plψ
l
ij(ψ

l)†ji′ , (4.127)

where pl is the weight for target state |ψl〉 and
∑

pl = 1 to maintain the normalization.
With these additional target states excitations can be described using a standard DMRG

implementation. The additional calculations amount to computing and including as target
states at each step M normalized Lanczos vectors, given the ground state |ψ0〉, the Hamil-
tonian H, and the operator A or A†. Since the precision of DMRG generally decreases when
more target states are included the optimal value of M has to be determined from case to
case. Including more states improves the description of excitations but lowers the general
precision of DMRG.



Chapter 5

Applications and results

In this chapter, I present the results of my work on DMRG method and its applications.
In the first paper, a variation of the Density Matrix Renormalization Group (DMRG) pro-
cedure, based on a simplified version of White’s Density Matrix Renormalization Group
(DMRG) algorithm to find the ground state of single-particle quantum mechanics is devel-
oped, to compute low states energies for two crossed chains within the simple tight–binding
model suggested by P. W. Anderson. For comparison, our results obtained using the new
procedure are presented along with those obtained by exact diagonalization. Some technical
aspects of the implementation of the algorithm are given in detail.

In the second paper, the ground state energies and other related quantities of a spin-12
chain with a lacking spin site are computed using exact diagonalization method. To do this,
next nearest neighbors interactions are introduced to Heisenberg model Hamiltonian, known
as frustrated quantum spin chain. To investigate ground state energies of large system
sizes, the DMRG method is applied. Our results are then compared to those obtained for
a spin chain without a lacking spin site. Thus, the introduction of such lacking site makes
the system gapless, and, actually, the first four energies have the same value. Quantum
quantities such as fidelity and correlation functions are also studied and compared for both
cases.

In the third paper, the density-matrix renormalization-group technique and relations
arising from the conformal invariance are used to calculate finite-size estimates of the con-
formal anomaly c, sound velocity vs, the anomalous dimension xαbulk of a 1/2-spin chain
within Heisenberg model with next nearest neighbors interactions. The nature of the in-
teractions used permits us also to simulate a disorder chain by removing a single spin site,
while both parts of the chain remain connected. For this case, the above quantities are also
computed and compared to those of pure case.
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5.1 Density Matrix Renormalization Group Method applied
to two crossed disordered chains within Anderson model

5.1.1 Introduction

The Density Matrix Renormalization Group (DMRG), developed by S. R. White in 1993
[23], is a powerful numerical method which permits us to obtain the ground-state and
low-lying excited states wavefunctions of large-size systems with controlled high accuracy.
S.White has considered that a system (block) must be connected to an other block (envi-
ronment) to form a superblock, and therefore each part contributes to the ground state of
the superblock through its own states. The basic idea of the DMRG is to use the concept
of density matrix to decide which states from a given block that contribute the more to the
wavefunction of the whole system. As the procedure is iterated, the size of the system is
increasing while the corresponding Hilbert space is kept constant.

Technically, the algorithm consists in a warm–up phase where Hamiltonian operators
for each block and connection operators in the system are renormalized and then stored to
be used later. This is followed by a sweeping procedure which iterates the process on the
full system until convergence is reached.

In fact, since its appearance, DMRG has proven a high level of accuracy when dealing
with one–dimensional systems, in such a way that it became, in few years, a valuable
numerical tool, among other numerical methods, to calculate energy spectrum and other
dynamic correlation functions at finite temperatures of interacting 1–d quantum systems.
Still, the DMRG is called to prove its accuracy when applied to 2–d quantum systems and,
eventually, 3–d ones. Thus, various algorithms have been proposed to apply DMRG to
two-dimensional quantum systems; see for example ([167],[168], [169],[170],[171] and [172]).
Most of these works use mappings on to effective one-dimensional models with long-range
interactions, and the standard DMRG method is applied to the effective one-dimensional
systems. In this spirit, the present paper is to give a new configuration of the DMRG
method to treat a diffusive problem without any mapping: a disordered two–crossed chains
system within the very simple tight–binding Anderson model.

This work is based on an earlier paper [173], where M.A. Mart́ın-Delgado et al. have
given a simplified version of White’s DMRG algorithm to find the ground state of single-
particle quantummechanics. They solved a discretized version of the single–particle Schrödinger
equation, which allows them to obtain very accurate results for the lowest energy levels of
a single particle under the action of three potentials: harmonic oscillator, anharmonic os-
cillator and double–well. My contribution consists in replacing the standard configuration,
which consists in two connected blocks (system +environment) and where two sites are
added at a time, by a five–blocks system, representing the two crossed chains, and where
eight sites are added at a time.

5.1.2 DMRG applied to two crossed chains

The present implementation consists in five blocks: right, left, upper and down blocks BL
`

, BR
` , B

U
` and BD

` with ` sites (environment) plus a center block BC
m with also m sites

(system), as it is shown in Fig.(5.1).
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Figure 5.1: DMRG superblock configuration: five blocks and eight sites to add at each step of the
procedure.

5.1.2.1 Superblock Hamiltonian

In order to treat the NE ≥ 1 lowest energy levels, the environment blocks BL, BR,BU

and BD must contain NE degrees of freedom. Clearly, the center block contains 2NE − 1
sites. Our choice for numbering sites in the superblock is such the horizontal sites are
labeled with odd number from left to right, whereas the vertical sites are labeled with
even number starting from up to down. The superblock Hamiltonian HSB is therefore a
(6NE + 7)× (6NE + 7) matrix given by

HSB =





































HLU −vL −vU 0 0 0 0 0 0 0 0
−v†L hCL 0 −1 0 0 0 0 0 0 0

−v†U 0 hCU 0 −1 0 0 0 0 0 0

0 −1 0 hCCL 0 −v†CL 0 0 0 0 0

0 0 −1 0 hCCU −v†CU 0 0 0 0 0
0 0 0 −vCL −vCU HC −vCR −vCD 0 0 0
0 0 0 0 0 −v†CR hCCR 0 −1 0 0

0 0 0 0 0 −v†CD 0 hCCD 0 −1 0

0 0 0 0 0 0 −1 0 hCR 0 −v†R
0 0 0 0 0 0 0 −1 0 hCD −v†D
0 0 0 0 0 0 0 0 −vR −vD HRD





































(5.1)
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where HLU writes

HLU =























H11
L 0 H12

L 0 . . . H1NE

L 0

0 H11
U 0 H12

U . . . 0 H1NE

U

H21
L 0 H22

L 0 . . . H2NE

L 0

0 H21
U 0 H22

U . . . 0 H2NE

U
...

...
...

...
. . .

...
...

HNE1
L 0 HNE2

L 0 . . . HNENE

L 0

0 HNE1
U 0 HNE2

U . . . 0 HNENE

U























(5.2)

HLU is a 2NE × 2NE matrix, built up by two embedded matrices HL and HU , each one
representing the interactions inside the blocks BL and BU , respectively. Zeros in the matrix
indicate lost links between sites. Thus, H12

LU , for example, is equal to zero because there is
no link between the first and second sites. Similarly, HRD writes

HRD =























H11
R 0 H12

R 0 . . . H1NE

R 0

0 H11
D 0 H12

D . . . 0 H1NE

D

H21
R 0 H22

R 0 . . . H2NE

R 0

0 H21
D 0 H22

D . . . 0 H2NE

D
...

...
...

...
. . .

...
...

HNE1
R 0 HNE2

R 0 . . . HNENE

R 0

0 HNE1
D 0 HNE2

D . . . 0 HNENE

D























(5.3)

It represents the interactions inside the blocks BR and BD. The symbols hCL, hCU , hCR

and hCD represent the added sites, at each iteration, to left, upper, right and down blocks,
respectively. Also, hCCL, hCCU , hCCR and hCCD are the added sites to the center block.
The NE–component column vectors vL,vU ,vR and vD describe the interaction between the
blocks BL, BU ,BR and BR and the sites next to them in the superblock. For example, vL
writes as (v1L, 0, v

2
L, 0 . . . , v

NE

L , 0) and vU writes as (0, v1U , 0, v
2
U , . . . , 0, v

NE

U ). The (2NE − 1)–
component column vectors vCL,vCU ,vCR and vCD describe the interaction between the
center BC and the sites next to it in the superblock. So that, vU , for example, writes as
(v1CU , v

2
CU , · · · , v

NE

CU ).
Then, the Hamiltonian HSB in Eq.(5.1) describes the superblock

BU
`

•
•

BL
` • • BC

2NE+4nbr • • BR
N−7

2
−NE−2nbr−`

•
•

BD
N−7

2
−NE−2nbr−`

Since the blocks BL,U,R,D and the block BC contain NE and 2NE − 1 effective sites, re-
spectively, we need nbr = (N−6NE−7)

8 warm–up steps to reach the desired system length N .

HSB = H
(`)
SB can be defined for ` = NE , NE + 1, . . . , NE + nbr.
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5.1.3 DMRG truncation

As in the previous section, we have to obtain the NE lowest eigenstates of HSB, which will
be designated as

(a1L,i, a
1
U,i, ..a

NE

L,i , a
NE

U,i , aCL,i, aCU,i, aCCL,i, aCCU,i,aC,i, aCCR,i, aCCD,i, aCR,i, aCD,i, a
1
R,i,

a1D,i.., a
NE

R,i , a
NE

D,i)
NE

i=1

where (a1L,i, . . . a
NE

L,i ), (a
1
U,i, . . . a

NE

U,i ), (a
1
R,i, . . . a

NE

R,i ) and (a1D,i, . . . a
NE

D,i) are NE–component
vectors and aC,i is 2NE−1–component vector. For NE = 3, these vectors are then projected
onto a set of 3 vectors of the block BL•, i.e., {(aL,i, aCL,i)}

3
i=1, a set of 3 vectors of the

block BU•, i.e., {(aU,i, aCU,i)}
3
i=1 and a set of 3 vectors of the block

•
• BC •
•

i.e.,{(aCCL,i, aCCU,i,aC,i, aCCR,i, aCCD,i)}
3
i=1. These three sets of vectors must be orthonor-

malized using a Gram-Schmidt orthogonalization procedure and then dividing them by

Ni
L =

√

a1L,i
2
+ a2L,i

2
+ a3L,i

2
+ a2CL,i,

Ni
U =

√

a1L,i
2
+ a2L,i

2
+ a3L,i

2
+ a2CL,i

and

Ni
C =

√

a2CCL,i + a2CCU,i + a1C,i
2
+ a2C,i

2
+ a3C,i

2
+ a2CCR,i + a2CCD,i

respectively. The new three sets are designated as
{

(a′L,i, a
′
CL,i)

}3

i=1
,
{

(a′L,i, a
′
CL,i)

}3

i=1
,

and
{

(a′CCL,i, a
′
CCU,i,a

′
C,i, a

′
CCR,i, a

′
CCD,i)

}3

i=1
. If there is no symmetry in the Hamilto-

nian, right and down matrices have to be renormalized in the same manner. A straightfor-
ward generalization of the renormalized block Hamiltonians in [173] yields the new effective
Hamiltonians, H ′

L and H ′
U , and vectors v′L and v′U ; which write, for NE = 3, as

H ′
L =





a′1L,1 a′2L,1 a′3L,1 a′CL,1

a′1L,2 a′2L,2 a′3L,2 a′CL,2

a′1L,3 a′2L,3 a′3L,3 a′CL,3











H11
L H12

L H13
L −v1L

H21
L H22

L H23
L −v2L

H31
L H32

L H33
L −v3L

−v1L −v2L −v3L hCL















a′1L,1 a′1L,2 a′1L,3
a′2L,1 a′2L,2 a′2L,3
a′3L,1 a′3L,2 a′3L,3
a′CL,1 aCL,2′ a′CL,3









(5.4)

H ′
U =





a′1U,1 a′2U,1 a′3U,1 a′CU,1

a′1U,2 a′2U,2 a′3U,2 a′CU,2

a′1U,3 a′2U,3 a′3U,3 a′CU,3











H11
U H12

U H13
U −v1U

H21
U H22

U H23
U −v2U

H31
U H32

U H33
U −v3U

−v1U −v2U −v3U hCU















a′1U,1 a′1U,2 a′1U,3
a′2U,1 a′2U,2 a′2U,3
a′3U,1 a′3U,2 a′3U,3
a′CU,1 a′CU,2 a′CU,3









(5.5)
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v′L,i = a′CL,i, (i = 1 . . . 3)

v′U,i = a′CU,i, (i = 1 . . . 3) (5.6)

Similarly, the new effective Hamiltonian, H ′
C , and the vectors v′CL and v′CU , v

′
CR and v′CD

are given by

H ′
C =





a′CCL,1 a′CCU,1 a′C,1 a′CCR,1 a′CCD,1
a′CCL,2 a′CCU,2 a′C,2 a′CCR,2 a′CCD,2
a′CCL,3 a′CCU,3 a′C,3 a′CCR,3 a′CCD,3



















hCCL 0 −v†CL 0 0

0 hCCU −v†CU 0 0
−vCL −vCU HC −vCR −vCD

0 0 −v†CR hCCR 0

0 0 −v†CD 0 hCCD





























a′CCL,1 a′CCL,2 a′CCL,3

a′CCU,1 a′CCU,2 a′CCU,3

a′C,1 a′C,2 a′C,3

a′CCR,1 a′CCR,2 a′CCR,3

a′CCD,1 a′CCD,2 a′CCD,3















(5.7)

v′CL,i = a′CCL,i, (i = 1 . . . 5)

v′CU,i = a′CCU,i, (i = 1 . . . 5)

v′CR,i = a′CCR,i, (i = 1 . . . 5) (5.8)

v′CD,i = a′CCD,i, (i = 1 . . . 5)

5.1.4 Initialization, warm–up and sweeping

In the present case, the system is enlarged by 8 sites at each step of iteration. Thus, the
warm–up phase, with reflection symmetry, consists in iterating these operations:

1. The left and upper blocks are built and then enlarged by adding a single site.

2. The right and down enlarged blocks are obtained by just reflecting the left and upper
blocks, respectively. In the case where there is no symmetry reflection, the former
blocks (right and down ones) must be built independently.

3. The center block is built and then enlarged by adding a single site to each side (four
sites).

4. All these operators must be stored to be used later.

5. The five enlarged blocks, including interactions between them, form the super-block
Hamiltonian.

6. The latter Hamiltonian is diagonalized, and the NE lowest eigenstates are obtained.

7. The new effective Hamiltonians and interaction vectors are then constructed.
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8. Once the system size N is reached; then the center block continues to grow up by four
sites at each iteration, whereas the left, upper, down and right blocks retrieve until
the number of sites in each block is equal to NE .

9. At each step below, the left, upper, down and right blocks used are just those stored
before.

10. Then, the procedure is reversed: the left, upper, down and right blocks grow up while
the center block retrieve until the number of sites in it is just 5 sites. Similarly, the
center blocks used are those stored as they has grown up before.

The image of the superblock at the end of these iterations is: four blocks representing
a maximum of effective sites and a center block with just 5 sites.

In order to improve accuracy of the results, a number of sweep cycles are needed, keeping
fixed the system size. Due to the geometry of the present system, it was necessary for us
to adjust the process of sweeping, the standard process being useless. Effectively, each
sweeping cycle consists of two parts:

1. The left (right) and upper (down) blocks will retrieve down to their minimum size NE,
and the stored ones are used, while the center block grows up, using the procedure
below, until its maximum number of sites is reached.

2. Then, a new set of operators corresponding to the left (right) and upper (down) blocks
are generated, while the center block matrices are picked up from the stored ones.

Repeating these two steps many times, energy results will converge to the more accurate
values that can be obtained by DMRG procedure.

5.1.5 Results

We consider the Anderson Hamiltonian in site representation

H =
∑

i

εi|i〉〈i| +
∑

〈i,j〉

V |i〉〈j| (5.9)

with orthonormal states |i〉 corresponding to electrons located at sites i. V is the constant
nearest-neighbor transfer integral with unit value and εn a site-diagonal random variable
governed by a normal probability distribution.i.e

P (εn) =
{

1/W |εn| ≤W/2
0 otherwise

(5.10)

W is the disorder strength. Other probability distributions, such Gaussian one, can be also
used.

Despite its simplicity and since it was suggested by P.Anderson [174], the model has been
widely used to study spectral and localization properties of disordered structures([175],[176]),
metal-insulator transition induced by disorder([177],[178]), transport in general topologi-
cally disordered media [179], multifractal aspects of wavefunctions ([180],[181]), for inter-
acting and non interacting electron systems.
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Method N E0(N) E1(N) E2(N)

Exact Diag. 105 −0.309401076758301 1.352328451610949 × 10−2 1.352328451611478 × 10−2

DMRG 105 −0.309401076758301 1.352328451611124 × 10−2 1.352328451611313 × 10−2

Exact Diag. 425 −0.309401076758508 8.619875459942861 × 10−4 8.619875459979135 × 10−4

DMRG 425 −0.309401076758506 8.619875460086855 × 10−4 8.619875460089741 × 10−4

Exact Diag. 905 −0.309401076758518 1.915318921536133 × 10−4 1.915318921562604 × 10−4

DMRG 905 −0.309401076758502 1.915318922078220 × 10−4 1.915318922102459 × 10−4

Exact Diag. 1.465 −0.309401076758482 7.327654175460374 × 10−5 7.327654175659017 × 10−5

DMRG 1.465 −0.309401076758503 7.327654180964834 × 10−5 7.327654181053537 × 10−5

Exact Diag. 2.025 −0.309401076758501 3.839568650589582 × 10−5 3.839568651057789 × 10−5

DMRG 2.025 −0.309401076758502 3.839568654973506 × 10−5 3.839568655256073 × 10−5

Exact Diag. 2.505 −0.309401076758508 2.510520401701136 × 10−5 2.510520402393568 × 10−5

DMRG 2.505 −0.309401076758506 2.510520404624172 × 10−5 2.510520404886720 × 10−5

Exact Diag. 3.065 −0.309401076758504 1.677677228672380 × 10−5 1.677677230021150 × 10−5

DMRG 3.065 −0.309401076758505 1.677677232041186 × 10−5 1.677677232175863 × 10−5

Exact Diag. 4.025 −0.309401076758491 9.732859440333661 × 10−6 9.732859445854112 × 10−6

DMRG 4.025 −0.309401076758504 9.732859465153467 × 10−6 9.732859468420359 × 10−6

Table 5.1: The ground, first and second excited states energies E0(N),E1(N) and E2(N) for a free
particle on a tight-binding model in a two–crossed chains. The value of the diagonal entries in the
diagonalized matrices is 2.0.

We begin with an ordered structure i.e. εi = ε. Unfortunately there is no theoretical
results to compare with; hence it is necessary to obtain the ground state and few excited
states energies by exact diagonalization.

Thus, results for the ground state, first and second excited states, obtained with both
methods, are given in Table (5.1). The number of targeted states is NE = 3. Five sweeps
are generally sufficient to reach convergence. As it can be seen from the table, a high degree
of agreement exists between exact diagonalization results and our DMRG results for the
ground state; it ranges from complete agreement(in the order of computational material) for
a system size equal to 105 sites (15 digits) to 12 digits when the size of the system exceeds
4.000 sites. For first and second excited states energies, the agreement is still significant,
but in a bit less degree. In fact, for a system of 105 sites, which is relatively small, the
agreement between the methods is up to 13 digits and it is apparently kept at this level in
the case of a system size exceeding 4.000 sites. Certainly, the decaying accuracy of results
as the system size increases is still a general behavior of DMRG method, though results do
not make it so clear. It is essentially due to our limiting computational facilities to deal
with much larger systems.

By introducing disorder, i.e. εi are randomly distributed, the symmetry of left, right,
up and down blocks is lost, and we have to renormalize all blocks separately. As it is just a
matter of comparison of our results with those obtained by exact diagonalization, we restrict
our study to a single value of W , taken to be equal to W = 2.0. Table (5.2) displays results
of the first three lowest energies of a disordered structure obtained by both exact diagonal-
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ization and DMRG procedure. From the table we can see an accurate results obtained by
our calculations compared to those obtained by exact diagonalization(up to 12 digits for a
system with 2425 sites), although the size of the structures is not so big to be considered as
representing real materials. This is due in first place to computational restrictions, which
were, let’s remind, the major instigator to explore other ways in dealing with such huge
systems. Nevertheless, regarding the behavior of our results for those relatively small sizes,
we can think that accuracy, by its decreasing aspect when system size increases, will not be
completely lost before a considerable size is reached.

In other hand, this procedure enables us to obtain the ground state of a non-interacting
disordered system by just multiplying the ground state value by the number of sites of the
system(one electron per site). This value could be a rough estimation of energy scale for
the ground state of an interacting disordered system.

Method N E0(N) E1(N) E2(N)

Exact Diag. 105 −2.33492839367123 −2.31256015487412 −2.27633450482704

DMRG 105 −2.33492839248340 −2.31256015458150 −2.27633450453549

Exact Diag. 425 −2.62707526909553 −2.51368257944855 −2.49551862249973

DMRG 425 −2.62707353842147 −2.51368257944855 −2.49551862249973

Exact Diag. 825 −2.74034137548984 −2.66488808899811 −2.62707526909553

DMRG 825 −2.74034137548807 −2.66484686948334 −2.62707526909553

Exact Diag. 1.225 −2.68329769657425 −2.66115344781251 −2.63257708999018

DMRG 1.225 −2.68329769655407 −2.66115344781251 −2.63257708999017

Exact Diag. 2.425 −2.64472106170087 −2.63084212954662 −2.61585544521942

DMRG 2.425 −2.64472106170071 −2.63084212954661 −2.61585544521941

Exact Diag. 3.225 −2.74712495427613 −2.61737491050982 −2.59050557867426

DMRG 3.225 −2.74712485946028 −2.61736733389125 −2.59050557867427

Table 5.2: The ground, first and second excited states energies E0(N),E1(N) and E2(N) for
disordered structure within tight-binding model in a two–crossed chains. The disorder strength W
is equal to 2.0.

5.1.6 Conclusion

In this paper, we presented a DMRG procedure extension to compute low states energies of
a two disordered crossed chains within the tight–binding model suggested by P.Anderson.
The purpose of this work was to try to bring a different insight on a major challenging
problem vis-à-vis the application of the DMRG procedure to systems with geometry other
than 1–d. Instead of the standard two–blocks configuration, we have adopted a five–blocks
configuration (four environment blocks and a system block in–between), with a bit different
way to achieve warm–up phase and sweep cycles. Results obtained have shown that the
new procedure works with a high precision within a certain accuracy. They have also shown
a ”decaying accuracy as size increases” behavior, proper to standard DMRG.
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5.2 Ground state properties of a spin chain within Heisen-
berg model with a lacking spin site

5.2.1 Introduction

The cristallographic image used to represent condensed materials is more pedagogical than
realistic; for real materials are not so perfect as it is presented. The disorder effects range
from substitutional disorder, where the atomic(ionic) order is interrupted by strange atoms
or lacking sites, to topological disorder, where eventually atomic (ionic) positions lose their
periodicity. Another kind of distortion is the non magnetic impurities. Their presence
in magnetic materials is very affecting the electronic properties of such materials and can
eventually lead to quantum phase transitions.

In fact, the physics of random quantum spin systems has attracted the interest of theo-
retical and experimental studies[182, 183]. To take into account this distortion in materials,
physicists have elaborated during the last decades many models that capture the essen-
tial of those models physics, with care of simplicity. For one-dimensional quantum mag-
netic systems, the Heisenberg model is one of the most fundamental models and the most
widely studied by way of numerical calculations. Thus, spin chains with: random bonds
[184, 185, 186], frustrated term[187], biquadratic term [188], including all variations that
can be explored, are studied. Also, spin chains with a spin impurity that have a different
spin magnitude are investigated[189]. Spin chains with single [190] as well as randomly
distributed [186] impurities and disorder [191, 192] are explored. The Kondo model [193] is
used to describe a magnetic impurity with spin S interacting locally with a non-interacting
conduction electron sea(e.g rare earth metal alloys and actinide elements).

In the present paper, we study a spin chain with a single site nonmagnetic atom inserted.
It could be also a lacking site. Adding a single non-magnetic impurity to a spin chain
compound breaks the chains up into two segments. Our idea is to introduce next nearest
neighbors interactions to maintain connection between spin sites at left and right of the
”missing” spin. In fact, nonmagnetic ions that may be present in a magnetic material
serve, among other functions, to stabilize the material and to provide connection to nearby
spins with one another [194]. Therefore, the spin-1/2 Heisenberg model with next nearest
neighbors interactions writes as

H =
N
∑

i

[J1Si.Si+1 + J2Si.Si+2] (5.11)

where Si denotes the spin S = 1/2 operator for lattice site i. This model with antifer-
romagnetic interactions (J1, J2 > 0) is well studied[195, 196, 197, 198, 187]. Thus, the
pure spin chain is well known to display a quantum phase transition (Kosterlitz-Thouless
transition)[199] from a gapless, translationally invariant state with algebraic spin correla-
tions (the spin fluid phase) to dimer gapful state with exponentially decaying correlations
at αc ' 0.24113, where α = J2

|J1|
. At α = 0.5 (the Majumdar-Ghosh point)[187], the ground

state is exactly solvable. It is a doubly degenerate dimer product of singlet pairs on neigh-
boring sites. In general, the ground state is doubly degenerate for α > αc. For large J2
(α > 0.5) an incommensurate phase appears in the ground state phase diagram[198, 200].
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The major part of this work is to compute ground state and eventually first excited states
energies and their corresponding eigenstates of the above Hamiltonian. Physical quantities
are then computed through appropriate formulas. Computational physics provides us with
a panoply of numerical methods that ranges from the obvious complete diagonalization to
variational methods with more or less accuracy and different areas of excellency. We have
chosen two of them: exact diagonalization and Density Matrix Renormalization Group
(DMRG.)

5.2.2 Exact diagonalization results

5.2.2.1 ground state energy

The exact diagonalization technique is a direct method that provides us with the whole
spectrum of a system Hamiltonian and the corresponding eigenvectors. Unfortunately, the
order of matrices to be diagonalized for the Heisenberg model grows as 2N ; N being the
number of sites. Therefore, system sizes treated by such method are very restricted and
can go, using different symmetries, to more or less twenty sites; which is far from to be
the thermodynamic limit. Fortunately, the study of such systems do not require the whole
spectrum, and generally a set of low lying states, including the ground state and some few
excited states are sufficient to describe their properties. Therefore, numerical methods had
been elaborated by physicists to focus on those restricted parts of the spectrum with more
or less accuracy; such as the earlier Lanczos method and the recently developed method,
the DMRG. Nevertheless, the exact diagonalization still have its relevance, especially for
those properties that do not depend on system size.

Thus, we diagonalize matrices for spin chains with N = 6, 8, 10, 12 using periodic bound-
ary conditions. The use of these boundaries is governed by the fact that changing the po-
sition of the lacking site in the chain does not affect the energy spectrum of a chain with a
single lacking site. The value of J2 goes from 0.05 to 0.55 with a step of 0.05; for it is useful
to sweep a large interval where the well-known system undergo quantum phase transitions.
This permits to us to figure out how the system is affected when a spin site is missed. The
value of J1 is taken to be unity.

Figures 5.2(5.3) display the first three lowest energies as function of J2, for a spin chain
without(with) a lacking site, respectively. The chain length is N = 10 and J2 values go from
0.2 to 0.3. The latter interval is thought to contain a critical point of the system [201, 199].
In figure 5.2, one can see a nonvanishing gap that appears, as it is the case when J2 = 0.00.
One also see that the gap is constant until J2 is around 0.25. Beyond this value the gap is
decreasing. Taking into account works that confirm the existence of such a critical point
at this value, one can think that the behavior of the gap could be a signature of a spin
system that crosses a critical point, but, in fact, it is not. In the other hand, figure 5.3
shows that a spin system with a missing site have no gap at all. Actually, the first four low
lying energies, including the ground state have the same value.

Now, we want to see the variation of the ground state energy as a function of the system
size, as the value ofJ2 is also changing. Thus, figures 5.4(5.5) display the ground state energy
for both spin system without (with) a lacking site. Both figures show a linear dependency
of the ground state energy (E0) on the system size. This implies a slope dependency on J2
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Figure 5.2: First three lowest energies as a function of J2 for a spin chain without a lacking site
spin.
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Figure 5.3: First three lowest energies as a function of J2 for a spin chain with a lacking site spin.
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and then the E0 formula for both systems could be written as

E0 = A(J2)N (5.12)

N being the size of the chain. To show this slope dependency on J2, we represent on
figure 5.6 the variation of A(J2) for both systems(without(with) a lacking site). One can
see for both systems the non linearity of slope dependency on J2. It seems that for a
system without lacking site the slope dependency is a non analytic function around the
value J2 = 0.5, which is the Majumdar-Gosh point( another critical point). A polynomial
fit with the latter point J2 = 0.5 avoided gives

A(J2) = −0, 3095 + 0, 16139J2 + 0, 16408J2
2 − 0, 73624J3

2 + 0, 53559J4
2 (5.13)

for a system without missing site, and

A(J2) = −0, 32159 + 0, 17716J2 − 0, 06593J2
2 − 0, 03391J3

2 (5.14)

for a system with a lacking site.
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Figure 5.4: Exact ground state eigenvalue for a spin chain without a lacking site vs the system
size N , as the value of J2 varies.

To study the dependency of the ground state energy on both N and J2 around the
critical point J2 = 0.25, we plot in the figure 5.6 the variation of A(J2) for both spin chains.
The linearity of A(J2) suggests that E0 for both systems may write as

E0 ∼ J2N (5.15)

Actually, for a system without lacking site

E0 = −2.07548J2N (5.16)
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Figure 5.5: Exact ground state eigenvalue for a spin chain with a lacking site vs the system size
N , as the value of J2 varies.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

0,0

0,2

0,4

0,6

0,8

1,0

1,2

G
ro

un
d 

st
at

e 
F

id
el

ity


J
2

 with a lacking site 
 without lacking site 

Figure 5.6: Variation of the slope A(J2) for both spin chains (with and without a lacking spin
site). J2 value ranges from 0.05 to 0.55. Results are obtained using exact diagonalization technique.
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Figure 5.7: Variation of the slope A(J2) around the critical point J2 = 0.25 for both spin chains
(with and without a lacking spin site).Results are obtained using exact diagonalization technique.

and

E0 = −1.74506J2N (5.17)

for a spin system with lacking site. These results confirm other works suggesting a critical
exponent equal to 1.0 for J2 [202].

5.2.2.2 quantum fidelity

In the other hand, the obtaining of the ground state eigenvector by exact diagonalization
allows us to compute some quantities that characterize behaviours of such systems. The
most in sight are the fidelity quantity and correlations functions.

In quantum physics, an overlap between two quantum states usually denotes the tran-
sition amplitude from one state to the another. That is the overlap gives unity if two
states are exactly the same, while zero if they are orthogonal. Thus, one use the ground
state fidelity as a measure of similarity between states. It is defined as the overlap between
|Ψ0(λ))〉 and |Ψ0(λ+ δ))〉 [201], i.e.

F0(λ, δ) = |〈Ψ0(λ)|Ψ0(λ+ δ)〉|, (5.18)

where Ψ0(λ) is the ground state wavefunction of the Hamiltonian corresponding to the
parameter λ and δ is a small quantity. In our case, λ is represented by J2, and δ = 2.5×10−4.

We can observe in figure 5.8 that the ground state fidelity for spin system without
lacking spin site is almost a constant and equals to unity for a wide range of the parameter
J2. Our results confirm the fact that critical points of the quantum phase transitions can
not be well characterized by the ground state fidelity for a finite size system (N = 10, in
our case). In other hand, for a spin system with a lacking site, fidelity alternates unity and
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zero values, as J2 varies. This is a signature of loss of orthogonality between neighboring
states over some regions in the interval of J2. Therefore, the missing spin site breaks the
similarity between neighboring states.
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Figure 5.8: Ground state fidelity for both 10-sites spin chains (with and without a lacking spin
site.

5.2.2.3 correlation functions

We compute also the correlation function Sz
i S

z
j as function of the distance between spin

sites |i − j|. The results for a spin system of size N = 10 without lacking site are shown
in figure 5.9. One can see the alternation of signs between odd and even sites: this is a
signature of the antiferromagnetic nature of the system. One can see also that results are
symmetric: this is a signature of the periodic boundary conditions applied. We also have
to note that the above function present a translational symmetry: they do not depend on
position of the spin sites but just on distance between them. This why we have used the
absolute value of distance in figure 5.9.

On the contrary, the system with a missing site do not keep this symmetry. To show
this, we have displayed in figure 5.10 the correlation functions for both systems (with and
without lacking site) as they vary with the distance i−j. The numbers on x-axis denote the
distance between sites in the following order:k ≡ (i, j) where i = 1, N − 1andj = i+ 1, N .
As an example: k = 4 represents the distance between i = 1 and j = 5, where k = 12
represents the distance between i = 2 andj = 4. For the system without lacking site, the
same values are reproduced along the x-axis, whereas the values of Sz

i S
z
j are changing for

the system with a missing site. This can be explained as a breaking of the translational
symmetry for that quantity.
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Figure 5.9: Correlation function Sz
i S

z
j as function of the distance between spin sites |i− j| for both

10-sites spin chains (with and without a lacking spin site).
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Figure 5.11: Ground state energy for a spin chain without a lacking site, as the chain size N and
J2 vary.
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5.2.3 DMRG results

The Density Matrix Renormalization Group (DMRG), developed by S. R. White in 1992
[24], is a powerful numerical method which allows us to obtain the ground-state and low-
lying excited states wavefunctions of large-size systems with controlled high accuracy. The
basic idea of DMRG algorithm consists in increasing the size of the system while the corre-
sponding Hilbert space is kept constant, using the concept of matrix density to determine
what states to be kept. More technical details about the method can be abundantly found
in literature, (see for example: [28], [203] and [204] ).

As the present spin system contains next nearest neighbors interactions, the use of the
DMRG technique requires more computational effort to take into account those interactions;
which means more states to be kept to reach the desired accuracy.

Figures 5.11 and 5.12 display the ground state energies for two spin systems without and
with lacking site, respectively, as N and J2 vary. The utmost sizes of spin chains considered
are equal to N = 30, with values of J2 that go from 0.05 to 0.55 by a step of 0.05.

Our results for both systems confirm the linear dependency of the ground state energy to
system size, with a slope that varies in function of the J2 value. The latter results suggest,
as already stated, that ground state energy could be written as

E0 = A(J2)N (5.19)

In order to find out the function that represents the variation of A(J2), we plot the latter
in figure 12 for both systems. For a spin system with a lacking site, the function A(J2)
is analytic along the interval of J2. It reaches a maximum for the value J2 = 0.5 and a
polynomial fit gives

A(J2) = −0, 44417 + 0, 20302J2 − 0, 25835J2
2 + 0, 73757J3

2 − 0, 96477J4
2 (5.20)

For the spin system without a lacking site, the function A(J2) seems to be more or less
abrupt around the value J2 = 0.40, with also a maximum at J2 = 0.5. This point is
thought to be a critical point, and it seems to be characterized here by a maximum of
A(J2). A polynomial fit gives (with the abrupt region smoothed)

A(J2) = −0, 43686 + 0, 16432J2 + 0, 01212J2
2 − 0, 01237J3

2 − 0, 34502J4
2 (5.21)

Around the critical point J2 = 0.25 the A(J2) function shows a linear dependency on
J2. Using a linear fit the ground state energy for a spin system without lacking site can be
written as

E0 = −1.59864J2N (5.22)

and

E0 = −1.531757J2N (5.23)

for a spin system with a lacking site.
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5.2.4 Conclusion

The present paper treats spin chains with next nearest neighbors interactions. Ground
states and few low lying eigenvalues are computed using exact diagonalization technique.
Results are then compared with those for a spin chain that ”misses” a single spin site.
It could be a non magnetic impurity or just a lacking site, as it is often the case in real
materials. Other physical quantities, such as quantum fidelity and correlation functions are
also computed. In fact, extrapolations of results suggest that both systems are gapped.
The gap of a spin system with a lacking site increases as the system size increases, while
for a system without lacking site the gap tends to a certain value as the system size goes to
thermodynamic limit. The introduction of such distortion affects also the behavior of the
eigenstates; since the quantum fidelity alternates zero and one values; which is a signature of
loss of similarity of neighbor states. The computation of correlation functions have showed
that a lacking site breaks the translational symmetry of a pure spin chain, as it is, actually,
well known.

Using DMRG technique we have computed ground state energies for relatively large
chains. This allows us to achieve a ground state energy finite-size scaling that give us
formulas for ground state energy as function of J2 and N (spin chain size ).



79

5.3 Results of entanglement entropy of the spin-12 Heisenberg

chains with and without a single lacking spin site with
next nearest neighbors interactions: DMRG study

5.3.1 Introduction

Consider a one-dimensional system with size L and composed by two subsystems A and
B of sizes lA and lB = L − lA, respectively. The von Neumann entropy, used to quantify
the bipartite entanglement between the subsystem A and the rest of the system (subsystem
B), is defined as S(L, lA) = −Tr(ρAlog2ρA) = −

∑k
i=1 λilog2(λi), where the λi are the

eigenvalues of the reduced density matrix ρA [205], and Tr is the trace of an operator. The
reduced density matrix ρA is defined as ρA = Tr(L−lA)|GS〉〈GS |, |GS〉 being the ground state
of the whole system. For the critical one-dimensional systems the entanglement entropy
behaves as [206, 207, 208]

S(L, lA) =
c

3η
log2

(

ηL

π
sin(

πlA
L

)

)

+ c1 − (1− η)sb (5.24)

where c is the conformal anomaly (central charge), sb is the boundary entropy, c1 is a
non-universal constant and η = 1(2) is set for systems under periodic (open) boundary
conditions.

It is useful to plot S(L, lA) as function of log2

(

ηL
π sin(πlAL )

)

in order to estimate c by

a numerical fit. Another way, suggested by J. C. Xavier [209], to extract the conformal
anomaly from Eq.(5.24) without any fit parameter, considers two systems with sizes L
and L′; both systems are composed of two subsystems of sizes lA = L/2 and l′A = L′/2,
respectively. Thus, from Eq.(5.24), it is possible to estimate c by

c(L,L′) = 3η
S(L,L/2) − S(L′, L′/2)

log2(L/L′)
(5.25)

The estimation of the conformal anomaly c can be used to determine other physical
quantities such as sound velocity vs and anomalous dimensions xαbulk.

In fact, it was shown, in the context of the conformal field theory [210, 211], that the
conformal anomaly c can be extracted from the large-L behavior of the ground state energy
E0(L), which behaves as [212, 213]

E0

L
= e∞ +

f∞
L
−
vsπc

6δL2
(5.26)

where the constant δ = 1(4) for the systems under periodic (open) boundary conditions,
vs is the sound velocity, e∞ is the bulk ground state energy per site, and f∞ is the surface
free energy, which vanishes for the systems under periodic boundary conditions (PBC).

Also, a relation have been established between the anomalous dimension xαbulk (surface
exponents xαs ) and the structure of the higher energy states of the system. Thus, the energy
spectrum of the Hamiltonian for different sectors are given by [214, 215],

Eα
m,m′(L)− E0(L) =

2πvs
ηL

(x+m+m′) (5.27)
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where m,m′ = 0, 1, 2, ..., the constant η = 1(2) and x = xαbulk(x
α
s ) for the systems with

periodic (open) boundary conditions.
The present paper is dedicated to compute the values of the above three quantities

for a 1/2-spin chain within the simple Heisenberg model, including next nearest neighbors
interactions with periodic boundary conditions (PBC). The Hamiltonian of the system
writes as

H =
L
∑

i

[J1Si.Si+1 + J2Si.Si+2] (5.28)

where Si denotes the spin S = 1/2 operator for lattice site i and (J1, J2 > 0) for antiferro-
magnetic interactions.

The reason behind this choice is two-fold:
-Estimating the above quantities for a well studied [195, 196, 197, 198, 187] model,

where, in fact, the pure spin chain is well known to display a quantum phase transition
( Kosterlitz-Thouless transition)[199] from a gapless, translationally invariant state with
algebraic spin correlations (the spin fluid phase) to dimer gapful state with exponentially
decaying correlations at αc ' 0.24113, where α = J2

|J1|
. At α = 0.5 (the Majumdar-Ghosh

point)[187], the ground state is exactly solvable. It is a doubly degenerate dimer product
of singlet pairs on neighboring sites. In general, the ground state is doubly degenerate for
α > αc. For large J2 (α > 0.5) an incommensurate phase appears in the ground state phase
diagram[198, 172].

-Simulating a disordered chain by removing out a single spin site from the chain, while
the two parts of the chain are still connected due to next nearest neighbors interactions.
The lacking site could be also a non-magnetic atom inserted among magnetic ones. In fact,
nonmagnetic ions that may be present in a magnetic material serve, among other functions,
to stabilize the material and to provide connection to nearby spins with one another [194].

In general, the physics of random quantum spin systems has attracted the interest of
theoretical and experimental studies [182, 183], and, consequently, various models that
capture the essential of those models physics have been established. Thus, spin chains with:
random bonds [184, 185, 186], frustrated term [187], biquadratic term [188], including all
variations that can be explored, are studied. Also, spin chains with a spin impurity that
have a different spin magnitude are investigated[189]. Spin chains with single [190] as well as
randomly distributed [186] impurities and disorder [191, 192] are explored. Also, the Kondo
model [193] is used to describe a magnetic impurity with spin S interacting locally with a
non-interacting conduction electron sea(e.g rare earth metal alloys and actinide elements).

As it may be understood, this is a matter of diagonalizing Hamiltonians matrices in order
to obtain ground state energies for long spin chains. Unfortunately, with exact diagonaliza-
tion one can deal just with small system sizes, since the Hilbert space grows exponentially
with the system size. Therefore, it is necessary to use the Density Matrix Renormalization
Group (DMRG). The latter, developed by S. R. White in 1992 [23], is a powerful numerical
method which permits us to obtain the ground-state and low-lying excited states wave-
functions of large-size systems with controlled high accuracy [28, 203, 166]. It allows also
to estimate the entanglement entropy, and, therefore, the conformal anomaly c and other
related quantities, of critical systems through Eq.(5.24).
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5.3.2 Results

Before presenting the numerical results, let’s see how the ground energy per site, for both
pure and lacking antiferromagnetic spin-1/2 Heisenberg chains with next nearest interac-
tions, behaves as the system gets larger with periodic boundaries condition (PBC). In figure
(5.13), we present the variation of E0/L as function of L, for J2 = 0.2. We can see that for
both systems, E0/L tends to a constant value for each of them, but in different ways. We
have estimated the two values as: E0/L = −0.408 for a pure chain, where E0/L = −0.407,
for a spin chain with a lacking site. In the rest of this paper, E0/L could be considered as
e∞. These results are obtained using DMRG method, and will be useful to determine other
parameters.
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Figure 5.13: E0

L
vs L for spin chains with and without a single lacking spin site.

Figure (5.14) displays the entanglement entropy S(L, lA) as function of the length lA for
a 160-sites pure spin chain with PBC. Three curves corresponding to J2 = 0.20, 0.25, 0.50,
are then presented. We see that for all three values of J2, corresponding curves have two
branches; one for even lA and one for odd lA. This situation, called even-odd oscillations,
is already obtained for anisotropic spin-1/2 Heisenberg chains with OBC (open boundaries
conditions) for only nearest neighbor sites, but in a reversed way: even lA are down, where
odd lA are up [209]. At MG point (J2 = 0.5) the entanglement entropy has two con-
stant branches: one equal to zero for odd lA, and the other equal to 0.69315 for even lA.
This strange behavior has already started for J2 = 0.40, and it seems not useful to use
entanglement entropy equation to fit our results beyond this value.

In figure (5.14), we present the entanglement entropy S(L, lA) as function of the length
lA for a 160-sites spin chain with PBC, and where a single spin site is omitted. At first
glance, the even and odd lA branches are now reversed. Also, at MG point (J2 = 0.5) the
entanglement entropy changes completely from constant lines to certain slopes. But the
main result is that there is no symmetry between left and right parts of each branch of
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Figure 5.14: The entanglement entropy S(L, lA) vs lA for the antiferromgnetic spin-1/2 Heisenberg
pure chain. .

the entanglement entropy, i .e. S(L, lA) 6= S(L,L − lA). It is surely a consequence of the
translational symmetry breaking in the spin chain. Consequently, it is not suitable for us,
also in this case, to deal with the above analytic expression of the entanglement entropy
(Eq. 5.24) for all J2 values to fit our results.

In Table 5.3, we present values of cPBC , in unit of η, against J2 values; for it is a confused
matter for us to decide which η we should take. These values are obtained using the method
suggested by J.C. Xavier [209]. The striking fact is that the values of cPBC are negative,
which is a bit surprising. Thus, we will use absolute values of cPBC as we compute other
quantities.

With the conformal anomaly cPBC values in hand, we can extract the finite size estimate
of sound velocity vs from Eq.(5.26), as:

vs(L) =
6L

πcPBC
(Le∞ − E0(L)) (5.29)

In Table 5.4 we present the sound velocity values for a pure spin chain for different
values of L (chain size) and J2.

Sound velocity values permit us, using Eq.(5.27), to extract the finite-size estimates of
the anomalous dimension exponent through equation

x(L) =
ηL(E1(L)− E0(L))

2πvs
, (5.30)

where E1(L) is the ground state energy in the sector with total spin S = 1. Unfortunately,
it is not possible to compute this quantity, for, as the reader may note, there is no limit
value for sound velocity, as the system get larger, to which our results tend.

There are two possible reasons for this failure: our DMRG results are not so much
accurate, due to small number of states taken in the renormalization procedure.
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Figure 5.15: The entanglement entropy S(L, lA) vs lA for the antiferromagnetic spin-1/2 Heisenberg
chain with a single lacking spin site.

The equation of entanglement entropy used do not fit with our system, where next near-
est neighbors are introduced. To the best of my knowledge, there are no results published
dealing with this situation.

J2 cPBC

0.05 -0.104281

0.10 -0.229420

0.15 -0.229420

0.20 -0.250276

0.25 -0.166851

0.30 -0.052141

0.35 -0.385843

Table 5.3: Finite-size estimates of the conformal anomaly cPBC in unit of η. L′ = 160 and L = 120.
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J2 L = 18 L = 26 L = 32 L = 42 L = 60 L = 120 L = 160

0.05 −10.511 −19.496 −34.297 −51.757 −105.79 −426.35 −759.48

0.10 −15.827 −30.274 −49.748 −74.619 −152.34 −616.97 −1100.48

0.15 −8.7075 −15.585 −24.695 −36.371 −74.307 −304.92 −545.71

0.20 −1.97802 −1.49757 −0.69346 0.10242 1.01272 −2.74935 −8.89223

0.25 3.4965 8.8755 16.406 25.844 53.170 212.59 377.64

0.30 2.51876 5.71625 10.058 15.574 31.969 127.69 226.90

0.35 28.413 62.044 108.11 166.31 340.49 1359.77 2415.95

Table 5.4: Sound velocity vs of a pure spin chain in unit of 1/η as L and J2 vary.

5.3.3 Conclusion

The present paper is an attempt to apply the results of conformal field theory, through
which estimates of conformal anomaly cPBC , sound velocity vs and anomalous dimension
can be obtained, to antiferromagnetic spin-12 Heisenberg spin chains with and without
a single lacking site, with next nearest neighbors interactions. We have also used the
DMRG method to compute ground state energies for relatively long spin chains. Results
obtained show that equation for entanglement entropy used below do not fit completely with
those corresponding to a spin chain with a single lacking site. This suggests an eventual
modification of the expression.

For a pure spin chain, results show that up to J2 = 0.35 the above expression can be
used to extract the conformal anomaly. Unfortunately, the obtained results do not show
any tendency to limit values as the system get larger, as it is the case of sound velocity.



Chapter 6

Conclusion

In this thesis, I have traced back to its origin a new powerful numerical method, the DMRG,
invented by S. White in the beginning of the 1990’s to overcome the lack of accuracy that
faced Wilson numerical renormalization group when applied to quantum systems. In fact,
K. Wilson, inspired by renormalization group methods in particle physics, has succeeded to
solve the Kondo problem (resistance minimum). This success has opened the door to the
application of the numerical renormalization group to condensed matter problems, especially
to more realistic models for magnetic impurities. Unfortunately, this method have failed to
give accurate results for models other than impurities problems. Since then, many efforts
were made by condensed matter experts to overcome this failure; and one of them have
really succeeded to do it. Indeed, S. White, who already worked with K. Wilson, had the
idea of introducing the concept of density matrix as a criterion of choosing states to be kept
at each renormalization step; and it works!

Since then, an avalanche of applications of this new method to various quantum models
have been triggered. The efforts have a twofold goal: in one hand, developing the method
itself by trying to extend it to higher dimension systems, combining it with other numerical
methods for the calculations of dynamical properties, the study of systems at finite tem-
perature and time-dependent problems, etc; and in the other hand, applying the DMRG to
quantum models where the prohibitive numerical cost was established. This made out of the
DMRG method one of the most powerful tools for treatment of low-lying states properties
of quantum systems, especially one dimensional ones.

Here, I have exposed three works: in the first one, I have extended a simple version of
the DMRG method to treat two crossed chains within the simple tight-binding model for
disordered systems, suggested by Anderson. My intention was to show that DMRG can be
applied to systems other than one dimension. The application gives good results, though it
is just a toy model that has no concrete application in real physics; since for such systems,
one needs the whole spectrum and not just the low-lying energies. .

The second application is the use of the DMRG method to calculate the ground state
energy of spin chains within Heisenberg models, where a single spin site is lacking. To
avoid the chain splitting, I have introduced next-nearest neighbors interactions. An extra
computing effort, and obviously a extra time were needed to achieve it. The results are
then compared to those of spin chains without lacking spin sites.

In my third application, I have attempted to apply the results of conformal field theory,
through which estimates of conformal anomaly cPBC , sound velocity vs and anomalous
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dimension can be obtained, to antiferromagnetic spin-12 Heisenberg spin chains with and
without a single lacking site, with next nearest neighbors interactions.

As it has been said, the domain of DMRG application is very vast (there were attempts
to apply it even to social and cultural issues!), and then opportunities to explore more and
more physical situations through appropriate models are still available. In this spirit, I plan
to focus my attention in applying DMRG to realistic disordered systems with different kind
of disordered (magnetic impurities, lacking sites, etc). The most in sight is to compute the
ground state of spin chains with more than one lacking spin site.

I hope that as you finish reading this thesis, you have taken the pleasure to discover a
flourishing new numerical method, and you are, at least, aware that it is time to learn more
about it, and eventually apply it in your research works.



Appendix A

Density Matrix for Single Particle
Systems

Here we show, in the case of a single particle, that the density matrix is equivalent to a
simple projection of the wavefunction, used in the superblock method for the tight-binding
chain described in Sect.4.

Consider a wavefunction ψ(k), where k runs over the sites of the system, k = 1, · · · , L.
We will call sites 1, · · · , l the left block, labeled by i, and sites l+ 1, · · · , L the right block,
labeled by j. In order to write a single-particle wavefunction in a product form

|ψ〉 =
∑

ij

ψij |i〉|j〉, (A.1)

it is necessary to construct an enlarged basis which includes zero and two particle states.
Specifically, we use the basis

|0〉L
|1〉L = c†1|0〉L

...
|l〉L = c†|l〉L

(A.2)

for the left block, and similarly for the right block. Here c†i creates a particle at site i. Then
the wavefunction ψ(k) can be written in matrix form as

ψ =







0 ψ(l + 1) · · · ψ(L)
ψ(1)
... 0

ψ(l)






(A.3)

In this matrix, the upper left zero represents the amplitude in the state |0〉L ⊗ |0〉R. This
state is included in the basis but since there is one particle, its coefficient is always zero.
The rest of the first column represents the states |i〉L ⊗ |0〉R, and similarly the rest of the
first row represents |0〉L ⊗ |j〉R. The large lower right block of zeros represents two particle
states.
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Then the density matrix ρii′ in matrix form is

ρ = ψψ† =









wR 0 0 · · · 0
0 ψ1ψ1 ψ1ψ2 · · · ψ1ψl
0 ψ2ψ1 ψ2ψ2 · · · ψ2ψl

· · · · · · · · ·
. . . · · ·

0 ψlψ1 ψlψ2 · · · ψlψl









(A.4)

where wR = 1 − wL = 1 −
∑l

i=1 |ψi|
2 is the probability that the particle is in the right

block. This density matrix has two nonzero eigenvalues, with corresponding eigenvectors

(1 0 · · · 0)T and w
−1/2
L (ψ1 · · ·ψl)

T . The first eigenvector does not need to be explicitly
treated.
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Abstract: In 1982, K. Wilson was awarded the Nobel prize  for his work on 
the Kondo problem. He was able to solve it through renormalization group 
method. Unfortunately, the results were not so encouraging, due to their weak 
accuracy when used to quantum systems. Many attempts were made by physicists: 
one of them was Steve White, who succeded, after many attempts, to localize 
the source of failure of Wilson method. In fact,  S. White suggested, in a 
famous paper published in 1993, to use the density matrix concept, which, 
apparently, helps to choose the ''best'' states that can represent a block as 
part of a superblock. And it works! 

Since then, the Density Matrix Renormalization Group (DMRG) has become a 
powerful tool to investigate the ground state properties of a large panel of 
quantum systems. The method was also combined to other numerical methods to 
better understand the behaviour of those systems. 

Like any other numerical method, DMRG has its own limitations: the most in 
sight is that it was firstly designed to deal with 1-dimensional systems; even 
though, attempts were, later, made to extend it to higher dimensions.

Résumé: En 1982, Kenneth Wilson a reçu le prix Nobel pour avoir résolu, à 
l’aide de la méthode de groupe de renormalisation, le problème de Kondo. 
Malheureusement, les résultats n'étaient pas si encourageants une fois la 
méthode appliquée à des systèmes quantiques, à cause de leurs faibles 
précisions. Pour y remédier, plusieurs physiciens se sont mis à la besogne. 
Parmi eux, Steve White, qui est parvenu, après plusieurs tentatives, à déceler 
la source du problème. En effet, S. White a suggéré en 1993, dans un article, 
devenu célébre depuis, d'utiliser le concept de la matrice densité, qui permet 
de choisir les états représentant le mieux un bloc de spins, lors de la 
construction d’un superbloc. 

Depuis, la méthode de groupe de renormalisation par la matrice densité est 
devenue un outil puissant dans l'étude des propriétés de l'état fondamental 
d'une panoplie de systèmes quantiques. La méthode est aussi combinée à 
d'autres méthodes numériques pour mieux comprendre le comportement physique de 
ces systèmes. 

Comme toute méthode numérique ayant ses propres limites, la présente méthode 
ne fait pas exception. En effet, son application exclusive à des systèmes 
unidimensionnels était de sa propre nature, et présentait un inconvénient 
majeur pour le traitement des systèmes plus réalistes; bien que beaucoup 
d'effort a été fait dans ce sens. 

 :ملخص

حصل كینیث ولسون على جائزة نوبل للفیزیاء على أعمالھ في حل مسألة كوندو مستعینا بطریقة زمرة أعادة  1982في سنة 
لذلك  .لسوء الحظ لم تكن النتائج مشجعة عند تطبیق ھذه الطریقة في دراسة الأنظمة الفیزیائبة الكمیة بسبب  قلة دقتھا .التسویة

و لقد كان من بین ھِؤلاء ستیف وایت الذي استطاع أن یحدد مكمن الخلل في  .في الحقل على ایجاد الحل انكب كثیر من العاملین
فقام باقتراح أن یستعان بمبدأ مصفوفة الكثافة الذي یمكن من أختیار أفضل للمدارات التي تمثل مجموعة من طریقة ویلسون

.السبینات عند تركیب مجموعة أكبر منھا
لكثیر من الأنظمة الفیزیائیة  أصبحت ھذه الطریقة من بین أقوى الطرائق في دراسة خصائص المدار القاعديمنذ ذلك الحین 

كأي طریقة رقمیة أخرى فأن ھذه الطریقة لھا حدود تطبیقاتھا و المتمثلة أساسا في كونھا أعدت لدراسة أنظمة أحادیة   .الكمیة
ا على أنظمة ثنائیة أو ثلاثیة الأبعادالبعد رغم أن جھودا بذلت من أجل تعمیم تطبیقھ


